
Priority Queue based on multilevel prefix tree

David S. P laneta∗

April 10, 2006

Abstract

Tree structures are very often used data structures. Among ordered
types of trees there are many variants whose basic operations such as
insert, delete, search, delete-min are characterized by logarithmic time
complexity. In the article I am going to present the structure whose
time complexity for each of the above operations is O(M

K
+ K), where

M is the size of data type and K is constant properly matching the
size of data type. Properly matched K will make the structure func-
tion as a very effective Priority Queue. The structure size linearly de-
pends on the number and size of elements. PTrie is a clever combina-
tion of the idea of prefix tree – Trie, structure of logarithmic time com-
plexity for insert and delete operations, doubly linked list and queues.

1 Introduction

Priority Trie (PTrie) uses a few structures including Trie of 2K degree [1], which
is the structure core. Data recording in PTrie consists in breaking the word into
parts which make the indexes of the following layers in the structure (table
look-at). The last layers contain the addresses of doubly linked list’s nodes.
Each of the list nodes stores the queue, into which the elements are inserted.
Moreover, each layer contains the structure of logarithmic time complexity of in-
sert and remove operations. Which help to define the destination of data in the
doubly linked list. They can be various variants of ordered trees or a skip list [2].

1.1 Terminology

Bit pattern is a set of K bits. K (length of bit pattern) defines the number of
bits which are cut off the binary word. M defines number (length) of bits in a
binary word.

∗dplaneta@gmail.com

1

value of word =

M
︷ ︸︸ ︷

101...1
︸ ︷︷ ︸

K

00101...

N is number of all values of PTrie. 2K is variation K of element binary set {0, 1}.
It determines the number of groups (number of Layers [Figure 1]), which the
bit pattern may be divided into during one step (one level). The path is defined

Figure 1: Layer

A

CB

D
. . .

lo
g
2
P

=
lo

g
2
2

K
=

K

The Structure of log-
arithmics time com-
plexity of insert and
remove operations

MIN MAX 00....00

G1

00...01

G2

. . . 11...11

GP

P = 2K

starting from the most important bits of variable. The value of pattern K

(index) determines the layer we move to [Figure 2]. The lowest layers determine
the nodes of the list which store the queues for inserted values. L defines the level
the layer is on. Probability that exactly G keys correspond to one particular
pattern, where for each of PL sequences of leading bits there is such a node that
corresponds to at least two keys equals

(
N

G

)
P−GL(1 − P−L)N−G

For random PTrie the average number of layers on level L, for L = 0, 1, 2, . . .is

PL(1 − (1 − P−L)N) − N(1 − P−L)N−1

If AN is average number of layers in random PTrie of degree P = 2K containing
N keys. Then A0 = A1 = 0, and for N ≥ 2 we get [3]:

AN = 1 +
∑

G1+...+GP =N

(N !

G1! . . .GP !
P−N

)(

AG1
+ . . . + AGP

)

=

1 + P 1−N
∑

G1+...+GP =N

(N !

G1! . . . GP !

)

AG1 =

2

Figure 2: PTrie

A

CB

D
. . .

Θ
(lo

g
2
2

K
)
=

O
(K

)

Layer

MIN MAX 00....00

G1

00...01

G2

. . . 11...11

GP

P = 2K

Layer Layer Layer
. . .

.

. . .

.

. . .

. . .

Θ
(lo

g
2

K
N

)
=

Θ
(

lg
N

lg
2

K
)
=

O
(

MK
)

L1

L2

LlgN

Node

Queue

Node

Queue

Node

Queue

Node

Queue

Node

Queue

T
a
il

H
ea

d

3

1 + P 1−N
∑

G

(
N

G

)(

P − 1
)N−G

AG =

1 + 2G(1−N)
∑

G

(
N

G

)(

2G − 1
)N−G

AG

2 Implementation

Operation Description Bound

create Creates object O(1)

insert(data) Adds element to the structure. O(M
K

+ K)

boolean remove(data)

Removes value from the tree. If
operation failed because there was
no such value in the tree it re-
turns FALSE(0), otherwise returns
TRUE(0).

O(M
K

+ K)

boolean search(data)
Looks for the words in the tree.
If finds return TRUE(1), otherwise
FALSE(0).

O(M
K

)

*minimum()

Returns the address of the lowest
value in the tree, or empty address if
the operation failed because the tree
was empty.

O(1)

*maximum()

Returns the address of the highest
value in the tree or empty address if
the operation failed because the tree
was empty.

O(1)

next

Returns the address of the next node
in the tree or empty address if value
transmitted in parameter was the
greatest. The order of moving to
successive elements is fixed - from
the smallest to the largest and from
“the youngest to the oldest” (stable)
in case of identical words.

O(1)

back
Similar to ‘next’ but it returns the
address of preceding node in the
tree.

O(1)

Basic operations can be joined. For example, the effect connected with the heap;
delete-min() can be replaced by operations remove(minimum()).

2.1 Insert

Determine the interlinked index (pointer) to another layer using the length of
pattern projecting on the word.

If interlink determined by index is not empty and indicated the list node –

4

try to insert the value into the queue of determined node.
If the elements in the queue turn out to be the same, insert value into the
queue. Otherwise, if elements in the queue are different from the inserted value,
the node is “pushed” to a lower level and the hitherto existing level (the place of
node) is complemented with a new layer. Next, try again to insert the element,
this time however, into the newly created layer.

Else, if the interlink determined by index is empty, insert value of index
into the ordered binary tree from the current layer [Figure 3]. Father of a
newly created node in ordered binary tree from the current layer determines
the place for leaves; If the newly created node in ordered binary tree is on
the right side of father (added index > father index), the value added to the
list will be inserted after the node determined by father index and the path
of the highest indexes (make use of pointer ‘max’ of the layers – time cost
O(1)) of lower level layers. If newly created node is on the left side of father
(added index < father index), the value added to the list will be inserted be-
fore the node determined by father index and the path of the smallest indexes
(make use of pointer ‘min’ of the layers – time cost O(1)) of lower level layers.

One can wonder why we use the queue and not the stack or the value

Figure 3: Insert value of index into the ordered binary tree from the layer

A

CB

D

Layer

insert(index)
< <

<

. . .

MIN MAX 00....00 00...01 . . . 11...11

counter. Value counter cannot be used because complex elements can be in-
serted into PTrie structure, distinguishable in the tree only because of some
words. Also, it is not a good idea to use a stack because the queue makes the
structure stable. And this is a very useful characteristic. I used “plain” Bi-
nary Search Tree in the structure of logarithmic time complexity. For a small
number of tree nodes it is a very good solution because for K = 4, 2K = 16.
So in the tree there may be maximum 16 (different) elements. For such a
small amount of (different) values the remaining ordered trees will probably
turn out to be at most as effective as unusually simple Binary Search Trees.

5

2.1.1 Analysis

In case of random data it will take Θ(lgN

lg2K) = Θ(log2K N) = O(M
K

) goings
through layers to find the place in the heap core – Trie tree. On at least one
layer of PTrie structure we will use inserting into the ordered binary tree in which
maximum number of nodes is 2K . While inserting the new value I need informa-
tion where exactly it will be located in the list. Such information can be obtained
in two ways; I will get the information if the representation of the nearest index
on the list is to the left or to the right side of the inserted word index. It may
happen that in the structure there is already is exactly the same word as the in-
serted one. In such case value index won’t be inserted into any layer of the PTrie
because it will not be necessary to add a new node of the list. Value will be in-
serted into the queue of already existing node. To sum up, while moving through
the layers of PTrie we can stop at some level because of empty index. Then, a
node will be added to the list in place determined by binary search tree and the
remaining part of the path. This is why the bound of operation which inserts
new value into PTrie equals Θ(log2KN+log22K) = Θ(log2K N+K) = O(M

K
+K).

2.2 Find

Method find like in case of plain Trie trees goes through succeeding layers fol-
lowing the path determined by binary representation of search value. It can be
stated that it uses number key as a guide while moving down the core of PTrie
– prefix tree. In case of searching tree things can happen:

• We don’t reach the node of the list because the index we determine is
empty on any of layers – searching failure.

• We reach the node but values from the queue are different from the
searched value – searching failure.

• We reach the node and the values from the queue are exactly like the ones
we seek – searching success.

2.2.1 Analysis

Searching in prefix tree is very fast because it finds the words using word key
as indexes. In case of search failure the longest match of a searched word
is found. It must be taken into consideration that during operation ‘search’
we use only the attributes of prefix tree. This is why the amount of search
numbers looked through during the random search is Θ(log2K N) = O(M

K
).

6

2.3 Remove

Remove method just like find method “moves down” the PTrie structure to
seek for the element to be deleted. If it doesn’t reach the node of the list, or
it does but the search value is different from the value of node queue, it does
not delete any element of PTrie because it is not there. However if it reaches
the node of the list and search value turns out to be the value from the queue
– it removes the value from the queue. If it remains empty after removing the
element from the queue the node will be removed from the list and will return
to the “upper” layers of prefix tree to delete possible, remaining, empty layers.

2.3.1 Analysis

Since it is possible not only to go down the tree but also come back upwards
(in case of deleting of the lower layer or the node of the list) the total length
of the path move on is limited Θ(2log2KN). If delete the layer, it means there
was only one way down from that layer, which implicates the fact that the or-
dered binary tree of a given layer contained only one node (index). The layer
is removed if it remains empty after the removal of node from ordered binary
tree. So the number of operation necessary for the removal of the layer con-
taining one element equals Θ(1). In case of removal of layer Li, if ordered
binary tree of higher level layer Li−1, despite removing the node which de-
termines empty layer we came from, does not remain empty it means that
there could be maximum 2K nodes in the ordered binary tree. Operation of
value delete from ordered binary tree amounts to Θ(log2K K) = Θ(K). There
is no point of “climbing” up the upper layers, since the layer we came from
would not be empty. At this stage the method remove ends. To sum up,
worse time complexity of remove operation is Θ(2log2KN + K) = O(M

K
+ K).

2.4 Minimum

If the list is not empty, it reads the value pointed by the head of the list.

2.4.1 Analysis

Time complexity of operation is O(1).

2.5 Maximum

If the list is not empty, it reads the value pointed by the tail of the list.

2.5.1 Analysis

Time complexity of operation is O(1).

7

2.6 Iterators

The nodes of the list are linked. If we know the position of one of the nodes, we
have a direct access to its neighbors.

2.6.1 Next

Reads the successor of current pointed node.

2.6.2 Prev

Reads the predecessor of currently pointed node.

2.6.3 Analysis

Moving to the node its neighbor requires only reading of the contents of the
pointer ‘next’ or ‘prev’. Time complexity of such operations equals O(1).

3 Conclusions

Efficiency of PTrie considerably depends on the length of pattern K. K de-
fines optional value, which is the power of two in the range [1, min(M)]. The

total size of necessary memory bound is proportional to Θ(lgN(2K+1)
K

) because
the number of layers required to remember N random elements in PTrie of
degree 2K equals lgN

lgP
∗ P . Moreover, each layers has tree of maximum size

2K nodes and table of the P -elements, so the necessary memory bound equal
Θ(log2KN ∗ 2P) = Θ(M

K
∗ 2K+1). For data types of constant size maximum

Trie tree height equals M
K

. So the pessimistic operation time complexity is

O(M
K

+ K). For example, for four-byte numbers it is the most effective to de-
termine the pattern K = 4 bits long. Then, the pessimistic number of steps
necessary for the operation on the PTrie will equal Θ(M

K
+ K) = 32

4 + 4 = 12.
Increasing K to K = 8 does not increase the efficiency of the structure op-
eration because Θ(M

K
+ K) = 32

8 + 8 = 12. What is more, in will unnec-
essarily increase the memory demand. A single layer consisting of P = 2K

groups for K = 8 will contain tables P = 28 = 256 long, not when K = 4,
only P = 24 = 16 links. For variable size data the time complexity equals
Θ(log2KN +K). Moreover, the length of pattern K must be carefully matched.
For example, for strings K should not be longer than 8 bits because we could
accidentally read the contents from beyond the string which normally consist
of one-byte sign! It is possible to record data of variable size in the structure
provided each of the analyzed words will end with identical key. There are
no obstacles for strings because they normally finish with “end of line” sign.
Owing to the reading of word keys and going through indexes (table look-at),
primary, partial operations of PTrie method are very fast. If we carefully match
K with data type, PTrie will certainly serve as a really effective Priority Queue.

8

4 Priority Trie implementation in language C++

Although generally complete source codes of analyses algorithms are not added,
I have decided to present ready to use PTrie template implementation in C++.
The code of template was successfully compiled by:

• Compiler g++(GCC) 3.3.2

• Compiler Dev-C++ 4.9.8.0

• And other modern compiler . . .

In case of compiler Borland C++ Builder 6.0 Personal, inner error occurred
during assumptive settings of template parameter. In such situation it we as-
cribe value K, P = 2K (template parameters) must be initiated by hand.

/∗
∗ ptrie .hpp
∗
∗ Priority Trie.
∗
∗ THIS SOFTWARE IS NOT COPYRIGHTED
∗
∗ This source code is offered for use in the public domain.
∗ You may use, modify or distribute it freely .
∗
∗ $Revision: 1.0 $

∗ $Author: David S. Planeta$

∗ $Date: 2006/04/05 21:09:14 $

∗
∗/

#ifndef PTRIE HPP
#define PTRIE HPP

#include<time.h>/∗
∗ time()
∗/

#include<stdlib.h>/∗
∗ srand()
∗ size t
∗ rand()
∗/

#include <stdexcept>/∗
∗ std :: bad alloc

9

∗ std :: out of range
∗/

namespace dplaneta{
//$$

/∗∗
∗∗ Class PTrie declaration ∗∗
∗∗/

//$$

template<typename T, unsigned K=4, unsigned P=((unsigned)1<<K)>
class PTrie{
private:

PTrie(PTrie&);
PTrie& operator=(PTrie&);

static size t DefaultSize(const T& data) throw(){ return sizeof(data); }
size t (∗sizeT)(const T&);

struct remove information;
class Pointer;
class Node;
class Layer;

friend struct remove information;
friend class Node;
friend class Layer;

enum Question{qFALSE, qTRUE};

protected:
Layer ∗tab;
Node ∗ppointer;
bool NodeSide;
Node ∗head, ∗tail;

public:
class iterator ;
friend class iterator ;

virtual inline void insert(const T&);
virtual inline bool search(const T&);
virtual inline bool remove(const T&);
virtual inline const T∗ minimum(void) const throw();
virtual inline const T∗ maximum(void) const throw();

PTrie(size t (∗)(const T&)=0) throw(std::out of range, std::bad alloc);
virtual ˜PTrie(void);

10

};

//$$

/∗∗
∗∗ Declaration structures of class PTrie ∗∗
∗∗/

//$$

template<typename T, unsigned K, unsigned P>

struct PTrie<T,K,P>::remove information{
Question return sign;
Question LayerDel;
remove information(Question s=qFALSE, Question ld=qFALSE) throw():
return sign(s), LayerDel(ld){}

};
//$$

template<typename T, unsigned K, unsigned P>

class PTrie<T,K,P>::Pointer{
public:

virtual void set(const T&, unsigned, Layer∗)=0;
virtual Question search(const T&, unsigned)=0;
virtual remove information remove(const T&, unsigned)=0;
virtual Node ∗NodePath(void)=0;
virtual ˜Pointer(void){}

};
//$$

template<typename T, unsigned K, unsigned P>

class PTrie<T,K,P>::Node: public Pointer{
private:

inline void prevadd(void) throw();
inline void nextadd(void) throw();
PTrie∗ global;

public:
class SimplyQueue{
public:

struct Node{
Node ∗next, ∗back;
T data;
Node(const T &value): data(value){}
˜Node(void){ this−>data.˜T(); }

}∗head;

inline Question empty(void) const throw();
inline void push(const T&);
inline void pop(void);
inline const T& top(void) const throw();
SimplyQueue(void) throw(): head(0){}
˜SimplyQueue(void);

};

11

SimplyQueue Q;
Node ∗next, ∗prev;

inline void set(const T&, unsigned, Layer∗);
inline Question search(const T&, unsigned) throw();
inline remove information remove(const T&, unsigned);
inline Node ∗NodePath(void) throw();

Node(PTrie∗ p) throw();
˜Node(void) throw();

};
//$$

template<typename T, unsigned K, unsigned P>

class PTrie<T,K,P>::Layer: public Pointer{
private:

struct Bond{
Pointer ∗ joint ;
Bond(void) throw(): joint(0){}
˜Bond(void) throw(){ delete this−>joint;}

};

class SimplyTree{
private:

struct TNode{
unsigned index;
TNode ∗left, ∗right ;
TNode(unsigned ix): left(0), right(0), index(ix) {}

}∗root,∗LTNode,∗RTNode;
inline void Shredder(TNode∗) throw();
public:

unsigned min(void) const throw();
unsigned max(void) const throw();
Question empty(void) const throw();
unsigned insert(unsigned) throw(std::bad alloc);
void remove(unsigned) throw();
SimplyTree(void) throw(): root(0), LTNode(0), RTNode(0){}
˜SimplyTree(void) throw(){ this−>Shredder(this−>root); }

}tree ;

public:
Bond switchboard[P];
PTrie∗ global;

inline void set(const T&, unsigned, Layer∗);
inline Question search(const T&, unsigned) throw();
inline remove information remove(const T&, unsigned);
inline Node ∗NodePath(void) throw();

Layer(PTrie∗) throw();

12

Layer(PTrie∗, PTrie::Node∗, unsigned) throw();
};
//$$

template<typename T, unsigned K, unsigned P>

class PTrie<T,K,P>::iterator{
private:

const PTrie<T,K,P>∗ pPTrie;
typename PTrie<T,K,P>::Node ∗ const∗ pNode;
const typename PTrie<T,K,P>::Node::SimplyQueue::Node ∗pQueue;

public:
inline void begin(const PTrie<T,K,P>&) throw();
inline void begin(void) throw();
inline void end(const PTrie<T,K,P>&) throw();
inline void end(void) throw();
inline iterator & prev(void) throw();
inline iterator & next(void) throw();

inline iterator & operator=(const iterator&) throw();
inline bool operator==(const iterator&) const throw();
inline bool operator!=(const iterator&) const throw();
inline operator bool(void) const throw();
inline const T& operator∗(void) throw(std::out of range);
inline iterator & operator++(void) throw();
inline iterator operator++(int) throw();
inline iterator & operator−−(void) throw();
iterator operator−−(int) throw();

iterator (void) throw();
iterator (const PTrie<T,K,P> &) throw();
virtual ˜iterator (void){}

};
//$$

//$$

/∗∗
∗∗ Definition methods of class PTrie::Node ∗∗
∗∗/

//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::Node::prevadd(void) throw(){
Node ∗pointer = global−>ppointer;
if (pointer−>prev){
this−>next=pointer;
this−>prev=pointer−>prev;
pointer−>prev−>next=this;
pointer−>prev=this;
}

13

else{
pointer−>prev=this;
this−>next=pointer;
global−>head=this;

}
}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::Node::nextadd(void) throw(){
Node ∗pointer = global−>ppointer;
if (pointer−>next){
this−>prev=pointer;
this−>next=pointer−>next;
pointer−>next−>prev=this;
pointer−>next=this;
}
else{
pointer−>next=this;
this−>prev=pointer;
global−>tail=this;

}
}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::Node::set(const T& data, unsigned M, Layer∗ upper){
if (Q.empty()==qFALSE && Q.top()!=data){
Layer∗ tmp=new Layer(upper−>global,this,(Q.top()>>(M−K))&(P−1));
upper−>switchboard[(Q.top()>>(M))&(P−1)].joint = tmp;
return tmp−>set(data,M,upper);
}
this−>Q.push(data);
if (global−>ppointer){
if (global−>NodeSide) Node::nextadd();
else Node::prevadd();

global−>ppointer=0;
}
else if (global−>head==0) global−>head = global−>tail = this;
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::Question
PTrie<T,K,P>::Node::search(const T& data, unsigned) throw(){
if (data==this−>Q.top()) return qTRUE;
return qFALSE;
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::remove information

14

PTrie<T,K,P>::Node::remove(const T& data, unsigned){
remove information message;
if (data==Q.top()){
this−>Q.pop();
if (this−>Q.empty()) message = remove information(qTRUE, qTRUE);
else message.return sign = qTRUE;
}
return message;
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::Node∗
PTrie<T,K,P>::Node::NodePath(void) throw(){
return this;
}
//$$

template<typename T, unsigned K, unsigned P>

PTrie<T,K,P>::Node::Node(PTrie<T,K,P>∗ p) throw(): global(p), next(0), prev(0){}
//$$

template<typename T, unsigned K, unsigned P>

PTrie<T,K,P>::Node::˜Node(void) throw(){
if (prev) prev−>next = next;
else global−>head = next;
if (next) next−>prev = prev;
else global−>tail = prev;

}
//$$

//$$

/∗∗
∗∗ Definition methods of class PTrie::Layer ∗∗
∗∗/

//$$

template<typename T, unsigned K, unsigned P>

PTrie<T,K,P>::Layer::Layer(PTrie<T,K,P>∗ p) throw(): global(p){}
//$$

template<typename T, unsigned K, unsigned P>

PTrie<T,K,P>::Layer::Layer(PTrie<T,K,P>∗ p, PTrie::Node∗ temp, unsigned index)
throw(): global(p){

tree . insert (index);
switchboard[index]. joint = temp;

}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::Layer::set(const T& data, unsigned M, Layer∗){
M−=K;
unsigned index = (data>>M)&(P−1);

15

Pointer∗ &tmp = switchboard[index].joint;
if (tmp==0){
if (global−>ppointer==0 && tree.empty()==qFALSE){
unsigned father = tree.insert(index);
global−>NodeSide =(index > father);
global−>ppointer = switchboard[father].joint−>NodePath();
}
else tree . insert (index);
tmp = new Node(this−>global);
}
return tmp−>set(data,M,this);
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::Question
PTrie<T,K,P>::Layer::search(const T& data, unsigned M) throw(){
M−=K;
Pointer∗ &tmp = switchboard[(data>>M)&(P−1)].joint;
return (tmp? tmp−>search(data,M): qFALSE);
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::remove information
PTrie<T,K,P>::Layer::remove(const T& data, unsigned M){
M−=K;
unsigned index = (data>>M)&(P−1);
remove information message;
Pointer∗ &tmp = switchboard[index].joint;
if (tmp){
message = tmp−>remove(data,M);
if (message.return sign){
if (message.LayerDel){
delete tmp;
tmp=0;
tree .remove(index);

}
message.LayerDel=tree.empty();
}
}
return message;
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::Node∗
PTrie<T,K,P>::Layer::NodePath(void) throw(){
if (global−>NodeSide) return switchboard[this−>tree.max()].joint−>NodePath();
else return switchboard[this−>tree.min()].joint−>NodePath();
}
//$$

16

//$$

/∗∗
∗∗ Definition methods of class PTrie::Layer::SimplyTree ∗∗
∗∗/

//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::Layer::SimplyTree::Shredder(TNode ∗p) throw(){
if (!p) return;
Shredder(p−>left);
Shredder(p−>right);
delete p;
}
//$$

template<typename T, unsigned K, unsigned P>

unsigned

PTrie<T,K,P>::Layer::SimplyTree::min(void) const throw(){
return this−>LTNode−>index;
}
//$$

template<typename T, unsigned K, unsigned P>

unsigned

PTrie<T,K,P>::Layer::SimplyTree::max(void) const throw(){
return this−>RTNode−>index;
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::Question
PTrie<T,K,P>::Layer::SimplyTree::empty(void) const throw(){
return Question(!this−>root);
}
//$$

template<typename T, unsigned K, unsigned P>

unsigned

PTrie<T,K,P>::Layer::SimplyTree::insert(unsigned value) throw(std::bad alloc){
unsigned temp;
if (LTNode==0){
LTNode = RTNode = root = new TNode(value);
return value;
}
if (value < this−>min()){
temp=min();
LTNode = LTNode−>left = new TNode(value);
return temp;
}
if (value > this−>max()){
temp=max();
RTNode = RTNode−>right = new TNode(value);

17

return temp;
}
TNode ∗∗connect = &this−>root;
while(∗connect){
temp = (∗connect)−>index;
connect = &((value < temp)? (∗connect)−>left: (∗connect)−>right);
}
∗connect = new TNode(value);
return temp; //return Index of Father
}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::Layer::SimplyTree::remove(unsigned value) throw(){
register TNode ∗father=0, ∗∗connect = &this−>root;
TNode ∗del;

while(value != (∗connect)−>index){
father = ∗connect;
if (value < (∗connect)−>index) connect = &(∗connect)−>left;
else connect = &(∗connect)−>right;
}

if ((∗connect)−>left==0 && (∗connect)−>right==0){
if (LTNode==RTNode) LTNode = RTNode = 0;
else if (value==max())RTNode=(father?father: root);
else if (value==min())LTNode=(father?father: root);

delete ∗connect;
∗connect=0;
return;
}

if ((∗connect)−>left == 0){
del=∗connect;
∗connect=del−>right;
delete del;
if (father){
if (father−>left) LTNode = father−>left;
else LTNode = father;
}
else{
if ((∗connect)−>left) while((∗connect)−>left) connect = &(∗connect)−>left;
LTNode = ∗connect;
}

return;
}
else if ((∗connect)−>right == 0){
del=∗connect;
∗connect=del−>left;
delete del;

18

if (father){
if (father−>right) RTNode = father−>right;
else RTNode = father;
}
else{
if ((∗connect)−>right) while((∗connect)−>right) connect = &(∗connect)−>right;
RTNode = ∗connect;
}

return;
}

TNode ∗∗b;
del = ∗connect;
if (rand()&0x1){
for(b = &del−>left; (∗b)−>right; b = &(∗b)−>right);
∗connect = ∗b;
∗b = (∗b)−>left;
}

else{
for(b = &del−>right; (∗b)−>left; b = &(∗b)−>left);
∗connect = ∗b;
∗b = (∗b)−>right;
}

(∗connect)−>left = del−>left;
(∗connect)−>right = del−>right;
delete del;
}
//$$

//$$

/∗∗
∗∗ Definition methods of class PTrie::Node::SimplyQueue ∗∗
∗∗/

//$$

template<typename T, unsigned K, unsigned P>

PTrie<T,K,P>::Node::SimplyQueue::˜SimplyQueue(void){
if (head){
for(Node ∗tmp2, ∗tmp=head−>next; tmp != head; delete tmp2){
tmp2 = tmp;
tmp=tmp−>next;
}

delete head;
head = 0;
}
}
//$$

template<typename T, unsigned K, unsigned P>

19

typename PTrie<T,K,P>::Question
PTrie<T,K,P>::Node::SimplyQueue::empty(void) const throw(){
return Question(!head);
}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::Node::SimplyQueue::push(const T &data){
Node ∗newNode = new Node(data);
if (head){
newNode−>next = head−>next;
newNode−>back = head;
head−>next = newNode;
newNode−>next−>back = newNode;
}
else newNode−>back = newNode−>next = newNode;
head=newNode;
}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::Node::SimplyQueue::pop(void){
if (head==0) return;
Node ∗ptmp = head−>next;
if (head==ptmp) head=0;
else{
head−>next = ptmp−>next;
ptmp−>next−>back = head;
}
delete ptmp;
}
//$$

template<typename T, unsigned K, unsigned P>

const T&
PTrie<T,K,P>::Node::SimplyQueue::top(void) const throw(){
return head−>next−>data;
}
//$$

//$$

/∗∗
∗∗ Definition methods of class PTrie ∗∗
∗∗/

//$$

template<typename T, unsigned K, unsigned P>

PTrie<T,K,P>::PTrie(size t (∗TypeSize)(const T&))
throw(std::out of range, std :: bad alloc):
sizeT(TypeSize), ppointer(0), head(0), tail (0){

20

if (sizeT==0){
if (K > (sizeof(T)<<3))
throw std::out of range(”<PTrie::PTrie>: [K > sizeof(TYPE)]!”);

sizeT=DefaultSize;
}
unsigned test=1;
while(test<K) test<<=1;
if (test!=K) throw std::out of range(”<PTrie::PTrie>: K is not power of two!”);
tab = new Layer(this);
srand((unsigned)time(0));
}
//$$

template<typename T, unsigned K, unsigned P>

PTrie<T,K,P>::˜PTrie(void){
delete tab;
tab=0;
}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::insert(const T& data){
tab−>set(data,(unsigned)sizeT(data)<<3, 0);
}
//$$

template<typename T, unsigned K, unsigned P>

bool

PTrie<T,K,P>::search(const T& data){
return (bool)tab−>search(data, (unsigned)sizeT(data)<<3);
}
//$$

template<typename T, unsigned K, unsigned P>

bool

PTrie<T,K,P>::remove(const T&data){
return (bool)tab−>remove(data,(unsigned)sizeT(data)<<3).return sign;
}
//$$

template<typename T, unsigned K, unsigned P>

const T∗
PTrie<T,K,P>::minimum(void) const throw(){
return head? &head−>Q.top():0;
}
//$$

template<typename T, unsigned K, unsigned P>

const T∗
PTrie<T,K,P>::maximum(void) const throw(){
return tail? &tail−>Q.top():0;
}
//$$

21

//$$

/∗∗
∗∗ Definition methods of class PTrie:: iterator ∗∗
∗∗/

//$$

template<typename T, unsigned K, unsigned P>

PTrie<T,K,P>::iterator::iterator(void) throw(): pNode(0), pQueue(0), pPTrie(0){}
//$$

template<typename T, unsigned K, unsigned P>

PTrie<T,K,P>::iterator::iterator(const PTrie<T,K,P> &temp) throw():
pNode(0), pQueue(0), pPTrie(0){

this−>pPTrie = &temp;
pNode = &temp.head;
if(∗pNode) pQueue = (∗pNode)−>Q.head−>next;

}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::iterator::begin(const PTrie<T,K,P> &temp) throw(){
pPTrie = &temp;
pNode = &temp.head;
if(∗pNode) pQueue = (∗pNode)−>Q.head−>next;

}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::iterator::begin(void) throw(){
if (pPTrie) pNode = &pPTrie−>head;
if(∗pNode) pQueue = (∗pNode)−>Q.head−>next;

}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::iterator::end(const PTrie<T,K,P> &temp) throw(){
pPTrie = &temp;
pNode = &temp.tail;
if(∗pNode) pQueue = (∗pNode)−>Q.head−>next;

}
//$$

template<typename T, unsigned K, unsigned P>

void

PTrie<T,K,P>::iterator::end(void) throw(){
if (pPTrie) pNode = &pPTrie−>tail;
if(∗pNode) pQueue = (∗pNode)−>Q.head;

}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::iterator&
PTrie<T,K,P>::iterator::prev(void) throw(){

22

return −−∗this;
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::iterator&
PTrie<T,K,P>::iterator::next(void) throw(){
return ++∗this;
}
//$$

template<typename T, unsigned K, unsigned P>

bool

PTrie<T,K,P>::iterator::operator==(const iterator& right) const throw(){
return (pNode == right.pNode && pQueue == right.pQueue);
}
//$$

template<typename T, unsigned K, unsigned P>

bool

PTrie<T,K,P>::iterator::operator!=(const iterator& right) const throw(){
return !(∗this==right);
}
//$$

template<typename T, unsigned K, unsigned P>

PTrie<T,K,P>::iterator::operator bool(void) const throw(){
return (pNode && ∗pNode);
}
//$$

template<typename T, unsigned K, unsigned P>

const T&
PTrie<T,K,P>::iterator::operator∗(void) throw(std::out of range){
if (pNode && ∗pNode)
if (pQueue) return pQueue−>data;
else return (pQueue = (∗pNode)−>Q.head−>next)−>data;

else throw std::out of range(”<PTrie::iterator> operator∗(): [iterator==NULL]”);
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::iterator&
PTrie<T,K,P>::iterator::operator++(void) throw(){
if (pNode && ∗pNode){
if (pQueue==(∗pNode)−>Q.head){
pNode = &(∗pNode)−>next;
if(∗pNode) pQueue = (∗pNode)−>Q.head−>next;

}
else{
if (pQueue) pQueue = pQueue−>next;
else{
pQueue = (∗pNode)−>Q.head−>next;
return ++∗this;
}
}

23

}
return ∗this;
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::iterator
PTrie<T,K,P>::iterator::operator++(int) throw(){
iterator temp = ∗this;
++∗this;
return temp;
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::iterator&
PTrie<T,K,P>::iterator::operator−−(void) throw(){
if (pNode && ∗pNode){
if (pQueue==(∗pNode)−>Q.head−>next){
pNode = &(∗pNode)−>prev;
if(∗pNode) pQueue = (∗pNode)−>Q.head;

}
else{
if (pQueue) pQueue = pQueue−>back;
else{
pQueue = (∗pNode)−>Q.head−>next;
return −−∗this;
}
}
}
return ∗this;
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::iterator
PTrie<T,K,P>::iterator::operator−−(int) throw(){
iterator temp = ∗this;
−−∗this;
return temp;
}
//$$

template<typename T, unsigned K, unsigned P>

typename PTrie<T,K,P>::iterator&
PTrie<T,K,P>::iterator::operator=(const iterator& temp) throw(){
if (this!=&temp){
pPTrie = temp.pPTrie;
pNode = temp.pNode;
if(∗pNode) pQueue = (∗pNode)−>Q.head−>next;

}
return ∗this;
}
//$$

24

}//namespace dplaneta

#endif /∗ Not PTRIE HPP ∗/

4.1 A simple example of PTrie uses

This example source code demonstrates how you can use a PTrie.

#include<iostream>

#include ”ptrie.hpp”

using namespace std;
using dplaneta::PTrie;

int main(){
srand((unsigned)time(0));
try{
unsigned x, max;
PTrie<unsigned> example;
PTrie<unsigned,8> ExampleOneByteStructure;
PTrie<unsigned>::iterator pointer, pointer2;

for(int i=0; i<10; i++){
x = (unsigned)rand();
cout<<”Insert: ”<<x<<endl;
example.insert(x);
}

cout<<”\nList sorting elements: ”<<endl;
for(pointer=example; pointer; pointer++) cout<<∗pointer<<”, ”;

cout<<endl;
if (example.minimum() != 0) cout<<”\nMin = ”<<∗example.minimum();
if (example.maximum() != 0){
cout<<”\nMax = ”<<∗example.maximum();
max = ∗example.maximum();
}

cout<<endl;
if (example.search(max)) cout<<”\nfind ”<<max<<endl;
else cout<<”\nnot find ”<<max<<endl;

cout<<”\nRemove ”<<max<<endl;

25

example.remove(max);

cout<<endl;
if (example.search(max)) cout<<”\nfind ”<<max<<endl;
else cout<<”\nnot find ”<<max<<endl;

cout<<”\nList sorting elements: ”<<endl;
pointer .begin();
while(pointer) cout<<(∗pointer++)<<”, ”;

cout<<”\nList sorting elements: ”<<endl;
pointer .end();
while(pointer) cout<<(∗pointer−−)<<”, ”;

pointer2 = pointer;
pointer2.begin();
PTrie<unsigned>::iterator p1(pointer2);
PTrie<unsigned>::iterator p2 = pointer2;
PTrie<unsigned>::iterator p3(example);
cout<<endl<<”∗p1=”<<∗p1<<”, ∗p2=”<<∗p2<<”, ∗p3=”<<∗p3<<endl;
if (p1==p2 && p1==p3) cout<<”p1 = p2 = p3”<<endl;

}
catch(std::out of range& x){
cout<<”\n[out of range]: ”<<x.what()<<endl;
}
catch(std::bad alloc &x){
cout<<”\n[bad alloc]: ”<<x.what()<<endl;
}

return 0;
}

4.2 Notes

Standard exceptions which can throw methods of class ‘out_of_range’ and
‘bad_alloc’. First type exception can be throw only by constructor of PTrie
class in case of initiation of pattern K length with incorrect value or iterator in
case of taking value from an empty address (*NULL). Exception ‘bad_alloc’
can throw standard operator ‘new’ used for memory initiation. K should be
greater than 0 and smaller than the smallest size of data types. It should also
be the power of two. If these conditions are not fulfilled, exception showing
error may be throw. The situation is different if we don’t use the standard
command sizeof but our own function. For example function which gives the
length of string. In such case there may be the reading trial of the key be-
yond the string unless the programmer uses the pattern K for sign which is
not more than 8 bits long. If there are non-standard elements in the struc-

26

ture we should care about an overloaded equality operators, bitwise ‘AND’ and
operator of shift to the right. Iterator was implemented in the structure. It
is a simplified version of iterators from the library of C++; Standard Tem-
plate Library. Implemented iterator, like other common pointers does not con-
tain advanced error chaeck. ‘next’ and ‘prev’ operations were implemented
in iterator. For example, we can use ‘iterator.next()’ or ‘iterator++’.

4.3 Use of PTrie structure in case of strings

In case of strings it must be taken into consideration that for sign K should not
be longer than 8 bits, because we could accidentally read the contents beyond
the string which normally consist of one byte signs. It is possible to record
variable size data in the structure provided each of analyzed words ends with
identical key. It does not make any difference for string because they normally
finish with ‘end of line’ sign. String must be surrounded with class of properly
overloaded operators required by PTrie class to make inserting of strings into
presented template possible.

4.4 Integers - numbers with sign

In case of number with sign two PTrie objects should be used. One of the
objects will be used only for positive numbers, the other one – only for nega-
tive numbers. Algorithm which will locate the data in the structure will check
if the inserted value is positive. There will be no problems with object of
PTrie class intended for positive values. In case of negative values, however,
elements in the structure will be in reverse order, which means they will be
read as minimum, although they really will be maximum values in the struc-
ture and reversely. Similar problem occurred in relation to linear, stable, and
non-extensive list sorting algorithm [4]. And it was solved in the same way.

4.5 Portability

Byte order

It’s obvious that all modern machines have 8-bit bytes. But in different ma-
chines there are different representations of object greater than one byte. For
example, integers type ‘short’ (language C), which typical have two bytes, may
be stored in memory in two ways: their less significant byte will be at smaller
address (less significant byte first, so little-endian order of bytes) or inversely
– at greater address (more significant byte first, so big-endian order of bytes)
than more significant byte. Although machines in both cases treat memory
as sequence of words in the some order, they interpret the byte order within
the words differently. This is why it’s important to change the lines of code
which is responsible for looking through bits by PTrie (the version of algo-
rithm described in paper was implemented by machine of little-endian type).

27

Arithmetic or logical shift of value with number sign to the right by means
of operator ‘>>’ can be treated as arithmetic shift (the copy of bit sign is
copied during bit shift) or logical (zero will be placed in released bits during the
shift). Fortunately, this problem does not concern PTrie, despite the fact that
I use shift operator. It happens that way because operation of logical ‘AND’
comes after the operation of bit shift, which unifies the manner of bit shift.

References

[1] René de la Briandais, File Searching Using Variable Length Keys, Proceed-
ings of the Western Joint Computer Conference, 295-298, 1959.

[2] William Pugh, Skip lists are a data structure that can be used in place of

balanced trees, Communications of the ACM, 33(6) 668-676, June 1990.

[3] Donald E. Knuth, The Art of Computer Programming Vol. 3, Addison Wes-
ley Longman, Inc. 1998

[4] David S. P laneta, Pbit and other list sorting algorithms, Cornell Univer-
sity Computing and Information Science Technical Reports, 2006. [Online].
Available: http://arxiv.org/abs/cs.DS/0511020

28

http://arxiv.org/abs/cs.DS/0511020

