Record Linking, II

John M. Abowd and Lars Vilhuber March 2005

Need for automated record linkage

- RA time required for the following matching tasks:
- Finding financial records for Fortune 100: 200 hours
- Finding financial records for 50,000 small businesses: ?? hours
- Unduplication of the U.S. Census survey frame (115,904,641 households): ????
- Identifying miscoded SSNs on 500 million wage records: ????
- Longitudinally linking the 12 milliion establishments in the Business Register: ????

Implementing the Fellegi-Sunter Algorithm

- Standardizing
- Blocking and matching variables
- Calculating the agreement index
- Choosing m and u probabilities
- Estimating mand u probabilities using EM
- Clerical editing
- Estimating the false match rate
- Estimating the false nonmatch rate

Standardizing

- Standardization is a necessary preprocessing step for all data to be linked via probabilistic record linking
- A standardizer:
- Parses text fields into logical components (first name, last name; street number, street name, etc.)
- Standardizes the representation of each parsed field (spelling, numerical range, etc.)
- Commercial standardizers have very high valueadded compared to home-grown standardizers but are very expensive.

Blocking and Matching

- The essence of a probabilistic record link is iterating passes of the data files in which blocking variables (must match exactly) and matching variables (used to compute the agreement index) change roles.
- Blocking variables reduce the computational burden but increase the false non-match rate.
- As records are linked, the linked records are removed from the input files and the analyst can use fewer blocking variables to reduce the false non-matches.
- Matching variables increase the computational burden and manage the tradeoff between false match and false non-match errors

Recall the Setup

- Comparison space

$$
\alpha(a) \times \beta(b) \rightarrow \Gamma
$$

- Comparison vector

$$
\gamma \in \Gamma, \text { elements of } \gamma \text { are }(K \times 1)
$$

- Components of comparison vector take on finitely many values, typically $\{0,1\}$

Linkage rule

- A linkage rule defines a record pair's status based on it's agreement pattern
- Link (L)
- Undecided (Clerical, C)
- Non-link (N)

$$
F: \Gamma \rightarrow\{L, C, N\}
$$

Calculating the Agreement Index

- We need to compute $\mathrm{P}(\gamma \mid \mathrm{M}), \mathrm{P}(\gamma \mid \mathrm{U})$ and the agreement ratio $\mathrm{R}(\gamma)=\mathrm{P}(\gamma \mid \mathrm{M}) / \mathrm{P}(\gamma \mid \mathrm{U})$
- The agreement index is $\ln \mathrm{R}(\gamma)$.
- The critical assumption is conditional independence:

$$
\begin{aligned}
& \mathrm{P}(\gamma \mid \mathrm{M})=\mathrm{P}\left(\gamma_{1} \mid \mathrm{M}\right) \mathrm{P}\left(\gamma_{2} \mid \mathrm{M}\right) \ldots \mathrm{P}\left(\gamma_{K} \mid \mathrm{M}\right) \\
& \mathrm{P}(\gamma \mid \mathrm{U})=\mathrm{P}\left(\gamma_{1} \mid \mathrm{U}\right) \mathrm{P}\left(\gamma_{2} \mid \mathrm{U}\right) \ldots \mathrm{P}\left(\gamma_{K} \mid \mathrm{U}\right)
\end{aligned}
$$

Where the subscript indicates an element of the vector γ.

- Implies that the agreement index can be written as:

$$
\ln R(\gamma)=\sum_{k=1}^{K} \ln \left(\frac{P\left(\gamma_{k} \mid M\right)}{P\left(\gamma_{k} \mid U\right)}\right)
$$

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

Choosing m and u Probabilities

- The probabilities $\mathrm{P}\left(\gamma_{k} \mid \mathrm{M}\right)$ and $\mathrm{P}\left(\gamma_{k} \mid \mathrm{U}\right)$ are called the m_{k} and u_{k} probabilities for matching variable k.
- These probabilities are often assessed using a priori information or estimated from an expensive clerically edited link.
- m probabilities are often set a priori around 0.9
- u probabilities are often set a priori around 0.1
- Neither of these assumptions has much empirical support

Estimating m and u Using Matched Data

- If you have two files α and β that have already been linked (perhaps clerically)

$$
\begin{aligned}
& \hat{m}_{k}=\frac{\sum_{(a, b) \in L} \gamma_{k}(a, b)=1}{\left.\sum_{\forall(a, b)} 1(a, b) \in L\right]} \\
& \hat{u}_{k}=\frac{\sum_{(a, b) \in U} \gamma_{k}(a, b)=1}{\sum_{\forall(a, b)} 1[(a, b) \in U]}
\end{aligned}
$$ then these estimates are available:

where $a \in \alpha, b \in \beta, \gamma(a, b) \in \Gamma$.

Estimating m and u Probabilities Using EM

- Based on Winkler 1988 "Using the Em Algorithm for Weight Computation in the Fellegi-Sunter Model of Record Linkage," Proceedings of the Section on Survey Research Methods, American Statistical Association, 667-671.
- Uses the identity $\mathrm{P}(\gamma)=\mathrm{P}(\gamma \mid M) \mathrm{P}(M)+\mathrm{P}(\gamma \mid U) \mathrm{P}(U)$
- Imposes conditional independence

Estimating m and u Probabilities Using EM: Algorithm I

- Select blocking variables that give file sizes for the α and β files that are feasible (this depends on the size of your computer). There are N elements in $\alpha \times \beta$.
- For each matching variable, choose an initial m_{k} and u_{k}, often 0.9 and 0.1 respectively. Note that they do not have to sum to one.

Estimating m and u Probabilities Using EM: Algorithm II

- Set up the complete data model:
- Parameters: m, u, p, where the scalar p is the proportion of matches in $\alpha \times \beta$ and m and u are the (k x 1) vectors of unknown probabilities. An initial value for p is also required.
$-r_{j}$ is an element of $\alpha \times \beta ; \gamma^{j}$ is its associated agreement vector
- Either r_{j} is an element of M or r_{j} is an element of U. Let $g_{j}=(1,0)$ when r_{j} is an element of M and $g_{j}=(0,1)$ when r_{j} is an element of U.
- Complete data $\mathrm{g}=\left(g_{j}, \gamma^{\prime}\right)$

Complete Data Likelihood Function

$$
\begin{aligned}
\ln f(x \mid m, u, p) & =\text { const. }+\sum_{j=1}^{n} g_{j} \bullet\left(\ln P\left(\lambda^{j} \mid M\right), \ln P\left(\lambda^{j} \mid U\right)\right) \\
& +\sum_{j=1}^{n} g_{j} \bullet(\ln p, \ln (1-p))
\end{aligned}
$$

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

E-step

- Replace g_{j} with its expectation $\left(\mathrm{P}\left(M \mid \gamma^{\gamma}\right), \mathrm{P}\left(U \mid \gamma^{\gamma}\right)\right)$

$$
\begin{aligned}
& P\left(M \mid \gamma^{j}\right)=\frac{\hat{p} \prod_{k=1}^{K}\left(\hat{m}_{k}\right)^{\gamma_{k}^{\prime}}\left(1-\hat{m}_{k}\right)^{1-\gamma_{k}^{\prime}}}{\hat{p} \prod_{k=1}^{K}\left(\hat{m}_{k}\right)^{\gamma_{k}^{\prime}}\left(1-\hat{m}_{k}\right)^{1-\gamma_{k}^{\prime}}+(1-\hat{p}) \prod_{k=1}^{K}\left(\hat{u}_{k}\right)^{\gamma_{k}^{\prime}}\left(1-\hat{u}_{k}\right)^{1-\gamma_{k}^{\prime}}} \\
& P\left(U \mid \gamma^{j}\right)=\frac{(1-\hat{p}) \prod_{k=1}^{K}\left(\hat{u}_{k}\right)^{\gamma^{j}}\left(1-\hat{u}_{k}\right)^{1-\gamma_{k}^{j}}}{\hat{p} \prod_{k=1}^{K}\left(\hat{m}_{k}\right)^{\gamma_{k}^{j}}\left(1-\hat{m}_{k}\right)^{1-\gamma_{k}^{j}}+(1-\hat{p}) \prod_{k=1}^{K}\left(\hat{u}_{k} \gamma^{\gamma_{k}^{j}}\left(1-\hat{u}_{k}\right)^{1-\gamma_{k}^{j}}\right.}
\end{aligned}
$$

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

M-step

- Maximize the complete data likelihood function

$$
\begin{aligned}
\hat{m}_{k} & =\frac{\sum_{j=1}^{N} P\left(M \mid \gamma^{j}\right) \gamma_{k}^{j}}{\sum_{j=1}^{N} P\left(M \mid \gamma^{j}\right)} \\
\hat{p} & =\frac{\sum_{j=1}^{N} P\left(M \mid \gamma^{j}\right)}{N}
\end{aligned}
$$

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

Convergence

- Alternate E and M steps
- Compute the change in the complete data likelihood function
- Stop when the change in the complete data likelihood function is small

Clerical Editing

- Once the m and u probabilities have been estimated, cutoffs for the U, C, and L sets must be determined.
- This is usually done by setting preliminary cutoffs then clerically refining them.
- Often the m and u probabilities are tweaked as a part of this clerical review.

Estimating the False Match Rate

- This is usually done by clerical review of a run of the automated matcher.
- Some help is available from Belin, T. R., and Rubin, D. B. (1995), "A Method for Calibrating False- Match Rates in Record Linkage," Journal of the American Statistical Association, 90, 694-707.

Estimating the False Nonmatch

Rate

- This is much harder.
- Often done by a clerical review of a sample of the non-match records.
- Since false nonmatching is relatively rare among the nonmatch pairs, this sample is often stratified by variables known to affect the match rate.
- Stratifying by the agreement index is a very effective way to estimate false nonmatch rates.

Implementing the Basic Matching Methodology

- Name and address parsing and standardization
- Identifying comparison strategies:
- Which variables to compare
- String comparator metrics
- Number comparison algorithms
- Search and blocking strategies
- Ensuring computational feasibility of the task

Generic workflow

- Standardize
- Match
- Revise and iterate through again

An example

Abowd and Vilhuber (2002), forthcoming in JBES: "The Sensitivity of Economic Statistics to Coding Errors in Personal Identifiers"

- Approx. 500 million records (quarterly wage records for 1991-1999, California)
- 28 million SSNs

SSN Name editing
 Example

Coded	Coded		
Name	SSN	EIN	Earnings
Leslie Kay	1	A	$\$ 10$
Leslie Kay	$\mathbb{2} 1$	A	$\$ 10$
Lesly Kai	$\$ 1$	B	$\$ 11$

1's tenure with A:
1's employment history

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

Need for Standardization

- Names may be written many different ways
- Addresses can be coded in many different ways
- Firm names can be formal, informal, or differ according to the reporting requirement

How to standardize

- Inspect the file to refine strategy
- Use commercial software
- Write custom software (SAS, Fortran, C)
- Apply standardizer
- Inspect the file to refine strategy

Standardizing Names

- Alternate spellings

1. Dr. William J. Smith, MD
2. Bill Smith
3. W. John Smith, MD
4. W.J. Smith, Jr.
5. Walter Jacob Smith, Sr.

Standardized names

	Pre	First	Mid	Last	$\begin{aligned} & \text { Pos } \\ & \text { t1 } \end{aligned}$	$\begin{aligned} & \text { Post } \\ & 2 \end{aligned}$	Alt1	Std1
1	Dr	William	J	Smith	MD			BWILL
2		Bill		Smith			William	BWILL
3		W	John	Smith	MD			
4		W	J	Smith		Jr		
4		Walter	Jacob	Smith		Sr		WALT

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

Standardizing addresses

- Many different pieces of information

1. 16 W Main Street \#16
2. RR 2 Box 215
3. Fuller Building, Suite 405, $2^{\text {nd }}$ door to the right
4. 14588 Highway 16W

Standardized addresses

	$\begin{aligned} & \text { Pre } \\ & 2 \end{aligned}$	Hsnm	Stnm	RR	Box	Post1	Post2	$\begin{aligned} & \text { Unit } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Unit } \\ & 2 \end{aligned}$	Bldg
1	W	16	Main			St		16		
2				2	215					
3									405	Fuller
4		14588	Hwy	16			W			

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

A\&V: standardizing

- Knowledge of structure of the file: -> No standardizing
- Matching will be within records close in time -> assumed to be similar, no need for standardization
- BUT: possible false positives -> chose to do an weighted unduplication step (UNDUP) to eliminate wrongly associated SSNs

A\&V: UNDUP

SSN	UID	First	Middle	Last	Earn	$Y Q$
123-45-6789	58	John	C	Doe	25678	93Q1
123-45-6789	58	John	C	Doe	26845	93Q2
123-45-6789	59	Jon	C	Doe	24837	94Q4
$\begin{aligned} & 122156700 \\ & 123-45-6 \text { A } 89 \end{aligned}$	50	Robert	E	Lee	7439	93Q1

A UID is a unique combination of SSN-First-Middle-Last

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

A\&V: UNDUP (2)

SSN	UID	First	Middle	Last	Earn	$Y Q$
123-45-6789	58	John	C	Doe	25678	93Q1
123-45-6789	58	John	C	Doe	26845	93Q2
123-45-6789	59	Jon	C	Doe	24837	94Q4
123-45-6789	60	Robert	E	Lee	7439	93Q4
123-45-6789	60	Robert	E	Lee	7439	94Q1

Conservative strategy: Err on the side of caution

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

A\&V: UNDUP (3)

SSN	UID	First	Middle	Last	Earn	$Y Q$
123-54-6789	38	Roberta	C	Doe	25678	93Q1
123-54-6789	38	Roberta	C	Doe	26845	93Q2
123-54-6789	39	Roberta		Doe	24837	94Q4
123-54-6789	40	Bobbie		Lee	27439	93Q4
123-54-6789	40	Bobbie		Lee	27439	94Q1

Conservative strategy: Err on the side of caution

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

Matching

- Define match blocks
- Define matching parameters: marginal probabilites
- Define upper T_{u} and lower T_{1} cutoff values

Record Blocking

- Computationally inefficient to compare all possible record pairs
- Solution: Bring together only record pairs that are LIKELY to match, based on chosen blocking criterion
- Analogy: SAS merge by-variables

Blocking example

- Without blocking: AxB is 1000×1000=1,000,000 pairs
- With blocking, f.i. on 3-digit ZIP code or first character of last name. Suppose 100 blocks of 10 characters each. Then only $100 \times(10 \times 10)=10,000$ pairs need to be compared.

A\&V: Blocking and stages

- Two stages were chosen:
- UNDUP stage (preparation)
- MATCH stage (actual matching)
- Each stage has own
- Blocking
- Match variables
- Parameters

A\&V: UNDUP blocking

- No comparisons are ever going to be made outside of the SSN
- Information about frequency of names may be useful
- Large amount of records: 57 million UIDs associated with 28 million SSNs, but many SSNs have a unique UID
\Rightarrow Blocking on SSN
\Rightarrow Separation of files by last two digits of SSN (efficiency)

A\&V: MATCH blocking

- Idea is to fit 1-quarter records into work histories with a 1-quarter interruption at same employer
\Rightarrow Block on Employer - Quarter
\Rightarrow Possibly block on Earnings deciles

A\&V: MATCH block setup

\# Pass 1:
BLOCK1 CHAR SEIN SEIN
BLOCK1 CHAR QUARTER QUARTER
BLOCK1 CHAR WAGEQANT WAGEQANT
\# follow 3 other BLOCK passes with identical setup
\#
\# Pass 2: relax the restriction on WAGEQANT
BLOCK5 CHAR SEIN SEIN
BLOCK5 CHAR QUARTER QUARTER
\# follow 3 other BLOCK passes with identical setup

Determination of match variables

- Must contain relevant information
- Must be informative (distinguishing power!)
- May not be on original file, but can be constructed (frequency, history information)

A\&V: Variables and Matching

- File only contains Name, SSN, Earnings, Employer
- Construct frequency of use of name, work history, earnings deciles
- Stage 1: use name and frequency
- Stage 2: use name, earnings decile, work history with employer

Understanding comparators

- Comparators need to account for
- Typographical error
- Significance of slight variations in numbers (both absolute and relative)
- Possible variable inversions (first and last name flipped)

String comparators: Soundex

- The first letter is copied unchanged
- Subsequent letters:

$$
\begin{aligned}
& \text { bfpv -> "1" } \\
& \text { dt -> "3" } \\
& \text { mnñ -> "5" }
\end{aligned}
$$

cgjkqsxzç -> "2"
|-> "4"
r -> "6 "

- Other characters are ignored
- Repeated characters treated as single character.
- 4 chars, zero padded.

For example, "SMITH" or "SMYTHE" would both be encoded as "S530".
© John M. Abowd and Lars Vilhuber 2005, all rights reserved

String comparators: Jaro

- First returns a value based on counting insertions, deletions, transpositions, and string length
- Total agreement weight is adjusted downward towards the total disagreement weight by some factor based on the value
- Custom adjustments (Winkler and others)

Comparing numbers

- A difference of "34" may mean different things:
- Age: a lot (mother-daughter? Different person)
- Income: little
- SSN or EIN: no meaning
- Some numbers may be better compared using string comparators

Number of matching variables

- In general, the distinguishing power of a comparison increases with the number of matching variable
- Exception: variables are strongly correlated, but poor indicators of a match
- Example: General business name and legal name associated with a license.

Determination of match parameters

- Need to determine the conditional probabilities $P($ agree $\mid M), P($ agree $\mid U$) for each variable comparison
- Methods:
- Clerical review
- Straight computation (Fellegi and Sunter)
- EM algorithm (Dempster, Laird, Rubin, 1977)
- Educated guess/experience
- For P(agree|U) and large samples (population): computed from random matching

Determination of match parameters (2)

- Fellegi \& Sunter provide a solution when γ represents three variables. The solution can be expressed as marginal probabilities m_{k} and u_{k}
- In practice, this method is used in many software applications
- For $k>3$, method-of-moments or EM methods can be used.

Marginal probabilities: educated guesses for starting values

- $P($ agree on characteristic $X \mid M)=$
0.9 if $\mathrm{X}=$ first, last name, age
0.8 if $X=$ house no., street name, other characteristic
- $P($ agree on characteristic $X \mid U)=$
0.1 if $X=$ first, last name, age
 Note that distinguishing power of first name $(\mathrm{R}($ first $)=0.9 / 0.1=9)$ is larger than the street name $(R($ street $)=0.8 / 0.2=4)$

Marginal probabilities:
 better estimates of $\mathrm{P}($ agree $\mid \mathrm{M})$

- $P($ agree | M) can be improved after a first match pass by a clerical review of match pairs:
- Draw a sample of pairs
- Manual review to determine "true" match status
- Recompute $\mathrm{P}($ agree $\mid \mathrm{M})$ based on known truth sample

A\&V: UNDUP match variables

\# Pass1
MATCH1 NAME_UNCERT namef 0.9 0.001700
MATCH1 NAME_UNCERT namel 0.90 .02700
MATCH1 NAME_UNCERT namem 0.90 .02700
MATCH1 NAME_UNCERT concat 0.9 0.02700
\# Pass 2
MATCH2 ARRAY NAME_UNCERT fm_name 0.9 -. 02750
MATCH2 NAME_UNCERT namel 0.90 .001700
MATCH2 NAME_UNCERT concat 0.90 .02700
\# and so on...

© John M. Abowd and Lars Vilhuber 2005, all rights reserved

A\&V: MATCH match variables

```
# Pass1
MATCH1 CNT_DIFF SSN SSN 0.9 0.0000015
MATCH1 NAME_UNCERT namef namef 0.9 0.02700
MATCH1 NAME_UNCERT namel namem 0.90.02700
MATCH1 NAME_UNCERT namel namel 0.9 0.001 700
# Pass 2
MATCH2 CNT_DIFF SSN SSN 0.9 0.0000015
MATCH2 NAME_UNCERT concat concat 0.9 0.02 700
# Pass 3
MATCH3 UNCERT SSN SSN 0.9 0.000001700
MATCH3 NAME_UNCERT namef namef 0.9 0.02700
MATCH3 NAME_UNCERT namem namem 0.9 0.02700
MATCH3 NAME_UNCERT namel namel 0.9 0.001 700 and so on...
```


Adjusting $\mathrm{P}($ agree $\mid \mathrm{M})$ for relative

 frequency- Further adjustment can be made by adjusting for relative frequency (idea goes back to Newcombe (1959) and F\&S (1969))
- Agreement of last name by Smith counts for less than agreement by Vilhuber
- Default option for some software packages
- Requires assumption of strong assumption about independence between agreement on specific value states on one field and agreement on other fields.

A\&V: Frequency adjustment

- UNDUP:
- none specified
- MATCH:
- allow for name info,
- disallow for wage quantiles, SSN

Marginal probabilities: better estimates of $P($ agree|U)

- P(agree | U) can be improved by computing random agreement weights between files $\alpha(\mathrm{A})$ and $\beta(\mathrm{B})$ (i.e. $\mathbf{A x B}$)
- \# pairs agreeing randomly by variable X divided by total number of pairs

Error rate estimation methods

- Sampling and clerical review
- Within L: random sample with follow-up
- Within C: since manually processed, "truth" is always known
- Within N: Draw random sample with follow-up. Problem: sparse occurrence of true matches
- Belin-Rubin (1995) method for false match rates
- Model the shape of the matching weight distributions (empirical density of R) if sufficiently separated
- Capture-recapture with different blocking for false non-match rates

Analyst Review

- Matcher outputs file of matched pairs in decreasing weight order
- Examine list to determine cutoff weights and non-matches.

A\&V: Finding cutoff values

- UNDUP:
- CUTOFF1 7.57 .5
- CUTOFF2 88
- Etc.
- MATCH:
- CUTOFF1 1818
- CUTOFF2 1212
- CUTOFF 1010
- Etc.
© John M. Abowd and Lars Vilhuber 2005, all rights reserved

A\&V: Sample matcher output

RESULT	RECNUM	WGT	SSN	NAMEF	NAMEM	NAMEL
[UA]	504	-999.99	382661272	WILL		TARY
[UB]	2827	-999.99	384883394	RICHARD		PHOUK
[UB]	392	-999.99	335707385	MONA		LISA
RESULT	RECNUM	WGT	SSN	NAMEF	NAMEM	NAMEL
[CA]	351	3.66	333343734	DONNA	L	DUK
[CB]	1551	3.66	333383832	MARGEN	L	PRODUCT
RESULT	RECNUM	WGT	SSN	NAMEF	NAMEM	NAMEL
[MA]	43	32.76	444444441	LUKE		UPP
[MB]	169	32.76	444444447	LUKE		UPP

Post-processing

- Once matching software has identified matches, further processing may be needed:
- Clean up
- Carrying forward matching information
- Reports on match rates

Generic workflow (2)

- Start with initial set of parameter values
- Run matching programs
- Review moderate sample of match results
- Modify parameter values (typically only m_{k}) via ad hoc means

Acknowledgements

- This lecture is based in part on a 2000 lecture given by William Winkler, William Yancey and Edward Porter at the U.S. Census Bureau
- Some portions draw on Winkler (1995), "Matching and Record Linkage," in B.G. Cox et. al. (ed.), Business Survey Methods, New York, J. Wiley, 355-384.
- Examples are all purely fictitious, but inspired from true cases presented in the above lecture, in Abowd \& Vilhuber (2004).

