References

[1]
[2]

[3]

[11]

[12]

[13]

Carter, L., Alpern, B., Private Communication

Demmel,J., W., Dongarra, J. J., Du Croz, J., Greenbaum, A., Hammarling,
S., and Sorensen, D. C. 1987 “Prospectus for the development of a linear
algebra library for high-performance computers. ”

Dongarra, J. J., Du Croz, J., Hammarling, and Hanson, R. J. 1988a “An
extended set of Fortran basic linear algebra subprograms.” ACM Trans. Math.
Software 14:1-17;18-32

Dongarra, J. J., Du Croz, J., Hammarling, and Duff, I. S., 1988b “A set of
Level 3 basic linear algebra subprograms,” Report AERE R 13297. Ozford:
Computer Science and Systems Division, Harwell Laboratory.

Dongarra, J.J. , Mayes, P., di Brozolo, G.R. “The IBM RISC System/6000
and Linear Algebra Operations” University of Tennessee Computer Science

Tech Report: CS - 90 - 122

Gallivan, K., Jalby, W., Meier, U., Sameh, A., “ Impact of hierarchical mem-
ory systems on linear algebra algorithm design. ” The International Journal
of Supercomputer Applications, V. 2, No. 1, Spring 1988, pp. 12-48.

Golub, G.H., and Van Loan, C., Matrix Computations, 2nd ed.. The Johns
Hopkins University Press, 1989

Gustavson, F., Private Communication

Kagstrom, B., and Van Loan, C., “GEMM-Based Level-3 BLAS.” Theory
Center Technical Report, January 1991.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. 1979a. “Basic
linear algebra subprograms for Fortran usage.” ACM Trans. Math. Software
5:308-323.

—1979b. “Algorithm 539. Basic linear algebra subprograms for Fortran usage.
7 ACM Trans. Math. Software 5:324-325.

IBM, Engineering and Scientific Subroutine Library, “Guide and Reference”,
Release 4

Van Loan, C. Matrix Frameworks for Fast Fourier Transform SIAM Publica-
tions, Philadelphia, 1991

18

7 Conclusions

A brief survey of the results indicates that applying a block data struc-
ture gives a 5 to 10 percent improvement on rectangular DGEMMs and
a marginal improvement on square DGEMMs. More importantly, no-
tice that in the rectangular case, the block structures hit the reasonable
speed of 45 Megaflops when K was around 60 to 70. The other code
did not even hit that speed until K was way past 120 (see also table
2). We encourage people to try these ideas for themselves, since there
is some question as to how fast non-block data structured DGEMMs
can run. This indicates that there would be considerably less level 2
computation in a major algorithm like Cholesky or LU.

By improving the speed of the DGEMM and forcing its peak per-
formance sooner, this is a double bonus enabling better performanced
on any of the BLAS or other routines that use DGEMM as a kernel.

8 Acknowledgements

This research was partially supported by the Cornell Center for The-
ory and Simulation in Science and Engineering, which receives major
funding from the National Science Foundation and IBM Corporation,
with additional support from New York State and members of its Cor-
porate Research Institute. The research was conducted using an IBM
RISC System/6000s Model 530. Many of the ideas in this paper were
discussed with L. Carter and B. Alpern of IBM Research, Yorktown
Heights. We thank A. Hoisie of the Cornell Theory Center for some
useful ideas. We also thank F. Gustavson of IBM Research, for his im-
plementations of some of these ideas as well as suggestions on an early
pre-print. Finally, we thank C. Van Loan, for his suggestions during
all levels of the previous drafts.

17

touches a new column. This is especially suitable for BLAS that have
small blocks. This is not to say that the block data structure is slower
in other cases, but if, for example, the blocks are at most a cache line
size (16 for RS/6000 Models 530 and above) by the number of cache
associativity classes (4 for the RS/6000), then the block data structure
is works at optimal efficiency and is marginally faster then the regular
transposition.
The algorithm used was quite simple.

Alg.1: Copy (Aftmm)arny — AT
indexr = 1
for J=1,K
for I=1,R
for JJ=1,m
for Il =1,n
AP(index) = AT(11,.JJ)
index = index + 1
end for JJ
end for /
end for J

Alg.2: Copy (Aftmm)pyny — A

index = 1
for Rblock = 1, R, Someblock
for J=1,K
for I = Rblock, Rblock + Someblock
for IT=1,n
for JJ=1,m
AP(index) = A(I1,JJ)
index = index + 1
end for J.J
end for [/
end for /
end for J

end for Rblock

16

Order | TransA | TransB || Alg. I'| Alg. 11 | Alg. IV | Instances
100 N’ N’ 43.05 | 41.14 41.27 259
100 N’ T n/a 41.62 39.83 259
100 T N’ 43.52 | 41.44 41.7 259
100 T T n/a 41.92 37.13 259
200 N’ N’ 44.73 | 44.09 43.52 26
200 N’ T n/a 44.29 42.91 26
200 T "N’ 44.78 | 44.14 43.9 26
200 T "1 n/a 44.24 43.28 26
300 N’ N’ 44.95 | 44.58 44.18 8
300 N’ T n/a 44.79 43.83 8
300 T "N’ 45.1 44.69 44.18 8
300 T T n/a 45.0 44.38 8
400 N’ N’ 45.22 | 45.24 44.52 3
400 N’ T n/a 45.24 43.79 3
400 T N’ 45.27 | 45.22 44.78 3
400 T "1 n/a 45.22 44.2 3
500 N’ N’ 45.34 | 45.48 44.65 1
500 N’ T n/a 45.3 44.06 1
500 T N’ 45.34 | 45.34 44.91 1
500 T T n/a 45.26 44.48 1
600 N’ N’ 45.38 | 45.43 45.0 1
600 N’ T n/a 45.53 44.46 1
600 T N’ 45.48 | 45.63 44.89 1
600 T T n/a 45.53 45.04 1

Table 2: Order of Square DGEMMS vs. Speed
Order || Algorithm I | Algorithm IV ‘
300 34.0 32.7
400 35.6 33.9
500 37.3 36.1
Table 3: QR Factorization Based on Different DGEMM, NB=21

15

K | TransA | TransB 1 11 i v V| Instances
30 N’ N’ 4294 4214 | n/a | 37.24 | 36.74 23
30 N’ T n/a | 42.03 | n/a | 37.63 | 33.05 23
30 T N’ 43.05 | 42.06 | 35.8 | 37.32 | 36.61 23
30 T T n/a | 42.03 | n/a | 37.66 | 35.55 23
40 N’ N’ 44.0 | 43.48 | n/a | 39.16 | 39.23 17
40 N’ T n/a | 43.32 | n/a | 39.84 | 35.24 17
40 T N’ 43.95 | 43.4 | 37.86 | 39.23 | 39.16 17
40 17 v n/a | 43.32 | n/a | 39.58 | 38.03 17
50 N’ N’ 44.58 | 4422 | n/a | 40.48 | 40.54 14
50 N’ T n/a | 44.1 | n/a | 40.81 | 36.54 14
30 T N’ 44.66 | 44.0 | 39.07 | 40.38 | 40.54 14
50 T T n/a | 44.03 | n/a | 40.71 | 39.64 14
60 N’ N’ 45.05 | 4457 | n/a | 41.6 | 41.56 11
60 N’ T n/a | 44.92 | n/a | 41.45 | 36.04 11
60 T N’ 45.18 | 44.74 | 39.9 | 41.41 | 41.74 11
60 T T n/a | 44.57 | n/a | 41.78 | 40.76 11
70 N’ N’ 45.35 | 45.06 | n/a | 41.82 | 38.86 10
70 N’ T n/a | 45.14 | n/a | 42.17 | 33.81 10
70 T N’ 45.43 | 45.10 | 40.26 | 41.82 | 38.92 10
70 T T n/a | 45.18 | n/a | 42.32 | 37.64 10
80 N’ N’ 45.66 | 45.45 | n/a | 42.2 | 39.89 8
80 "N’ T n/a | 45.23 | n/a | 42.36 | 34.75 8
80 T N’ 45.5 | 45.23 | 40.49 | 42.4 | 39.89 8
80 T T n/a | 45.15 | n/a | 42.38 | 38.66 8
100 N’ N’ 45.74 | 454 | nf/a | 42.95 | 41.22 7
100 N’ T n/a | 45.7 | n/a | 43.06 | 36.19 7
100 T N’ 45.74 | 45.83 | 41.53 | 43.1 | 41.29 7
100 T T n/a | 45.91 | n/a | 43.59 | 40.28 7
120 N’ N’ 45.29 | 45.76 | n/a | 43.51 | 42.16 5
120 "N’ T n/a | 45.66 | n/a | 43.31 | 36.21 5
120 T N’ 45.37 | 45.56 | 42.03 | 43.42 | 42.33 5
120 T T n/a | 45.76 | n/a | 43.47 | 41.29 5
Table 1: K vs. Rectangular DGEMMs (M=585,N=595,Block=39)

14

blocking parameter varied depending on the input, but it was usually
around 100 to 120.

For a final comparison, we ran a QR factorization, which is heavily
dependent on GEMMs, to see the improvement possible in that case.
On a matrix of order 500, the fastest QR performance we saw was
around 36.1 Mflops on the 530. No special optimization techniques
were used besides employing a standard block algorithm. If we used an
alternate GEMM for some of the larger multiplies, the same algorithm
improved to 37.3 Mflops, which was not as impressive as we had hoped.
The final table summarizes some of the results.

5 Non-BLAS Block Data Structures

It is reasonable that higher level computation could benefit from block
data structures. Since an alternate data structure-based code is most
useful in a kernel for other code, the most obvious application is in
the BLAS. This is especially true since one may only need to write the
code to do GEMM work and then use this to write the other BLAS

with the only concern being blocking sizes.

6 The Actual Algorithm of Block Transposition

The remaining theoretical task is to justify that this alternate block
data structure for AT is a time saver. As is noted, using a matrix al-
ready in this form might be faster, but since this is a nonstandard data
structure, we must assume that we need to copy it into this form. By
earlier assumption, the cost of copying into AT must be small enough
for any of this to even be considered. It is now noted that for certain
blocking sizes, the copying into AP requires less time then the copy-
ing into AT. Since this is not a paper on transposition only a cursory
justification in our example will be given.

Comparing our “unrealistic” example given in the introduction of
the paper, suppose one is storing and computing AT or A sequentially.
The first place they differ is in the (31) position (AT(3,1) = @13 and
AP(3,1) = ay). The transpose is accessing something further away in
memory since it is accessing across a row. The block transpose does
not go as far out in a row and accesses data down a column once it

13

DGEMM.
e Algorithm III: A Blocked, nonoptimal, Fortran DGEMM. (Alg.2

in the text performed slightly better, usually somewhere between
the next two algorithms. What we did here was provide the exact
same blocking as done in our block data structure, even though
that might not have been optimal for the standard data structure.
This is basically shown as a low end result.).

o Algorithm IV: The ESSL release of DGEMM. We note that the
ESSL timings for Algorithm IV were higher than the results we
obtained. We are trying to establish a reason for this discrep-
ancy. Part of this reason may be the fact that we used repeated
instances as described above or perhaps the usage of a different
timer or compiler version.

e Algorithm V: This is the DGEMM reported in [5]. Since this code
was obtained later, these timers had to be done separately, but
the conditions of the test remained the same. For example, the
LDA’s in the test cases were always fixed at 600.

For Algorithms I and II the time for copying into the data struc-
ture is included in the timing results. To ignore this copying time in
talking about the results would be a serious oversight. So the timing
reported is for calling the copy routines and then calling the algorithms.
Otherwise, the results would look unrealistically better.

In Table I, we compare for approximately M = 600, N = 600, differ-
ent algorithms versus different values of K. For larger K, Algorithms
I and II are further blocked along K. The numbers under each Al-
gorithm was the reported Megaflop rate for the RS/6000 Model 530
(whose theoretical peak performance is 50 Megaflops). The program
timing these results used all of the algorithms, with the same matrix,
at the same time, to ensure fairness. The only exception to this was
a separate code used for the blocked versions of algorithms I and II in
Table II.

In Table I, we compare almost square DGEMMs of various orders.
Here is where the more typical algorithms will get peak performance.
Algorithms I and II were further blocked in the K direction. The

12

Most algorithms for DGEMM hit peak speed when the matrix di-
mensions, M, N, K, are comparatively big (small enough to fit into
memory, but larger than size of the memory structure beneath the main
memory). Unfortunately, in algorithms like Cholesky, LU, and QR,
DGEMM calls invariably are rectangular with one dimension larger
than the other. We feel that in the event of block algorithms, most
cases of GEMM calls have at least one of the dimensions much smaller
than the others. We feel it necessary to consider the case where the
K dimension is small (10 to 120) for this reason. Typically, we would
like the DGEMM to run with peak speed at the smallest possible K
we can afford. There are two reasons for this. The first is that a small
K represents less Level-2 work, which is slower. The second is that if
we can get a faster algorithm, clearly the problem will be solved faster.

When the alternate data structures to AT previously were intro-
duced, a very specific data structure was introduced along with them.
In afterthought, this data structure is designed to exploit a faster peek
speed in the cases when K is small. If K is larger, then the algorithm
must be blocked once more on the outside with respect to K.

Finally, buffers needed to be around large enough to do the trans-
positions. In a sense, this is cheating and so of course our results are
better. In another sense, the purpose of this paper was to determine if
such a method could be useful. Indeed, we shall see it is.

4 Numerical Results

For each timing, we ran enough examples so that DGEMM would run
for at least 10 system seconds. We include in our tables exactly how
many instances that took. Sometimes more than one run of 10 or
more seconds each was made, to help balance out system loads and
the possible inaccuracy of the timer. In these cases, the times between
different runs were averaged.

There are five different algorithms used.

o Algorithm I: The Block Data Structure DGEMM mentioned in
the text.

o Algorithm II: The so-called Twice done Block Data Structure

11

3.5 Twice Done Block Data Structure for the Transpose

One might wonder if we could extend this idea until we find A” BP,
We call this a twice done block data structure. The integer arithmetic
increases again.

Alg.4: Find C « C + APBF

nb=20
for N2 =1, N, Block
ma =10

nbsave = nb

for M1 =1,M,m =17
ma = ma -+ 1
nb = nbsave

for N1 = N2, N2 + Block —n,n =3

nb=nb+1
CTEMP = zeros(m —1,n — 1)
kl=1

for KA=1,m+«K m=717
ATEMP = A(ka : ka + m — 1,ma)
BTEMP = B(K1: K1+4+n—1,nb)
(Compute CTEMP = ATEMPTBTEM P)
kl =k1+3

end for KA

C(M1:M1l4+m—1,N1:Nl4+n-1)=

C(M1:Ml4+m—1,N1: Nl+n—-1)+CTEMP

end for VN1
end for M1
end for N2

Notice that some changes regarding the variables in the innermost
loop are in effect. This is to help offset additional integer arithmetic.

3.6 Important Note on the Use of Block Data Structures

We should note that it was possible to model the transposition time
on the RS/6000 Model 530. This in turn made it possible to ascertain
in advance when it was worthwhile.

10

end for M2
end for N2

3.4 Block Data Structured DGEMM
If we look back at the code (Alg.1) to do the transposed DGEMM we

notice that on the innermost loop, we access A across rows in 1 x 7
blocks. One might wonder what would happen if the access of A was
sequential even in this innermost loop. The new data structure would
still be quite similar to the transpose but it would have rows that were
7 times as long. We consider the new algorithm for the case m = 7,
n=3.

Alg.3: Find C « C + A'B
for N2 =1, N, Block
ma =10
for M1 =1,M,m =17
ma = ma -+ 1
for N1 = N2, N2 + Block —n,n =3
CTEMP = zeros(m —1,n — 1)
ka=1
for K1=1,K
ATEMP = A(ka : ka + 6,ma)
BTEMP =B(K1,N1: Nl+n-—1)
(Compute CTEMP = ATEM PTBTEM P)
ka = ka+7
end for K1
C(M1:M14+m—1,N1:Nl4+n—-1)=
C(M1: Ml4+m—1,N1: Nl+n—1)+CTEMP
end for VN1
end for M1
end for N2

The obvious disadvantages to the above mentioned algorithm is
that it has an increased amount of integer arithmetic. We hope that
the decrease in cache misses will help offset this difficulty.

m— 1

mn+m+n—|

1 <32,n<m

=) =

n

The answer to this is (m,n) = (6,4). When we compiled our 64
code, however, our version of the fortran compiler was not able to reuse
these registers. Fred Gustavson [8] discovered that an older version
of the compiler was able to compile the 6z4 case without spilling the
registers. We were using IBM AIX XL Fortran version 02.01.0000.0000,
which in spite of dozens attempts, we were unable to get this version to
handle 624 case effectively. One should keep in mind that it might be
possible to improve our results using an older version of the compiler.

3.3 Small K Fortran DGEMM

Since later in the paper we emphasize the small K dimension sizes,
it seems reasonable to note how the algorithm in the previous section
changes when K is small. The algorithm is mostly the same, but we
have found that blocking along M helps offset the fact that K is small.
The innermost blocking is still determined by the information in the
previous section. The outermost blocking now has one more additional
level of complexity. Mblock ranged from 35 to 63 and Nblock ranged
from 117 to 150 during the computation of Table One in the numerical
results section.

Alg.2: Find C « C' + ATB (K small)
for N2 =1, N, Nblock
for M2 =1, M, Mblock
for N1 = N2, N2 + Nblock — n,n
for M1 = M2, M2 + Mblock — m,m
CTEMP = zeros(m —1,n — 1)
for K1=1,K
ATEMP = A(K1,M1: M1 +m—1)
BTEMP =B(K1,N1: Nl+n-—1)
(Compute CTEMP = ATEMPTBTEM P)
end for K1
C(M1:Ml4+m—1,N1:Nl4+n-1)=
C(M1:Ml4m—-1,N1:Nl+n—-1)+CTEMP
end for M1
end for N1

end for N2

For this block version of DGEMM, it is necessary to consider block-
ing for all of the levels of memory. On the innermost level we have
registers. We have 32 registers we can use. That means we can allo-
cate at most this many temporary variables. All the ' variables take
up at least mn registers. The A and B temporary variables take up
at most m + n registers. We wish to maximize the amount of mul-
tiplies, mn, compared to the amount of loads, m 4+ n while trying to
keep mn + m + n manageable (around 32 or less). There is an obvious
symmetry between m and n, so we note that since we want to store C'
as much by column as possible, that n < m. We now have a simple
optimization routine:

max (mn —m — n) subject to mn+m+4+n <32,n <m
(m,n) 1Integer

The answer to this problem is (m,n) = (7,3) or (5,4). As mentioned
before, we would like n as small as possible, yielding a preference of
(m,n) = (7,3). That means in the innermost loop there are 10 loads
and 21 multiplies giving a total of 11 free cycles to absorb a cache miss.
It is assumed that the loads and multiplies will be arranged a bit more
intelligently than written in the above algorithm.

This handles registers and allows cache-misses to be minimalized.
The Block parameter is designed to pay attention to the TLB. It has
been found that for an LDB of around 600 that Blocks ranging from
40 to 80 1s wise.

We note that it is possible on some machines to have register re-use.
That is, we do not need m + n registers for the loading of A and B,
but m +n — LmT_lj will suffice. This is the approach taken by Bowen
Alpern [1] in the assembly DGEMM mentioned. We can do this when
it is possible to use all the order the loading of A and B such that we
multiply all the n variables loaded from B by the extra LmT_lj variables
loaded from A so that the respective registers are available for reuse
later.

Note that the new optimization problem becomes

max (mn —m — n) subject to
(m,n) Integer

The assembly code for DGEMM was thoroughly optimized by Bowen
Alpern and Larry Carter at IBM Research Center at Yorktown Heights
[1]. The fortran code for DGEMM was written by the author and is
described below. Also used for the basis of comparison was the ESSL re-
lease of DGEMM [12]. The code for the block data structure DGEMM

will also be described below.

3.2 Fortran DGEMM

One fast case of DGEMM is the double precision computation of €' «
aAT B + BC. This particular case seems to access memory more con-
secutively than the other others. Here, we assume (' is M x N, AT is
M x K, and B is K x N. We also express the leading dimensions of
A, B,and C' by LDA, LDB, and LDC respectively. The user supplies
A B, C,a, 8, LDA, LDB, and LDC. For the purposes of discussion
only, it is convenient to suppress the a and [by assuming they are
equal to 1. We also make the assumption that M, N, K are divisible
by whatever small numbers we choose for convenience of coding. This
last assumption is certainly not necessary, but allows for the discussion
of the computation of DGEMM on all but at most a few rows and
columns which can be handled separately in lower order work.

We go immediately into a block version of DGEMM, discussing how
to find the optimal blocking parameters afterwards.

Alg.1: Find C « C + A™TB
for N2 =1, N, Block
for M1 =1,M,m
for N1 = N2, N2 + Block — n,n
CTEMP = zeros(m —1,n — 1)
for K1=1,K
ATEMP = A(K1,M1: M1 +m—1)
BTEMP =B(K1,N1: Nl+n-1)
(Compute CTEMP = ATEM PTBTEM P)
end for K1
C(M1:M14+m—1,N1:Nl4+n—-1)=
C(M1: Ml4+m—1,N1: Nl+n—1)+CTEMP
end for N1
end for M1

Then our example of an alternate data structure for A7 is

@11 | G13 | G31 | 433
AP — 12 | G14 | 32 | (34
@21 | G23 | (41 | (43
a2 ‘ Q24 ‘ Q42 ‘ Q44

It should be noted that the block data structure stores its data as
follows:

An
An
1412
Agg

AP —

where A;; was defined above and each A;; started a new column in AP,
In less degenerate cases, several block matrices will be required before
a new column is necessary (as an aside, one could just use a vector
for AP if it weren’t for the fact that the indexing overhead of the last
entries in a large matrix would become hard to manage).

It should be clear that an algorithm could only benefit from knowing
it could access data sequentially. Of course, one needs to decide on
blocking sizes before running a transpose algorithm. Not only does
this necessitate more than one transpose algorithm for a set of BLAS,
but it also requires routines to be written for a whole new data structure
as well.

3 Using A Block Data Structure for DGEMM

3.1 IBM Superscalar RISC S/6000

Since the BLAS themselves are machine specific, it should come as no
surprise that any algorithm we present for DGEMM must likewise be
machine specific. The architecture we tested this on is the IBM RISC
System /6000 Model 530 and Model 520 series. This is a superscalar
machine which pipelines up to five instructions per cycle. It consists of
four levels of hierarchical memory: main memory, a TLB (translation
lookahead buffer), cache, and registers. Data movement between the
levels varies from 8 to 34 cycles, so it is to the users advantage to block
for each level of hierarchy to minimize data loading overhead.

z(0:ny : ng)
T (1l :ny:ng)
y = T =

n1,n2
z(ny —1:nq:ny)

See Van Loan[13], for example. Then if X is n; x ny but viewed as a
one dimensional array, which we denote X, ,,x1,

_nT _ T
Ynoxng = Hn1><n1n2Xn1n2><1 - (Xm ><n2>

Defining standard transposition in term of a permutation matrix. The
alternate to the transpose, AL . of AT is just:

(m,n)

Afm,n) = (ImR ® H%XmR)" gXRI(

Where [is the square identity of the appropriate dimension, and &
represents the Kronecker product. Then the block data structure of A
is

Afm,n) = (JmR ® ngm%)((H%xMNAMle)anK)

To illustrate this block data structure, it is convenient to consider
an unrealistically small example (4 x 4). The unrealistic is emphasized
to point out that this is given for illustration purposes alone. Here,

M=N=4 m=n=2,R=N =2. Both A, AT, and A" are given.

11 G12 | G13 0G14 11 @21 | d31 d41
A= 1 G22 | G23 (24 AT _ 12 G22 | A3 (42
31 G32 | 433 (34 (13 @23 | (33 (43
(g1 G42 | G43 C44 (14 G24 | 34 CG44

If AT is to be blocked into 2 x 2 chunks then:

A A
AT — 1 Az
l A Ag]

Where, for example,

the matrix.

There are a few important points to make before going into an
example. The first point is that the motivation behind using a block
data structure is to achieve faster performance. Not only does it do this,
but it achieves the top speeds on smaller problems. The next thing is
that we are really solving the same problem but in a block space. One
may decide to start off a sequence of BLAS, say at the beginning of a
factorization, by placing everything into block data structures and just
remaining there. The advantage to this is that it avoids the cost of all
the transformations each stage. But another point not to be overlooked
is that use of a block data structure makes coding easier. For example,
if the user is solving the above DGEMM, with either AT B or AB, and
decides that A will be in an block data structure, then the user no
longer needs two separate codes for the AT B and the AB case. The
user just needs one case, and two separate algorithms for converting
AT or A into this case.

2 An Example

To the end of defining our particular block data structure, we write A
as M x N and therefore AT as N x M. We assume M = Km and
N = Rn. We also assume K is divisible by n.

T T T

Ar}l A1T2 U AlTK

AT — A21 A22 e AzK
T T T

ARI ARz e ARK

If we consider the standard store by column data structure used in
fortran among other languages then it is clear that unless m = 1, the
n x m blocks in AT are noncontiguous. If the data is reorganized so
that these blocks are contiguous, then we write this as Aftmn (or just
AP if m,n are known) and call this a block data structure (for AT).

More precisely, define the permutation matrix Hgl as follows:

;12

1 Introduction

Portability and efficiency have led to block algorithms based on the
BLAS[4]. The BLAS routines are then optimized for different ma-
chines. It was suggested in [9] that all the level 3 BLAS could be spec-
ified in terms of GEMM (GEneral Matrix Multiply). The new goal is
to optimize the GEMM and then all the other routines will run close
to optimal as well. Because this one routine is now so important, one
strategy typically used is to analyze the GEMM on an assembler level
to be sure to get as efficient a routine as possible. Instead, we suggest
that the user consider using a block data structures which takes into
account the machines architecture. Rather than restructing algorithms
to take advantage of the cases our kernel GEMM is fast, we suggest
restructing the data so that the kernel GEMM would be faster than
any non-restructured code. We specifically discuss an implementation
on the IBM RISC System/6000.

Since the overhead in transforming the matrix into a block data
structure must be taken into consideration, there are only special cases
where this might be appropriate for level 2 BLAS. If the matrix is
already in a block data structure, then the results of speedup in the
level 2 BLAS will be of interest. Unless stated otherwise, all references
to data will implicitly be double precision (hence, our example will be
DGEMM). We also assume that the matrix is “big” enough in that
the time it takes to transform must be understandably small compared
to the work time, and that anybody implementing the ideas in this
paper would implement a hybrid algorithm which would default to the
standard DGEMM in those cases where it is necessary. More details
will be provided later.

It is assumed that the user is working on a machine where the
order and access of data is crucial to the performance of the code. We
consider the cases of machines like the IBM RISC System/6000 with
multiple layers of memory, each of which has a penalty for “misses”
(accessing something outside the current layer).

In DGEMM, the case ' « SC + o AT B runs faster than the case
of C' «— pC 4+ aAB due to memory access of A. We will denote an
alternate to the transpose by A” B where this final product is the same
as ATB or AB but runs faster than both of them. This a store-by-
block block matrix structure specificly adapted from the transpose of

BLAS based on Block Data Structures

Greg Henry

Jaunary 23, 1992

Abstract

The optimization of the BLAS is discussed, with examples given
for the IBM superscalar RISC S/6000. The approach suggested is to
use block data structures based on store-by-block schemes. We give
results and analysis of the optimization of DGEMM. We also suggest
how these results can be applied to the higher level factorizations and
the other BLAS. Results are given to show the advantages of using
block data structures.

Keywords: BLAS, DGEMM, Data Structures
AMS(MOS) subject classifications: 65F99, 68P05

This research was partially supported by the Cornell Theory Center, which receives
major funding from the National Science Foundation and IBM Corporation, with
additional support from New York State and members of its Corporate Research

Institute.

