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Abstract

We propose a new ranking paradigm for relational
databases called Structured Value Ranking (SVR). SVR uses
structured data values to score (rank) the results of key-
word search queries over text columns. Our main contri-
bution is a new family of inverted list indices and associ-
ated query algorithms that can support SVR efficiently in
update-intensive databases, where the structured data val-
ues (and hence the scores of documents) change frequently.
Our experimental results on real and synthetic data sets us-
ing BerkeleyDB show that we can support SVR efficiently in
relational databases.

1 Introduction
SQL/MM [22] is the standard extension to SQL for pro-

cessing text data. Current relational databases that imple-
ment SQL/MM [9, 10] treat the text management compo-
nent as a “black box” and use traditional ranking techniques
such as TF-IDF [25]. Such ranking techniques, however,
were originally developed by the IR community for stand-
alone document collections and often do not produce mean-
ingful results for text stored in relational databases. As
an illustration, consider the relational database in Figure 1,
which contains fragments of data from the Internet Archive
(http://www.archive.org) database, and the SQL/MM query
below, which returns the top 10 movies whose description
contains the keywords ‘golden gate”. Using TF-IDF, the
two movies in the database will have about the same score in
the query result because the keywords “golden gate” occur
the same number of times (i.e., once) in both of them and
their text field lengths are about the same. In other words,
the two movies will have similar scores despite the fact that
they have very different popularities based on their review
ratings and number of visits/downloads in the database.

SELECT *
FROM Movies m
ORDER BY score(m.desc, "golden gate")
FETCH TOP 10 RESULTS ONLY

Figure 1. Example Database

In this paper, we propose Structured Value Ranking
(SVR), which uses the structured data values related to the
text data in order to rank keyword search query results. In
our example, using SVR, we can score a movie based on
a combination of its (a) average reviewer ratings, (b) num-
ber of visits by users, and (c) number of downloads. Thus,
the movie “American Thrift” will be clearly ranked above
“Amateur Film” since it has received higher ratings, visits
and downloads. One of the contributions of this paper is a
SQL-based framework for specifying and integrating SVR
in a relational database. A system administrator or an au-
tomatic ranking tool can use SQL queries to specify how
text columns are to be scored based on the values of re-
lated structured data (such as average reviewer ratings). Our
framework also enables ranking based on a combination of
SVR and TF-IDF.

The main contribution of this paper is a new family of
inverted list indices and query algorithms that can support
SVR efficiently in relational databases. The main chal-
lenge in devising these indices is to efficiently support top-�

queries when the scores of the text columns change fre-
quently and possibly dramatically. Our initial motivation
for this problem arose in the context of the Internet Archive
database, where the reviewer ratings, number of visits and
number of downloads were updated very often and signif-
icantly changed the scores of the associated text columns
(frequently, these changes are due to “flash crowds” on the
Internet, where an item suddenly gains popularity due to



some external event such as an award announcement [2]).
From the user’s point of view, they would still like to see
the top ranked results based on the latest scores so that they
do not miss important recent information. We believe that
this is also true for a large class of other update-intensive
databases where SVR is applicable, such as stock databases
(where volume of trade can be used to rank results), on-
line auctions such as e-bay (where time to completion and
the current bid can be used to rank results) and a host of
other web-based applications where the popularity of an
item sometimes changes dramatically in a span of a few
minutes [19].

Unfortunately, traditional inverted list indices and asso-
ciated query processing algorithms are not designed to sup-
port top-

�
queries efficiently when document scores are up-

dated frequently. Specifically, we cannot use regular top-
�

query processing algorithms such as the Threshold Algo-
rithm [11] and its variants [23, 26] because these algorithms
require the keyword inverted lists to be sorted (and pro-
cessed) in document score order - when scores are updated
often, maintaining the inverted lists in sorted order becomes
very expensive. We thus propose a new family of inverted
list indices that are maintained in approximate score order,
and devise special query processing algorithms that correct
for the score inaccuracy during query processing.

The proposed indices and algorithms can trade off query
time for update time, can support both conjunctive and dis-
junctive keyword search queries, can support a combina-
tion of SVR and term scores (such as TF-IDF), and can be
tightly integrated with a relational database by reusing rela-
tional features such as B+-trees. Further, the indices can
also efficiently support incremental document insertions,
deletions and updates. Our implementation using Berke-
leyDB and our evaluation using both synthetic and real data
sets indicate that the proposed indices can efficiently sup-
port SVR in update-intensive relational databases.

While the focus of this paper is on SVR in relational
databases, we believe that the indices are more generally ap-
plicable. Specifically, they can be used in any top-

�
search

application where the document scores change frequently.

2 Related Work
Our work differs in three main aspects from recent

work on keyword search in relational databases, such as
BANKS [4], DBXPlorer [1] and DISCOVER [16]. First,
these techniques only use simple ranking schemes based
on the number of joins [1, 16], or traditional IR rank-
ing schemes such as TF-IDF [14] and variants of PageR-
ank [3, 5]. In contrast, SVR exploits the rich semantics and
relationships of structured values to rank keyword search
results (in addition to supporting traditional IR-style rank-
ing). Second, these techniques do not consider score up-
dates, which is one of the main technical contributions of
our work. Finally, these techniques only support “pure”

Figure 2. System Architecture

keyword search, but can query over text data that spans mul-
tiple tables by automatically exploiting primary-foreign key
relationships. In contrast, SVR is designed to be tightly in-
tegrated with SQL/MM, which deals with text data in a user
specified table, but can support a mix of keyword search and
structured queries. Other related work includes top-

�
para-

metric queries in relational databases [6, 7, 15], but these
are not designed to support keyword search queries.

There is a vast body of work on devising inverted list
indices [12, 25, 29] and associated query processing algo-
rithms [11, 23, 24, 26, 28] for top-

�
queries. However, as

mentioned in the introduction and discussed in further detail
in Section 4, these approaches are not designed to process
top-

�
queries efficiently when the document scores change

frequently. There has also been some work on devising in-
verted lists that can efficiently handle document insertions,
deletions and updates [18, 20, 27], but these are not de-
signed to handle score updates.

3 System Architecture
One of our primary design goals was to tightly inte-

grate SVR with a relational database. Towards this end,
we build upon the architecture used by many commercial
relational database systems for managing text data; this ar-
chitecture is shown in Figure 2 (ignore the dashed lines and
boxes for now). The text fields are indexed by a text man-
agement component (called “extender” in DB2, “cartridge”
in Informix, and “data blade” in Oracle). Users can is-
sue SQL/MM queries that contain both keyword search and
other structured SQL sub-queries to the relational database
engine. Given this joint query, the relational query engine
first optimizes the query (rank-aware optimizations can also
be used [17]). Then, during query evaluation, the relational
query processor invokes the text management component
with the query keywords to obtain the top-ranked (or all)
text documents along with their scores, and merges these
results with the other structured sub-query results.

In this paper, we focus on the text management com-
ponent of the above architecture and show how it can be



extended to efficiently support SVR. There are two main
extensions that need to be made. First, we need to specify
how the text keyword search results are to be ranked based
on structured data values. Towards this end, we present
a SQL-based framework for specifying SVR scores when
creating a text index on a relational table (see dashed box in
top right of Figure 2); system administrators or automatic
ranking tools can use this framework to specify SVR scores
for a given application. Second, we need efficient index
structures and associated query processing algorithms that
produce the top-ranked results for keyword search queries
based on the latest structured data values. Towards this end,
we devise new index structures that can be rapidly updated
while still providing good performance for top-

�
keyword

search queries. These indices can be implemented using tra-
ditional B+-trees (see dashed box in Figure 2) and can thus
be easily integrated with a relational database.

We now describe our SQL-based framework for specify-
ing and maintaining SVR scores using relational material-
ized views. In the next section (which constitutes the bulk
of the paper), we describe our index structures and query
processing algorithms.

3.1 SVR Score Specification
Consider a relation ���������	��
���
�
�
��	����� in which column
��� is the text column to be scored, and ��� is the primary
key. Specification of the SVR score for ��� requires the
specification of the following aspects:

1. ��� � �	� 
 ��
�
�
��	��� � , where each ��! is a SQL-bodied
function [8] that takes in a � � value (i.e., a primary
key value of � ), and returns the score for the text col-
umn. Intuitively, each � ! corresponds to one of the
components of the SVR score.

2. "�#$#%��& � ��
�
�
��'&��(� , where "�#$# is a SQL-bodied function
that takes in ) scores and returns a single aggregated
score. Intuitively, "�#$# specifies how the scoring com-
ponents are combined to obtain the final score.

Consider the example in Figure 1. Here, � is the Movies
table, ��� is the mID column, and ��� is the description col-
umn. We can specify three scoring components using the
SQL-bodied functions given below:
create function S1 (id: integer) returns float
return SELECT avg(R.rating)

FROM Reviews R WHERE R.mID = id

create function S2 (id: integer) returns float
return SELECT S.nVisit

FROM Statistics S WHERE S.mID = id

create function S3 (id: integer) returns float
return SELECT S.nDownload

FROM Statistics S WHERE S.mID = id

create function Agg(s1,s2,s3: float) returns float
return (s1*100 + s2/2 + s3)

S1 computes the average review rating for a movie, S2
computes the number of visits, S3 computes the number of
downloads, and "�#$# computes the overall weighted score.
As mentioned earlier, we also allow for the score to depend
both on structured values and TF-IDF scores. In this case,
the specification can also include the built-in scoring func-
tion TFIDF() (in addition to S1, S2 and S3). The "�#*# func-
tion can then aggregate all four scores as shown below (s4
is the TF-IDF score value).
create function Agg (s1,s2,s3,s4:float)
returns float
return (s1*100 + s2/2 + s3 + s4/2)

3.2 Efficient SVR Score Maintenance
One of the main challenges in using SVR scores is that

the score values (which depend on structured data values)
can change frequently and possibly dramatically. Fortu-
nately, our SQL-based specification language allows us to
leverage existing relational database infrastructure, specifi-
cally incrementally maintained materialized views [13], in
order to maintain SVR scores efficiently.

Consider a relation � with primary key � � , text col-
umn � � , SVR score components � � ��
�
�
��	��� , and aggrega-
tion function "�#$# . The following materialized view can
be created for associating a score with each value of ��� .
(In case "�#*# contains the TF-IDF term, this term is not in-
cluded in the materialized view specification, but is handled
by the query algorithm as described in Section 4.3.3)
create materialized view Score as

SELECT R.Ck, Agg(S1(R.Ck), ..., Sm(R.Ck))
FROM R

Since �+����
�
�
��	�,�%�	"�#$# are SQL-bodied functions, they
are visible to the relational engine. Thus the view can be
incrementally maintained [13] in the face of score updates.

4 Indexing and Query Processing
We now propose index structures and associated query

processing algorithms that can support top-
�

queries effi-
ciently even when document scores are updated frequently.
Along the way, we also illustrate why traditional inverted
lists are not appropriate for this scenario (and experimen-
tally validate this claim in Section 5). Although our current
focus is SVR in relational databases, the index structures
are more general in scope and apply to any top-

�
keyword

search application where scores change frequently.

4.1 Index Operations and Assumptions
We would like our index structures to efficiently support

the following operations:- Document score updates: Index structures should be able
to handle frequent updates to document scores.- Top- . queries: Index structures should be able to efficiently
evaluate conjunctive or disjunctive keyword search queries
and return the top- . documents ordered by the latest values
of their scores (may include IR-style term scores).



- Content updates, insertions and deletions. Index struc-
tures should be able to handle incremental content updates,
insertions and deletions to documents.

In this paper, we focus on document score updates (be-
cause they are fundamental to SVR) and top-

�
queries (be-

cause this is a direct measure of query performance). Our
index structures can also support incremental content up-
dates, insertions and deletions. We describe these in Ap-
pendix A .

All of the described index structures can handle a combi-
nation of SVR scores and term scores (such as TF-IDF). The
index structures can also support both conjunctive (i.e., re-
turn documents that contain all of the query keywords) and
disjunctive (i.e., return documents that contain at least one
of the query keywords) queries. However, to better illustrate
the fundamental tradeoffs, we initially focus solely on SVR
scores and conjunctive queries. Then, in Section 4.3.3, we
show how the best of the indices (the Chunk method) can be
extended to support a combination of SVR and term scores,
and support both conjunctive and disjunctive queries.

We make the following assumptions. We assume that
scores are non-negative real numbers. We assume that the
SVR score for each text document is incrementally main-
tained using a materialized view ��������� as described in Sec-
tion 3.2. We also assume that the index structures are no-
tified whenever the score of a document is updated in the
materialized view (this can be done by the part of the code
that actually updates the materialized view).

4.2 Traditional/Naive Inverted Lists
We introduce our index structures as refinements over

traditional inverted lists, illustrating along the way why the
traditional approaches are not applicable in our scenario.

4.2.1 ID Method
The ID method builds an inverted list for each term

�
, where

each inverted list entry (posting) contains the ID of a docu-
ment containing the term

�
. The postings for each term are

sorted in increasing ID order. This data structure is one of
the most commonly used in IR systems [12, 25]. In addi-
tion, a Score table is used to store the ID and score of each
document (there is only one such Score table for the entire
collection, not one per term). In fact this can be the same
Score table that stores the SVR scores (see Section 3.2). An
index is built on the ID column of the Score table so that
score lookups by ID are efficient. Figure 3(a) shows an ex-
ample inverted list for the term news and the Score table.

Score updates are very efficient in this method; when the
score of a document is updated, we only need to update the
score for the document in the Score table. Query process-
ing, however, is more expensive. Given a query with terms� � ��
�
�
�� � � , we need to merge the 	 lists corresponding to the
query terms and determine the IDs of the documents that
contain all of the query terms. For each such ID, we need

Figure 3. ID Method and Score Method

to lookup the Score table to determine the score of the as-
sociated document. Since users are usually only interested
in the top-

�
results, a result heap is used to keep track of

the top-
�

results during the scan. The main disadvantage of
this method is that we need to scan all the postings in the
query term inverted lists (which may be large) even if the
user only wants the top-

�
results.

4.2.2 Score Method
A different way to organize inverted lists is to order postings
by decreasing score instead of increasing ID - this ordering
is required by efficient top-

�
query processing algorithms

such as [11, 23, 24, 26, 28]. Here, each posting contains the
document score in addition to the document ID since the
inverted lists are sorted and merged in score order (note that
we cannot simply use the document score as the document
ID because scores can change in our setting). Figure 3(b)
shows this inverted list organization for the term news.

Score updates are very inefficient in this method. When
the score of a document 
 is updated, the new score has to be
updated in the inverted list for every distinct term in 
 . This
is likely to be very expensive because documents usually
have hundreds to thousands of terms, and each update re-
quires a random probe in the inverted list. In addition, since
the inverted list for each term is ordered by the score, the
ordering of the postings may have to be updated too. How-
ever, top-

�
queries can be processed very efficiently using

the techniques proposed in [11, 23] since the inverted lists
are in decreasing score order.

4.3 Novel Inverted Lists and Query/Update Algo-
rithms

The ID and Score methods can be viewed as two ends
of a spectrum. The ID method is very efficient for score
updates but not for queries, while the Score method is very
efficient for queries but not for score updates. Since score
updates are relatively frequent and we still want to reduce
query time, it is interesting to explore whether there are dif-
ferent update-query tradeoffs.

Devising index structures that provide such a tradeoff is
a non-trivial task because of the following reason: we want
the inverted lists to be ordered by the score (for query per-
formance) but we still do not want to touch them for every
score update (for update performance). We now present two



novel index structures that address this apparent dilemma.
These index structures can be implemented using regular
relational tables and B+-trees, as described in Section 5.2.

4.3.1 Score-Threshold Method
The Score-Threshold method builds upon the Score
method. There are two main ideas behind Score-Threshold
method. The first idea is to allow the scores in the inverted
list to be out-of-date by up to a threshold (hence the name
Score-Threshold). Thus, not every score update requires an
update to inverted list postings. Query processing, however,
becomes slightly less efficient. Since the scores in the in-
verted list may be inaccurate by up to the threshold value,
we may need to scan the inverted lists even after the first k
results are found in order to correct for this inaccuracy. Note
that the update-query tradeoff can be controlled by varying
the size of the threshold.

The second idea behind this method addresses the fol-
lowing scenario: a document’s new score exceeds its origi-
nal score by more than the threshold value (say, for a newly
popular document). This scenario is the main reason why
we cannot directly use query algorithms like the Threshold
Algorithm [11]. Specifically, since the change in score is
potentially unbounded, any threshold function [11] has to
be overly conservative thereby requiring a scan of the en-
tire list for each query (since the document with the lowest
score could have been updated to get the highest score).

Our solution to this problem is as follows. We maintain
two inverted lists for each term. The first inverted list is the
same as in the Score method and is never updated. The sec-
ond inverted list has the same structure as the first, but only
contains postings for those documents whose scores have
been updated by more than the threshold value (hence, this
inverted list is likely to be shorter and more efficient to up-
date than the first inverted list). We note that while short
inverted lists are routinely used in IR systems for efficient
document insertions and deletions, our focus is to devise a
new query algorithm that can deal with score updates. This
leads to new problems because the scores in the inverted
list can be inaccurate, and the same document can have dif-
ferent scores in the short and long inverted lists. Note that
although the scores in the inverted lists may be inaccurate,
our algorithm will produce the correct top-

�
results based

on the latest accurate score values.
Figure 4 shows the data structures used. For each term,

there is a long and a short inverted list, both ordered by the
score. Since the scores in the inverted list can be inaccurate
by up to a threshold, a separate Score table (like in the ID
method) is used to track the current accurate score of each
document. In addition, a ListScore table contains an entry
for each document whose score has been updated. Each en-
try contains the ID of the document, its score in the (short or
long) inverted list, and a “inShortList” field; the “inShort-
List” field indicates whether the document has postings in

Figure 4. Score-Threshold Method

the short list because its score changed by more than the
threshold value.

Algorithm 1 shows how score updates are processed.
Given a score update for a document 
 with ID � 
 , the old
score of 
 is retrieved, and the score is updated in the Score
table (lines 7-8). We then determine the list score of 
 (i.e.,
the current score of 
 in the short or long inverted list). To
do this, we first check whether the document 
 ’s score has
ever been previously updated (line 9). If so, we look up the
list score for 
 from the ListScore table (lines 10-12). If

 ’s score was never previously updated, then we set its list
score to be its old score (lines 14-16). Given the list score
and the new score, we determine if 
 ’s score has increased
by more than the threshold (the threshold is computed us-
ing the thresholdValueOf function - more will be said about
this function soon). Only if the score has changed by more
than the threshold do we add the new score to the short list.
If 
 already contains postings in the short list, we update
the scores of these postings (lines 20-22), else we add new
postings for 
 in the short list (lines 24-26).

We now walk through an example in Figure 4. Suppose
document 15 contains the term news and its initial score is
87.13. Further, assume that thresholdValueOf (87.13)= 100.
First, if the document’s score is updated to 91.4, its score
is updated in the Score table and an entry is added to the
ListScore table with the list score 87.13 and flag inShortList
set to false. However, postings for this document with the
new score are not added to the short list. Now if the docu-
ment’s score is updated again to 124.2, this is updated in the
Score table. Now, since the new score is greater than thresh-
oldValueOf (87.13) (where 87.13 is the list score), postings
for the document with the new score are added to the short
lists. The ListScore table is updated with the new value of
the list score (124.2) and records the fact that postings for
the document are now in the short lists.

Algorithm 2 shows how queries are processed. Con-
sider a query of 	 terms

� � ��
�
�
�� � � , with long lists��� � � � � ��
�
�
�� ��� � � � � and short lists � � � � � � ��
�
�
��	� � � � � � . We
use the notation

��� � � !������ � � � ! � to denote the logical union
of the postings of

��� � � ! � and � � � � ! � in score order. We do
a merge of the lists � � � � � ��� ��� � � � � ��
�
�
��'� � � � ����� ��� � � � �



Algorithm 1 : ScoreUpdate( � 
 , newS)
1: id : document ID of the updated document;
2: newS: new score of the updated document;
3: oldS: old score of the updated document;
4: Content(id): text content of the updated document;
5: SL( � ): the short list of term �
6:
7: oldS = Score. ���������
	��
��������� ;
8: Score. ���������������
	��
����������������� � ;
9: if ListScore. !"�$#�%&��'(�)��������� then

10: entry = ListScore. '(	�	 .*���)+,�)�-��./������� ;
11: lScore = entry.lScore;
12: inShortList = entry.inShortList;
13: else
14: lScore = oldS;
15: ListScore. �0��#������
�-12����� oldS,false 34�
16: inShortList = false;
17: end if
18: if newS 3 thresholdValueOf(lScore) then
19: if inShortList then
20: for each term � in Content(id) do
21: � 56�7�8�:9 ���"���*�-���-12�0��� newS 34� ;
22: end for
23: else
24: for each term � in Content(id) do
25: � 56�7�8�:9 ����#��;�;�<�-1=����� newS 34� ;
26: end for
27: end if
28: ListScore. �������������-1>����� newS,true 34�
29: end if

by scanning the short and long inverted lists for the query
terms in parallel (line 8). For each document 
 that appears
in all of the inverted lists, we have two cases. If 
 is a re-
sult due to postings in the short lists, then its current score
is looked up in the Score table (recall that the scores in the
inverted lists may be out of date), and it is added to the re-
sult heap (lines 12-14). If 
 is a result due to postings in the
long list and if either 
 ’s score has not been updated or 
 is
not in the short list (lines 16-17), then the latest score of 
 is
obtained and 
 is added to the result heap (if 
 is in the short
list, then the long inverted list postings can be ignored).

The interesting aspect of the algorithm is that it does not
stop after the first k results are found. This is necessary
because that scores in the inverted lists are not always accu-
rate, and there may exist a posting further down the inverted
list whose latest score is actually greater than the score of
the current document. However, since we know that this in-
consistency is bounded by a threshold, we only need to scan
the inverted lists until we are sure that the current score of
the posting cannot possibly exceed the lowest score in the
top-

�
results (lines 9-11, 22-24).

As an example, consider the evaluation of a top-
�

query,
where the

�
’th document added to the result heap has list

Algorithm 2 : Query(
� � ��
�
�
�� � � , �

)
1: �
?
�<9@9A9@�8��B : query terms;
2: . : desired number of results;
3: �C5D�7��� : the short list of term � ;
4: 5E5D�7��� : the long list of term � ;
5:
6: threshold = -1; // score has non-negative value
7: while �F�G��� do
8: Merge �0�C5D�7�
?:�CHI5E5D�7�:?:���:�<9@9@9A�;�0�C56�7��B$� HJ5K56�7��B"��� until

find a candidate � (with document ID ��� and score ' L )
9: if threshold 3 thresholdValueOf( '(L ) then

10: return;
11: end if
12: if � is from � 56�7�
?M�:�<9@9@9@�:�C5D�7�-B�� then
13: currScore = Score. '(	�	�.����N���0��� ;
14: resultHeap. �*��� ( ��� , currScore);
15: else
16: entry = ListScore. '(	�	 .*���)+,�)�-��./������� ;
17: if entry == null or entry.inShortList == false then
18: currScore = (entry==null) OP' L :Score. 'Q	G	�.��
��������� ;
19: resultHeap. �*��� ( ��� , currScore);
20: end if
21: end if
22: if enoughResult( ./�:' L ) && threshold 1 0 then
23: threshold = '(L ;
24: end if
25: end while

score RGS$S . Instead of stopping at this
�

’th result, the al-
gorithm continues to scan the inverted lists until it reaches
a posting for a document whose list score T�U satisfies the
following property: thresholdValueOf �0T�U ���VR
S�S ; this is the
additional work that the query processing algorithm has to
do since the list scores are not accurate.

We now turn to the choice of the thresholdValueOf func-
tion. It should be a monotonic function that satisfies the fol-
lowing property: thresholdValueOf(score) W score. In other
words, the threshold score should be at least as large as the
original score. If thresholdValueOf(score) = score, then ev-
ery positive score update causes the short list postings for
the document to be updated (note that negative score up-
dates would not require updates to the short list). On the
other hand, if thresholdValueOf(score) = X , then the Score-
Threshold method behaves similar to the ID method be-
cause postings would never be added to the short list and
the entire inverted list would have to be scanned for every
query. Of course, there are many choices for the thresh-
oldValueOf function that fall in between. From our exper-
iments, we found that using thresholdValueOf(score) = �Y score for some constant ��WVR worked well. We call � the
threshold ratio.
Theorem 2:(Correctness of top-

�
Search)

Algorithm 2 produces the top-
�

query results based on
the latest values of the document scores. (Please see Ap-
pendix B for the proof.)



4.3.2 Chunk Method

Although the Score-Threshold method offers a trade-off be-
tween update and query performance, it suffers from one
drawback compared to the ID method: Score-Threshold
requires scores to be stored in the long inverted lists be-
cause query merging is done in score order. This requires
larger inverted lists (because scores are replicated with each
term in a document), which could negatively impact perfor-
mance1. We now introduce the Chunk method that avoids
storing scores in the inverted lists while still offering the
desired update-query tradeoff.

The main idea is to divide the document collection into
“chunks” based on the original document scores. For ex-
ample, if there are 10000 documents, the lowest 5000 docu-
ments (based on score) could be in the first chunk, the next
higher 3000 documents could be in the second chunk, and
the top 2000 documents could be in the third chunk. Thus,
documents in higher chunks always have higher scores than
documents in lower chunk (at least, before score updates).
Now, the key idea is to organize the inverted lists so that
within a chunk, postings are in document ID order. Thus,
during query time, we first merge all the documents in the
last (third) chunk in ID order, then merge all the documents
in the previous (second) in ID order, and so on until we find
the top-

�
results at the end of some chunk. Note that since

we do not merge based on the scores, we do not need to
store the scores in the inverted lists; the scores only have to
be stored in the Score table.

The other issue that needs to be addressed is when to
add/update postings for a document in the short list. A sim-
ple solution is to add/update postings only when the score
of a document moves into the boundary of a higher chunk
(since within a chunk, the scores do not matter as the docu-
ments are ordered by ID). However, this creates a problem
with boundary cases. Specifically, a small score update to
the document with top-most score within a chunk can eas-
ily move the document into the next higher chunk, thereby
causing its postings to be updated in the short list. We thus
employ the strategy that a document’s postings in the short
list is updated only when its score causes it to move up two
chunks. This avoids corner cases like in the above exam-
ple. Note, however, that this has implications for query pro-
cessing. We can no longer stop at the end of a chunk after
we have found the top-

�
results; we need to scan an addi-

tional chunk to compensate for the inaccurate chunk IDs in
the inverted lists (similar to inaccurate scores in the Score-
Threshold method).

The Chunk method has the data structures shown in Fig-
ure 5. There is one long and one short inverted list for each

1Note that storing the scores in a separate lookup table instead of in
the long inverted lists is not an efficient option either because this would
require a random score lookup (as opposed to more efficient sequential
access in Score-Threshold) for each processed posting in the inverted lists.

Figure 5. Chunk Method

term. However, unlike the Score-Threshold method, the
postings are first ordered by decreasing chunk ID (or CID),
and within each chunk, are ordered by increasing document
ID. Note that we only have to store the CID at the begin-
ning of a chunk, and not with each posting. This method
also has a ListChunk table (analogous to the ListScore table
in the Score-Threshold method) and the Score table.

The update and query processing algorithms are similar
to that for the Score-Threshold method (Algorithms 1 and
2). The main difference is that the threshold function is now
specified in terms of chunks instead of scores. Specifically,
for a chunk � , thresholdValueOf � ��� = � +1, which indicates
that a document’s postings in the short list need to be up-
dated only if the score exceeds more than one chunk bound-
ary. Since we use chunks instead of scores, the newS in
Algorithm 1 is replaced by newChunk and oldS is replaced
by oldChunk, and T0U in Algorithm 2 is replaced by the CID.
We can also prove a theorem similar to Theorem 1 about the
correctness of this algorithm.

The main tradeoff between update and query processing
in this method comes about by setting chunk boundaries.
If the chunks are very large, it behaves like the ID method
with very little update overhead but slower query processing
due to having to scan large chunks. If the chunks are very
small, it will have to update the short list postings on every
score update, although queries will be faster. We experi-
mented with various methods for specifying chunk bound-
aries (including equal sized chunks, exponentially grow-
ing/shrinking chunks) and determined that a good strategy
was to set the chunks based on the actual score distribu-
tion. Specifically, we found that it was usually best to set
chunk boundaries so that for two adjacent chunks ��� R
and � , the ratio of the lowest score in ��� R to the lowest
score in � is a constant � ( � W R ). We call � the chunk
ratio, and this is similar to the threshold ratio for the Score-
Threshold method. Under very skewed score distributions,
some chunks have only a few documents in them. So, we
also set a minimum size of a chunk so that each chunk has
at least 100 documents (or some other constant). We evalu-
ate the impact of different threshold and chunk ratios in the
experimental section.



One point to note is that although the Chunk method
has the advantage of smaller long inverted lists, the Score-
Threshold method has the advantage that its ratio can be
changed without having to regenerate the long inverted lists.
However, this is likely to be useful only when the score up-
date distribution is unknown.

4.3.3 Chunk-TermScore Method

Thus far, we have focused solely on SVR scores and con-
junctive keyword search queries. We now show how the
Chunk method can be extended to support a combination
of SVR and term-based scores such as TF-IDF, and support
both conjunctive and disjuctive queries (the generalization
for the Score-Threshold method is similar).

More formally, consider a result document 
 that con-
tains all (conjunctive query) or some (disjunctive query) of
the query terms for a keyword search query ����� � � ,..., � ��� .
Let the SVR score of 
 be � U��
	 � 
 � and its term score be� � � 
$� for each term

�
� � .
� � could represent, say, the

TF-IDF score (note that the SVR score of 
 is independent
of the query terms, while the term score depends on the
query terms). We consider the following combination scor-
ing function � : � Y � U��
	*� 
$� ��� ����� � � � 
 � (although our
technique generalizes to any monotonic � ).

In designing the Chunk-TermScore method, we build
upon the Fancy-ID method recently proposed by Long and
Suel [21] for efficiently combining document global scores
(such as PageRank) with term-based scores. However, their
method assumes that the long inverted list is sorted based on
the global score and hence, cannot support efficient score
updates. Thus, our contribution is showing how this tech-
niques can be adapted to work with the Chunk method to
efficiently support score updates.

The data structures for the Chunk-TermScore method are
similar to the Chunk method, with two changes. First, each
posting in the long and short inverted lists also contains the
term score (such as the normalized TF score) in addition
to the ID. Second, each term has an additional ID ordered
inverted list called the fancy list [21], which is a small list of
postings that have the highest term scores for that specific
term. The score update algorithm for the Chunk-TermScore
method is the same as the Chunk method. However, the
query processing algorithm has to be adapted to account for
the new scoring function.

Algorithm 3 shows the query processing algorithm.
Given a query, the basic idea is to first merge the fancy
lists corresponding to the query keywords and determine
the IDs of the documents that contain all of the query key-
words (even for disjunctive queries). These IDs, along with
their corresponding combined scores are tentatively added
to the result heap because they are highly likely to be the
top-

�
results due to their high term scores (line 8). In ad-

dition, the IDs that appear in some but not all of the query

Algorithm 3 : Query(
� � ��
�
�
�� � � , �

)
1: �
?
�<9@9A9@�8��B : query terms;
2: . : desired number of results;
3: �C5D�7� ): the short list of term � ;
4: 5E5D�7� ): the long list of term � ;
5: �,56�7�8� : the fancy list of term � ;
6: �����QB �7�8� : minimum term score in �,56�7�8� ;
7:
8: Merge �,56�7�
?M�:�<9@9@���,56�7��B$� and put candidate documents and

their scores into resultHeap;
9: remainList = �,5D�7���0��� 9@9@9 �!�,56�7��B$�#" resultHeap;

10: while �F�G��� do
11: Merge �0�C56�7�
?:�*H 5E56�7�
?M���:�:9A9@9@���0�C5D�7�-B"�*H 5K56�7��B���� to find

next � (with document ID ��� , chunk CID and term scores
�N�������-�
?8�:�<9@9A9@�$�N�������-��B$� where � contains at least one term,
i.e. %*��9 �N��������� � � 3'& );

12: remainList. �
�
( 	*)*� ( ��� );
13: if � contains some + all terms �
?��<9@9A9@���-B then
14: �-,/.�0 � = 1 B�32�? �N���0���F� � � ;
15: if � is from �C5D�7� ? �:�<9@9@9@�:�C5D�7� B � then
16: �/L�4 0 = Score. '(	�	 .*����������� ;
17: resultHeap. �*��� ( ��� , � �0� ,/.�0 � �M�/L�4 0 ));
18: else
19: entry = ListScore. '(	�	 .*���)+,�)�-��./������� ;
20: if entry==null or entry.inShortList == false then
21: �/L�4 0 = Score. '(	�	 .*����������� ;
22: resultHeap. �*��� ( ��� , � �0��,/.�0 � �M� L�4 0 ));
23: end if
24: end if
25: end if
26: if reach the end of chunk with id CID then
27: � �65
7L�4 0 = thresholdValueOf(CID);
28: remainList.������� � ( � �65
7L�4 0 );
29: if remainList. ��( �"�-. () then
30: � �65
7,/.�0 � = 1 B�82C? � ���AB �7� � � ;
31: if � �0� �6597,/.�0 � �M� �65
7L:4 0 �<; resultHeap.minScore( . )
32: then return; endif
33: end if
34: end if
35: end while

keyword fancy lists are added to a data structure called the
remainList (line 9). The intuition is that the IDs in the re-
mainList have a high term score for at least one query term,
and could thus still make it to the top-

�
results. Once the

fancy lists are merged, query processing proceeds similar to
the Chunk method by merging the short and long inverted
lists (line 11). Once an ID appears in any of these lists, it no
longer needs to be remembered in the remainList since it is
currently being processed and is thus removed (line 12). If
the ID contains all (conjunctive queries) or some (disjunc-
tive queries) of the query keywords, its score is computed
using a combination of SVR and term scores, and added to
the result heap as for the Chunk method (lines 13-25).

At the end of each chunk, we need to determine whether



Figure 6. Experimental Parameters

we need to continue further to find the correct top-
�

results.
To do this, we first prune the remainList to remove the IDs
of documents that cannot be in the top-

�
results (using the

condition presented in [21]). If remainList is non-empty,
then we continue processing because the IDs in the remain-
List could potentially be among the top-

�
results. However,

if remainList is empty, then we can stop processing so long
as the scores of the IDs in the remaining chunks cannot ex-
ceed the current top-

�
scores (lines 29-33).

Theorem 1:(Correctness of top-
�

Search)
Algorithm 3 produces the top-

�
query results based on the

latest scores computed using the combination scoring func-
tion � . (Please see Appendix C for the proof.)

5 Experimental Evaluation
We now experimentally evaluate the performance of dif-

ferent methods described in the previous section.

5.1 Experimental Setup
We used two primary evaluation metrics: the time to up-

date an inverted list due to a score update, and the time to
evaluate a top-

�
keyword search query. We do not measure

the time required to merge the short inverted lists (in the
methods that use this data structure) with the long inverted
lists because this is done offline and does not impact the
performance of the operational system.

We generated synthetic data sets using the parameters
shown in the first row of Figure 6 (default values are in bold
face). The generated data table is R(Id, StructuredColumn,
TextColumn), where Id is an integer primary key, Struc-
tureColumn is a 100 byte column that simulates the pres-
ence of structured data columns, and TextColumn is a text
document. The total number of distinct terms in the data set
was 200000, which is approximately the number of terms
in the English language. Each text document contains 2000
terms (possibly duplicates) and the term frequency follows
the Zipf’s law with parameter 0.1 (as in English). For the
default settings, the total size of the database was approxi-
mately 805MB. In addition to � , we also generated a score
table: Score(Id, score). The value of Score ranged from 0
to 100,000, and the scores were generated using the Zipf
distribution with default parameter 0.75; this zipf parame-
ter is the same as what we experimentally observed in the
real Internet Archive data set using the SVR specification
in Section 3.1. For the real data set, we used the Internet
Archive database. The total data set size was 60MB, and
the two tables with indexable text columns had a total size

of 10MB. Most of the experiments reported here use the
synthetic data set where we could vary various parameters.

We studied three classes of keyword search queries: uns-
elective queries in which the keywords were randomly cho-
sen from the 350 most frequent terms; medium-selective
queries were randomly chosen from the top 1600 most fre-
quent terms, and unselective queries were chosen randomly
from the top 15000 terms. We varied the number of top-
ranked results to be returned for each query.

The score update workload followed a Zipf distribution,
whereby documents with higher scores were updated more
frequently; this is consistent with the update logs in the In-
ternet Archive. The mean update size controls the size of
a score update; a value of 100 implies that the score of
a document increases or decreases by 100 on the average,
with the distribution of the update size varying uniformly
between 0 and 200 (twice the mean). Score increases and
score decreases are equally likely. We also model updates
to a sub-set of the documents called the focus set, which is
expressed as a percentage of the collection. The focus set
contains documents that temporarily receive a lot of atten-
tion, independent of their actual current score. This reflects
newly popular documents, such as a song that recently made
it to the top-5 list (other research shows that many such sce-
narios occur on the Web [19]). The focus set update reflects
that percentage of score updates that go to one of the focus
set documents. The focus increase update controls whether
the focus set updates are strictly increasing (default), strictly
decreasing, or strictly increasing for 50% of the documents
and strictly decreasing for the other 50%.

5.2 Inverted List Implementation
We implemented the 5 inverted list structures described

in Section 4 on top of BerkeleyDB. As a basefile for com-
parison with Chunk-TermScore, we also implemented ID-
TermScore, which is an extension of the ID method to ad-
ditionally store term-based scores. To ensure a fair compar-
ison with the base-line methods, we included various opti-
mizations for the ID, Score and ID-TermScore methods as
described in [29], including early termination methods and
merging starting from the shortest lists.

The long inverted lists were stored as binary objects in
the database since they are never updated; they were read in
a page at a time during query processing. For the Score
method alone, since the long inverted list is updated, it
was implemented as a clustered B+-tree. The short lists,
ListScore and ListChunk were implemented as tables with
B+-tree indices built on the appropriate columns. The tables
� and ��������� also had a B+-tree index on the Id columns.

Table 1 shows the size of the long inverted list for dif-
ferent methods. The Score method has the largest space
requirement because its inverted list needs to be updated; it
thus suffers from the associated indexing and storage over-
head in BerkeleyDB. The Score-Threshold method stores



Method Inverted List Size
ID 145MB
Score 2,768MB
Score-Threshold 847MB
Chunk 146MB
ID-TermScore 428MB
Chunk-TermScore 430MB

Table 1. Size of Long Inverted Lists

both the document ID and document score in the inverted
list, for each term in the document; hence it suffers from ad-
ditional overhead compared to the ID method, which does
not store scores in the inverted list. The ID method also
gets additional compression due to differential encoding of
IDs since the postings are in ID order. The Chunk method
has roughly the same space overhead as ID, but has a small
additional overhead for storing the chunk ID once for each
chunk. The size of the inverted list varies slightly for differ-
ent chunk ratios, but the difference is not significant.

All our experiments were run on a 2.8 GHz Pentium IV
processor with 1GB of main memory and 80GB of disk
space. The size of the BerkeleyDB cache was set to 100MB.
For updates, we report the total update time divided by the
number of updates. Queries were run after all the updates
using a cold cache for the long inverted lists to simulate
a non memory-resident data set, and were averaged over
50 independent measurements. Unless otherwise stated, for
each experiment, we varied one of the parameters, and used
default values for the rest.

5.3 Experimental Results

5.3.1 Threshold and Chunk Ratios
Recall that the Score-Threshold and Chunk methods offer
knobs, the threshold and chunk ratios, respectively, which
can be tuned to trade off query vs. update performance.
Thus, to compare the performance of these methods with
the others, we first need to determine appropriate ratios. The
appropriate ratio for a given workload depends on the na-
ture of the updates (small or large updates), the actual num-
ber of updates (before merging with the long inverted lists),
and the score distribution (uniform or skewed). To quantify
this tradeoff, in Table 2, we tabulate the performance of the
Chunk method for various ratios when varying the size of
the update. Note that each measurement is the average time
per operation (not the total time).

The general trend shows that for an mean score update
step of 100, the time to perform a single score update in-
creases as the chunk ratio decreases. This is expected be-
cause larger chunk ratios imply larger chunks, which in turn
implies that the probability of updating the short lists due to
score updates is lower. The interesting aspect to note is that
the update time first increases almost imperceptably until a
ratio of 6.12, and then increases dramatically because the

Step 100 Step 1000 Step 10000
Ratio Upd Qry Upd Qry Upd Qry
164.84 0.01 138.64 0.01 135.68 0.01 134.4
82.92 0.01 136.53 0.01 133.99 0.01 132.3
41.96 0.01 46.204 0.24 54.32 160.4 90.8
21.48 0.01 43.938 0.25 45.85
11.24 0.12 39.512 34.45 57.25
6.12 0.19 35.37 222.18 83.558
3.56 0.76 32.774
2.28 145.35 30.938
1.56 277.54 30.572

Table 2. Effect of Chunk Ratio (times in ms)

smaller chunk sizes cause a lot of updates to the short lists.
Query performance, on the other hand, decreases steadily
as the ratio decreases. Thus, the optimal ratio for updates
with mean step size 100 is around 6.12 (assuming the de-
fault score distribution and 100000 score updates).

When the mean step size is increased to 1000, we note
that the optimal ratio increases, because the index has to tol-
erate more dramatic changes in the score; the optimal ratio
in this case is around 21.48. In fact, even query time in-
creases after this ratio because the lengths of the short lists
increase rapidly. Note that the optimal query time with the
mean update step size of 1000 is larger than step size 100
because the chunk sizes are larger for a larger ratio. A simi-
lar trend occurs when the mean size of the update is changed
to 10000 (which is 10% of the entire domain of scores).
Thus, the Chunk method essentially adapts to the update
distribution, thereby allowing the appropriate query-update
tradeoff. We also observe a similar tradeoff for the Score-
Threshold method (figures not shown). For the rest of this
section, unless otherwise stated, we fix chunk ratio at 6.12
and the threshold ratio at 11.24 (which is the optimal ratio
for Score-Threshold using the default settings).

The observant reader would have noted that the time to
perform queries is more than the time to perform updates.
This is because query evaluation is performed on a cold
cache of the long inverted lists to simulate a non memory
resident data set. However, the Score table and the short
lists are much smaller than the long inverted lists (the size
of the Score table is only 2.7MB), and are easily maintained
in the database cache. Since score updates for the Chunk
method only access the Score table in most cases, it is faster
than a query. This suggests that the Chunk method is likely
to have a low overhead even in update-intensive databases.

5.3.2 Varying Number of Updates
Table 7 shows the average update and query times, respec-
tively, for the different methods when the number of up-
dates is varied from 0 to 100000 (ignore ID-TermScore and
Chunk-TermScore for now). The most striking thing to note
is that the update performance of the Score method deteri-
orates dramatically because of the overhead of updating the



Figure 7. Varying # Updates (times in ms)

long inverted lists. In fact, the cost per update is about 17
seconds for Score method, as compared to 0.01 ms for the
best methods! Since the performance of the Score method
is always orders of magnitude slower than the best methods,
we do not consider it further.

The ID method has the best update performance because
score updates only require a single update in the Score ta-
ble. However, its query performance suffers because it
always scans the entire long inverted list even for top-

�
queries. The Score-Threshold and Chunk methods have the
best overall performance because they avoid frequent up-
dates to the short lists while still processing top-

�
queries

efficiently. Of the two, the Chunk method has slightly bet-
ter query performance because it has shorter inverted lists.

5.3.3 Varying Number of Desired Results
Figure 8 compares the query processing time for ID, Score-
Threshold and Chunk methods when varying the number
of desired top ranked results, k. As expected, the perfor-
mance of the ID method remains roughly the same since it
has to scan the entire inverted list regardless of k. In con-
trast, the performance of the Score-Threshold and Chunk
methods is better with smaller k because they only scan the
initial part of the inverted lists. When k is large, the perfor-
mance of Chunk becomes the same as the ID method, while
the performance of Score-Threshold is worse because it has
the overhead of scanning larger inverted lists (that contain
scores). Since Chunk always dominates Score-Threshold in
this manner, we do not consider Score-Threshold further.

5.3.4 Varying Mean Update Step Size
Recall from Table 2 that the chunk ratio for the Chunk
method needs to be set based on the expected magnitude
of the score updates. Larger updates require larger chunk
ratios. The interesting thing to note is that for a given up-
date workload, the Chunk method with the optimal ratio for
that workload always dominates or is very close to the ID
method (the query performance of the ID method is always
constant - about 114ms - regardless of the size of the up-
dates). Thus, Chunk essentially adapts to the update distri-
bution, thereby allowing for a query-update tradeoff.

5.3.5 Performance of Chunk-TermScore
So far we have focused on SVR scores in isolation. We now
study the performance impact of including term scores us-
ing the Chunk-TermScore method. As a baseline for com-
parison, we compare with the ID-TermScore method, that

Figure 8. Varying # Desired Results

is similar to the ID method but with term scores stored
in the inverted list so that it can compute the combined
score. As shown in Figure 9, the query performance of
Chunk-TermScore is significantly better than ID-TermScore
(due to early stopping for Chunk-TermScore), while still
having comparable update performance. Chunk-TermScore
has slightly worse query performance than Chunk (in Fig-
ure 7) because Chunk-TermScore has larger inverted lists
that store the term scores (Table 1) and also scans larger
parts of the inverted list due to the combined scoring func-
tion. Note, however, that the query performance of Chunk-
TermScore is even better than that of the ID method, which
does not support term based ranking.

5.3.6 Performance of Disjunctive Queries
So far, we have focused on conjunctive queries. We now
look at disjunctive queries. For the default parameter
settings, the performance of the Score, Score-Threshold,
Chunk and Chunk-termScore methods was only slightly
better - less than 1ms better - for disjunctive queries than for
conjunctive queries (results are thus not shown). The reason
for this behavior is that even though disjunctive queries scan
a smaller number of postings, they access about the same
number of disk pages as conjunctive queries do (which is
usually just the first page for each keyword) since multi-
ple postings are packed into the same page. Since disk
access dominates the evaluation time, the performance dif-
fernce is not significant. The performance of the ID and
ID-TermScore methods, however, is worse for disjunctive
queries (see Figure 10). The reason is that there are many
more potential results in the disjunctive case, and for the ID
methods, the overhead of processing these additional results
in the result heap degrades performance.

5.3.7 Summary of Other Results
We ran other experiments varying all the parameters de-
scribed in Section 5.1. The conclusion was essentially the
same: the update and query performance of the Chunk
method was the best or close to the best. As mentioned
earlier, we also ran experiments on the Internet Archive real



Figure 9. Combining Term Scores

Figure 10. Disjunctive Query Results

data set. The original data set size was just 10MB of text
data, and this was too small to illustrate the tradeoffs be-
tween the different approaches. So, we scaled up the data
set by replicating the text data 10 times, and generating
scores using the same distribution as the 10MB data set.
The results that we obtained were very similar to those ob-
tained using the synthetic data set.

6 Conclusion
We have introduced SVR, a new and alternative method

for ranking keyword search queries in relational databases
based on structured data values. We have also proposed new
inverted list indices, notably the Chunk method, that can
efficiently implement SVR in update-intensive relational
databases. The Chunk method has a knob that can trade-
off query performance for update performance based on the
application needs. In addition, an extension of the Chunk
method (Chunk-TermScore) can support scoring using a
combination of SVR and term scores (such as TF-IDF). Our
experimental results show that SVR can be efficiently im-
plemented in update-intensive relational databases.
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A Insertions, Deletions and Content Updates

We describe how the Chunk method can be extended to
handle document insertions, deletions, and content updates.
The extension for the other methods is similar.

A.1 Content Updates

To handle content updates to documents, we need to add
an extra field to each posting in the short lists called ��� . The
��� field indicates whether a term has been added (ADD) or
removed (REM) from the corresponding document.

Now consider an update to the content of a document 
 .
Assume that the set of distinct terms in 
 before the update
is ������� and the set of distinct terms in 
 after the update is
�%�
	�� . The set of added terms is ��
���� ���,��	������������ and the
set of removed terms is ����	�� �������������,��	�� . For each term� � in ��
���� , we insert the posting � 
 � "���� � (or update
the existing posting to be � 
 �	"�� � � if a posting for 

already exists) in the short list for

� � . For each term
� 
 in

����	�� , we insert (or update) the posting � 
 � �"!$# � in the
short list for

� 
 .
During query time, when we union the long list T � and

the short list &�� for term
�
, we discard postings marked as

��!%# in &�� . For example, when we see � 
 � in T � and
� 
 �	�"!$# � in & � in the same chunk, we will not return

 as a result because

�
was removed from 
 during a con-

tent update. "�� � postings in & � are treated like regular
postings.

A.2 Insertions and Deletions

Document insertions are easily handled by the Chunk
method because the insertion is simply treated as updates
to the short lists, with the operation specified as "&� � .
Deletions are a bit more complex. First, we need to add
a new field in the Score table that indicates whether a docu-
ment with a given ID is deleted. Whenever the Score table
is probed for a document during query processing, we do
not add the document to the result heap if it is marked as
deleted. If the relational system can reuse deleted IDs, we
also need to delete all postings of the document from the
short lists so that these are not interpreted as terms in a doc-
ument that is later inserted with the same ID.

A.3 Experimental Results for Insertions

Table 3 shows how the query, score update and insertion
update performance for the Chunk method varies with the
number of document insertions (queries are timed right after
the document insertions, so are score updates). The query
performance remains robust even after 10000 document up-
dates since the Chunk method effectively avoids having to
scan all of the inverted list for top-N queries. Score updates
performance degrades somewhat because of the increased

Inserted Docs Query Score Update Insertion
1000 27.45 0.25 12.06
2000 28.45 1.21 12.86
4000 27.75 14.12 525.0
8000 27.74 11.38 531.5

10000 28.16 17.17 660.6

Table 3. Varying # Insertions (times in ms)

length of the short lists (due to document insertions). How-
ever, the cost per update is still very low at 10-17 millisec-
onds because score updates do not require frequent updates
to the short list for the Chunk method. Insertion perfor-
mance is very fast for up to 2000 documents, but then de-
grades to about 0.5 seconds per document insertion for 4000
document and beyond (remaining stable at about 0.6 sec-
onds after 4000 insertions). The reason for the degradation
in performance beyond 4000 document insertions is that the
size of the short lists increases significantly due to the doc-
ument insertions. Note however, that even an insertion time
of 0.5 seconds is still likely to be acceptable considering the
fact that each document has 2000 terms that need to be in-
dexed. In fact, we expect that any technique that supports
incremental document insertions will incur a similar over-
head because it will have to insert the 2000 terms into an in-
verted list, and if the inverted list does not fit into memory,
it will incur disk access costs to insert each posting. Note
also that the short lists will be periodically merged with the
long lists bringing down document insertion cost again.

The results for document deletions and content updates
are similar, and are omitted.

B Proof of Theorem 1

Theorem 1. (Correctness of top-k Search) Algorithm 2 pro-
duces the correct top-k results based on the latest scores of
the documents.

Before we prove this theorem, we need to first define
some terminology. For an arbitrary candidate document 

with document ID � 
 , we define:' � ��������� � � 
 � is 
 ’s original score stored in long inverted

lists;' ����� ����� � � 
 � is 
 ’s current(latest) score stored in Score
table;' T � �������$� � 
$� is 
 ’s short or long list score. Formally,

T ��� ����� � � 
 � �
(

�$
 & � ����� if ) �
� ��� ����� � � 
 � otherwise 


where ) � is � =ShortList.lookup � � 
 � � � is not empty (
�

could be any term contained in document 
 ).



Proof. Algorithm 2 involves two key list scores: the thresh-
old list score (line 22-24) and the stopping list score (line
9-11). Suppose the first one is

��� ����& � ��T 
 , and the second
one is T0U � ��� . From line 22-24, we know that at the time��� ����& � ��T 
 is initialized, we already obtain

�
candidate doc-

uments whose current scores are above
��� ����& � ��T 
 . Thus,

to prove the theorem, we only need to prove that the current
score of any upcoming candidate document is smaller than
threshold (Lemma 1.3). Lemma 1.1 and 1.2 are necessary
to prove Lemma ??.

Lemma 1.1.

T ��� ����� � � 
 � � � � � 
$� �
(

�*
 T � ������� if ) 

� ��������� � � 
$� otherwise 


where ) 
 is � =ListScore.lookup � � 
 � is not empty.

Proof. � � � 
$� can be transformed to

� � � 
$� �
�� � �$
 T���������� if ) 
�� ) �

�$
 T���������� if ) 
��
	 ) �
� ��������� � � 
 � 	 ) 
 


Based on Algorithm 1 (line 18-27), whenever a document
is stored in short lists ( ) � ), we insert or update an entry to
ListScore table ( ) 
 ). Thus, there is ) ��� ) 
 and 	 ) 

�	 ) � . � � � 
$� is equal to

� � � 
$� �
�� � �$
 T���������� if ) �

�$
 T���������� if ) 
 �
	 ) �
� ��������� � � 
 � 	 ) 
*


Now we prove ) 
 ��	 ) � � � ��������� � � 
$� � �$
 T ��������� where
� =ListScore.lookup � � 
$� . The predicate ) 
 ��	 ) � means that
the document’s new score is smaller than thresholdValueOf
(lScore(d)). Based on Algorithm 1 line 9-17, �$
 T���������� is
never changed and equals to the document’s original score
� ��������� � � 
$� . Note that �$
 T ��� ����� is only updated when its
new score exceeds the threshold (line 28). Thus, � � � 
 � is
equal to

� � � 
$� �
�� � �$
 T���������� if ) �

� ��������� � � 
 � if ) 
��
	 ) �
� ��������� � � 
 � 	 ) 
 


Since ) 
 ��	 ) ��� 	 ) 
 � 	 ) ��� 	 ) 
 and 	 ) 
 ��	 ) � , we have) 
���	 ) � � 	 ) 
 � 	 ) 
 , and thus � � � 
 � � T���������� � � 
 � .
Lemma 1.1 indicates that the value lScore obtained in

either line 11 or 14 of Algorithm 1 is exactly the list score
of the updated document.

Lemma 1.2.

����������� � � 
$��� thresholdValueOf �0T���������� � � 
 � �
Proof. The proof is obvious based on Lemma 1.1 and Al-
gorithm 1 (line 18-28).

Lemma 1.3. In Algorithm 2, suppose the current candidate
document obtained while merging the inverted lists is 
��
with document ID � 
 � and list score T � �������$� � 
 � � . Given any
candidate document obtained after 
 � , say 
 , with document
ID � 
 and current score ����� ����� � � 
 � , there is

����� ����� � � 
 ��� thresholdValueOf ��T ��� ����� � � 
 � � �
Proof. Since both long and short inverted lists are ordered
by decreasing scores and document 
 is obtained after 
 � ,
there is T ��������� � � 
 � � T ��������� � � 
 � � . Also, function thresh-
oldValueOf is monotonic. As a result,

threshodValueOf ��T ��� ����� � � 
 � ��� thresholdValueOf ��T ��������� � � 
�� � �
Based on Lemma 1.2, there is

����� ����� � � 
 ��� thresholdValueOf �0T���������� � � 
 � �
Then we get

��� �������$� � 
$��� thresholdValueOf ��T ��������� � � 
�� � �
C Proof of Theorem 2
Theorem 2. (Correctness of top-k Search) Algorithm 3 pro-
duces the correct top-k results based on the latest scores of
the documents and the term based scores.

Proof. There are three stopping conditions:
(1) Reach the end of chunk with chunk id CID;
(2) After prunning, remainList is empty;
(3) � ��� � 
��� 	 		� �'� � 
��U��
	 ��� threshold =resultHeap.minScore(

�
),

where � � 
��U��
	 = thresholdValueOf (CID) and � � 
��� 	 	 � =
1 �!�� � � ��! �,� � ! � .

Similar to the proof of Theorem 1, we only need to prove
that given any candidate document obtained after this stop-
ping point, its combined score � ��� � 	 	 � �'� U��
	�� is smaller
than threshold (=resultHeap.minScore(

�
)). Since the com-

bined score function � ��� is monotonic, we only need to
prove that � � 	 	 � � � � 
��� 	 		� and � U��
	 � � � 
��U��
	 .

step 1. Prove that �,� 	 		� � � � 
��� 	 		� . In Algorithm 3, for
each query term

�
,
� ��! �,� � � is the mimimum term score of

fancy list � � � � � , and at the same time the maximum term
score of those documents in

��� � � �� � � ��& � � � � � � � . Since
after prunning remainList is empty (condition 2),

� ��! ��� � � is
the maximum term score of any upcoming candidate docu-
ment. Thus,

�,� 	 	 � �
�!
!�� � � ��! �,� � ! � � � � 
��� 	 	 �

step 2. Prove that �EU��
	 � � � 
��U��
	 . Since the stop-
ping point is the end of chunk with id CID (condi-
tion 1), any upcoming candidate document has chunk id
� � 
 � CID. Thus, �EU�	$� � thresholdValueOF � � � 
 � �
thresholdValueOf (CID) � � � 
��U��
	 .


