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Outline

• Application of the grouping algorithm
• Further discussion of the methods
• Discussion of software
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Characteristics of the Groups
Table 4: Results of Applying the Grouping Algorithm to the Pooled Data Set

Largest Group

Second 
Largest 
Group

Average of All 
Other Groups

Total of All 
Groups

Observations 285,402,315 90 4.3 287,241,891

Persons 64,441,382 38 1.5 68,329,212

Firms 3,200,067 8 1.1 3,662,974

Groups 1 1 430,529 430,531

Estimable Effects 67,641,448 45 71,992,185
Notes:  The "pooled" data are comprised of annual observations from California, Florida, Illinois, 
Maryland, Minnesota, North Carolina, and Texas over the period 1986-2000. No single state 
contributed observations for all years. See Table 1. Sources: Author's calculations using the LEHD 
Program data base.
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Estimation by Direct Solution of 
Least Squares

• Once the grouping algorithm has identified all 
estimable effects, we solve for the least squares 
estimates by direct minimization of the sum of 
squared residuals.

• This method, widely used in animal breeding 
and genetics research, produces a unique 
solution for all estimable effects.
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Least Squares Conjugate 
Gradient Algorithm

• The matrix Δ is 
chosen to 
precondition the 
normal equations.

• The data matrices 
and parameter 
vectors are redefined 
as shown.
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LSCG (II)
• The goal is to find δ to 

solve the least squares 
problem shown.

• The gradient vector g
figures prominently in the 
equations.

• The initial conditions for 
the algorithm are shown.
– e is the vector of residuals.
– d is the direction of the 

search.
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LSCG (III)

• The loop shown has the 
following features:
– The search direction d is the 

current gradient plus a 
fraction of the old direction.

– The parameter vector δ is 
updated by moving a 
positive amount in the 
current direction.

– The gradient, g, and 
residuals, e, are updated.

– The original parameters are 
recovered from the 
preconditioning matrix.
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LSCG (IV)

• Verify that the 
residuals are 
uncorrelated with 
the three 
components of the 
model.
– Yes: the LS 

estimates are 
calculated as shown.

– No: certain constants 
in the loop are 
updated and the next 
parameter vector is 
calculated.

[ ]
⎪
⎪
⎩

⎪⎪
⎨

⎧
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

< +
++++

continue else,

ˆ stop ,' 1
1111

l
llll

δδψθβ
c
c
c

eFDX

( )
lll

lll

ρρτ
ρ

/
'

1

111

+

+++

=
= gg

δ
ψ
θ
β

ˆ

ˆ

ˆ
ˆ

2/1−Δ=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

( ) ( )δδ ˆ'ˆ ZyZyS −−=



© John M. Abowd 2005, all rights reserved

Mixed Effects Assumptions

• The assumptions above specify the complete 
error structure with the firm and person effects 
random.

• For maximum likelihood or restricted maximum 
likelihood estimation assume joint normality.
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Estimation by Mixed Effects 
Methods

• Solve the mixed effects equations
• Techniques: Bayesian EM, Restricted 

ML
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Relation Between Fixed and 
Mixed Effects Models

• Under the conditions shown above, the ME and 
estimators of all parameters approaches the FE 
estimator
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Correlated Random Effects vs. 
Orthogonal Design

• Orthogonal design means that 
characteristics, person design, firm 
design are orthogonal.

• Uncorrelated random effects means that 
Ω is diagonal.

designseffect -firm andeffect -person orthogonal 0
designeffect -firm and sticscharacteri personal orthogonal 0'

designeffect -person and sticscharacteri personal orthogonal 0'
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Software
• SAS: proc mixed
• ASREML
• aML
• SPSS: Linear Mixed Models
• STATA: xtreg, gllamm, xtmixed
• R: the lme() function
• S+: linear mixed models
• Gauss
• Matlab
• Genstat: REML 
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