USER RECOVERY AND REVERSAL IN
INTERACTIVE SYSTEMS*

James E. Archer, Jr.t
Richard Conway
Fred B. Schneidertt

TR 81-476
October 1981

Department 6f Computer Science
Cornell University
Ithaca, New York 14853

*This work was supported in part by ARPA under grant 903-80-C-0102 at Stanford and NSF
grants MCS 80-03304 and MCS 81-03605 at Cornell.
+Computer Systems Laboratory, Stanford University, Palo Alto, California 94305
++Department of Computer Science, Cornell University, Ithaca, New York 14853

- *
User Recovery and Reversal in Interactive Systems

James E. Archer, Jr.+. Richard Conway++ and Fred B. Schneider++

' October 29, 1982

Revised: July 4, 1982

ABSTRACT

Interactive systems, such as editors and program development environments,
should explicitly support recovery -- facilities that permit a user to re-
verse the effects of past actions and to restore an object to a prior state.
A model for interactive systems is presented that allows recovery to be de-
fined precisely and user and system responsibilities to be delineated.
Various implementation techniques for supporting recovery are described.
Application of a general recovery facility to support reverse execution 1is
discussed. A program development system (called COPE) with extensive
recovery facilities, including reverse execution, is described.

Keywords: recovery, reverse execution, undo, checkpoint, editor,
programming environments.

*This work was supported in part by ARPA under grant 903-80-C-0102 at Stanford
and NSF grants MCS 80-03304 and MCS 81-03605 at Cormell.

*Rational Machines Inc., 1500 Salado Drive, Mountain View, California 94043
++Department of Computer Science, Cornell University, Ithaca, New York 14853.

l. Introduction

Interactive systems, such as editors and program development enviromment:
allow a user to comstruct and'modify data objects (e.g. documents and programs) in
real time. Since users make mistakes and change their minds, an important aspect of
the design of such systems is support for recovery -- facilities that permit a userx
to reverse the effects of past actions and to restore an object to a prior state.
This capability has always been present in systems that create and then modify a
temporary copy of an object. However, in such systems, the user must anticipate
recovery needs and deliberately save versions of the object to which recovery may be
‘desired. In contrast, our concern here is with general recovery facilities that are

both automatic and convenient. i

There is increasing interest in such facilities. The INTERLISP system included
pioneering work om recovery [16], and some form of umdo command is not uncommon in
more recent interactive systems [1,5,12,13]. While it is probably useful to add
‘facilities for recovery to most interactive systems, a system designed from the
outset with recovery capabilities could also do other things differently. Both the
system and its users could be bolder in their actions if recovery were safe and com-
venient. Such a system could take more initiative in performing actions on behalf
of a user, and a user would be less hesitant to try powerful (and perhaps unfami-

liar) commands.

Recovery has long been important in database management systems [6,7,17]. How-
ever, recovery in database systems is motivated by the possibility of system
failures. Since failures are infrequent events, the corresponding recovery facili-
ties can be expensive both in time and space, and need not be especially easy to
use. Here, we are concerned with a user's recovery from his own prior actions,

which we expect to be a frequent event, so recovery must be convenient and

relatively inexpensive. Nevertheless, some of the techniques we describe are

derived from approaches first developed for use in database management systems.

The paper is organized as follows. Section i presents a model for interactive
systems that allows recovery to be defined precisely and user and system responsi-
bilities to be delineated. Section 3 enumerates various useful restrictiomns on the
types of recovery a user can request. Section 4 describes several implementation
techniques for supporting recovery. An application of a general recovery facility
-- providing support for reverse execution of programs -- is the subject of Section
5. Sections 6 and 7 describe recovery facilities in the two implemented systems.
Finally, Section 8 explores an interesting generalization of the execution phase of

our model.

2. Interactive Computer Systems

Below, we define a model of an interactive computer system. The recovery prob-
lem is then described in terms of that model. While this is not the most gemeral

model imaginable, it is simple and instructive.

2.1. Qbjects and Scripts

Interactive computer systems are used to create and modify information struc-
tures, which we call gbjects. The gtate of such an object at some time t is defined
by the values of its components at time t, possibly including the position of ome or
ﬁore cursors. A user issues ggmﬁangg in order to view or change the state of an
object. The execution of a command causes the display of some portion of an object,
and/or a transformation of the object state. The effects of execution are assumed
to depend only on the state existing when the command is executed; not on the manner

in which that state was established.

The user's role in the interactive process is to comstruct a sequence of com-
mands called a script. The script specifies the transformation of the object from
its initial state Qo to some other desired state Q. The system performs this

transformation by executing the script, which involves executing each of its consti-

tuent commands in the order in which they appear in that script.l

A script is constructed by using various meta-commands. These allow individual
commands to be created, modified, re-ordered, entered into, and removed from the.
script. The execution of meta-commands may involve interaction between the user and
the system (prompts, error messages, etc.). Only the results of these interactions
are stored in the script, not the interactions themselves. Note that the script is
itself a text file, so the meta-commands are merely commands for editing this par-
ticular file. (One could go on to describe meta-scripts and meta-meta-commands, but

it does not serve our present needs.)

2.2. The Interactive Cycle

From time to time the user suspends the construction of a script and offers the
system an opportunity to perform some execution. Later, the user regains control
and resumes editing the script. Thus, the basic interactive cycle has two logical

phases:

1BRAVO [12] also employs a script (called a transcript). However, a script in
BRAVO is intended solely as a way to recover the results of an editing session after
a failure.

(1) Edit: user edits the script;
submission terminates the edit phase.
(2) Execute: system performs some.execution;
control returns to the user when the
execution phase terminates.
This cycle is repeated until the user is satisfied that the script will, upon execu-

tion, produce the desired state Q from the initial object state Qo.

At least in principle the user could complete the script in a single edit
phase, and submit it for execution. In fact, this 'is what occurs in a classical
"batch" system. In an interactive system, since this ;ycle is repeated, the user
can receive feedback from execution that could guide in further modifications to the
script. New commands can be added to Lhe end of the script and, if recovery facili-

ties are present, earlier portions of the script can be changed.

2.3. Execution and Recovery

Consider any two comsecutive cycles in the interactive process. In the editing
phase of the first cycle the user constructs script S consisting of the sequence of
n commands |

C1é Cpi eeed Cpe
S is then submitted for execution, during which S is partitioned into two sequences:
E and P. E is the prefix of S containing commands that have been executed and P is
the remainder of S -- those commands whose execution is still pending. An execution
policy is called complete if after the execution phase P is empty and E=S; other-

wise execution is said to be partial.

Let S' be the script consisting of m commands

that is produced during the next editing phase. "S' also can be viewed as parti-
tioned into two sequences U' and M', where U' is the longest prefix of S' that is
also a prefix of S, and M' is the balance of S'. Thus, U' contains the prefix of §
that is unchanged in S'. Unless M' is empty, at least the first, and possibly
other, commands of M' were modified during the previous edit phase. If S' can be
formed only by appending commands to the end of S, then the script modification pol-
icy is called incremental, and U' will be identical to S. A prefix of S is said to
be committed if the user is prohibited from subsequently changing any of its com-

mands. Note that a committed prefix of S is necessarily a prefix of u'.

Given script S: ¢ C9 C3 eeo C. eos C

Execution results in a

partition? cl c2 c3 oo ci see Cp

T
P - pending commands

E - executed commands

Subsequent editing results
in script S' which can be

It3 . !]
partitioned: < c.2 Cq oo c j e ¢y

L4
[M' - changed commands

U' - unchanged commands

Figure 2.1 Script Model

Any cycle in which E is not a prefix of U' leaves the system in an inconsistent
state: the user has modified some command that has already been executed. Before
the system can proceed to execute S', consistencj must be reestablished. This pro-
cess is called recovery. During recovery the object is transformed to a state that
would have been produced by execution of E' on imitial state QO’ where E' is some
prefix of E and of U'. Note that recovery is never necessary in any cycle where
script modification has been incremental. Similarly, committing E by definition
precludes the necessity of recovery. On the other hand, if script modification is

not incremental, recovery may be required.

It is instructive to contrast our script model with the traditiomal view of the
interactive process. There, each individual command is considered separately; the
user first constructs a command and then submits it for immediate execution. In the
script model, the user repeatedly submits versions of a script, where each version
can differ arbitrarily from its predecessor. Moreover, any execution phase may
require recovery, and may involve execution of more than one command. The tradi-
tional view is a special case of the script model in which script modification is
incremental and execution is complete. Note also that our model cleanly separates
responsibility for script modification from responsibility for execution and
recovery: the system determines E during execution, the user establishes U' during

script modification and the system determines E' during recovery.

2.3.1. Side-Effects of Execution

The execution of certain commands can have effects that are not reflected in
the state of the object. We call these side-effects of execution. In general,
these side-effects can have consequences that are beyond the control of the system.
Hence a system may not be able to recover entirely from the execution of a command

with side-effects.

The most common example of a side-effect is communication of information beyond
the boundary of the system. Once communicated, information cannot be "uncommuni-
cated”, A message directing one to "forget" information previously received does
not result in a state of affairs equivalent to the original message never having
been sent. Receipt of information from outside the system is also a side-effect --
although the system can forget information it has received, the sender may not be
able to forget having sent it. Communication with the script's author might be
exempt from concern in this regard, because as an active participant in the interac-
tive process the author should understand that the validity of previous communica-
tions may be affected by changes made to the script. However, communication with
other parties can cause more difficulty, since they probably will be unaware that
the script has been modified, and may have taken actions based om prior communica-

tion.

The fundamental side-effect of execution is, of course, the passage of real
time. Execution of a command takes time, and recovery takes additional time, s0 no
recovery facility can really restore the universe to a state that existed earlier.
Science fiction enjoys considering the effect of reversing time [8,18]; we must be

content with the more modest goal of restoring an object to an earlier state.

Although side-effects can simply be ignored, this shifts responsibility to the
user, who must either avoid submission of commands with significant side-effects
until such time as their execution will never be subject to recovery, or contrive to
undo these side-effects manually when recovery is necessary. Other strategies

include:

(1) Commitment by the User.
A user could commit a prefix of the script containing commands with side-

effects, thereby relinquishing the privilege of subsequently modifying that

portion of the script. Execution of the committed prefix would be safe, since

recovery would never be required.

(2) Commitment by the System. -

The system could always commit a prefix of S that includes all commands with

side-effects, thereby precluding the possibility of recovery.

(3) Buffer the Side-Effects.
Side-effects could be uncoupled from the object-transforming-effects of execu-
tion by delayingAtheir delivery. Pending side-effects would be part of the
object state, and therefore accessible and reversible. Their actual delivery
would only take place in response to special commands, which of course could

not be undone.

None of these approaches is always satisfactory. The side-effect question

appears to be quite difficult and merits more careful attention.

2.3.2. Session Boundaries and Execution

A gession is an interval of more or less continuous interactive activity --
from logom to logoff. Traditionally, the session has been an important epoch.
Each session is self-contained -- for the first cycle the script is empty; logoff
implies commitment of the entire script, hence at that time the system can execute

commands without concern for side-effects.

However, in several recent systems [1,15] logoff merely signals a temporary
interruption of no great significance. In particular, no commitment or completion
of execution is implied by logoff, and at logom the user is presented with pre-
cisely the same state of affairs that existed at the. time of the last logoff.
Note that this does not deny the existence of significant epochs during the evolu-

tion of a program; rather, it decouples epochs from sessions and gives the user

explicit control over the definition of an epoch.

These different views of a session affect recovery. The traditiomal session
view provides a point (session end) for the system to tidy up matters -- commit,
execute and erase the script, deliver communications, etc. Alternatively when ses-
sions are not significant epochs, the system mst contend with ever-increasing
script lengths and be prepared to cope with modificatioms arbitrarily early in the

script.

3. Modification of a Script

The user's freedom to modify a script might be restricted in various ways. In
Section 3.1 we describe a taxonomy of forms of modification that could be applied to
a script. This is the basis for our Sub;equent discussion of implementation stra-
tegies, but does not necessarily represent the set of primitive actions that should
be exposed in the interface to the user. Then, in Section 3.2 we consider various

recovery commands that might be offered to the user.

3.1. Iypes of Script Modification

For a given script S= Cp3Coi eeei cn‘; recall:

I] if icati

St = c1; cz; ceed cn; c'n+l

That is, S' is formed by appending a new command c'n+1 to S. This means that
U' =S, M' consists of the single new command c'n+l’ and E is necessarily a prefix of
U'. Hence, incremental modification corresponds to the traditional view of an

interactive system and no recovery capability is required.

At the other extreme, the user can be allowed complete freedom in modifying the

script:

U . | modifi .
To form S', S can be modified in any way:
(i) new commands can be inserted at any point;

(ii) existing commands can be deleted, changed or reordered.

Unrestricted modification means that M' and S' could be identical -- e.g. S
could be discarded and S' constructed from scratch. Since there is no restriction
on the relationship between the commands in M' and those in E, recovery may be
necessary in order to execute S'. We say that a system whose recovery facilities
are powerful enough to permit unrestricted modification of S has complete recovery

capability.

Other possibilities exist between these extremes:

(1) Sipngle-truncate
Two types of modification are allowed:

append:

' - . L4 . i i '
S Cys Coi eeed € g Cpd iy

truncate:

st = Cys Coi eeed Cpy

However, trumcate cannot be used on two consecutive cycles.

That is, if trumcate is used to comstruct S', then only appemd is allowed
in the formation of the next version of the script, but trumcate would be allowed
for the version after that. This means that only the most recently appended command
can be deleted. Moreover, since U' always contains €13 Cpi eeei €, a8 2 prefix,
<y is the only element of E that might not also be a command in U'. Therefore,

recovery might be required when <, is deleted from S in forming S'.

10

(2) Repeated-truncate (;mnsa.t.a*)

Two types of modification are allowed:

truncate:

s' = Cy3 Coi weed Cpg

Unlike single-truncate, here trumcate can be repeated as long as S is not
empty. Truncate* is, therefore, substantially more powerful than single-truncate,
in the sense that by performing a sufficient number of trumcates followed by
appends, the user can accomplish any desired modification of S. Truncate* has the
same power as unrestricted modification, although comsiderable work is required to
exercise that power. For example, to make a change in command Cp-2’ first €a® Sa-1°

and ¢ must be deleted, and then c'n_z. Ch-1° and c must be re-inserted.

n-2
Nevertheless, arbitrary modification is possible, so the system must provide com-

plete recovery capability.
*
If truncate were to be implemented, there would likely be a limit on the
number of consecutive trumcates the system could honor. We could describe a par-

ticular implementation as a t:rum:at:ek system, for some integer k. The length of U'

. k . . .
must be at least n-k commands in a truncate system. Single-truncate is a special

case in which k=1,

-11-

(3) Truncate/reappend

An auxiliary script R is introduced:

R = Crl; crz; cees crp

Only S' (and not R) is submitted for execution;
unrestricted modification of R is allowed.

Three types of modification to S are allowed:

append:
st = Cy3 Cpb eeed 13 €3 c'n+l

truncate: move the rightmost command of S to the left end of R.

st = Cy3 Coi eeed €y

R = Cn; Crl; Crz; eced Crp

reappend: move the leftmost command of R to the right end of S.
S' = Cy3 Chs eees C _13 C 3 C
1 2 n-1° ™’ "rl

R = crz; ceesd crp

Truncate/reappend is similar to truncate* with provision to save (in R) fhe
text of commands that have been truncated from S. This is just a matter of comveni-
ence. Truncate/reappend has the same power as unrebstricted modification, but it is
easier to use than truncate*. For example, although a change to command Ch-2 still
requires six script modifications, the last three are simple reappemnds, rather
than re-entry of c'n_z. Ch-1° and c . Truncate/reappend is, in effect, a manual
simulation of unrestricted modification. n trumcate cycles move the entire script
S into R where it can be arbitrarily modified. m reappemd cycles are then
required in order to submit the modified script S'. This is in contrast to unres-
tricted modification where these trumcates and reappemnds are performed invisibly

and automatically by the system.

_12-

3.2. User Commands to Control Script Modification

The simplest interface to recovery facilities is to provide the single (meta-)
command undo. This command would have the same semantics as truncate in single-
truncate modification described above. Several recent systems [5,12] provide this

type of interface, and it may well become fairly common.

Another option would be to give umdo the semantics of truncate in truncate*
script modification, but we know of no system that does this. However, some systems
[13] provide a related facility that might be called block trumcate. The user anti-
cipates recovery needs by means of a checkpoinmt (meta-)command, which a mark to
be placed in the script. Performing an umdo in such a system truncates the script
through the last such mark. Thus, the effect is similar to truncate*, except for

the necessity of anticipating the position of subsequent script modifications.

If the user interface includes a redo (meta-)command as well as umdo, then
truncate/reappend script modification can be provided. The COPE system, which is
described in Section 6, is an example of this. Although such an interface supports
complete recovery, designers of a user interface might elect to provide increased

convenience to the user by including commands such as:

(a) wumndo back to ¢
(b) wuwndo back to c. and append commands ...

(c) wundo back to c. then redo °;

(d) wundo back to c. then redo commands ...

(e) wumdo back to c. then modify commands ... in R and

then redo through cj.

Although each of these modifications is achievable in a truncate/reappend system

with an undo/redo interface, they would be unquestionably easier to accomplish

13

with these higher-level commands.

A user interface might also have a commit command to specify that a prefix of
the script can be committed. Such a command would allow the user to relinquish the

privilege of subsequently modifying that portion of the script.

4. Recovery Strategies

We now turn to methods for supporting recovery. Except for incremental modifi-
cation, implementation of any of the schemes described above requires recovery
facilities. Because recovery strategies are (almost) independent of the form of
script modification allowed, this aspect of the probleﬁ can be discussed in isola-

tion.

4.1. The Complete Rerun Strategy

Conceptually, the simplest recovery strategy is to restore the object to its
initial state QO' thereby undoing the effects of all execution and making E' a null
sequence. Then, S' is executed from its beginning. Of course, this presumes that a
copy of Qo is available. It also assumes that neither efficiency nor response time
is important, since execution times caﬁ become quite large when this approach 1is
used. When recovery is required, response time is a minimum of O(n), where n is the
length of the script, compared to constant response time without recovery. And if
the number of recoveries is proportional to the length of the script, total running

time is O(nz). compared to O(n) without recovery.

The significance of the complete rerun strategy is that it establishes the
feasibility of recovery. Hence, only a concern for improved performance motivates

consideration of other strategies.

-14_

4.2. Full Checkpoint Strategies

During the course of executing S, the system can periodically save the object
state, in anticipation of recovery needs. Such.a copy of an intermediate state is
called a full checkpoint; each full checkpoint Qi is identified with Ei’ the
sequence of commands that were executed to transform the object from Q0 to Qi’
Recovery then involves finding some sequence E, (preferably the longest) that is a

prefix of U' for which there is a checkpoint and restoring the object to that state.

An extreme version of this strategy would be to make a checkpoint after execut-
ing each command. Regardless of the change the user had made, there would always
exist a "perfect™ checkpoint. That is, there would always be a checkpoint such that
no command in U' need be rerun to execute S'. However, an enormous amount of time

and space is required to produce and store these checkpoints.

More practical strategies involve less frequent checkpoints. The determination
of a good checkpoint interval is essentially a matter of minimizing the expected
cost in terms of the size of a checkpoint, the expected re-execution time, and the

expected frequency of recovery.

Note that in the strategy described above, multiple checkpoints must be saved
-- a subsequent checkpoint does not replace a previous one. However, once a check-

point corresponding to a particular sequence Ej has been used in recovery, the

checkpoints associated with any sequences of which Ej is a prefix can be discardedz;
checkpoints associated with all sequences that are themselves prefixes of Ej must be
retained since they may still be needed for future recoveries. Note also that when

script modification is limited to single-truncate, at most one checkpoint need be

1Although checkpoints corresponding to supersequences of E. are not needed for
recovery they may be useful to avoid the re-execution of comman&s. hence they may be
worth saving.

15

retained, because only the most recently appended command can be deleted. Thus, a
single checkpoint taken prior to execution of < will always be sufficient.
Undoubtedly, this is why single-truncate facilities are more popular (among imple-

mentors) than more powerful schemes.

An interesting variation of the checkpoint strategy involves storing only a
small number of checkpoints. Each time a new checkpoint is saved, some prior check-
point is discarded. The problem is to optimally and dynamically schedule the check-

points.

4.3. Inverse Command Strategies

Both the full checkpoint and complete rerun strategies rely on the existence of
a copy of some prior object state. To recover, the current state is discarded and
replaced by a prior state, after which some commands in U' may need to be rerun.
Alternatively, recovery could be accomplished by starting from the current state and
executing "inverses" of the commands in E. Although this might intuitively seem

like the most natural way to undo commands, there are difficulties with it.

Many commands do not have inverses, because they do not implement one-to-one
mappings. For example, assignment ordinarily overwrites one value with a new one.
Hence, there may be no single context-independent command that performs the inverse
of an assignment. Commands comparable to "X := Y" are the rule; commands comparable
to "N := N+1"™ are fortuitous exceptions. Consequently, to execute the inverses of
such commands, past states must be preserved. While this is not impossible, it is

effectively equivalent to the strategy described in the next section.

4.4. Partial Checkpoint Strategies
Execution of an individual command typically transforms the state of only a few

components of an object. Consequently, in order to be able to later undo the

-16_

effects of a command, one need only save the states of those components that will be
changed by execution of that command. This approach allows the effect of a command
to be reversed, without determining the inverse of the command (although a partial
checkpoint could be considered an encoding of a command inverse). Moreover, it

represents a common mechanism capable of reversing any type of command.

There is a continuum of partial checkpointing strategies, ranging from full
checkpointing through saving just the components that are changed. Under some cir-
cumstances it may be simpler to save larger fractions of the object state than is
theoretically necessary. For example, when an object is naturally divided into sec-
tions (such as pages or fixed blocks for a file system) it may be more efficient to
save entire sections in which components have been changed than to isolate and save
only the individual components. An example of such an implementation is described

in Section 6.

Recovery using partial checkpoints requires that consecutive checkpoints be
restored in the opposite order of their creation. It is conceivable that the aggre-
gate cost of performing a long sequence of such restorations could exceed that of
full checkpointing, in either space or time. However, typically the depth of
recovery will be a small portion of length of the full script and the ratio of size
of a full checkpoint to a partial ome is very large, so partial checkpointing will

be much more efficient than full checkpointing.

5. Reverse Execution of Programs: An Application of Recovery

The possibility of running a program backwards has long been intriguing. When
testing a program, if trouble is encountered it often would be useful to be able to
reverse the direction of execution and search for the cause. True reverse execution

requires the ability to construct and execute the inverse of individual statements

..17_

'(assignment. for example) as well as the ability to retrace the forward flow of con-
trol. Although not yet commonplace, this capability has been demonstrated in
several systems [3,10,15,19]. Below, we describe how the same result can be

achieved using a general recovery facility.

In an integrated program development enviromment it is usually possible to exe-
cute the object (a program) being manipulated. A script then contains various forms
of execute commands calling for execution (rather than modification) of the
object. Since the program is itself a form of script, the effect of its execution
is to cause transformations on some set of files (objects). If we view these files
simply as components of the basic object, then execute: commands need not have spe-
cial status, and our previous discussions of modification and recovery apply to exe-

cution as well as editing of a program.

In particular, in such systems there is usually a simngle step form of exe-
cute to execute only the next statement of the program. Undoing a single step
command is equivalent to reversing the execution of a single statement. This means
the general recovery facility provides reverse execﬁtion -- and does so without
extra machinery for its implementation or extra facilities for the user to master.
As a practical matter, it is easier for‘the user (and the system, as well) to con-
trol execution in increments larger than a single statement. Hence, some form of
step(j) command is often provided, allowing at most j statements to be executed.
(Execution might terminate or pause in fewer than j statements for any of a number
of reasons.) The user varies j during testing. Undoing step(j) reverses execution

in the same increments as it advanced.

This form of reverse execution is available in the system described below.

-18-

6. The COPE System: An Implementation of Iruncate/Reappend

COPE [1,2] is an integrated program development enviromment consisting of a
syntax-cognizant editor, an iﬁteractive execution supervisor and a file system. It
offers what is probably the most extensive recovery capability of any current
development environment. In the terms defined above, COPE allows truncate/reappend
script modification, and implements recovery by partial checkpointing. Command exe-

cution is complete: after each cycle E=S.

6.1. The User Interface in COPE

Our goal in the design of the user interface to the recovery facilities in COPE
was that it be easy to understand. COPE provides truncate/reappend script modifica-
tion. There is a special file called the log, which contains the concatenation of
the S and R scripts, and a log cursor that points to the last command in S, e The
log is displayable like any other file, and editable except that the § portion is
protected from modification. A permanent area of the display screen, called the
undo window, displays the text of c,» 8O the previous command is always visible

without the necessity of displaying the complete log.

Commands are constructed in another screen area called the entry window. The
usual meta-commands (imsert, delete, tab, etc.) are available to compose a com-

" mand in this window.

The append, umndo and redo commands are defined in terms of the log, its

cursor, the entry window and the undo window:

(1) uwnmdo undoes execution of c¢_, moves the log cursor up (towards
the beginning of the log) bg one command (shifting that command
from S to R), copies the previous contents of the undo window into
the entry window, and displays the new command pointed to by the
log cursor in the undo window.

(2) redo re-executes the first command in R, moves the log cursor

-19-

down (toward the end of the log) by one command, and displays in
the undo window the command now pointed to by the log cursor. The
entry window is unaffected. (Since the first command in R may have
been changed this may not, strictly speaking, be re-execution of a
command previously executed.)

(3) append inserts the command from the entry window into the log
immediately below the cursor, clears the entry window, moves the
cursor down one position (to the new command), and displays the new
command in the undo window.

Execution of these commands is illustrated in Figure 6.l.

The user can display the entire log at any time, and must do so in order to
edit the R script. However, the presence of the undo yindow means that in most cases
undo can be used without first displaying the log. No comparable redo window is
provided because screen space is limited apd redo is much less frequently used than

undo.

In COPE, programs are executed under control of a diagnostic supervisor. Exe-
cution and development are closely coupled so the user can move easily between these
phases; Even partially developed programs can be executed (until an unexpanded
non-terminal symbol is encountered). The COPE recovery facility allows reverse exe-
cution of programs, as described in Section 5. Typically, execution proceeds one
output window-full at a time, since execution is automatically halted each time the
output window of the screen is filled, unless halted before filling the output win-
dow by an event such as execution of an unspecified program element or some other
runtime error. Consequently, umdo of execute usually returns the system to the
state that existed at the beginning of the last window of output. This appears to
be a convenient increment for reverse execution. It is still too early to conclude
how useful this reverse execution really is, but it has certainly intrigued everyone

who has tried COPE.

_20-

A
S c undo
n L
c window
n-1
Log Cursor c ,
o0——> n \
Cr A
1
c i
T, R c entry window
. \\ 4

/—_/
/—\ undo
Log Cursor @ Cn—l undc? 1. undo window to entry winc
window .
O > 2. Log Cursor up
C 3. change undo window
%é’% > n
Cr
1
C f/ CJ' entry
T2 n window
i,
Figure 6.1

undo/redo in COPE

-20a-

255555

Log Cursor

o——

Log Cursor

o—>

@/ b

Figure 6.1
(cont)

undo/redo in COPE

-20b-

undo
window

entry
window

undo
window

entry
window

redo

1. Log Cursor down
2. change undo window

3. execute C
|

aEgend

1. insert entry window
2. Log Cursor down

3. change undo window

6.2. Implementation of Recovery in COPE

Implementation of the COPE recovery capability was remarkably straightforward,
using partial checkpointing within the-file system. COPE uses a single file system
to serve both the user and the implementation. The user explicitly generates files
for procedures, input data, and results. The system implicitly generates files for
data supplied interactively during execution and for screen output produced during
execution. In addition, all of the tables, stacks, etc., used by the editor, the
parser and the execution supervisor are implemented as files; even output to the
screen is directed to a file, from which certain window segments are selected for
display by a screen manager. Everything that goes on in COPE is reflected (omly) in

changes to some file.

Each file consists of a sequence.of fixed-size blocks. Whenever any block is
changed, a complete new copy of the block is saved, without overwriting the previous
version. (Both primary and secondary storage are viewed as a single-level store,
and blocks are treated the same way whether they happen to be in méin memory or only
in the backing store.) This means that the total effect of executing a command is
reflected by a sequence of changes to blocks, which can be represented as a sequence
of pairs of block ideﬁtifiers naming the old and new versions of each block changed.
This information is stored in the log, interleaved with the text of commands whose
execution is thus described. The block list is never displayed to the user, how-

ever.

Recovery is then easily accomplished. Each umdo causes the blocks changed by
execution of c to be restored to their previous states and this portion of the

block list to.be deleted from the log.

Initially, all the space allocated to a COPE file system is on an internal

free-list (in blocks). New blocks are obtained from this free-list as files require

21

additional space and as blocks are changed. The log grows continually as commands
and the corresponding block changes are recorded. Eventually the free-list is
exhausted, and further demands for space are met by reclaiming the old versioms of
blocks changed by the earliest command in the log. This results in commitment of
that command, so its text and block list are deleted from the log. In effect, dur-
ing normal steady-state operation the recovery mechanism uses all the space avail-
able to COPE that is not used by other files. (Thus, the log serves as an internal
free-list; to the outside world there is no apparent free space.) Consequently, the
depth to which the system is capable of recovering depends entirely on the amount of

space available for outdated copies of blocks and for the log.

During editing the user should seldom perform more than a few consecutive
undos, so it is unlikely that recover& will be thwarted by encountering the current
limit of the log. However, in reverse execution the user may backtrack over a long
sequence of execute commands, and in so doing might reach the limit. There also
tend to be more block cﬁanges per command duringAexecution than during editing,

which has the effect of reducing the recovery capacity during execution.

This implementation has the additional virtue that the entire mechanism is con-
centrated in the single module that implements the file system. Since all system
activity is reflected in the file system, the recovery mechanism is capable of undo-
ing anything the system does, yet it does not intrude upon any other module of the

system.

6.3. Automatic Error Repair in COPE
The recovery facilities in COPE have an interesting interaction with another

major aspect of the system. In addition to providing a vehicle for exploring

recovery facilities, COPE was intended to allow exploration of automatic error

-22-

repair in an interactive enviromment. In the past, automatig repair has been pri-
marily associated with batch systems [4]. It has been argued that such a facility
would be unnecessary in an interactive system, where the user is immediately avail-
able and can be called upon to make his own repairs. The counterarguments to this
are that (a) repair in this context can be viewed as a suggestion -- one the user
could easily reject if inappropriate, (b) a syntactically valid and complete segment
of program is often more informative than an error message, and (c) if the system
can make a plausible repair, it is counterproductive to require the user to do so.
Just because a user is accessible does not necessarily mean a system should be less
helpful than it might be. This position has been explored in PL/CT [14] and INTER-
LISP [16], but is carried much further in COPE. Repair in COPE is automatic, ines-
capable, applicable throughout the system, and quite ambitious in the repairs under-

taken.

While COPE is not yet in productive service, initial experience with a proto-
type implementation suggests there is important interaction between the recovery and
repair facilities. The availability of simple and safe recovery encourages users to
be bolder in exploiting the repair capability. Users deliberately abbreviate
entries without always being sure what the system's response will be, secure in the
knowledge that they can readily umdo the result, expand their entry, and try again.
It seems that the repair capability is much more frequently exercised on such deli-
berate "errors" of abbreviation than on inadvertent mistakes. The result is a truly
interactive and cooperative program generation process -- quite different from ordi-
nary text entry. The interaction of extensive repair and simple recovery appears to
be synergistic, and it fundamentally changes the way this program development

environment 1is used.

-23-

The recovery capability also had an important effect on the choice of algo-
rithms for automatic error repair in COPE. Confident that user recovery from an
inappropriate repair is simple and safe, COPE attempts more ambitious repairs than

would otherwise be prudent. This repair facility is described in detail in [2].

1. Recovery and Repair in INTERLISP

The pioneering implementation of user recovery facilities is part of INTERLISP
[16], a program development environment for the LISP language. INTERLISP maintains
a history list of commands as part of the "programmer's assistant™. Although the
objective is the same, there is a significant difference between this history list
and our script concept. A script represents a modifiable specification of a
transformation; a history list is a literal record of the commands that were submit-
ted. Therefore, although an INTERLISP user can undo the effects of commands that
have been executed, the history of what was submitted and executed cannot be

changed.

undo and redo are the basis of recovery in both COPE and INTERLISP, but their
semantics are quite different in the two systems. In INTERLISP umdo is a command
rather than a meta-command so it is itself appended to the history list. Its execu-
tion causes the reversal of the effect of the execution of some other command(s).
Not only can the INTERLISP umdo be used like the COPE umdo -- to undo the execu-
tion of the previous command -- but a user can specify that any subsequence of the
history list be undone. If a suffix of the history list is specified, the effect is
like a sequence of COPE umndos. However, when an internal subsequence is undome, it
can be difficult to anticipate or even understand the object state that will be pro-
duced. Moreover, since undos themselves can be present in the history list, a
sequence to be undone can include one or more umdos, which can be confusing to say

the least.

-24_

The redos in the two systems are also quite different. The COPE redo applies
to commands that have previously been undone, while the INTERLISP redo is com-
pletely independent of umdo. It is effectively.just a "repeat™ or "copy" command,
which appends to the history list a copy of commands that are already present at an

earlier point.

Appending commands to the history list corresponds to incremental modification
in the script model. However, treating undo and redo as commands with arbitrary
subsequences of the history list as arguments gives INTERLISP more power than unres-
tricted script modification. Undoing an internal subsequence of the history list
represents a form of recovery that cannot be described in terms of our script model.
One indication of this extra power is the fact that INTERLISP can simulate the COPE
forms of undo and redo, while COPE cannot simulate the INTERLISP commands. The
immutable history list and the modifiable script are distinctly different models.
The history list model requires greater sophistication of its users, and offers
greater flexibility, but unfortunately it also'provides ample opportunity to get in
trouble. However, it is hardly surprising that facilities in a development system

for LISP would be designed for a sophisticated user community.

It is probably more than coincidental that INTERLISP also offers automatic
error repair. Although to contrast INTERLISP's DWIM facility with repair in COPE is
beyond the scope of this paper, the interaction between repair and recovery in

INTERLISP is notable, and reinforces the effect observed in COPE.

8. Generalization of the Execution Phase

The separation of script modification from execution and recovery allows con-
sideration of alternative models for execution without perturbing the user's view of

the process. Up to this point, we have considered only execution that is complete

-25-

(E=S), and sequential (commands are executed in the order they appear in the
script). Relaxation of these restrictionms could yield performance improvements by

reducing the frequency or severity of recovery effort.

The recovery problem is reduced by deferring the execution of as much of S as
possible for as long as possible, since commands that have not been executed never
have to be undone. For example, consider partial sequential execution. In each
cycle, E is a prefix of S. Recall that U' is the prefix of S that is unchanged in
the construction of S'. If E is a prefix of U', then no comman§ changed has been
executed -- hence no recovery will be required. The difficulty is that deferring
execution of commands in S might deprive the user of useful side-effects -- feedback
from execution of the script -- thereby negating the principal virtue of the
interactive process. Consequently, care ;mst be taken to ensure that all commands
that have useful side-effects are executed. Note that commands that can raise an
error condition must be considered as potentially having side effects. Hence, the

number of commands that are assuredly free of all side-effects may be small.

A more suitable policy is, therefore, partial non-sequential execution. Under
such a policy the system is allowed to execute commands in a different order from
that in which they appear in S. This makes it possible to defer execution of "dif-
ficult" commands, yet still provide complete execution feedback to the user. Of
course, in any non-sequential execution, the semantics of the script must be
preserved. That is, the system must be limited to execution schemes for which the
final state of the object is identical to the state that would be produced by com-
plete sequential execution of the script. In general, it can be difficult to
characterize allowable executions, so the effort to manage non-sequential execution
may be greater than the recovery effort it seeks to avoid. Nevertheless, there are

special cases that are easily identified and managed, so the question warrants

..26-

further investigation. These implementation issues seem to be closely related tc

"lazy evaluation™ [9].

Another approach to partial execution is tg partially execute individual com-
mands. For example, consider a command that transforms many components of the
object, only a few of which will be immediately displayed to the user. The system
might postpone transformation of other compoments until they are to be displayed, or
until their state affects the transformation of some component that will be
displayed. Again, the user would have the illusion of complete execution, while the
system would have the advantage of reducing potential recovery effort by deferring

execution.

9. Conclusions

General recovery is a facility whose time has come. It is a practical way to
capitalize on the increasing economy of computer cycles relative to the cost of user
time. Users are fallible and will continue to be so no matter how well-engineered
computer interfaces may be, so the necessity of recovery is imescapable. Ad hoc
recovery by the user is slow, expensive and unreliable; automatic recovery by the
system can be convenient, reasonably economical, and reliable. Moreover, user fal-
libility is not just a characteristic of neophytes that is overcome with experience.
The nature of errors may change with experience, but their occurrence does not.
Therefore, automatic recovery should be seriously considered in any interactive sys-

tem, regardless of its purpose or the expected sophistication of its ucers.

Recovery capability should not be viewed as an isolated characteristic. If
automatic recovery is integral to a system design from the outset, its designers can
be bolder in other regards. Its users, too, can be more courageous in their

actions, secure in the knowledge that safe and convenient recovery is always possi-

27

ble. For example, recovery allows systems to accept and execute commands that are
less than complete and correct -- in effect, to propose repairs that the user can

either accept or reject.

A general recovery facility can apply to execution of objects, as well as their
construction. This can provide support for reverse execution of programs, which is
a powerful diagnostic tool. There are substantial adv;ntages to both user and
implementor in providing a single mechanism capable of recovering from editing

errors and of executing programs in reverse order.

The feasibility of general recovery has certainly been demonstrated, especially
in INTERLISP and COPE, but also in other contemporary éystems. It is difficult to
give quantitative estimates of the performance penalty incurred by support for
recovery facilities, since this depeﬁds on many factors. However, we can report
that with a hospitable file system such as the one in COPE the cost is negligible -~
both for implementation and execution. Our experience suggests that the partial
checkpoint strategy is dominatingly attractive and should (at least) be considered

for any implementation.

Our script modification model appears to be a comnvenient vehicle with which to
describe recovery facilities. It seems preferable to the approach in INTERLISP
where the history list is immutable, and undo and redo are commands that are them-
selves appended to the list. Even so, the script model may be an unnecessarily
flexible way to describe such facilities to a user. Similarly, unrestricted modifi-
cation is a standard against which to judge particular facilities, but it seems too
powerful and potentially confusing for gemeral use. A user could too easily make a
change early .in a script, without fully comprehending how the execution of later
commands would be affected. On the other hand, a truncate/reappend system provides

effectively the same power, in a form that is easily understood and used. While a

-28-

single-truncate system may suffice in many cases, the implementation of
truncate/reappend is not much harder than single-truncate so it seems pointless to

compromise.

The execution phase of our model can be gemeralized to admit the possibility of
non-sequential and partial execution of commands. The separation of script modifi-
cation from execution means that neither of these would affect the user's view of
modification or recovery. Conceivably, such generalizations of execution could
reduce the number of situations in which recovery is required, or the difficulty of

performing recovery when it is necessary.

The recovery facilities in COPE and other recent systems are immediately and
overwvhelming attractive to users. These systems demonstrate that implementation of
recovery facilities is not prohibitive, so .it would be reasonable to expect many
future systems to have comparable facilities. We are currently investigating the
feasibility of including an extemnsive recovery facility in a document preparation

system.

Acknowledgements

We gratefully acknowledge the many helpful suggestions provided by our colleagues
Alan Demers, David Gries, Dean Krafft, Tim Teitelbaum and Steve Woroma. We also
appreciate the many useful comments from the referees.

References

1. Archer, J. E., Jr., and R. Conway, "COPE: A Cooperative Programming
Environment™, TR81-459, Dept. of Computer Science, Cornell University,
June 1981.

2. Archer, J. E., Jr., "The Design and Implementation of a Cooperative Program
Development Environment™, PhD Thesis, Dept. of Computer Science,
Cornell University, 1981.

3. Balzer, R., MEXDAMS-EXtendable Debugging and Monitoring System", AFIPS Proc.
V.34 (sJcc) 1969, 567-580.

4, Conway, R., and T. Wilcox, "Design and Implementation of a Diagnostic Compiler

for PL/I", Communications of ACM, Vol. 16,3 March 1973, pp.169-179.

-29-

5. Good, M., "Etude and the folklore of user interface design"™, SIGPLAN/SIGOA
Symposium on Text Manipulation, SIGPLAN Notices, Vol. 16,6 June 1981
PpP.34-43.

6. Gray, J., Notes on data base operating systems, in Qperating Systems
An Advanced Course, Bayer et al, ed. Springer Verlag, 1979, 393-48l.

7. Gray, J., P. McJcnes et al, "The Recovery Manager of the System R Database
Manager", Computing Surveys, Vol. 13,2 June 1981, pp.223-242.

8. Heinlein, R., A Door into Summer, Gregg Publishers, 1979.

9, Henderson, P., and J. H. Morris, Jr., "A Lazy Evaluator™, Proc. of 3rd ACM
Symposium on Principles of Programming Languages, January 1976, 26-45.

10. Hodgson, L., and M. Porter, "BIDOPS: A bi-directional programming system".
Dept. of Computer Science, Univ. of New England, Armidale, N.S.W.,
Australia, 1980.

11. Kohler, W., "A Survey of Techniques for Synchronization and Recovery in
Decentralized Computer Systems", Computing Surveys, Vol. 13,2
June 1981, pp.l149-184.

12. Lampson, B. W., "BRAVO Manual", Alto User's Handbook, Xerox PARC, 1978.

13. Medina-Mora, R., and P. Feiler, "An Incremental Programming Enviromment",
I1EEE Irans on Software Engineering, Vol. SE-7, Sept. 198l, pp.472-48l.

14, Moore, C., S. Worona and R. Conway, "PL/CT - A Terminal Version of PL/C",
Dept. of Computer Science, Cornell, 1975.

15. Teitelbaum, T., and T. Reps, "The Cornell Program Synthesizer: A syntax-
directed programming enviromment", Communications of ACM, Vol. 24,9
Sept . 1981 » ppo 563"573-

16. Teitelman, W., "INTERLISP Reference Manual"™, Xerox PARC, December 1975

17. Verhofstad, J. S. M., "Recovery Techniques for Database Systems", Computing
Surveys, Vol. 10,2 June 1978, pp.167-196.

18. Wells, H., "The Time Machine" in Seven Famous Novels, Knoph, 1934.

19. Zelkowitz, M., "Reversible Execution as a Diagnostic Tool", PhD Thesis, Dept.
of Computer Science, Cornell Umiversity, 1971.

30

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif

