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Outline

• Estimating Models from Linked Data
• Building Models with Heterogeneity for 

Linked Data
• Fixed Effect Estimation
• Identification
• Calculation
• Mixed Effect Estimation
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Estimating Models from Linked 
Files

• Linked files are usually analyzed as if the 
linkage were without error

• Most of this class focuses on such 
methods

• There are good reasons to believe that 
this assumption should be examined more 
closely
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Lahiri and Larsen

• Consider regression analysis when the 
data are imperfectly linked

• See JASA article March 2005 for full 
discussion
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Setup of Lahiri and Larsen
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Estimators
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Problem: Estimating B
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Does It Matter?

• Yes
• The bias from the naïve estimator is very 

large as the average qii goes away from 1.
• The SW estimator does better.
• The U estimator does very well, at least in 

simulations.
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Building Linked Data

• Examples from the LEHD infrastructure files
• Analysis can be done using workers, jobs or 

employers as the basic observation unit
• Want to model heterogeneity due to the workers 

and employers for job level analyses
• Want to model heterogeneity due to the jobs and 

workers for employer level analyses
• Want to model heterogeneity due to the jobs and 

employers for individual analyses
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The Longitudinal Employer -
Household Dynamics Program

Link Record
Person-ID 
Employer-ID
Data

Business Register
Employer-ID
Census Entity-ID
Data

Economic 
Censuses and 
Surveys
Census Entity-ID 
Data

Demographic Surveys

Household Record
Household-ID
Data

Person Record 
Household-ID
Person-ID
Data



© John M. Abowd 2005, all rights reserved

Basic model

( ) itittiixityit xy εψθβμμ +++−=− ),J(

• The dependent variable is some individual level outcome, usually
the log wage rate.

• The function J(i,t) indicates the employer of i at date t.
• The first component is the measured characteristics effect.
• The second component is the person effect.
• The third component is the firm effect.
• The fourth component is the statistical residual, orthogonal to all 

other effects in the model.
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Matrix Notation: Basic Statistical 
Model

εψθβ +++= FDXy
• All vectors/matrices have row dimensionality equal to the total 

number of observations.
• Data are sorted by person-ID and ordered chronologically for each 

person.
• D is the design matrix for the person effect: columns equal to the 

number of unique person IDs plus columns of ui.
• F is the design matrix for the firm effect: columns equal to the 

number of unique firm IDs times the number of effects per firm.
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Estimation by Fixed-effect 
Methods

• The normal equations for least squares 
estimation of fixed person, firm and 
characteristic effects are very high 
dimension.

• Estimation of the full model by either fixed-
effect or mixed-effect methods requires 
special algorithms to deal with the high 
dimensionality of the problem.
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Least Squares Normal 
Equations

• The full least squares solution to the basic 
estimation problem solves these normal 
equations for all identified effects.
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Identification of Effects

• Use of the decomposition formula for the 
industry (or firm-size) effect requires a 
solution for the identified person, firm and 
characteristic effects.

• The usual technique of eliminating singular 
row/column combinations from the normal 
equations won’t work if the least squares 
problem is solved directly.
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Identification by Grouping
• Firm 1 is in group g = 1.
• Repeat until no more persons or firms are added:

– Add all persons employed by a firm in group 1 to group 1
– Add all firms that have employed a person in group 1 to group 

1
• For g= 2, ..., repeat until no firms remain:

– The first firm not assigned to a group is in group g.
– Repeat until no more firms or persons are added to group g:

• Add all persons employed by a firm in group g to group g.
• Add all firms that have employed a person in group g to group g.

• Identification of ψ: drop one firm from each group g.
• Identification of θ: impose one linear restriction 
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Normal Equations after Group 
Blocking

• The normal equations have a sub-matrix with block diagonal 
components. 

• This matrix is of full rank and the solution for (β, θ, ψ) is unique.
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Necessity of Identification 
Conditions

• For necessity, we want to show that exactly  N+J-G person and firm effects are 
identified (estimable), including the grand mean μy. . 

• Because X  and y are expressed in deviations from the mean, all N effects are 
included in the equation but one is redundant because both sides of the equation 
have a zero mean by construction.

• So the grand mean plus the person effects constitute N effects.
• There are at most N + J-1 person and firm effects including the grand mean.  
• The grouping conditions imply that at most G group means are identified (or, the 

grand mean plus G-1 group deviations).  
• Within each group g, at most Ng and Jg-1 person and firm effects are identified. 
• Thus the maximum number of identifiable person and firm effects is:

( )∑ −+=−+
g

gg JNGJN 1
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Sufficiency of Identification 
Conditions

• For sufficiency, we use an induction proof.
• Consider an economy with J firms and N workers.  
• Denote by E[yit] the projection of worker i's wage at date t on the 

column space generated by the person and firm identifiers.  For 
simplicity, suppress the effects of observable variables X

[ ] ),J(E tiiyity ψθμ ++=
• The firms are connected into G groups, then all effects ψj, in 

group g are separately identified up to a constraint of the form:

{ }
0

 group
=∑

∈ gj
jjw ψ
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Sufficiency of Identification 
Conditions II

• Suppose G=1 and J=2.
• Then, by the grouping condition, at least one person, say 

1, is employed by both firms and we have

02211 =+ ψψ ww

[ ] [ ] 2111 21
EE ψψ −=− tt yy

• So, exactly N+2-1 effects are identified.
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Sufficiency of Identification 
Conditions III

• Next, suppose there is a connected group g with Jg firms and 
exactly Jg -1 firm effects identified.  

• Consider the addition of one more connected firm to such a 
group.  

• Because the new firm is connected to the existing Jg firms in the 
group there exists at least one individual, say worker 1 who 
works for a firm in the identified group, say firm Jg, at date 1 and 
for the supplementary firm at date 2. Then, we have two 
relations 

• So, exactly Jg effects are identified with the new information.
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Estimation by Direct Solution of 
Least Squares

• Once the grouping algorithm has identified all 
estimable effects, we solve for the least squares 
estimates by direct minimization of the sum of 
squared residuals.

• This method, widely used in animal breeding 
and genetics research, produces a unique 
solution for all estimable effects.
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Least Squares Conjugate 
Gradient Algorithm

• The matrix Δ is 
chosen to 
precondition the 
normal equations.

• The data matrices 
and parameter 
vectors are redefined 
as shown.
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LSCG (II)
• The goal is to find δ to 

solve the least squares 
problem shown.

• The gradient vector g
figures prominently in the 
equations.

• The initial conditions for 
the algorithm are shown.
– e is the vector of residuals.
– d is the direction of the 

search.
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LSCG (III)

• The loop shown has the following 
features:
– The search direction d is the 

current gradient plus a fraction of 
the old direction.

– The parameter vector δ is updated 
by moving a positive amount in the 
current direction.

– The gradient, g, and residuals, e, 
are updated.

– The original parameters are 
recovered from the preconditioning 
matrix.
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LSCG (IV)

• Verify that the 
residuals are 
uncorrelated with 
the three 
components of the 
model.
– Yes: the LS 

estimates are 
calculated as shown.

– No: certain constants 
in the loop are 
updated and the next 
parameter vector is 
calculated.
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Mixed Effects Assumptions

• The assumptions above specify the complete 
error structure with the firm and person effects 
random.

• For maximum likelihood or restricted maximum 
likelihood estimation assume joint normality.
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Estimation by Mixed Effects 
Methods

• Solve the mixed effects equations
• Techniques: Bayesian EM, Restricted 

ML
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Relation Between Fixed and 
Mixed Effects Models

• Under the conditions shown above, the ME and 
estimators of all parameters approaches the FE 
estimator

*
2

NIεσ=Λ ∞→Ω
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Correlated Random Effects vs. 
Orthogonal Design

• Orthogonal design means that 
characteristics, person design, firm 
design are orthogonal.

• Uncorrelated random effects means that 
Ω is diagonal.

designseffect -firm andeffect -person orthogonal 0
designeffect -firm and sticscharacteri personal orthogonal 0'

designeffect -person and sticscharacteri personal orthogonal 0'

=
=
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