
Larchant-RDOSS:
a distributed shared persistent memory

and its garbage collector
�

Marc Shapiro, Paulo Ferreira
INRIA Rocquencourt

shapiro@sor.inria.fr

INRIA Rapport de Recherche no. 2399
Cornell Computer Science TR94-1466

November 1994

Abstract

Larchant-RDOSS is a distributed shared memory that persists on reli-
able storage across process lifetimes. Memory management is automatic:
including consistent caching of data and of locks, collecting objects un-
reachable from the persistent root, writing reachable objects to disk, and
reducing store fragmentation. Memory management is based on a novel
garbage collection algorithm, that approximates a global trace by a series
of local traces, with no induced I/O or locking traffic, and no synchroniza-
tion between the collector and the application processes. This results in
a simple programming model, and expected minimal added application
latency. The algorithm is designed for the most unfavorable environment
(uncontrolled programming language, reference by pointers, distributed
system, non-coherent shared memory) and should work well also in more
favorable settings.

�
This work was conducted in part during the first author’s sabbatical year at Cornell University,

supported by funding from Cornell University, Isis Distributed Systems Inc., INRIA, and NATO.

1

1 Introduction

1.1 Setting

The Reliable Distributed Object Storage System (Larchant-RDOSS) is an exe-
cution environment based on the abstraction of a distributed shared memory.
The implementation differs very much from this abstraction.

Applications see a single memory, containing dynamically-allocated data
structures (or objects) connected by ordinary pointers. Internally, the memory
is divided into granules called clusters (of arbitrary size, typically of the order
of a few kilobytes). An application maps only those clusters that it is currently
reading or updating; updates remain local until the application commits.

Pointers and allocation information are supplemented, internally, by location-
independent data structures. From these, the system determines which objects
are actually shareable by other applications (any object reachable from a per-
sistent object is itself persistent; this is called “persistence by reachability” [1]),
by tracing from a persistent root. Such automatic management results in a sim-
ple and natural programming model, because the application need not worry
about input-output or deallocation.

The intended application area is programs sharing a large amount (many
gigabytes) of objects on a wide-area network, e.g., across the Internet. Examples
include financial databases, design databases, group work applications, or
exploratory applications similar to the World-Wide Web.

1.2 Larchant-RDOSS

This setting imposes performance constraints, such as avoiding I/O and syn-
chronization. Furthermore it is not reasonable to expect any strong coherence
guarantees. (Coherence is costly in the large scale, unnecessary for some of
the intended applications, and will block in the presence of network partitions
and during disconnected operation.) An algorithm that performs well in such
a setting can be expected to apply also to a less demanding environment such
as a multiprocessor or a well-connected local network.

These performance constraints appear to clash with persistence by reacha-
bility. Distributed tracing requires global synchronization.1 Accessing remote

1We deliberately ignore reference counting (RC), for the following reasons: (1) RC is not complete
(it does not collect cycles of garbage). (2) The existence of multiple kinds of roots (transient roots and
persistent roots) makes RC awkward. (3) We have already studied extensively a wide-area, fault-
tolerant version of reference counting [8, 7] and have found it inadequate for a shared-memory
environment. As we shall see, our new algorithm combines tracing, whenever economically
feasible, with a variant of RC when tracing would be too expensive.

2

or on-disk portions of the object graph requires costly input-output and net-
work communication. Published concurrent GC typically assume a coherent
memory, and require a strong, non-portable synchronization between the ap-
plication (the “mutator”) and the collector.

Our algorithm works around these difficulties. Instead of a global trace,
we perform a series of opportunistic local traces that together approximate the
global trace. A local trace requires no remote synchronization and no I/O.
We avoid mutator-collector synchronization, by relying on the trace itself to
discover new pointers. We avoid relying on any particular coherence model by
delaying the delete of an object until it has been detected unreachable every-
where. We do however assume that a granule has no more than a single writer
at any point in time. For performance we use asynchronous messages, relying
on causally-ordered delivery for correctness.

1.3 Larchant-RDOSS vs. Larchant-BMX

Two slightly different versions of the Larchant architecture are being developed,
called respectively Larchant-BMX and Larchant-RDOSS. Both systems imple-
ment essentially the same ideas and algorithms but differ in some important
aspects.

Larchant-BMX implements an object-granularity entry-consistent [3] single
distributed address space abstraction. The collector runs concurrently with the
mutator, in the same address space; therefore updates must be reported to the
collector. Pointer comparisons must use a special primitive.

Larchant-RDOSS is a simplified version of Larchant-BMX. Larchant-RDOSS
provides a more restrictive model, that of single-process transactions, separate
address spaces, and causal broadcast of committed writes. A pointer is swizzled
(but only at first use); the collector runs independently from the mutator (but
only collects the persistent memory).

1.4 Outline

This paper briefly describes the overall design of Larchant-RDOSS, in Section 2.
Section 3 outlines our garbage collection algorithm, ignoring replicated caching;
it can collect an arbitrary subset of the object graph independently; we suggest
a locality-based heuristics for choosing the subset that avoids message, I/O and
lock traffic. In Section 4, we extend the algorithm to the case where a cluster is
multiply cached, even when the replicas are not known to be coherent. Section 5
concludes with a summary of our ideas and results.

3

Collector Collector

Persistent Root

e d

Application ProcessesApplication Processes

a c b c

a

c

PR

d

b

c d

ba

Site Cache Site Cache
Server Server

cbcast

Figure 1: General architecture of Larchant-RDOSS

2 Overall design

The architecture of Larchant-RDOSS is illustrated in Figure 1. An application
program on some site access the shared memory through that site’s Cache
Server. Stable versions of clusters are stored on disk by Backup Servers. To-
gether, the Cache Servers and the Backup Servers form the Object Storage Ser-
vice. Auxiliary Collector Processes perform the garbage collection algorithm
on behalf of a Cache or Backup Server. This section describes the applications
and the cache and backup servers; garbage collection will be described in more
detail in Sections 3 and 4.

2.1 Application interface

Applications that use Larchant-RDOSS are ordinary Unix processes. The shared
memory is very similar to an ordinary memory-mapped shared region contain-
ing pointers. An application accesses clusters through the local Cache Server
(see Section 2.3). The API primitives are directed at the local Cache Server.2

2In our current specification, applications can meaningfully communicate pointers to each other
only via the Larchant-RDOSS shared memory. The specification could be extended to sending
pointers in messages or through other channels, by integrating the SSPC protocols [7] into Larchant-

4

2.2 Clusters and pointers

The Larchant-RDOSS primitive startup() provides a process with its initial con-
nection, by maping in an initial cluster containing a persistent root object,
itself containing pointers to other objects. The application follows some arbi-
trary path through the object graph, by following pointers. When following a
pointer for the first time, the application binds it. The bind primitive ensures
that the target object is completely initialized, and sets a lock. Supported lock
modes include the both standard consistent locks (read and write), and weak
locks (optimistic, no-guarantee).

Binding a pointer up-calls a language-dependent type-checking and un-
marshalling module. Binding also ensures that, if the target pointer contains a
pointer itself, the latter is valid, by reserve-ing a memory location for its own
target. (The latter is not actually bound until it is accessed.) At the same time,
the pointer is “swizzled,” i.e., a correct value is assigned to it according to the
result of the reservation.3

Allocating a new object in a cluster declares its layout to the system, i.e., the
location of any pointers it contains. The application freely reads and updates
a bound object, including the pointers it contains, as long as the new pointer
values are valid, and the updates do not change the object layout.

This shared memory abstraction is natural, and can be used even from
primitive languages such as C or C++. Binding does not differ substantially
from the familiar Unix mmap primitive, and locking is usual for concurrency
control. A call to the allocation primitives malloc or new must provide an extra
argument containing the layout of the new object. Programmers must avoid
ambiguous unions or casts (where a pointer and a non-pointer could occupy
the same location). These rules may be unfamiliar, but do not represent a major
language change, and do not require any compiler changes.

Updates remain private until the application process commits, at which
point all updates are propagated at once. Locking may be pessimistic (locks
are enforced when the application requests them) or optimistic (locks are not
enforced until commit time; if a conflict has arised in the meanwhile, the appli-
cation aborts and its updates are lost.) Optimistic locking is useful and efficient
in many types of applications; it turns out that the garbage collector uses it also.

An application pays overhead only at first use of a datum (when binding)
and when committing an update (when unbinding). The binding cost is that
of getting a lock, mapping in a private copy and swizzling pointers. The
unbinding cost is that of constructing the new reference map, unlocking and

RDOSS. This is topic for future work.
3This follows the model of Wilson [9]. To simplify the implementation, the first version of

RDOSS does not swizzle, and a cluster resides at a fixed address at all client processes.

5

sending updates. In between, the application runs at full processor speed with
no foreground overhead.

Note that we are not assuming the existence of a garbage collector at the
application process. One may exist or not. The garbage collector described
hereafter only works on the persistent store, and executes in the Collector
Processes.

2.3 Object Storage Service

The Object Storage Service (OSS) is composed of Cache Servers and Backup
Servers. (A single server process can actually play both rôles.)

A Backup Server (BS) caches recently-accessed clusters in memory, and
stores them on disk. Application and Collector processes access the store
through the single Cache Server (CS) running on the local machine. A CS
caches clusters recently accessed by local application processes. It caches both
cluster data and the associated lock tokens. A cache miss causes a cluster to be
copied from disk into the corresponding BS cache, sent to a CS and copied into
its cache, and from there copied into the requesting application or collector.
When an application commits, it propagates any changed clusters to its cache
server, which multicasts the changes to all other copies (different coherence
protocols can be plugged in).

At some point in time, any single cluster can be replicated in any number
of Cache Servers, of Backup Servers, of disks, of application processes, and of
Collector processes. The server that, either holds the exclusive (write) token
for a cluster, or was the last to hold it, is the owner of that cluster. An update
may commit updates only at the owner site. Updates flow from an application
or a collector process, to the local (owner) CS, which propagates it to the other
servers. A BS stores updates on disk. Since an update or a token flows only
from the owner to other processes, it can be sent using Isis “causal broadcast”
[4].4

2.4 Data structures

The contents of a cluster is described by some special data structures. These
contain all the information needed for garbage collection and swizzling.

An Object Map describes the location and class of objects inside the cluster.
An In-List indicates which of these objects might be pointed at from another

4Communication between the application and collector processes and the storage service, and
between the storage servers, uses RDO, a Corba-compliant veneer to Isis, a product of Isis Dis-
tributed Systems, Inc. Since application processes only communicate via the shared memory, they
need not be aware of RDO nor use Corba interfaces.

6

clusters. Each in-list element, called a scion, identifies a different potential�
source cluster, target object � pair. A special form of scion indicates a persistent

root.

An object’s class describes its layout and type. A class is an object itself,
named by a pointer. The layout gives the location and type of pointers inside
objects of that class. Type information is language-dependent. The API bind
primitive up-calls a language-dependent type-checking module to type-check
a pointer against its target.

A Reference Map indicates the location and type of pointers inside the
cluster.5 Each pointer is described in location-independent form, i.e., the Ref-
erence Map identifies the target cluster, and object within that cluster, of each
pointer. An Out-List indicates which of those references cross out of the cluster’s
boundaries; elements of the out-list are call stubs.

All the above data structures are normally stored within the cluster itself,
making the cluster a self-contained unit of I/O, storage, and collection. The
exception is a class, which is identified by a pointer, and hence may be stored in
another cluster. Classes and types are not used by the language-independent
layers of RDOSS, and will be ignored in the remainder of this document.

3 Garbage collection of the persistent shared memory

We now focus on the Garbage Collection of the persistent shared memory.

3.1 Requirements and limitations of existing algorithms

The ideal GC would globally trace the whole graph of objects reachable from
the persistent root set (called live objects). But, in a large-scale persistent shared
memory, this is not feasible, for a number of reasons.

First, all known tracing algorithms require a global synchronization, which
is not realistic in a large-scale system such as the Internet.

Second, at any point in time, the major part of the object graph is swapped
out to disk, and cannot be accessed economically. Since by definition swapped-
out data has not been accessed for some time, it is unlikely that tracing it would
discover any new garbage.

A beneficial side-effect of some garbage collection algorithms is to improve
locality by compacting sparsely-populated clusters. A live object is re-allocated
at a new address, and pointers to it patched to refer to the new location. Hence

5This information is redundant with classes, but is self-contained and language independent.

7

the third problem, that relocating appears to require write-locks that compete
with the applications’.

Fourth, existing concurrent GC algorithms require synchronization be-
tween the mutator and the collector. This is implemented by instrumenting
every mutator instruction that could either read (this is called a “read barrier”)
or assign (a “write barrier”) a pointer, in order to inform the collector of the
value read or written. Since what would have been a single assembler instruc-
tion is instead replaced by a sequence of code, this slows down the applications
considerably. The collector is not portable, being strongly coupled with a par-
ticular compiler that will generate the correct barrier code.

3.2 Main ideas of our algorithm

Apparently, the problem is hopeless. But we will now show a solution that
gives an excellent approximation of the global concurrent trace and does not
have the same drawbacks.

Instead of a global synchronized trace, of the whole object graph on the
whole network, it approximates the same result with a series of opportunistic,
non-synchronized, piecewise, local traces. Each cluster is traced at each site
where it is cached, and the results summarized at the cluster owner (this will
be explained in Section 4.2.1). Groups of multiple clusters mapped at some site
are scanned at once, thus collecting cycles of garbage that span clusters.

In order to not compete with the application, the GC works on a separate
data set; namely, any datum mapped by an application is ignored by the collec-
tor (i.e., is conservatively considered live). To avoid input/output, the collector
also ignores data that is swapped to disk.

The collector does not cause any lock traffic, because it locks an object only
at a server where the lock is already cached. Its locks do not compete with
application locks, because the collector runs as an optimistic transaction.

The collector makes no assumptions, about the mutual consistency of the
many replicas of some cluster, apart from the assumption that only the owner
can commit a write. Thus, data can be incoherent. The GC compensates for
incoherence by being more conservative. Any object that has been reachable
continues to be considered reachable for as long as the collector does not pos-
itively determine, at all copies and independently of the coherence protocol,
that it is not.

There is no read- or write-barrier; the algorithm discovers pointer assign-
ments the next scan of the collector itself, effectively batching pointer assign-
ments.

The collector is composed of three sub-algorithms:

8

1. Collecting a single replica of a single cluster on a single site,

2. Collecting a group of clusters on a single site,

3. Collecting the multiple, possibly incoherent, replicas of a single cluster at
all its sites.

We will explain each of these sub-algorithms and argue their correctness, while
also justifying the design decisions listed above. The first two sub-algorithms
are quite simple and will be detailed next. The last one will be explained in
Section 4.

Our algorithm is a hybrid of tracing and counting: (i) It traces clusters
within groups limited by what is economically feasible. Specifically, trace stops
when it would require input-output or network or lock traffic. Trace groups are
different at each site and change dynamically. (ii) The algorithm uses reference
counting (via the scions, at the cluster and group boundary) when tracing would
be too expensive.

3.3 Scanning a single replica at a single site

A particular replica of a cluster can be scanned on its site, independently of
other clusters and independently of remote versions of the same cluster.

The in-list presented in Section 2.4 identifies all the pointers that reach into
a cluster. Ignoring for a short while concurrent updates, it is safe to scan,
by considering the in-list as its root set. This is illustrated in Figure 2. Such
a collection is complete w.r.t. the cluster, i.e., it will deallocate any cycle of
garbage that is entirely within the cluster. However it is conservative w.r.t.
other clusters, since it can not deallocate a cycle of garbage that crosses the
cluster boundary; thus, the in-list serves as a reference counter for inter-cluster
references.

Here is how a trace proceeds. Any object pointed from the in-list is marked
reachable. An object inside the cluster, pointed from a reachable object, is
itself marked reachable. If a reachable object points outside the cluster, a
corresponding stub is allocated in the out-list (with no attempt to mark the
pointed-to object). The result of the walk is a reachable-set and a new out-list.
Any objects not in the reachable-set can be deallocated locally; the cluster owner
may safely reallocate a deallocated object.

The new out-list is compared with the one resulting from the previous scan.
Stubs that didn’t previously exist indicate that a new inter-cluster reference has
been created; the collector sends a create message to the (owner of the) target
cluster so that it can create the corresponding scion.

9

scions

stubs

Figure 2: Collecting a single replica of a single cluster

Pointer updates are not noticed until the cluster is scanned (in contrast
to concurrent garbage collectors where the mutator must immediately inform
the collector of pointer updates, by using a read or write barrier), and in an
arbitrary order. To ensure safety, all create messages are sent before any deletes.

To see why this is important, consider a pointer x pointing to an object A,
and a pointer y; the program assigns the value of x to y, then modifies x, e.g.,

y := x; x := NULL

The scan could discover the second assignment earlier than the first. Ordering
the create before the delete ensures that the target A is not deallocated prema-
turely, even if x contained the last pointer to A. We will see in Section 4 that
deletes may be further delayed in the case of multiple copies.

A create message is sent asynchronously. Since, a new pointer value can
only, either point to a locally-created object, or be a copy of an existing, reachable
pointer, it follows that the target object will not be collected prematurely.

Stubs that have disappeared since the latest scan indicate that an inter-
cluster reference no longer exists. A delete message is sent, asynchronously,
in order to remove the corresponding scion in the target cluster. To avoid race
conditions, no delete message is sent until all the create messages have been.
Furthermore, in the case of a replicated cluster, a delete message may need to
be delayed even further (see Section 4).

10

The collector runs as an optimistic transaction: if the collector has started
scanning a cluster, and an application later takes a write lock and modifies
it, then the collector aborts and its effects are undone. Thus, the collector
does not compete for data locks with the application, but it is still safe to
ignore concurrent mutator updates. The collector is trivially safe and live; it
is complete with respect to cycles of garbage enclosed within the cluster, but
conservative with respect to possible garbage referenced from another cluster.

The collector may choose to move a reachable object to a different address
(possibly in a different cluster). To do this, the collector must take a write
reserve lock (recall that the reserve lock protects the addresses); which it will
only do if this site is the owner of the cluster and no application already has a
read or a write reserve lock. This ensures that the collector will not cause any
reserve lock traffic and will not compete for locks with the application.

When an object has been moved, any pointers that reference it must be
patched. This would entail finding the clusters containing these pointers, and
taking a write lock on them. In fact, pointer patching can be delayed until
such source clusters are next mapped and swizzled.6 Consistency is not a
problem because the collector will move an object only if the source cluster is
not protected by a reserve lock.7

3.4 Group scanning of multiple clusters at a single site

Just as the collector can scan a single cluster replica at a single site, it can scan
any group of clusters at a single site. The algorithm is exactly the same as
above, except that scions for pointers internal to the group are not considered
roots (this is easy to check because a scion identifies its predecessor cluster),
and that scanning continues across cluster boundaries, as long as the group is
not exited. Figure 3 shows an example group of two clusters.

A group will contain only clusters that are not write-locked by an applica-
tion. As above, a collection aborts if the application modifies a cluster that has
already been scanned. This ensures that the collector does not compete with the
application locks. For the same reasons as the single-group case, the algorithm
is trivially correct. Group collection is complete w.r.t. clusters in the group, i.e.,
a cycle of garbage, possibly crossing cluster boundaries, but remaining within
the group, will be collected. It is conservative w.r.t. clusters not in the group.

6Since the first version of Larchant-RDOSS does not swizzle, it follows that its garbage collector
doesn’t move objects either.

7Larchant-BMX [6, 5] does not have reserve locks. Like any update, patch consistency is ensured
by the fact that only the owner of an object can move it.

11

Group stubs

Cluster 1

Cluster 2

Group scions

 Trace group

Figure 3: Collecting a group of clusters at a single site

3.5 Group heuristics

The significance of group scanning is that any arbitrary subset of the persistent
memory can be scanned, on a single site, independently of the rest of the memory.
The choice of a group can only be heuristic, and should maximize the amount
of garbage collected while minimizing the cost.

We will use the locality-based heuristics of a group of all the clusters that
are cached on the site at the time the collector happens to run, except those
currently being written by an application. This heuristics avoids all input-
output costs, and minimizes aborts. Furthermore there is no lock traffic cost
since any locks are taken only if cached locally.

These heurisitics do not collect cycles of garbage that reside partially on
disk, on another server, or in a cluster that is actively used by applications (a
“hot spot”). Collecting such a cycle involves costs that need to be balanced
against the expected gain. A cluster swapped to disk has not been accessed
recently, so it has a low probability of containing new garbage.

The following strategy theoretically collects all cycles of garbage that span
any set of clusters small enough to fit in some server: repeatedly cache a random
subset of clusters, and collect it as a group. While theoretically complete, this
strategy is extremely inefficient. This result does tell us however that for
completeness, a heurisitics should contain a stochastic component.

12

After

C3

C2C1

yx

A

C1

x

C2

y

A
C3

Before Execute

�
y := x

|| GC
|| x := NULL

�

Figure 4: Possible race conditions with concurrent read-write-scans of a repli-
cated cluster.

We plan to implement only the locality-based heuristic as a first shot. If
experimental results mandate, we will explore others.

4 Collecting the multiple copies of a cached cluster

4.1 Garbage collection and incoherent replicas

The simple technique of avoiding concurrent mutator updates, by running the
collector as an optimistic transaction, does not work well if replicas of a cluster
are present at multiple storage servers. Since we do not assume coherent copies,
the collector could observe some pointer value on one site, while the mutator
has assigned a different value on another site.

Let us illustrate this problem with an example (see Figure 4). Imagine that
pointer x in cluster C1 points to object A in cluster C3. An application program
at site S1 assigns NULL to x. Then the collector of site S1 runs. Site S1 is the
owner of C1.

Concurrently, another application program assigns pointer y (within cluster
C2) with the value of x, as such: y := x. Then the collector runs at sites S2 and S3
(the owner sites of C2 and C3, respectively). To make the example interesting,
we suppose that the assignment to y is ordered before the assignment to x, i.e.,
y now points to object A.

When the collector runs at each site, site S1 sends a delete (C1, A) message
to S3, and site S2 sends create (C2, A), also to S3. However, in an asyn-
chronous system, a message can be delayed indefinitely, so the delete could be
received before the create, with catastrophic results. (We will call this a “fast

13

S3

S2

S1

?create delete

GC

GC

C1
replicate

update

y := x

x := NULL

Figure 5: Timeline for the execution of Figure 4, showing the effect of a late
create or a slow create message.

delete message”.) Furthermore, since the collectors run at unpredictable times,
the delete could actually be sent before the create, with equally catastrophic
results. (This will be called a “early delete”.) These conditions are illustrated
by Figure 5.

Figure 6 shows an obvious solution to this problem: serializing creates with
respect to deletes. In this example, scanning a cluster as soon as a write commits
ensures against early deletes. The create message is sent synchronously. An
update message is also synchronous, from a site performing an update to the
cached copies of the cluster, ensuring that a delete message is not sent until the
corresponding update has been applied at all copies.

This simple solution is undesirable, because it slows down the application
of updates, and couples the GC to the coherence protocol. It should be possible
to improve this situation by batching some messages, but a solution that uses
only asynchronous messages will have better performance.

4.2 An asynchronous solution to the problem

An asynchronous solution to the above problem requires avoiding both early
deletes and fast delete messages. We will look at these two elements in turn;
our solution, the “Union of Partial Out-Lists” (UPOL) is illustrated by Figures 7
and 8.

4.2.1 Avoiding early deletes

We delay the sending of a delete message until all logically-preceding creates
have been sent. To do this: (i) we delay sending deletes until the corresponding

14

ack

ack

delete
S3

S2

S1

replicate C1

y:=x

create

GC
update

x:=0 GC

GC

Figure 6: Timeline from Figure 5, modified with additional synchronization to
delay the delete after the create.

update has been applied at all the copies of the cluster, and (ii) we force any
creates from some site to be sent before applying any update at that site.

To get (ii), we scan any modified clusters before accepting updates on the
same cluster.

Property (i) could be achieved by getting an acknowlegment from the co-
herence layer; but this is not necessary, since the necessary information already
is available from the collector. We stated earlier that each copy of a cluster is
collected at its site, and the results are summarized at the cluster owner. We
can now explain precisely what that means.

Each cluster copy is collected according to the algorithm in Section 3.3 or
Section 3.4, creating a new out-list, the Partial Out-List (POL) for that copy. It is
partial because it only takes into account the objects reachable at that site. After
the collection, each Partial Out-List is sent to the owner of the cluster in a POL
message.

The owner collects all Partial Out-Lists; the complete out-list for the cluster
is just the union of the most recent Partial Out-List of each copy. The owner
sends a delete message only when a stub disappears from the complete out-list,
and a non-owner never sends a delete.

This works because of three properties of stubs: (i) a reachable stub can
become unreachable at any site; (ii) a stub that is unreachable at all sites will
never become reachable; and (iii) only the owner of a cluster can make a new
stub appear in that cluster.

Property (i) is a consequence of the transitivity of the reachability property.
For instance, suppose that the variable x in the previous example is reachable
from the persistent root only through pointer z located in another cluster, say

15

z cluster not cached
cluster cachedx

owner

GC

y

y:=x;

cluster cached,

S2

Before

create (C2,z)

z

x

PSL(C2)= � z �
SL(C1)= � z �

z

yx

PSL(C1)= � z �

C1 C1 C2

PSL

GC

S1

x:=0;

S3
z

yx

C3

PSL(C1)= �

y:=x;
GC

S2

After

z

x

PSL(C2)= � z �

z

yxC1 C1 C2

PSL

GC

S1

x:=0;

S3
z

yx

C3

propagate

PSL(C1)= 	

delete (C1,z)

PSL(C1)= �

SL(C1)= �

Figure 7: Union of Partial Out-Lists solution, before and after application of a
pointer update.

16

S3

S2

S1

POL

GCx:=0

deletecreate

GCupdate

replicate C1

POL POLGC
y:=x;

Figure 8: Timeline for the Union of Partial Out-Lists solution, illustrating asyn-
chronous messages and causal ordering.

C4. The application running at the owner of C4 can modify z, making x
unreachable, hence the stub from x to A is also unreachable, even though the
cluster C1 containing x has not been modified at that site.

Property (ii) is by definition of garbage.

Property (iii) is because we assume that only the owner of a cluster can
write into that cluster.

Because of these properties, and assuming (possibly unreliable) FIFO com-
munication, it is safe for the owner consider only the most recently-received
version of each site’s Partial Out-List. It doesn’t matter how old it is: it can only
err on the side of conservativeness, i.e., of considering as live an object that is
not reachable any more.

4.2.2 Avoiding fast delete

A careful examination of Figure 8 shows that the POL message creates a causal
dependency between the create message and the delete message (the thick
arrows in the figure). Any of the well-known techniques for causal delivery of
messages [2] will therefore ensure that the create message will not be overcome
by the corresponding delete.

Since Larchant-RDOSS runs on top of Isis, we simply send the create,
POL, and delete messages using the causal communication primitive cbcast.
Larchant-BMX [6, 5] does not depend on Isis; in this system, we use piggy-
backing to implement causality.

17

5 Conclusion

The problem of tracing a large-scale shared distributed store seems intractable
at first glance. We have shown an algorithm that gives an approximation of
the global trace, with none of the drawbacks. This algorithm causes no input-
output nor lock traffic. It opportunistically scans groups of clusters, according
to a locality-based heuristics. The algorithm is independent of any particular
coherence management (it does not assume coherent memory) but does assume
a single writer per cluster. There is no coordination or synchronization between
the application programs (mutators) and the collector. It works even with
primitive programming languages, with no language or compiler changes (but
small programming restrictions are necessary).

We have furthermore shown a version in which all collector messages are
asynchronous; however this version either rests upon or simulates a causally-
ordered communication layer.

We explained our algorithm in the context of a shared persistent virtual
memory containing ordinary memory pointers. Since this is the worst-case
scenario, the same algorithm should be applicable to many other cases, such as
persistent object stores and shared-memory multiprocessors.

An application process bears a cost at the time of binding and unbinding
a datum into memory. The bind time cost is the cost of mapping a copy
of the data, swizzling, and applying a lock. The unbind cost is modifying the
reference map(unswizzling), unmapping, unlocking, and propagating changes.
Swizzling and unswizzling are useful for supporting memory compaction. The
other costs are the unavoidable consequence of sharing.

Acknowledgements

We wish to thank Martin Hampton and Warren Reier for patiently explaining
the requirements of financial applications, and providing the original impetus
for this work. Rich Zippel provided an attentive ear, numerous suggestions,
and moral support. Thanks also to Ken Birman and Robert Cooper for their help
and for the opportunity to do this work. This work benefited from discussions
with Liuba Shrira and Luc Bougé.

References

[1] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison.
An approach to persistent programming. Computer, 26(4):360–365, 1983.

18

[2] Özalp Babaoğlu and Keith Marzullo. Consistent Global States of Distributed
Systems: Fundamental Concepts and Mechanisms, chapter 4, pages 55–93.
Addison-Wesley, ACM Press, second edition edition, 1993.

[3] Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared memory par-
allel programming with entry consistency for distributed memory multi-
processors. Technical Report CMU-CS-91-170, Carnegie-Mellon University,
Pittsburgh, PA (USA), September 1991.

[4] Kenneth Birman, Andre Schiper, and Pat Stephenson. Fast causal multicast.
Technical Report TR-1105, Dept. of Comp. Sc., Cornell University, Ithaca,
NY (USA), April 1990.

[5] Paulo Ferreira and Marc Shapiro. Garbage collection and DSM consistency.
In Proc. of the First Symposium on Operating Systems Design and Implementation
(OSDI), Monterey, CA (USA), November 1994. ACM.

[6] Paulo Ferreira and Marc Shapiro. Garbage collection of persistent objects
in distributed shared memory. In Proc. of the 6th Int. Workshop on Persistent
Object Systems, Tarascon (France), September 1994. Springer-Verlag.

[7] Marc Shapiro, Peter Dickman, and David Plainfossé. SSP chains: Robust,
distributed references supporting acyclic garbage collection. Rapport de
Recherche 1799, Institut National de la Recherche en Informatique et Au-
tomatique, Rocquencourt (France), nov 1992. Also available as Broadcast
Technical Report #1.

[8] Marc Shapiro, Olivier Gruber, and David Plainfossé. A garbage detec-
tion protocol for a realistic distributed object-support system. Rapport de
Recherche 1320, Institut National de la Recherche en Informatique et Au-
tomatique, Rocquencourt (France), November 1990.

[9] Paul R. Wilson and Sheetal V. Kakkad. Pointer swizzling at page fault time:
Efficiently and compatibly supporting huge address spaces on standard
hardware. In 1992 Int. Workshop on Object Orientation and Operating Systems,
pages 364–377, Dourdan (France), October 1992. IEEE Comp. Society, IEEE
Comp. Society Press.

19

