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ABSTRACT 

A new method is presented for calculating daily rainfall amounts from radar.  Radar 

data from two River Forecast Centers (RFC), and daily rain gauge data from stations 

around the Northeast U.S. are used to create a radar-level resolution grid of rainfall.  

The purpose for this method is to produce fields of precipitation estimates in the 

operational area of the Northeast Regional Climate Center (NRCC), to archive the 

high-resolution precipitation product, and to use the product as input into a crop 

modeling program.  Considering rain gauge observations as the true values, radar 

errors are calculated at each rain gauge location every day.  Using an interpolation 

method, the errors are estimated at each radar pixel and added back to the radar grid.  

Thirty cases were selected from different times of year and different weather types.  

Three interpolation methods, Inverse Distance Weighting, Multiquadric Interpolation, 

and Ordinary Kriging, are compared to the Multisensor Precipitation Estimation 

(MPE), used operationally by River Forecast Centers.  Parameters associated with 

each interpolation method are adjusted daily using cross-validation to produce the best 

results for each case.  By using daily rain gauge data, all three interpolation methods 

perform similarly and better than MPE, which uses hourly rain gauge data.  All 

methods for estimating precipitation perform best at low values of precipitation and 

worst at high values of precipitation.  Because of the similarity in results between 

interpolation methods, the simplest method computationally, Inverse Distance 

Weighting, has been chosen to be used operationally for the Northeast Regional 

Climate Center. 
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1.  Introduction 

Rainfall estimation has been an important part of radar research since radars 

were first implemented.  Based on the Z-R relationship (1), rainfall rate can be 

estimated from radar reflectivity.   

 Z = AR
b
 , (1) 

where Z is the radar reflectivity, R is the rainfall rate, and A and b are constants 

(Wilson and Brandes 1979).  Early research showed that while average optimal 

constants in (1) could be found, the more appropriate values for individual cases 

would change depending on location and weather type (Wilson and Brandes 1979, 

Austin 1987).  More specifically, these variations in the test parameters are caused by 

microphysical and kinematical processes that affect the drop-size distribution and fall 

speeds (Wilson and Brandes 1979; Hunter 1996).  Even if a perfect Z-R relationship 

could be found for any spatial or time scale, other errors such as calibration, 

attenuation, bright bands, anomalous propagation, and range degradation exist that 

affect the radar estimates (Fulton et al. 1998, Hunter 1996).  Numerous methods have 

been proposed to correct for one or many of these errors (Seo et al. 2000, Anagnostou 

and Krajewski 1999, Fulton et al. 1998, Hunter 1996).  Anagnostou and Krajewski 

(1999) created an algorithm which makes corrections for many of these errors by 

defining adjustment parameters for each type of error individually. 

Even before the Z-R optimal constants were determined, combining rain 

gauges with the radar reflectivity was found to improve accuracy in precipitation 

estimation from radar (Wilson 1970, Brandes 1975).  Rain gauges are typically 

considered the “ground truth”, but some small errors still exist.  In high rainfall rate 

events, rain gauges may underestimate the rainfall because of high winds or tipping 

bucket losses (Crum and Alberty 1993, Groisman and Legates 1994, Hunter 1996).  
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Non-automated rain gauges will often be inconsistent with radar estimates because of 

sampling time differences, and human observation error. 

The most recent use of rain gauges in radar precipitation estimation is to 

calculate a mean field bias. The mean field bias is calculated by dividing the gauge 

amount by the radar amount (Smith and Krajewski 1991, Seo et al. 1999).  The mean 

field bias calculates a bias over any desired spatial domain or time scale, but does not 

describe biases that may occur at individual rain gauge stations.  NWS applies the 

mean field bias to individual radar umbrellas every hour.  Seo and Breidenbach (2002) 

grouped their rainfall estimates into a number of categories based on season, gauge 

rainfall amount, number of gauges used, and hourly versus daily estimates.  They 

compared estimates using raw uncorrected radar estimates and mean field bias-

corrected estimates.  Cases were divided by season (cool or warm), time of 

observation (hourly or daily), number of gauges used (one-half (230) or one-quarter 

(115) of all operational gauges within the Arkansas Basin RFC selected randomly), 

and amount of rainfall at gauges (all gauges, gauges with rainfall greater than 2.54 cm, 

and gauges with rainfall greater than 5.08 cm).  When using uncorrected radar 

estimates, the resulting root mean squared errors (RMSEs) were as much as 4.05 cm 

for cool season, daily estimate, one-half gauge network, and greater than 5.08 cm 

rainfall cases.  Their methods improved the radar RMSE estimates to at least 0.333 cm 

for cool season, hourly estimate, one-half gauge network, and greater than zero rainfall 

cases.  The mean field bias corrections reduced the MSE by 27% in the cool season 

and 26% in the warm season. 

Corrections made to radar precipitation totals by the National Weather Service 

have been divided into four sequential stages.  For each individual radar umbrella, the 

data pass through the Precipitation Processing Subsystem (PPS), also known as Stage 

1, to create a number of derived products, including hourly precipitation estimates.  
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The PPS algorithm contains 46 parameters characterizing rain system type, season, 

climatology, topography, etc. (Wilson and Brandes 1979; Fulton et al. 1998). The PPS 

makes numerous corrections including beam blockage due to terrain, ground clutter 

due to man-made features such as tall buildings, and range degradation which 

underestimates rainfall at long distances (Fulton et al. 1998).  Stage 2 is performed 

hourly at River Forecast Centers (RFCs), where rain gauges are used to calculate a 

mean field bias and other corrections for individual radar umbrellas (Seo 1998a, Seo 

1998b, Fulton et al. 1998; Seo et al. 1999, Seo and Breidenbach 2002).  Stage 3 is also 

performed at River Forecast Centers, and uses multiple radars to expand to the 

coverage area of the RFC (Fulton et al. 1998).  Since some points lie in more than one 

radar umbrella, a method based on the height of the radar beam is used to select which 

radar rainfall estimate radar will be used at that point.  The height of the radar beam at 

the lowest radar tilt is determined for the entire radar umbrella and the radar with the 

lowest height at that point is selected.  Human interaction is used during this step to 

remove bad data or other errors that the previous steps may have overlooked (Fulton et 

al. 1998).  Stage 4 is performed at the National Center for Environmental Prediction 

(NCEP) and uses the same method to expand the area to the entire United States. 

Over the past few years, several new areas of research have developed in 

rainfall estimation from radar.  One area focuses on experimentation with X-band 

polarimetric radars (Anagnostou et al. 2004, Brandes et al. 2002).  Polarimetric radars 

collect data with vertical and horizontal polarizations simultaneously to account for 

the oblate shape of raindrops. 

Another new area for real-time correction of radar precipitation estimates has 

been developed and implemented at River Forecast Centers and some National 

Weather Service offices.  The procedure is called Multisensor Precipitation Estimators 

(MPE) and has refined and merged Stages 2 and 3 (Seo and Breidenbach 2002).  
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Radar values are mapped on the Hydrologic Rainfall Analysis Project (HRAP) grid, 

which is based on a polar stereographic projection, and results in a rotated grid 

conforming to the curvature of the earth.  The resolution (~4km x 4km) of the HRAP 

grid therefore changes slightly with latitude.  Like in Stage 3, the radar beam height is 

used to find the closest radar to each point in overlap regions.  Satellite-based rainfall 

estimates are used in areas of poor radar coverage.  The final grid covers each RFCs 

coverage area and is rectangular in shape rather than radial.  Every hour automated 

rain gauges are used along with a mean field bias correction and optimization methods 

outlined in Seo (1998a) and Seo (1998b) are used to create a field of hourly estimated 

precipitation.  The mean field bias (once part of Stage 2) corrects for any large scale 

biases over then entire RFCs area from calibration error for that hour.  Unfortunately, 

the final product is not available online in real time. 

The methods presented in this paper use radar data, after passing through the 

PPS (Stage 1), and rain gauge data, to interpolate a daily product of estimated rainfall.  

Section 2 describes the data and how it was acquired.  The three interpolation methods 

used to correct the initial radar estimates are discussed in section 3.  Section 4 

compares results from the different interpolation methods using cross-validation and 

groups the test cases by time of download, season, weather type, and rain gauge 

amount to look for differences in the mean squared errors.  Section 5 will describe the 

product more fully by discussing a few characteristic cases in more depth.  Some of 

the useful applications for this product as well as some of the shortcomings are 

discussed in section 6.  Conclusions from this research are presented in section 7. 

 

2.  Data Description 

This project builds upon the work being done at the River Forecast Centers to 

develop a daily product of high-resolution precipitation fields for use by the Northeast 



5 

 

Regional Climate Center (NRCC).  As part of a larger project with other departments 

at Cornell University, this product will ultimately be used for real-time agricultural 

and hydrological modeling as well as for climatological archives.  A daily estimate of 

precipitation at the resolution of the HRAP grid (~4km x 4km), is calculated using 

daily cooperative observer network rain gauges (www.nws.noaa.gov/om/coop/) and 

hourly radar estimated precipitation (PPS/Stage 1) from the River Forecast Centers.  

This procedure differs from the MPE method in two ways.  Rather than using hourly 

automated rain gauges and hourly radar data, this method uses daily rain gauge 

amounts, together with the summation of hourly radar data over 24 hours.  Instead of 

taking the MPE approach of calculating a multiplicative mean field bias or local bias, 

an additive error between a rain gauge and its corresponding radar pixel is used.  

These error values are interpolated to each radar pixel, and added back to the original 

radar estimate. 

The radar data were obtained from the Northeast River Forecast Center 

(NERFC) and the Mid-Atlantic River Forecast Center (MARFC).  The radar data used 

have been mapped to an HRAP grid and some quality control has been performed by 

the River Forecast Centers.  Archived raw uncorrected radar estimated rainfall (after 

Stage 1) and MPE results for these RFC areas can be found at 

http://dipper.nws.noaa.gov/hdsb/data/nexrad/nerfc_mpe.php  

and  

http://dipper.nws.noaa.gov/hdsb/data/nexrad/marfc_mpe.php. 

There are a number of relevant products that are available on these websites.  

The “HEIGHT” product shows a field of heights above ground level at the lowest tilt 

of the radar.  If a pixel is located within more than one radar umbrella, the lowest 

height is used to determine which radar estimate of rainfall will be used.  The 

“INDEX” field then indicates which radar has been selected for that point.  The 
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“RMOSAIC” product contains only the radar estimated rainfall (Stage 1) and is used 

as input for this project in order for a comparison to the MPE procedure to be made.  

The “GAGEONLY” product displays a field of the hourly, automated rain gauge 

amounts.  The “BMOSAIC” product contains a field of estimated rainfall after a mean 

field bias correction is applied.  “MMOSAIC” is considered the best estimate since a 

mean field bias correction and rain gauge amounts have both been used to make 

estimates.  The results from the methods proposed in this paper will be compared to 

the “MMOSAIC” product.  More extensive descriptions as well as other available 

product descriptions are available at: 

http://www.crh.noaa.gov/ncrfc/html_frames/rfcwide.htm 

Thirty cases were downloaded from all seasons and a variety of synoptic 

situations (Table 1).  Most cases were obtained from RFC archived data, and a few 

cases were downloaded daily from the RFC in real time.  For the archived data, RFCs 

tend to trim off areas that are far from their operational area, resulting in more missing 

pixels than the real-time data.  The full radar domain for each RFC is outlined in black 

in Figure 1.  The rain gauge data were obtained through the NRCC.  Cooperative  

Observer Network rain gauge stations (dots in Figure 1) were used from all states in 

the NRCC operational area (states in Figure 1).  Since most but not all rain gauges 

take 7am (EST) observations, only the rain gauges with 7am observations were used.  

Likewise, the hourly radar data were taken from the 24 hours before the 7am rain 

gauge observation time.  The 24 hourly estimates were summed to correspond with the 

rain gauge observations.  The radar data (RMOSAIC products) from MARFC (bottom 

solid-lined box in Fig. 1) and NERFC (top solid-lined box in Fig. 1) were combined 

into one continuous dataset that covered all states in the Northeast Regional Climate 

Center’s operational area.  Since the MPE procedure is performed independently at 

each RFC, some radar pixels fell in an overlap region (rectangular box in middle of 
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Figure 1.  Base map of rain gauge stations used (dots), areas from which data were 

retrieved (solid lines), and area which will be interpolated for final product (dotted 

line). 

 

Fig. 1) with two estimated values.  Non-missing pixels in the overlap area were 

averaged. 

Occasionally, an estimate at a pixel will be missing due to radar malfunction.  

This can occur on the scale of a few pixels, or throughout the entire radar umbrella.  

Missing data can last for one hour, or multiple hours.  Therefore, for each pixel, if data 

is missing during any hour of the day, that pixel is designated as missing for the entire 

24 hour period.  Interpolation is not performed on these points, and will be designated 

as missing in the final product. 
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3.  Interpolation Procedures 

Each of the three interpolation methods follows the same basic premise for 

estimating rainfall.  Using the radar pixel in which each rain gauge was located, an 

error was calculated 

 ei = ri – gi , (2) 

where ei is the error at the ith rain gauge, ri is the radar estimated rainfall at the ith rain 

gauge, and gi is the gauge value at the ith rain gauge.  These error values were then 

interpolated over the entire radar grid using the following equation: 

 ∑
=

=
n

i

iie weR
1

, (3) 

where, Re is the estimated radar error at the pixel being interpolated, ei is once again 

the error at the ith rain gauge, and wi is the weight assigned to the ith rain gauge.  This 

basic equation is used for each method.  What differs between methods is the process 

used to find the weights. 

 

a.  Inverse Distance Weighting 

The first and simplest method is Inverse Distance Weighting (IDW).  Also 

referred to as the Reciprocal Distance Squared Method, the estimated error value 

interpolated to each pixel can be estimated by Equation 3. For the IDW method, the 

weights are calculated with the following equation: 

 

∑
=

=
n

i

b

i

b

i
i

d

d
w

1

1

1

 , (4) 

where wi is the weight on the ith rain gauge, di is the distance (in degrees 

latitude/longitude) between the radar pixel and the ith rain gauge, b is an exponent, 

and n is the number of rain gauges within a specified radius of the radar pixel 

(Simanton and Osborn 1980).  The exponent and the radius can both be changed to 
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minimize the mean squared error (MSE) using cross-validation (see section 3d).  The 

optimal exponent values found by Simanton and Osborn (1980) range from 1.0 to 3.0, 

which is consistent with the results from this procedure (Table 1).  The radius of 

influence can range from the shortest distance between any two gages (~0.1°) to the 

size of the domain (~20°).  Equations 3 and 4 are used for each radar pixel, resulting in 

different weights on each rain gauge for each radar pixel.  Rain gauges that are located 

far from the radar pixel will have large distances and small weights, and will have 

little effect on the error estimate.  The weights will then increase as the distance 

decreases until approaching infinity at the radar pixel location.  The error at radar 

pixels that contain a rain gauge will therefore just be the error (Eqn. 2) at that rain 

gauge.  The Inverse Distance Weighting method is therefore known as an “exact 

interpolator” method.  The Inverse Distance Weighting method is also simple to 

program and fast to use. 

 

b.  Multiquadric Interpolation 

Multiquadric interpolation (MQ) is similar to IDW in that it is based on the 

distances between points.  Nuss and Titley (1994) developed and demonstrated this 

procedure on pressure estimates, but stated that it could be applied to other spatially 

varying fields.  MQ uses the same interpolation equation (3), but the weights are 

calculated by, 

 1−= jQQw , (5) 

where w is a vector of weights on the n rain gauges, Q is a vector (n dimensional) of 

radial basis function values between the radar pixel and all rain gauges, that are 

nonzero for gauges within a radius of influence, and Qj
-1

 is a matrix (n x n 

dimensional) of radial basis function values between each rain gauge and all others 
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within a radius of influence.  The radial basis functions use a hyperboloid radial basis 

function, 

 

2
1

2

2

1









+−=

c

d
Q i
i , (6) 

where di is the distance between the radar pixel and the ith rain gauge, and c is a small 

constant needed to make the basis function infinitely differentiable, and, 

 )(1

2
1

2

2

ij

ij

ij n
c

d
Q λδ+














+−= , (7) 

where dij is the distance between the ith and jth rain gauges, and c is the same constant 

as in Eqn. 6.  When i = j, the Kronecker delta δij, equals 1 (otherwise, δij = 0), and Qij 

is corrected for observational uncertainty.  Again n is the number of rain gauge 

observations, and λ is a smoothing parameter which includes a mean-squared 

observation error.  To insure that Qij is invertible, c must be relatively small (Nuss and 

Titley 1994).  The constant, c, is insensitive to the results and was set at 0.0008 for this 

procedure.  A radius of influence that determines the number of observations to be 

used, and the smoothing parameter λ, can be adjusted through cross-validation (see 

section 3d) for each case to minimize the MSE.  Like the IDW method, calculations 

are made for each radar pixel, but MQ is not an exact interpolator method because of 

the correction for observational uncertainty.   The programming is also slightly more 

complicated than IDW since the inversion of a large matrix is required. 

 

c. Ordinary Kriging 

The final interpolation method is Ordinary Kriging, which looks at the 

variance between all points over the entire radar field.  The equation used to find the 

estimated error is once again Equation 3.  The weights are calculated based on a 

semivariogram function, also called the variogram, and a linear system of equations, 
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which yields the “best linear unbiased estimator” (BLUE).  The variogram gives the 

variance of differences between two points as a function of the distance between them 

(Kitanidis 1997, Cressie 1993).  The equation for the variogram is: 

 ])[(
2

1
)( 2

ji eeEd −=γ  , (8) 

where γ(d) is called the semivariogram, but is typically referred to as the variogram.   

The variogram, γ(d), is a function of the expected value, E, of the squared difference 

between ei and ej, which are the errors at the ith and jth rain gauges, respectively.  The 

weights are found by solving a system of linear equations,  

 w = A
-1
b,  (9) 

where w is a vector the weights,  
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in which ν is a Lagrange multiplier, and b contains the variogram functions between 

each gauge and the point to be solved,  
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and A is a matrix of all possible variograms  

 

( ) ( )
( ) ( )

( ) ( )






















−−−−

−−−−

−−−−

=

0111

10

10

10

21

212

121

L

L

MMOMM

L

K

eeee

eeee

eeee

nn

n

n

γγ

γγ
γγ

A   (12) 



13 

 

(Kitanidis 1997).  By setting the diagonal values of (12) to zero, Ordinary Kriging 

becomes an exact interpolator method, but will result in a discontinuous map at most 

rain gauge locations since only the pixel containing the rain gauge will be affected.  

The computer program, Splus, and more specifically the “krige” function, was used to 

solve the Kriging equations for this project (Kaluzny et al. 1998). 

In order to use the variogram in calculations, an empirical variogram model 

must be formulated.  Three models were compared for this project, exponential (Eqn. 

13), spherical (Eqn. 14), and Gaussian (Eqn. 15).  Each model uses three parameters, 

the nugget, sill, and range, plus the distance between points.  Typically, the variance at 

a distance of zero is zero, but in some cases there is a “nugget effect” or discontinuity 

of the origin (Cressie 1993).  At a large enough distance, the variogram should level 

out to a limit called the sill.  The distance at which the data are no longer 

autocorrelated is called the range (Kaluzny et at. 1998).  The exponential model is, 

 ( )( )
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0,0
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0 dadcc
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d

s

γ  , (13) 

the spherical model is, 
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and the Gaussian model is, 

 ( )( )



>−−+

=
=

0,4/7exp1

0,0
)( 2

0 dadcc

d
d

s

γ  , (15) 

where d is the distance between points, co is the nugget, (co + cs) is the sill, and a is the 

range.  For this project, the optimum nugget, sill, and range were estimated using the 

“variogram.fit” function in Splus (Kaluzny et al. 1998).  It was found that for the 30 

cases used, the exponential model performed the best overall, so the results from only 

the exponential model are hereafter presented.   
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 Using variances and covariances in approaches similar to Kriging have been 

tried before on radar-rainfall calculation (Seo 1998a, Seo 1998b).  A related method 

called co-Kriging has also been experimented with for rainfall estimation (Azimi-

Zonooz et al. 1989, Krajewski 1987).  Co-Kriging calculates not only the variances of 

differences between points for radar values and rain gauges, but also the covariance 

between both the radar and rain gauge values to calculate an estimate.  Results from 

four different methods of co-Kriging in three climates were presented by Azimi-

Zonooz et al. (1989) and are similar to the results of MPE in Seo and Breidenbach 

(2002).  RMSE values range from 0.349 cm to 2.594 cm.  For this project, by using 

ordinary Kriging on the errors, both the rain gauge and radar values are incorporated, 

and the calculations are simpler.  Therefore, co-Kriging was not explored any further.  

The calculations for ordinary Kriging are also much more complicated than the other 

methods and a statistical program with Kriging capabilities must be used.   

 

d. Cross-Validation 

Cross-validation is used in this project to calculate the optimum parameter 

values for each interpolation method on a case-by-case basis.  Cross-validation is 

performed by removing each rain gauge point and interpolating to that point using all 

remaining data.  The error between the interpolated value and the actual value is then 

calculated.  After cross-validating for all points, a cross-validated mean squared error 

(MSE) is calculated.  The parameters are then adjusted to a new set of trial values and 

the process is repeated.  For instance, the Inverse Distance Weighting method has two 

parameters, radius of influence and the exponent.  The radius can range from 0.1° to 

20° and the exponent can range from 0.5 to 3.0.  The result will be a two-dimensional 

field of MSE values for every possible radius and exponent combination.  One 

combination will have a minimum cross-validated MSE and that combination is 
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considered the best.  Cross-validation is performed in this way for each case, resulting 

in different optimum parameters each time. 

 

e. Smoothing Methods 

Because interpolation was performed on the errors, negative values of 

interpolated precipitation are possible.  Since this result is unrealistic, any gauge 

measurement point with both a rain gauge and radar value of zero were automatically 

set to an error value of zero. Any interpolated points producing a negative value were 

set to an error value of the negative of the radar value (thus resulting in a precipitation 

estimate of zero). 

 
Figure 2:  Estimated precipitation amounts around an anomalously high rain gauge 

amount 
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Because of the nature of IDW and MQ interpolation, anomalously high or low 

rain gauge values tend to influence adjacent points in the error field.  Figure 2 shows a 

close up view of the estimated precipitation amounts around an anomalously high rain 

gauge amount.  The rain gauge is specified by the circle and has a precipitation 

amount of 2.79 cm.  The precipitation values decrease almost symmetrically as the 

distance from the rain gauge increases.  To remedy this problem, an additional 

procedure was applied to the data field to remove rain gauges that disagree strongly 

enough with the rest of the data, in order to produce a smoother and more physically 

consistent final map.  At each rain gauge location, all radar pixels within a radius of 

0.1° were selected.  If 75% or more of those radar pixels had a difference in error 

estimates relative to the gauge error higher or lower than 0.5 cm, that rain gauge was 

removed.  The rain gauges that met these criteria were removed and cross-validation 

was rerun, which often resulted in new values for the parameters.  The same procedure 

was repeated using a smaller difference of 0.4 cm between gauges and radar pixels.  

Two more iterations using differences values of 0.3 cm and 0.2 cm followed.  To 

ensure that a large number of rain gauges were not eliminated, the procedure was 

terminated before the 0.2 cm iteration if more than 10% of the total number of gauges 

were omitted.  The results in Table 1 do not reflect the reduction of cross-validated 

MSE resulting from this deletion of inconsistent rain gauges. 

 

4.  Results 

Thirty cases were selected from all seasons, representing various types of 

weather conditions.  Table 1 shows the thirty cases, and various characteristics 

including weather type, whether the data were downloaded from archives or in real-

time, and the number of gauges used in the interpolation.  All thirty cases were 

optimized individually by cross-validated MSE (cm
2
) for each of the three 



17 

 

interpolation methods.  The optimal parameters for each interpolation method are also 

shown in Table 1, as well as the MSE for those methods and MPE.  Three cases are 

missing in the MPE column because MPE was not operational for those cases.  Even 

for these thirty cases, a wide range of parameters exist.  The radius of influence for the 

IDW and MQ methods were selected from a range of 0.1° to 20° as stated before, and 

the exponent for the IDW method ranged from 0.5 to 3.0 as stated before.  The 

smoothing parameter for the MQ method was selected from a range of 1 to 100.  For 

Kriging, the values for the nugget tend to be near zero, but the sill and range can 

approach infinity if the variogram never completely levels off.  The values for the 

nugget, sill, and range, were therefore between zero and infinity. 

 

Table 2.  Mean Squared Errors of Three Interpolation Methods and MPE procedure. 

  MSE (cm
2
) RMSE (cm) 

Multiquadric Interpolation 0.5174 0.7193 

Inverse Distance Weighting 0.5229 0.7231 

Ordinary Kriging 0.5356 0.7318 

Mulitsensor Precipitation Estimation 1.4396 

* 0.7365 

1.1998 

* 0.8582 

Uncorrected Radar 0.8701 0.9328 

     * After one abnormal case was taken out 

 

Table 2 shows the average MSE of all cases in which MPE was operational for 

each interpolation method, the MPE method output “MMOSAIC” produced by the 

River Forecast Centers, and the uncorrected radar.  These data only contain cases in 

which MPE was available.  MPE performed very poorly for one case, which will be 

discussed in more detail in section 5b.  Therefore, the MPE results are presented with 

and without this case.  Results for all three methods appear significantly different from 

MPE and the uncorrected radar.  The MQ method seems to perform slightly better 

than IDW or Kriging, although this difference is on the order of 0.01-0.02 cm. 



18 

 

 
Figure 3.  Rain gauge estimates versus the estimates at those rain gauge locations by 

radar, the MPE method, and three interpolation methods. 
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Figure 4.  One-to-one graphs comparing radar errors at each rain gauge point to the 

errors in each interpolation method. 

 

This similarity can also be confirmed graphically by comparing the methods on 

scatter plots.  Figure 3 shows that there is a wider scatter of points when rain gauge 

amounts are compared to radar estimates and MPE method estimates, and the three 

interpolation methods.  Comparisons can also be made using one-to-one graphs, where 

graphs that contain points close to the one-to-one line indicate that those methods are 

similar.  Comparisons of each method to the radar estimates (Figure 4), the MPE 

estimates (Figure 5), and each other (Figure 6) confirm the results from Table 2.  The 

point clouds in Figures 4 and 5 are much larger than in Figure 6, indicating a 

difference between the interpolation methods and the radar estimates and MPE  
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Figure 5.  One-to-one graphs comparing MPE method errors at each rain gauge point 

to the errors in each interpolation method. 

 

estimate.  Even though the MQ method performs slightly better than the other two 

methods, Figure 6 indicates that the difference is minimal. 

To explore these differences more quantitatively, permutation tests for each 

method comparison were performed.  The purpose of a permutation test is to compare 

two groups of data, in this case the average cross-validated MSEs for each pair of 

interpolation methods (Table 1), by calculating a large number of permutations of the 

two groups.  For each permutation, a test statistic, in this case the ratio of the average 

cross-validated MSEs for each method is calculated.  This is repeated for a large 

number of permutations, in this case 10,000, creating a distribution of test statistics  
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Figure 6.  One-to-one graphs comparing the errors at each rain gauge point for each 

interpolation method to the errors of each other interpolation method. 

 

consistent with the null hypothesis of no differences between interpolation methods.  

By observing where the sample test statistic lies in this distribution, one can evaluate 

the plausibility of that null hypothesis.  The permutations were selected by a uniform 

random number generator.  The data are paired by case day, and each case is 

considered independent.  The random number determines into which group the data 

will be placed for each of the 10,000 permutations (i.e. if number is < 0.5, data stays in 

observed groups, if number is ≥ 0.5, data are moved to opposite groups). 

Three permutation tests comparing MQ to IDW, IDW to Kriging, and Kriging 

to MQ were calculated.  When comparing MQ to IDW, the ratio of the MSEs of all 
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MQ cases to the MSEs of all IDW cases corresponded to the 3.27 percentile of the null 

distribution.  For the IDW to Kriging comparison, the sample ratio was in the 0.13 

percentile.  For the Kriging to MQ comparison, the sample ratio was in the 100 

percentile.  In the comparisons of IDW to Kriging and Kriging to MQ, the null 

hypotheses involving Kriging were rejected in favor of the alternative that Kriging 

results are different from the others.  Given that this permutation test is two-tailed, the 

comparison of MQ to IDW does not reject the null hypothesis at the 5% level of 

significance.  Despite the permutation test results that indicate that MQ and IDW 

perform similarly, only one interpolation method could be chosen to be used 

operationally.  The IDW method was chosen since the calculations are simpler. 

 

 

Figure 7.  Cross-validated RMSE grouped by time of download. 

 

Cases in which MPE data were available were also grouped in a few ways to 

look for similarities.  First, the cases were divided based on when they were 

downloaded (real-time or archived) to determine whether the quality control steps 
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performed for archiving improves the estimates.  The results (Figure 7) indicate that 

there is very little difference in real-time and archived cases after the interpolation 

methods are performed.  The decrease in RMSE in radar may be a factor of the quality 

control of the archiving process.  The large spike in the MPE method for real-time 

cases can be attributed to a few observations in one case which will be explained in 

more detail in Case 2 (see section 5b).  This spike can also be observed in Figures 8-

11.  The line on the MPE bar indicates the MSE value excluding this case. 

 

 

Figure 8.  Cross-validated RMSE of cases grouped by season. 

 

The cases were next grouped by season (Figure 8).  The numbers in 

parentheses indicate how many cases are in each category.  Each season contains cases 

from three months, e.g. spring contains cases in March, April, and May.  Cases in 

summer and fall tend to have a higher RMSE than those in spring and winter, but the 

difference is only about 0.3 cm.  Cases in the summer and fall also have a higher 

average rain gauge amounts which may be the reason for the higher RMSE.  
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Consistent with Figure 5, all three interpolation methods perform similarly, and better 

than MPE.  The large spike in the MPE estimate in the summer is once again the 

errors from Case 2 (see section 5b). 

 

 

Figure 9.  Cross-validated RMSE of cases grouped by type of weather. 

 

Cases were also separated based on weather types (Figure 9).  Because of the 

large area covered, in a few cases different weather types affected different parts of the 

region (i.e. frontal in the north, tropical in the south).  These were included in more 

than one category.  Some categories took precedence over the others and are explained 

below in order of precedence.  The small scale category includes cases in which only a 

small area (less than 1/3) of the coverage area received precipitation.  The tropical 

category contains cases in which a remnant of a tropical system passed over the 

coverage area.  Winter storm cases included systems capable of producing ice and/or 

snow, which was determined by surface temperature observations.  The frontal 
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category indicates cases containing fronts and/or an extratropical system.  If the case 

did not fall into the previous categories and contained convective precipitation, it was 

classified as convective.  Likewise, if the case did fall into the previous categories and 

contained stratiform precipitation, it was classified as stratiform. 

All three interpolation methods perform similarly for each weather type and 

better than MPE.  Although, there seems be three different levels of performance with 

small scale cases performing the best, tropical cases performing worst, and 

intermediate performance for the other groups.  The average rain gauge amounts 

reflect this trend as well.  All three interpolation methods perform better than the radar 

estimates in every type of weather. 

 

 

Figure10.  Cross-validated RMSE of rain gauges grouped by rainfall amount. 

 

Figure 10 stratifies individual observations by rain gauge amounts.  The basic 

trend indicates that errors increase as the rainfall amounts increase.  The three 
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interpolation methods once again perform similarly.  An interesting difference though, 

is that they improve the radar estimates at high rain gauge values, but do slightly 

worse than the radar estimates at low rain gauge values.  This difference in RMSE at 

low values is less than 0.1 cm, compared to the improvements of 0.2 cm to almost 1.0 

cm at higher values.  Another way to look at this is shown in Figure 11 where the 

RMSE is divided by the rain gauge amount, resulting in a percentage.  From this 

perspective, all methods perform poorly at low rainfall amounts.  The radar estimates 

tend to perform best in the middle ranges and decrease in accuracy with smaller and 

larger amounts.  With the exception of MPE, all interpolation methods perform well at 

rain gauge values of over 0.25 cm. 

 

 
Figure 11.  Absolute error at rain gauges divided by rain gauge amounts and grouped 

by rainfall amount. 

 

The trend found in Figures 10 and 11 most likely accounts for the differences 

found for the categories in Figures 8 and 9.  The summer and fall cases have an 
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average rain gauge amount of 0.94 cm and 2.06 cm, respectively, while the spring and 

winter cases have an average rain gauge amount of 0.62 cm and 0.83 cm, respectively.  

The small scale category has an average rain gauge amount of 0.10 cm, the tropical 

category has an average rain gauge amount of 2.84 cm, and the other categories lie in 

the middle (Winter: 0.87 cm, Frontal: 1.29 cm, Convective: 0.79 cm, Stratiform: 1.67 

cm) 

 

5.  Case Studies 

a. Case 1 – April 7, 2003 

 To demonstrate the procedure, two cases will be examined step by step.  Figure 

12a-b shows the rain gauge and radar fields for the April 7, 2003 winter storm case.  

The domain is outlined with a black dotted line.  Radar values of 0.0 to 0.19 cm are 

shaded in the lightest gray, while any white pixels within the dotted area are missing  

 

Figure 12a.  Rain gauge amounts for Apr. 7, 2003 case. 
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Figure 12b.  Uncorrected radar estimates for Apr. 7, 2003 case. 

 

Figure 12c.  Radar errors at each rain gauge for Apr. 7, 2003 case. 
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Figure 12d.  IDW corrected radar for Apr. 7, 2003 case. 

 
Figure 12e.  Final IDW corrected radar after bad points were removed for Apr. 7, 2003 

case. 
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data.  The radar pixel that corresponds to a rain gauge is used to find the errors at each 

rain gauge (Figure 12c) by subtracting the rain gauge observations from the radar 

estimates (Eqn. 2).  The original MSE for the initial radar field is 0.3418 cm
2
 and the 

MPE method improves the MSE to 0.2627 cm
2
 (Table 1).  Cross-validation was run 

on this case and the optimum radius and exponent for the IDW method was 1.4° and 

2.0, respectively (Table 1).  The IDW method improved the precipitation estimate 

even more to an MSE value of 0.1791 cm
2
.  IDW performed better than MQ (0.1810 

cm
2
) and Kriging (0.1821 cm

2
) for this case (Table 1).  Figure 12d shows the resulting 

estimated precipitation field after performing an IDW interpolation on the errors 

(Figure 12c) and subtracting these values from the initial radar estimates (Figure 12b).   

The next step removes the numerous local minima and maxima that appear in 

Figure 12d.  For IDW, after the final iteration, the number of rain gauges was reduced 

from 338 to 319 and the MSE decreased from 0.1791 cm
2
 to 0.1086 cm

2
.  The 

decrease in MSE results from removing the gauges that are inconsistent with the rest 

of the map and therefore their removal reduces the cross-validated MSE.  When the 

same type of procedure is applied to MQ, with the change of radius mentioned in 

section 3e, the results are similar.  The number of gauges decreases from 338 to 327, 

and the MSE decreases from 0.181 cm
2
 to 0.1108 cm

2
.  Figure 12e shows the resulting 

radar field for April 7, 2003 after IDW interpolation and the local min/max 

corrections. 

 

b. Case 2 – August 30, 2004 

 The synoptic situation for Aug. 30, 2004 was a frontal system approaching 

from the north, and a tropical system from the south.  The result was two distinct areas 

of precipitation (Figures 13a-b).  With two areas of precipitation and large 

precipitation amounts, the resulting MSE for the radar estimate was large (1.0825 
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cm
2
).  What makes this case even more unique is that the MPE method performed 

poorly with an MSE of 19.7215 cm
2
 (Table 1).  Further investigation found that the 

MPE method produced an area of extreme precipitation in part of Vermont with a 

maximum of 229 cm over one day.  Three rain gauges with reasonable observations 

(0.58 cm, 1.45 cm, 1.52 cm) lie in this area.  This bad value was not found in the 

original radar estimate.  Since the MPE method involves some human interaction, it is 

a possibility that this was a human error, but there is probably no way to know for 

sure.  Nevertheless, these rain gauges were used in the MSE calculation for MPE, and 

an anomalously high value of MSE resulted. 

 The same procedure was used on the errors in this case as outlined in the 

previous case to make estimates of the precipitation amounts (Figures 13c-d).  An 

interesting outcome of this case was the high values for the optimal radius of 

influence.  For IDW, the radius was 16.9° and for MQ the radius was 14° (Table 1).   

 

Figure 13a.  Rain gauge amounts for Aug. 30, 2004 case. 
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Figure 13b.  Uncorrected radar estimates for Aug. 30, 2004 case. 

 

Figure 13c.  Radar errors at each rain gauge for Aug. 30, 2004 case. 



33 

 

 

Figure 13d.  IDW corrected radar for Aug. 30, 2004 case. 

 

At these values, a large percentage of the rain gauges were used in the interpolation of 

each radar pixel.  It is possible that since there are two distinct areas of precipitation, 

by adding more rain gauges, more information is added, slightly improving the 

outcome.  The IDW method performed the best with an MSE of 1.0087 cm
2
, in 

comparison to MQ with 1.0427 cm
2
 and Kriging with 1.0358 cm

2
.  All methods still 

improved on the radar estimates and easily beat the MPE estimate.  In this case, no 

local minima or maxima appear in the final precipitation product, but for consistency, 

the procedure to identify bad rain gauges was run.  No rain gauges were removed in 

this case and the final produce did not change from Figure 13d. 
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c. Cases 3 and 4 – March 20, 2003 and May 8, 2004 

 Something that cannot be analyzed using MSE values is the small scale radar 

errors that can only be seen visually.  Since the cross-validated MSEs are calculated 

using rain gauges and since these errors are often localized, they are sometimes 

overlooked.  These radar-associated errors should probably be fixed in the future, but 

for the purposes of this project, the errors will simply be addressed so users can be 

aware.  An error field can be constructed using the rain gauges, but when that error 

field is subtracted from the radar, any problems associated with the radar will still 

exist.  Figure 14 shows some of these errors in the radar for the March 20, 2003 case 

after the IDW interpolation correction.  The most apparent problems are the radial 

lines extending from the two radar tower locations, denoted by arrows.  These lines 

can range from the size of a few pixels wide, to encircling the radar.  This error is  

 

Figure 14.  Final IDW corrected radar precipitation estimates for March 20, 2003. 
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most likely causes by internal errors within the radar.  This case is the most extreme of 

all 30 cases, but 6 cases had this problem to some extent.  The other problem in Figure 

14 is the missing radar data in southern Maine, northern New Hampshire, and northern 

Vermont.  This can be observed in 8 of the 30 cases, and seems to happen in the same 

area most of those times.  This problem cannot be remedied using this method, but 

perhaps the area could be filled in using satellite or rain gauge data and other statistical 

techniques.   

The last radar error can be found in the May 8, 2004 case (Figure 15).  Very 

small areas of very high of precipitation are indicated in Maine.  Seven of the 30 cases 

contained this same problem to some extent.  This case shows numerous dots of 

extreme values over a small area clustered around the Portland, ME radar.  Other cases 

contained single dots scattered around the coverage area.  The cause of this problem 

 

 

Figure 15.  Final IDW corrected radar precipitation estimates for May 8, 2004. 
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could be a number of things ranging from anomalous propagation to bird migration.  

After an inspection of a national radar loop for this date, similar phenomena appeared 

at many other radar sites during the same time.  Therefore, in this case these values 

seem to be errors.  Although, with many other cases it may be difficult to distinguish 

between radar errors and an actual small scale event in order to correct the error.  

Unless a rain gauge is located at that point, there is no way to determine the 

correctness of these localized anomalous values.  This could be a case where human 

interaction is needed to correctly identify the problem. 

 

6.  Discussion 

This simple interpolation method (inverse distance weighting) produces an 

estimated precipitation product for the northeastern United States with radar-level 

resolution (~ 4km x 4km).  Since this method performs better than Kriging and 

similarly to MQ, and since the calculations are simpler than MQ, IDW was chosen 

over the other two methods to be used operationally.  The trend of rain gauge amounts 

and method performance (Figures 10 and 11) indicates that all of these candidate 

interpolation methods perform best for moderate rainfall amounts (0.25 cm to 1.5 cm).  

RMSE values become large at rain gauge values above ~1.5 cm, and percentages of 

RMSE divided by rain gauge amounts are large at rain gauge values below ~0.25 cm.  

Cases in which large amounts of rain falls, such as tropical systems, perform poorly, 

but still better than the uncorrected radar and MPE estimates.  Multiplicative rather 

than additive corrections were tested to account for this trend, but the MSE values 

increased.  This result could partially explain why the interpolation methods, which 

use an additive error, performed better than the MPE method, which uses a 

multiplicative bias.  However, most of the improvement likely comes from using a 
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large number of daily rain gauge observations rather than a few hourly rain gauge 

observations. 

 Some problems with this procedure still exist because of the quality of the 

radar input.  As can be seen in some of the cases, radial lines, splotches of high values, 

and nonfunctioning radars result in unreliable output.  These problems cannot be fixed 

with rain gauge verification since a rain gauge rarely aligns with a radar problem.  

Even then, the problem is usually so severe that an interpolation method would still 

not produce a value consistent with the rest of the map.  Fixing some of these types of 

radar errors could be done as a next step to clean up the product.  Like the procedures 

used by RFCs, satellite estimates could be implemented in areas where the radar does 

not produce any data.  Algorithms could also be created that filter out radar splotches 

and radial lines.  Some caution should be used though, to prevent results that produce 

even worse estimates like the MPE method for the Aug. 30, 2004 case (Table 1). 

In real time, this product will work well for applications that need only daily 

data, such as crop modeling or long term flood forecasting or monitoring.  By using a 

high resolution precipitation field in crop modeling, there is increased accuracy in the 

initialization of each day’s simulation.  Observation of high resolution rainfall over a 

few days can give forecasters a better idea of where flooding may or may not occur.  

The archival product will provide a database of these high resolution precipitation 

estimates for climatological analysis.  The final product is a text file containing 

latitude, longitude, and the interpolated rainfall amount.  Those data can then be used 

to either graph the entire domain, or just pick out points of interest.  The data will not 

appear for points in which the corresponding radar has gone down for any part of that 

day.  The final products will be soon be available online daily and archived. 
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7.  Conclusion 

 Radar is probably the best available source of data for precipitation estimation 

at high spatial resolution.  Because of the variability of the Z-R relationship, other 

information must be used to correct the resulting errors.  Using daily radar estimated 

rainfall totals together with daily rain gauge amounts, produces substantial 

improvements.  Synoptic and seasonal differences in precipitation characteristics can 

be accommodated separately for each day by performing cross-validation on the errors 

at each rain gauge location.  The interpolation methods perform best in cases with 

medium amounts of precipitation (between 0.25 cm and 1.5 cm), and perform the 

worse in cases, such as tropical systems, with large amounts of precipitation.  In most 

cases though, there is improvement over the radar estimates and the MPE estimates. 

Improvement can still be made to this procedure.  Since radar malfunction 

errors are not addressed in this procedure, some improvement could still be made in 

the accuracy of the product.  For cases when one or two radar umbrellas fail to output 

any data, other methods such as satellite estimates must be used to fill in these holes.  

But future procedures must be careful not to decrease the accuracy already obtained, 

which occurred with the MPE method in the Aug. 30, 2004 case.   

Even at this stage, the product can have many applications to scientists and 

non-scientists in the areas of crop modeling and long-term flood forecasting and 

monitoring.  The IDW interpolation method is also simple to program.  With the 

availability of radar data from local RFC offices, this procedure could easily be 

expanded to the entire country. 
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Appendix A:  Inverse Distance Weighting Computer Programming Codes 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!                                                               !!! 
!!! Program:     inversedist                                      !!! 
!!! Author:      Eric Ware                                        !!! 
!!! Description: Interpolates rain gauge amounts to radar grid.   !!! 
!!!                                                               !!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
PROGRAM inversedist 
    IMPLICIT NONE 
! 
! ******************************************************************* 
! * Declaration Section  
! ******************************************************************* 
! 
! ************* 
! * Variables * 
! ************* 
! 
! * I, J, K -- Iteration Values 
! * length -- number of rain gauges 
! * out, out2 -- 1 or 0 
! * badgauge -- number of gauges being removed 
! * radius -- radius of influence 
! * expon -- exponent in idw 
! * min_exp -- cross-validated exponent 
! * diffval -- difference btwn radar pixels in min/max cleanup 
! * stout -- number of stations removed 
! * top, bottom -- used in idw 
! * min_mse -- cross-validated mse 
! * min_rad -- cross-validated radius 
! * mse -- mean squared error 
! * cnt -- counts total number of surrounding pixels in min/max       
!          cleanup 
! * hit -- counts surrounding pixels as incr or decr in min/max  
!          cleanup 
! * diff -- difference in pixel values in min/max cleanup 
! * avg -- hit/cnt in min/max cleanup 
! 
    INTEGER :: I, J, K, length, out, out2 
    INTEGER :: radius, expon 
    REAL :: diffval, stout, badgauge 
    REAL :: top, bottom, min_mse, min_rad, min_exp, mse 
    REAL :: cnt, hit, diff, avg 
! 
! ************* 
! * Constants * 
! ************* 
! 
! * radit -- upper limit of radius*10 
! 
    INTEGER, PARAMETER :: radit = 200 
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Appendix A (Continued):  Inverse Distance Weighting Computer Programming Codes 

! 
! ********** 
! * Arrays * 
! ********** 
! 
! * stn -- just station id from precip file 
! * hrap -- hrap values for station 
! * lat, lon -- from precip file 
! * gauge -- rain gauge value 
! * radar -- radar value at gauge 
! * err -- error at gauge 
! * fullrad, fulllat, fulllon -- radar values, lats/lons for entire  
!                                grid 
! * rad, radlat, radlon -- radar values, lats/lons for final grid 
! * esterr -- estimated error 
! * est_p -- estimated precipitation 
! * nerad -- radar values in Northeast 
! * marad -- radar values in Mid-Atlantic 
! * dist -- distance between radar points 
! 
    INTEGER, DIMENSION (500) :: stn 
    INTEGER, DIMENSION (2,500) :: hrap 
    REAL, DIMENSION (500) :: lat, lon, gauge, radar, err 
    REAL, DIMENSION (66600) :: fullrad, fulllat, fulllon 
    REAL, DIMENSION (36610) :: radlat, radlon, rad, esterr, est_p 
    REAL, DIMENSION (152,175) :: nerad 
    REAL, DIMENSION (200,200) :: marad 
    REAL, DIMENSION (36610,500) :: dist 
! 
! * Data statements 
! 
    DATA top, bottom/0.0,0.0/ 
    DATA diffval/0.5/ 
    DATA mse/0.0/ 
    DATA min_mse/500.0/ 
    DATA out/0/ 
! 
! ******************************************************************* 
! * Execution Section 
! ******************************************************************* 
! 
! ***************** 
! * Input Section * 
! ***************** 
! 
! * Open files 
! 
   OPEN (unit=1, file='/home/ecw25/precip_totals/Apr0703/tot7.txt', 
         status="unknown")     
   OPEN (unit=2, file='/home/ecw25/precip_totals/latlonfile.txt',   
         status="unknown") 
   OPEN (unit=3, file='/home/ecw25/precip_totals/fulllatlonfile.txt',            
         status="unknown") 
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Appendix A (Continued):  Inverse Distance Weighting Computer Programming Codes 

   OPEN (unit=4, 
        file='/home/ecw25/precip_totals/Apr0703/Apr0703radar.txt',     
        status="unknown") 
   OPEN (unit=5, file='/home/ecw25/statout.txt', status="unknown") 
   OPEN (unit=6, file='/home/ecw25/finalradar.txt', status="unknown") 
 10 FORMAT (I6, 1x, 2(I4, 1x), 2(F7.3, 1x), 3(F6.2)) 
 11 FORMAT (2(F10.4, 1x)) 
 12 FORMAT (2(F8.4, 1x), F6.3) 
 13 FORMAT (I6, 1x, 2(F7.3, 1x), 3(F6.2)) 
! 
! * Read files 
! 
    length = 0 
    DO I = 1, 500 
        READ (1,10,END=20), stn(I), hrap(1,I), hrap(2,I), lat(I),         
                            lon(I), gauge(I), radar(I), err(I) 
 length = length + 1 
    END DO 
 20 CONTINUE 
    DO I = 1, 36610 
        READ (2,11) radlat(I), radlon(I) 
    END DO 
        DO I = 1, 66600 
        READ (3,11) fulllat(I), fulllon(I) 
    END DO 
    DO J = 1, 152 
        READ (4,*) (nerad(J,K), K = 1, 175) 
    END DO 
    DO J = 1, 200 
        READ (4,*) (marad(J,K), K = 1, 200) 
    END DO 
! 
! * Read in full radar 
! 
    J = 1 
    K = 1 
    out = 0 
    DO I = 1, 66600 
        IF (out == 0) THEN 
            fullrad(I) = nerad(J,K) 
     IF (K == 175) THEN 
      IF (J == 152) THEN 
             out = 1 
      J = 1 
      K = 1 
  ELSE 
             J = J + 1 
             K = 1 
  END IF 
     ELSE 
         K = K + 1 
     END IF 
 ELSE IF (out == 1) THEN 
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Appendix A (Continued):  Inverse Distance Weighting Computer Programming Codes 

     fullrad(I) = marad(J,K) 
     IF (K == 200) THEN 
         J = J + 1 
         K = 1 
     ELSE 
         K = K + 1 
     END IF 
 END IF 
    END DO 
! 
! * Take out edges of radar 
! 
    J = 1 
    DO I = 1, 66600 
        IF ((fulllat(I) == radlat(J)) .AND. (fulllon(I) ==       
            radlon(J))) THEN 
     rad(J) = fullrad(I) 
     J = J + 1 
 END IF 
    END DO 
! 
! * Calculate distance between points 
! 
    out2 = 0 
 21 DO I = 1, length 
        DO J = 1, length 
            dist(I,J) = ((lat(I) - lat(J))**2 + (lon(I) –  
                        lon(J))**2)**0.5 
 END DO 
    END DO 
! 
! ******************* 
! * Crossvalidation * 
! ******************* 
! 
    DO radius = 1, radit 
        DO expon = 1, 6 
     mse = 0.0 
     stout = 0.0 
! 
! * Interpolate Error * 
! 
            DO I = 1, length 
                DO J = 1, length 
      IF (gauge(I) == 9999.0) THEN 
          stout = stout + 1.0 
          GO TO 22 
      END IF 
      IF ((dist(I,J) <= (radius/10.0)) .AND. (J /= I) .AND.  
                   (gauge(J) /= 9999.0)) THEN 
                        top = top + (err(J)/dist(I,J)**(expon/2.0)) 
                        bottom = bottom + (1/dist(I,J)**(expon/2.0)) 
                        hit = 1.0 
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Appendix A (Continued):  Inverse Distance Weighting Computer Programming Codes 

                    END IF 
                END DO 
                IF (hit == 0.0) THEN 
                    bottom = 1 
                END IF 
         esterr(I) = top/bottom 
! 
! * Zero filter 
! 
         IF ((radar(I) == 0.0) .AND. (gauge(I) == 0.0)) THEN 
             esterr(I) = 0.0 
         ELSE IF ((radar(I) + esterr(I)) < 0.0) THEN 
             esterr(I) = -radar(I) 
         END IF 
! 
! * Calculate MSE for Error Only 
! 
         mse = mse + (err(I) - esterr(I))**2 
         top = 0.0 
         bottom = 0.0 
         hit = 0.0 
 22             CONTINUE 
     END DO 
     mse = mse / (length - stout) 
! 
! * Find Minimum MSE 
! 
            IF (mse < min_mse) THEN 
         min_mse = mse 
  min_rad = radius/10.0 
  min_exp = expon/2.0 
     END IF 
       END DO  
    END DO 
! 
! ***************** 
! * Interpolation * 
! ***************** 
! 
! * Calculate distances 
! 
    DO I = 1, 36610 
        DO J = 1, length 
            dist(I,J) = ((radlat(I) - lat(J))**2 + (radlon(I) –  
                        lon(J))**2)**0.5 
 END DO 
    END DO 
! 
! * Interpolate point 
! 
    DO I = 1, 36610 
 top = 0.0 
 bottom = 0.0 
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Appendix A (Continued):  Inverse Distance Weighting Computer Programming Codes 

 hit = 0.0 
        DO J = 1, length 
            IF ((dist(I,J) <= min_rad) .AND. (gauge(J) /= 9999.0))  
                THEN 
                top = top + (err(J)/dist(I,J)**min_exp) 
                bottom = bottom + (1/dist(I,J)**min_exp) 
                hit = 1.0 
            END IF 
        END DO 
        IF (hit == 0.0) THEN 
            bottom = 1 
        END IF 
        esterr(I) = top/bottom 
! 
! * Calculate rainfall at each radar point 
! 
        IF (rad(I) < 0.0) THEN 
     est_p(I) = rad(I) 
     GO TO 23 
        ELSE IF ((rad(I) + esterr(I)) < 0.0) THEN 
            esterr(I) = -rad(I) 
        END IF 
        est_p(I) = rad(I) + esterr(I) 
 23     CONTINUE 
    END DO 
! 
! * Pos/Neg method 
! 
    DO J = 1, length 
        cnt = 0.0 
 hit = 0.0 
 DO I = 1, 36610 
     IF ((dist(I,J) <= 0.1) .AND. (dist(I,J) /= 0.0)) THEN 
         cnt = cnt + 1.0 
    diff = err(J) - esterr(I) 
              IF (diff > diffval) THEN 
        hit = hit + 1.0 
    ELSE IF (diff < -diffval) THEN 
        hit = hit - 1.0 
    END IF 
     END IF 
 END DO 
 avg = hit/cnt 
          IF (abs(avg) >= 0.75) THEN 
       gauge(J) = 9999.0 
          END IF 
    END DO 
    badgauge = 0.0 
    DO I = 1, length 
        IF (gauge(I) == 9999.0) THEN 
     badgauge = badgauge + 1.0 
   END IF 
    END DO 
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Appendix A (Continued):  Inverse Distance Weighting Computer Programming Codes 

! 
! * Iterate difference value 
! 
    IF (out2 == 3) THEN 
        GO TO 24 
    ELSE 
        IF ((badgauge/length) >= 0.1) THEN 
       GO TO 24 
   END IF 
        diffval = diffval - 0.1 
   min_mse = 500.0 
        out2 = out2 + 1 
        GO TO 21 
    END IF 
! 
! * Interpolate point without bad points 
! 
 24 DO I = 1, length 
        IF (gauge(I) /= 9999.0) THEN 
            WRITE (5,13), stn(I), lat(I), lon(I), gauge(I), radar(I),   
                          err(I) 
   END IF 
    END DO 
    DO I = 1, 36610 
        hit = 0.0 
   top = 0.0 
   bottom = 0.0 
        DO J = 1, length 
            IF ((dist(I,J) <= min_rad) .AND. (gauge(J) /= 9999.0))  
               THEN 
                top = top + (err(J)/dist(I,J)**min_exp) 
                bottom = bottom + (1/dist(I,J)**min_exp) 
                hit = 1.0 
            END IF 
        END DO 
        IF (hit == 0.0) THEN 
            bottom = 1 
        END IF 
        esterr(I) = top/bottom 
! 
! * Calculate rainfall at each radar point 
! 
        IF (rad(I) < 0.0) THEN 
     est_p(I) = rad(I) 
     GO TO 25 
        ELSE IF ((rad(I) + esterr(I)) < 0.0) THEN 
            esterr(I) = -rad(I) 
        END IF 
        est_p(I) = rad(I) + esterr(I) 
 25     CONTINUE 
    END DO 
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Appendix A (Continued):  Inverse Distance Weighting Computer Programming Codes 

! 
! ****************** 
! * Output Section * 
! ****************** 
! 
    DO I = 1, 36610 
        IF (est_p(I) /= -9999.0) THEN 
            WRITE (6,12), radlat(I), radlon(I), est_p(I) 
 END IF 
    END DO   
! 
! * Close files 
! 
    DO I = 1, 6 
        CLOSE (I) 
    END DO 
END PROGRAM inversedist 
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Appendix B:  Multiquadric Interpolation Computer Programming Codes in Python 

#! /usr/bin/env python 
 
import sys 
import struct 
import string 
from MQroutinesLoop import * 
 
### MQxval : Program to perform cross validation on Multiquadric 
###          Interpolation 
### Calls routines: InterpMQxval (imported from MQroutines.py)  
### Written by Brian Belcher                                                           
### Revised by Eric Ware                                                              
### 
 
################################################## 
###### User Specs ################################ 
################################################## 
miss1=-9999.00 # Specifies missing value for grid 
miss2=-99.99 # Specifies missing value for station 
wTxt=1  # Write interpolated output to text file (1=yes, 0=no) 
#radius=1.25 # Uses points within radius of influence (degrees) 
radiusList=[13.0] 
lambdaList=[50.0,55.0,60.0,65.0,70.0,75.0,80.0] 
 
### Specify area where interpolation will take place ### 
runArea=[miss1,miss1,miss1,miss1] # interpolate to all available points 
  
### Specify filenames and path to files ### 
# NOTE: grid latitude, longitude and val files are assumed 
# written to files in same order. 
filePath='/home/ecw25/' 
xFile='newtot.txt' # name of file containing lat/lon/vals 
   # each record:  lat lon val  (space delimited) 
################################################## 
#### End User Specs ############################## 
################################################## 
 
############## Open lat/lon/val file 
ifile4 = open(filePath+xFile,'r') 
 
############### read lat/lon/val 
xLonList=[]; xLatList=[]; gauge=[]; radar=[]; xValList=[] 
while 1: 
  line1=ifile4.readline()  # read data from text file 
  if len(line1)==0:break 
  info=string.split(line1) 
  xLatList.append(float(info[3])) 
  xLonList.append(float(info[4])) 
  gauge.append(float(info[5])) 
  radar.append(float(info[6])) 
  xValList.append(float(info[7])) 
 
if (len(xValList)!=len(xLatList)) or (len(xValList)!=len(xLonList)) or \ 
  (len(xLatList)!=len(xLonList)): print 'Warning: Lists not equal in length' 
ifile4.close() 
############### end read Stn 
 
mse={} 
for radius in radiusList:
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Appendix B (continued):  Multiquadric Interpolation Computer Programming Codes  

                                          in Python 

 
  mse[radius]={} 
  for lam in lambdaList: 
    print 'Perform MQ interpolation ... radius=',radius,'   lambda=',lam 
    ToValList=InterpMQxval(xLatList,xLonList,\ 
      xLatList,xLonList,xValList,radius,lam,runArea,miss1,miss2) 
# 
#  Prevent Negative Values 
# 
    for vals in range(len(ToValList)): 
      if (ToValList[vals][2]>50) or (ToValList[vals][2]<-50): 
        ToValList[vals]=(ToValList[vals][0],ToValList[vals][1],0.0) 
      elif (radar[vals]==0) and (gauge[vals]==0): 
        ToValList[vals]=(ToValList[vals][0],ToValList[vals][1],0.0) 
      elif ((radar[vals]+ToValList[vals][2])<0): 
        ToValList[vals]=(ToValList[vals][0],ToValList[vals][1], \ 
          -radar[vals]) 
# 
# Calculate MSE 
# 
    mse_list=[] 
      for vals in range(len(ToValList)): 
        mse_list.append((ToValList[vals][2]-xValList[vals])**2) 
      mse[radius][lam]=sum(mse_list)/len(mse_list) 
# 
# Write MSEs to file 
# 
if wTxt: 
  oFilename='MQxval.txt' 
  ofile1 = open(oFilename,'w') 
  print 'Writing to output file ... ', oFilename 
 
  headers = [] 
  for radius in mse.keys(): 
    headers.append(radius) 
  headers.sort() 
  ofile1.write ('       ') 
  for lam in lambdaList: 
    ofile1.write ('%4.1f    '  % (lam)) 
  ofile1.write ('\n') 
  for radius in radiusList: 
    ofile1.write ('%4.2f  ' % (radius)) 
    for lam in lambdaList: 
      ofile1.write('%6.4f  ' % (mse[radius][lam])) 
    ofile1.write('\n') 
  ofile1.close() 
  
### MQroutinesLoop.py ### 
 
import sys 
import os 
import string 
import struct 
import math 
import Numeric 
import LinearAlgebra 
 
def MQroutine(ltUnknown,lnUnknown,ltKnownList,lnKnownList,\ 
  ValKnownList,LAMBDA): 
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Appendix B (continued):  Multiquadric Interpolation Computer Programming Codes  

                                          in Python 
 
### The following code follows the methods of 
### Multiquadric Interpolation given by Nuss and 
### Titley (MWR 1994). 
### 
### input: lat/lon of station with missing data 
###    lat/lon/val of points used for interpolation to estimate missing 
###     ltUnknown: latitude of point interpolating to 
###     lnUnknown: longitude of point interpolating to 
###     ltKnownList: list of latitudes of points with known values 
###   used for interpolation 
###     lnKnownList: list of longitudes of points with known values 
###   used for interpolation 
###     ValKnownList:list of known values at points used for interpolation 
### 
### output: interpolated value at station 
###     ValUnknown: Estimated value at point of interest 
###  (value interpolated to point (ltUnknown,lnUnknown)) 
### 
### USAGE in python: 
### from MQ_interp_routine import * 
### val = MQ_INTERP(lat,lon,latList,lonList,valList) 
### 
### 
### Example python session: 
### Python 2.3 (#1, Sep 13 2003, 00:49:11)  
### [GCC 3.3 20030304 (Apple Computer, Inc. build 1495)] on darwin 
### Type "help", "copyright", "credits" or "license" for more information. 
### >>> from MQ_interp_routine import * 
### >>> latK=[42.0,43.0,44.0]; lonK=[-78.0,-77.0,-76.0] 
### >>> valK=[1,2,3] 
### >>> lat=42.6 
### >>> lon=-77.3 
### >>> val=MQ_INTERP(lat,lon,latK,lonK,valK) 
### >>> val 
### 1.6530458150801886 
 
# ERRM: the mean error value for the variable being 
# analyzed. Results are not too sensitive to 
# this parameter, but results must be in the ballpark 
# C: Multiquadric Parameter (arbitrary small constant 
# making basis function infinitely differentiable) 
# IX,JY:Dimensions of grid 
# nobs: number of observations (stations) 
# XC: x-coordinate of the observation (XC[nobs]) 
# YC: y-coordinate of the observation (YC[nobs]) 
# Hj: Vector of observations 
 
IX=1; JY=1 # Interpolate to one point at a time 
nobs=len(ValKnownList) 
ERRM=0.5 # ERRM for temperature 
max_dim=max(IX,JY) 
C = 0.0008 * max_dim 
# Assign coordinates and values 
XC=lnKnownList; YC=ltKnownList; dat=ValKnownList 
 
# Fill the Qij matrix 
Qij={} 
for j in range(nobs): 
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Appendix B (continued):  Multiquadric Interpolation Computer Programming Codes  

                                          in Python 
 
  Qij[j]=[] 
  for i in range(nobs): 
    Qij[j].append(-1.0*math.sqrt(((math.pow(math.fabs(XC[j]-XC[i]),2) +\ 
      pow(math.fabs(YC[j]-YC[i]),2))/(C*C))+1.0)) 
 
# Account for observational uncertainty 
for j in range(nobs): 
  i=j 
  Qij[j][i]=Qij[j][i] + nobs*LAMBDA*ERRM 
 
# manipulate into matrix form 
for j in range(nobs): 
  if j==0: 
    Qij_matrix=Numeric.array([Qij[j]]) 
  else: 
    temp=Numeric.array([Qij[j]]) 
    Qij_matrix=Numeric.concatenate([Qij_matrix,temp]) 
 
# Find the inverse of Qij (Qij_inv) 
Qij_inv=LinearAlgebra.inverse(Qij_matrix) 
 
# Fill the Qgi matrix 
temp=[] 
for i in range(nobs): 
  temp.append(-1.0*math.sqrt(((math.pow(math.fabs(lnUnknown-XC[i]),2) +\ 
    pow(math.fabs(ltUnknown-YC[i]),2))/(C*C))+1.0)) 
Qgi_matrix=Numeric.array([temp]) 
 
# Multiply Qij_inv and Hj (determine ALPHAi) 
Hj=Numeric.array([dat]) 
HjT=Numeric.transpose(Hj) 
ALPHAi=Numeric.dot(Qij_inv,HjT) 
 
# Multiply Qgi and ALPHAi (determine Hg) 
Hg=Numeric.dot(Qgi_matrix,ALPHAi) 
 
ValUnknown = Numeric.reshape(Hg,(IX,JY))[0][0] 
 
return ValUnknown 
 
def InterpMQ(ToLatList,ToLonList,FromLatList,FromLonList,FromValList,\ 
rad,lam,rArea,miss1,miss2): 
# Horizontal interpolation using Multiquadric Interpolation 
# Calls routine: MQroutine (imported from MQroutines.py) 
# INPUT --- 
# ToLatList:    List of latitudes interpolating to 
# ToLonList:    List of longitudes interpolating to 
# FromLatList:  List of latitudes interpolating from 
# FromLonList:  List of longitudes interpolating from 
# FromValList:  List of values interpolating from 
# rad:          Radius of influence 
# lam:  LAMBDA used in MQroutine 
# rArea: Interpolate only to the points in this area 
# miss1: Missing value specified for grid 
# miss2: Missing value specified for station 
# OUTPUT --- 
# ToValList:    List of values resulting from interpolation 
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Appendix B (continued):  Multiquadric Interpolation Computer Programming Codes  

                                          in Python 
 
from MQroutinesLoop import MQroutine 
 
ToValList=[]  
for i in range(len(ToLatList)): 
  FromLat=[]; FromLon=[]; FromVal=[] 
  if ToLatList[i]==miss1: continue 
  if ToLonList[i]==miss1: continue 
  if ToLatList[i]==miss2: continue 
  if ToLonList[i]==miss2: continue 
 
# See if this location is within area of interest 
  if (miss1 in rArea) or (miss1 in rArea): 
  # Interpolate to all available points 
    pass 
  else: 
  # Interpolate to points within area of interest 
    if (ToLatList[i]>=rArea[0] and ToLatList[i]<=rArea[1]) and \ 
      (ToLonList[i]>=rArea[2] and ToLonList[i]<=rArea[3]): 
        pass 
    else: 
        continue 
 
  # Find locations within radius of influence 
    for ii in range(len(FromValList)):           
      if FromLatList[ii]==miss1: continue 
      if FromLonList[ii]==miss1: continue 
      if FromValList[ii]==miss1: continue 
      if FromLatList[ii]==miss2: continue 
      if FromLonList[ii]==miss2: continue 
      if FromValList[ii]==miss2: continue 
      if math.fabs(FromLatList[ii]-ToLatList[i])>rad: continue 
      if math.fabs(FromLonList[ii]-ToLonList[i])>rad: continue 
      FromLat.append(FromLatList[ii]) 
      FromLon.append(FromLonList[ii]) 
      FromVal.append(FromValList[ii]) 
 
  # Interpolate 
    ToLat=ToLatList[i]; ToLon=ToLonList[i] 
    try: 
      ToVal=MQroutine(ToLat,ToLon,FromLat,FromLon,FromVal,lam) 
    except: 
      ToVal=miss1 
    print '  Interpolate to  %10.3f %10.3f %8.2f' % \ 
      (ToLat,ToLon,ToVal) 
    ToValList.append((ToLat,ToLon,ToVal)) 
 
  return ToValList 
 
def InterpMQxval(ToLatList,ToLonList,FromLatList,FromLonList,FromValList,\ 
  rad,lam,rArea,miss1,miss2): 
# Horizontal interpolation using Multiquadric Interpolation 
# ###### For cross-validation only ############## 
# Calls routine:        MQroutine (imported from MQroutines.py) 
# INPUT --- 
# ToLatList:    List of latitudes interpolating to 
# ToLonList:    List of longitudes interpolating to 
# FromLatList:  List of latitudes interpolating from 
# FromLonList:  List of longitudes interpolating from 
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Appendix B (continued):  Multiquadric Interpolation Computer Programming Codes  

                                          in Python 
 
# FromValList:  List of values interpolating from 
# rad:          Radius of influence  
# rArea:        Interpolate only to the points in this area 
# miss1:                Missing value specified for grid 
# miss2:                Missing value specified for station 
# OUTPUT --- 
# ToValList:    List of values resulting from interpolation 
        
  from MQroutinesLoop import MQroutine 
 
  ToValList=[] 
  for i in range(len(ToLatList)): 
    FromLat=[]; FromLon=[]; FromVal=[] 
    if ToLatList[i]==miss1: continue 
    if ToLonList[i]==miss1: continue 
    if ToLatList[i]==miss2: continue 
    if ToLonList[i]==miss2: continue 
 
    # See if this location is within area of interest 
    if (miss1 in rArea) or (miss1 in rArea): 
      # Interpolate to all available points 
      pass 
    else: 
      # Interpolate to points within area of interest 
      if (ToLatList[i]>=rArea[0] and ToLatList[i]<=rArea[1]) and \ 
         (ToLonList[i]>=rArea[2] and ToLonList[i]<=rArea[3]): 
           pass 
      else: 
           continue 
 
    # Find locations within radius of influence 
    for ii in range(len(FromValList)): 
      if FromLatList[ii]==miss1: continue 
      if FromLonList[ii]==miss1: continue 
      if FromValList[ii]==miss1: continue 
      if FromLatList[ii]==miss2: continue 
      if FromLonList[ii]==miss2: continue 
      if FromValList[ii]==miss2: continue 
      if (FromLatList[ii]==ToLatList[i]) and \ 
         (FromLonList[ii]==ToLonList[i]): continue 
      if math.fabs(FromLatList[ii]-ToLatList[i])>rad: continue 
      if math.fabs(FromLonList[ii]-ToLonList[i])>rad: continue 
      FromLat.append(FromLatList[ii]) 
      FromLon.append(FromLonList[ii]) 
      FromVal.append(FromValList[ii]) 
 
    # Interpolate 
    ToLat=ToLatList[i]; ToLon=ToLonList[i] 
    try: 
      ToVal=MQroutine(ToLat,ToLon,FromLat,FromLon,FromVal,lam) 
    except: 
      ToVal=miss1 
    print '             Interpolate to  %10.3f %10.3f %8.2f' % \ 
      (ToLat,ToLon,ToVal) 
    ToValList.append((ToLat,ToLon,ToVal)) 
 
  return ToValList 
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Appendix C:  Kriging Computer Programming Codes in SPlus 

# 
# Kriging from precip data set 
# Written by Pat Sullivan 
# Revised by Eric Ware 
# 
attach(Apr0703tot) 
module(spatial) 
options(object.size=5e8) 
varmodel = exp.vgram 
covarmodel = exp.cov 
# 
# Plot the locations and values 
# 
scaled.plot(lon,lat,main="Locations",cex=0.75,pch=16) 
# 
# Use plot.geo to examine the data visually 
# 
plot.geo(data.frame(lon,lat,error),geotitle="Observed Error",dd=.05) 
# 
# Kriging data for Error 
# 
error.vario<-variogram(error~loc(lon,lat),method="robust") 
# 
# Plot empirical variogram for all data 
# 
plot(error.vario,pch=16,col=1,cex=1.2) 
# 
# Fit parameters 
# 
error.fit <- variogram.fit( 
 error.vario, 
 param=c( 
  sill=0.1, 
  range=0.5, 
  nugget = 0.0), 
 fun=varmodel)  
# 
# Save estimated parameters 
# 
err.sill <- error.fit$parameters["sill"] 
err.range <- error.fit$parameters["range"] 
err.nugget <- error.fit$parameters["nugget"] 
# 
# Show model estimated from the data in blue 
# 
lines(error.vario$distance, 
 varmodel( 
  error.vario$distance, 
  sill=err.sill,  
  range=err.range, 
  nugget=err.nugget), 
  lwd=4,col=2) 
# 
# Show parameter estimates on plot 
# 
text.x<-0.75*max(error.vario$distance) 
text.y<-0.25*max(error.vario$gamma) 
text(text.x,text.y, 
 paste(
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Appendix C (continued):  Kriging Computer Programming Codes in SPlus 
 
  "Sill         = ",round(err.sill,2),"\n", 
  "Range  = ",round(err.range,2),"\n", 
  "Nugget = ",round(err.nugget,2), 
  sep=""), 
 cex=1.2,adj=-1) 
#  
# Create a kriging object for prediction using estimated 
# parameters. 
#  
error.krig<-krige(error~loc(lon,lat), 
 covfun=covarmodel, 
 sill=err.sill, 
 range=err.range, 
 nugget=err.nugget) 
# 
# cross-validation 
# 
errcross = NULL 
id = seq(length(lon)) 
for(i in id) 
{ 
 errcross.krig<-krige(error~loc(lon,lat),subset=id[-i], 
 covfun=covarmodel, 
 sill=err.sill, 
 range=err.range, 
 nugget=err.nugget) 
 errcross.pred<-predict(errcross.krig, 
  newdata=data.frame(lon=lon[i],lat=lat[i])) 
# 
# Zero filter 
#  
 if (gauge[i] == 0 && radar[i] == 0) 
 { 
  errcross.pred$fit = 0 
 } 
 else if ((radar[i] + errcross.pred$fit) < 0) 
 { 
  errcross.pred$fit = -radar[i] 
 } 
 errcross = rbind(errcross,errcross.pred) 
} 
# 
# calculate mse 
# 
sqerr = (error - errcross$fit)^2 
mse = sum(sqerr)/length(error) 
# 
# Plot estimated errors and estimated rainfall 
# 
plot.geo(data.frame(errcross$lon,errcross$lat,errcross$fit), 
 geotitle="Error Fit",dd=0.05) 
plot.geo(data.frame(errcross$lon,errcross$lat,(radar+errcross$fit)), 
 geotitle="Rain Fit",dd=0.05) 
# 
# Print mse 
# 
mse 
detach(Apr0703tot) 
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Appendix D:  Before and After Graphs of All 30 Cases 

Apr. 7, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Apr. 18, 2004 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Apr. 21, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Aug. 3, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Aug. 30, 2004 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Dec. 7, 2004 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Dec. 14, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Feb. 3, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Feb. 16, 2005 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Jan. 3, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Jan. 30, 2005 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Jan. 31, 2000 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Jul. 8, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Jul. 26, 2004 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Jun. 11, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

 

Jun. 28, 2004 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Mar. 1, 2005 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Mar. 7, 2004 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Mar. 20, 2003 

 
 

 



75 

 

Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

May 8, 2004 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

May 11, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Nov. 1, 1997 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Nov. 17, 2004 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Nov. 19, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Oct. 15, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Oct. 18, 2004 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Oct. 28, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Sep. 8, 2004 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Sep. 15, 2003 
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Appendix D (continued):  Before and After Graphs of All 30 Cases 

 

Sep. 24, 2001 
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