Modeling Integrated Data

John M. Abowd April 2005

Outline

- Application of the grouping algorithm
- Further discussion of the methods
- Discussion of software

Characteristics of the Groups

Table 4: Results of Applying the Grouping Algorithm to the Pooled Data Set

	Largest Group	Second Largest Group	Average of All Other Groups	Total of All Groups
Observations	285,402,315	90	4.3	287,241,891
Persons	64,441,382	38	1.5	68,329,212
Firms	3,200,067	8	1.1	3,662,974
Groups	1	1	430,529	430,531
Estimable Effects	67,641,448	45		71,992,185
<i>Notes:</i> The "pooled" data are comprised of annual observations from California, Florida, Illinois, Maryland, Minnesota, North Carolina, and Texas over the period 1986-2000. No single state contributed observations for all years. See Table 1. <i>Sources:</i> Author's calculations using the LEHD Program data base.				

Estimation by Direct Solution of Least Squares

- Once the grouping algorithm has identified all estimable effects, we solve for the least squares estimates by direct minimization of the sum of squared residuals.
- This method, widely used in animal breeding and genetics research, produces a unique solution for all estimable effects.

Least Squares Conjugate Gradient Algorithm

- The matrix ∆ is chosen to precondition the normal equations.
- The data matrices and parameter vectors are redefined as shown.

$$\Delta = \text{diagonal elements of} \begin{bmatrix} X'X & X'D & X'F \\ D'X & D'D & D'F \\ F'X & F'D & F'F \end{bmatrix}$$

$$y = \begin{bmatrix} X \mid D \mid F \end{bmatrix} \Delta^{-1/2} \Delta^{1/2} \begin{bmatrix} \beta \\ \theta \\ \psi \end{bmatrix} + \varepsilon \equiv Z\delta + \varepsilon$$
$$Z \equiv \begin{bmatrix} X \mid D \mid F \end{bmatrix} \Delta^{-1/2} \text{ and } \delta \equiv \Delta^{1/2} \begin{bmatrix} \beta \\ \theta \\ \psi \end{bmatrix}$$

LSCG (II)

- The goal is to find δ to solve the least squares problem shown.
- The gradient vector *g* figures prominently in the equations.
- The initial conditions for the algorithm are shown.
 - e is the vector of residuals.
 - *d* is the direction of the search.

$$\hat{\delta} = \arg\min_{\delta} [(y - Z\delta)'(y - Z\delta)]$$

$$0 = \frac{1}{2} \frac{\partial (y - Z\delta)'(y - Z\delta)}{\partial \delta} = Z'(y - Z\delta) \equiv g$$

$$c_{-1} = 0$$

$$d_{-1} = 0$$

$$\delta_0 = 0$$

$$e_0 = y - Z\delta_0$$

$$g_0 = Z' e_0 = Z' y - Z' Z\delta_0$$

$$d_0 = g_0$$

$$\rho_0 = g_0' g_0$$

$$\lambda_0 = 0$$

LSCG (III)

- The loop shown has the following features:
 - The search direction *d* is the current gradient plus a fraction of the old direction.
 - The parameter vector δ is updated by moving a positive amount in the current direction.
 - The gradient, *g*, and residuals, *e*, are updated.
 - The original parameters are recovered from the preconditioning matrix.

For $\ell = 0.1.2.3...$ $d_{\ell} = g_{\ell} + \tau_{\ell-1} d_{\ell-1}$ $q_{\ell} = Zd_{\ell}$ $\lambda_{\scriptscriptstyle \ell} = \rho_{\scriptscriptstyle \ell} / (q_{\scriptscriptstyle \ell} ' q_{\scriptscriptstyle \ell})$ $\delta_{\ell+1} = \delta_{\ell} + \lambda_{\ell} d_{\ell}$ $e_{\ell+1} = e_{\ell} - \lambda_{\ell} q_{\ell}$ $g_{\ell+1} = Z' e_{\ell+1}$ $\begin{bmatrix} \boldsymbol{\beta}_{\ell+1} \\ \boldsymbol{\theta}_{\ell+1} \\ \boldsymbol{\mu}_{\ell} \end{bmatrix} = \Delta^{-1/2} \boldsymbol{\delta}_{\ell+1}$

LSCG (IV)

- Verify that the residuals are uncorrelated with the three components of the model.
 - Yes: the LS estimates are calculated as shown.
 - No: certain constants in the loop are updated and the next parameter vector is calculated.

$$\begin{bmatrix} X\beta_{\ell+1} & D\theta_{\ell+1} & F\psi_{\ell+1} \end{bmatrix} e_{\ell+1} \begin{cases} < \begin{bmatrix} c \\ c \\ c \end{bmatrix}, \text{ stop } \hat{\delta} = \delta_{\ell+1} \\ \text{ else, continue} \end{cases}$$
$$\rho_{\ell+1} = (g_{\ell+1} ' g_{\ell+1})$$
$$\tau_{\ell} = \rho_{\ell+1} / \rho_{\ell}$$
$$\begin{bmatrix} \hat{\beta} \\ \hat{\theta} \\ \hat{\psi} \end{bmatrix} = \Delta^{-1/2} \hat{\delta}$$
$$S = (y - Z\hat{\delta})(y - Z\hat{\delta})$$

Mixed Effects Assumptions $\Lambda = \begin{bmatrix} \Sigma_1 & 0 & \cdots & 0 \\ 0 & \Sigma_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \Sigma_N \end{bmatrix} \quad E \begin{bmatrix} \theta \\ \psi \end{bmatrix} X = 0 \quad V \begin{bmatrix} \theta \\ \psi \end{bmatrix} X = \Omega$

- The assumptions above specify the complete error structure with the firm and person effects random.
- For maximum likelihood or restricted maximum likelihood estimation assume joint normality.

Estimation by Mixed Effects Methods

$$\begin{bmatrix} X'\Lambda^{-1}X & X'\Lambda^{-1}[D \mid F] \\ \begin{bmatrix} D' \\ F' \end{bmatrix} \Lambda^{-1}X & \begin{bmatrix} D' \\ F' \end{bmatrix} \Lambda^{-1}[D \mid F] + \Omega^{-1} \end{bmatrix} \begin{bmatrix} \beta \\ \theta \\ \psi \end{bmatrix} = \begin{bmatrix} X'\Lambda^{-1}y \\ \begin{bmatrix} D' \\ F' \end{bmatrix} \Lambda^{-1}y \end{bmatrix}$$

- Solve the mixed effects equations
- Techniques: Bayesian EM, Restricted ML

Relation Between Fixed and Mixed Effects Models

$$\Lambda = \sigma_{\varepsilon}^2 I_{N^*} \qquad |\Omega| \to \infty$$

 Under the conditions shown above, the ME and estimators of all parameters approaches the FE estimator

Correlated Random Effects vs. Orthogonal Design

X'D = 0 orthogonal personal characteristics and person - effect design X'F = 0 orthogonal personal characteristics and firm - effect design D'F = 0 orthogonal person - effect and firm - effect designs

- Orthogonal design means that characteristics, person design, firm design are orthogonal.
- Uncorrelated random effects means that Ω is diagonal.

Software

- SAS: proc mixed
- ASREML
- aML
- SPSS: Linear Mixed Models
- STATA: xtreg, gllamm, xtmixed
- R: the Ime() function
- S+: linear mixed models
- Gauss
- Matlab
- Genstat: REML