*
FINDING REPEATED ELEMENTS

J. Misra+

David Gries++

TR 82-505
July 1982

Department of Computer Science
Cornell University
Ithaca, New York 14853

*
This work was supported under Air Force grant AFOSR81-0205 A at Austin and
NSF grant MCS81-03605 at Cornell.

+University of Texas at Austin

.H
Cornell University

Finding Repeated Elements

J. Misra
. . .t
University of Texas at Austin

David Gries
Cornell University+

July 1982

Keywords Majority detection, repeated elements

Abstract

Two algorithms are presented for finding the values that occur more than nfk
times in array b[0:n-1]. The second algorithm requires time O(n*log(k))
and extra space O(k). We prove that O(n*log(k)) is a lower bound on the
time required for any algorithm based on comparing array elements, so that the
second algorithm is optimal. As special cases, determining whether a value
occurs more than n%2 times requires linear time, but determining whether
there are duplicates —the case k=n — requires time O(n*log(n)).

The algorithms may be interesting from a standpoint of programming metho-
dology; each was developed as an extension of an algorithm for the simple case
k=2,

1. Introduction

Given is an array b[0O:n-1], where n>0, and an integer k, 0<k<n. We
consider the problem of finding the values that occur more than n#k times in
b. The more general problem of finding values that occur more than r times,
for 0<r<n, can be solved in terms of the original problem by taking k as
the smallest integer satisfying ntk<r. Thus, if n=10 and r=4, use
k=3; find the values that occur more than 3, instead of 4, times; then count
how many times each actually occurs in b.

We begin by considering the case k=2. The following algorithm identifies
a value v: upon termination, no value except Vv occurs more than n#2
times, but the occurrences of v in b must be counted to determine whether
v occurs more than n#%2 times. The algorithm, which is linear in n,

in (11,
This work was supported under Air Force grant AFOSR81-0205 A at Austin and NSF
grant MCS81-03605 at Cornell.

(1) i, c:=0,0;
do i#n ~»
if c#0 A v=b[i] + c, i:= c+l, i+l
0 c20 A vzb[i] + c, i:= c-1, i+l
0 c=0 + c, i, vi= c+l, i+l, b[i]
£i
od
{only v may occur more than n#2 times in b[0:n-11}

The algorithm may be understood most easily using the following loop invari-
ant.

P: 0sisn A 0<c A even(i+c) A
v occurs at most (i+c)$%2 times in b[0:i-1] A
each other value occurs at most (i-c)%2 times in b[0:i-1]

P 1is true after the initialization i, c:= 0,0, no matter what value is ini-
tially in v, because b[0:i-1] 1is empty. It is easy to see that the first
two alternatives of the alternative command of the loop body maintain the
truth of P; each increases one of (i+c)%¥2 and (i-c)%#2 and leaves the
other unchanged, depending on whether v =b[i].

Now consider the third alternative. Suppose the guard is true: c¢=0.
Then (i+c)#2=(i-c)#2=i. Further, i 1is even and no value occurs more than
i#2 times in b[0:i-1]. Therefore, the only value that can occur more times
in b[0:i] is b[il. From this, it follows that execution of the last
guarded command maintains the truth of P.

Upon termination, the truth of P and falsity of the loop guard imply the
desired result. Termination is obvious, using the bound function n-i.

This algorithm and its invariant led us to develop two different algorithms
for the case n#k instead of n%2. Both algorithms determine a set t of
values that may occur more than nfk times in b. To determine whether they
do occur more times, one must actually count the number of occurrences in b
of each one. This counting can be performed in time O(n*log(ltl).

2. The First Algorithm

Given k and n, O<k<n, and array b[0:n-1], we want to find the
values that may occur more than n#k times in b. We formulate the result
assertion of the algorithm as follows. Execution is to store in a set vari-
able t a set of pairs (v, c) such that

R: (Vvsc: (v,c) et: v occurs at most ctk times in b[O:n-1] A
c¢c>n A k divides ¢) A

no other value occurs more than n#tk times in b

To develop the algorithm, we choose an invariant P that weakens result
assertion R in a useful manner, using solution (1) for insight. P was
developed after several different trials. It required the replacement of con-
stant n by a variable i and the introduction of a fresh integer variable
S.

P: 0si<n A
(Vvsc: (Vvsc) et: v occurs at most ctk times in b[0:i-1] A
c>i A k divides c) A
s20 A k divides i-s A
any value not the first component of a pair in t
occurs at most (i-s)¢k times in b[0:i-1]

A discussion follows the algorithm:

(2) i, s, t:= 0,0, {};
do i#n »
Let j be the index of a pair v.,c. in t
satisfying v.=b[i], if no such pair exists let j=0;
if j=0 A s2k-1 =+ i,s:= i+l, s-ktl
0 j=0 A s<k-1 > i,s, t:= i+l, s+l, tu {(b[i], i-s+k)}
0 j=o0 +i,s,c.:= i+l, s+l, c.+k
R J J
£i;
Delete all pairs (v.,c.) from t for which

cj= i3 if any are deleted, set s to 0
od

It is clear that the initialization establishes P, that the algorithm ter-
minates, and that upon termination the result holds (if P is true). It
remains to show the invariance of P wunder execution of the loop body.

Consider the first two alternatives of the alternative command; j=0
means that b[i] is not the first component of a pair in t. Hence, there is
no need to change the counts c¢. of components in t when i is increased
by 1. However, s mst be decreased by k-1 so that the expression (i-s)#k
is increased by 1. The latter may be done only if s remains 20. If
s <k-1, then b[i] might occur itk+1 times in b[0:i], so bl[i] must be
placed in t, along with the maximum number of times it might occur. This is
the purpose of the second alternative.

In the case of the third alternative, b[i] 1is the first component of a
pair (v.,c.) in t. Hence, v. occurs one more time in b[0:i] than it
does in "b[0:i-1], and <c. 1is increased accordingly. As 1 is increased,
s 1is increased to keep the value of (i-s)#k the same.

The third statement of the loop body deletes certain members from set t,
so that pairs (vj, cj) of t satisfy cj >i.

The execution speed of this algorithm depends on the size and implementa-
tion of set t. Unfortunately, we have been unable to determine a useful
upper bound on the size of t. We conjecture that it is a function of k,
and not of i. We also conjecture that t becomes its largest if b has
roughly the following form: it ends with k different values, preceded by
k#2 different values, each ocurring twice, preceded by k%3 different
values, each occurring thrice, etc. Hence |t| might become as large as
0(k*log(k)).

3. TIhe Second Algorithm

The second algorithm rests on some extremely simple theory. Consider a
bag —i.e. a collection of elements, with duplicates possib1e+—— and con-
sider the operation of deleting k distinct elements from it. This opera-
tion may be performed several times. A k-reduced bag for bag B 1is a bag
derived from B by repeating this operation until no longer possible. Note
that the k-reduced bag is not unique. For example, for bag {1,1,2,3,3}, one
can arrive at three different 2-reduced bags using 5 different deletion
sequences:

{1,1,2,3,3}, then {1,3,3}, then {3},
{1,1,2,3,3}, then {1,2,3}, then {1},
{1,1,2,3,3}, then {1,2,3}, then {2},
{1,1,2,3,3}, then {1,2,3}, then {3}, and
{1,1,2,3,3}, then {1,1,3}, then {1}

Suppose bag B has N elements. The operation of deleting k distinct
elements can be performed at most N#k times, for after that B can contain
at most N mod k elements, which is <k, Hence, the values that don't
occur in a k-reduced bag for B can not occur more than N#¢k times in B,
—they have been deleted at most N#k times and no longer appear. This leads
directly to a simple theorem:

(3) Theorem. The only values that may occur more than N#k times in bag B
of size N are the elements in a k-reduced bag for B. 0

Considering b[0:n-1] to be a bag, we use theorem (3) to develop an algo-
rithm as follows. The result assertion is

R: t is a k-reduced bag for b[0:n-1]

so that upon termination t will contain at most k-1 distinct values that
may occur more than Ntk times in b. The invariant of a loop is found by

a variable 1 and introducing a second variable d
+We use set notation for bags, e.g. bu {v} denotes the bag consisting of the
elements of bag b together with the element v.

for efficency purposes:

P: 0Sisn A
t is a k-reduced bag for b[0:i-1] A
d is the number of distinct elements of t

The algorithm is then written as follows; it should be compared to algorithm
(2), and it should need no further explanation:

(4) i,d, t:= 0,0, {};
do i#n >
if b[ilét A d<k-1 » t,d:= tu {b[i]}, d+1
0 blilét A d2k-1 » t,d:= tu{b[il}, d+1;
Delete k distinct elements
from t and update d
0 bfilet + t:= tu {b[i]}
fi
od

For algorithm (2), we were not able to determine the size of set t. In algo-
rithm (4), t has at most k distinct elements, and it has at most k-l
distinct elements before and after each iteration. We will subsequently show
how to implement t so that, in total, the operations performed on it take no
more than time O(n*log(k)).

Note the similarity of the algorithms; essentially, both use a bag t of
elements and both have the same structure. It is only in the definition of t
that they differ. Both were developed by trying to extend the algorithm for
the case k=2 given in the Introduction.

4. Implementing the Bag t of Algorithm (4)

Bag t of algorithm (4) has at most n elements and d distinct ele-
ments, d<k. The operations to be performed on t and d are:

1. t:= {}. Performed once.

2. Search t for a element v. Performed n times.

3. Insert an element into t. Performed at most n times.

4, Delete k distinct elements from t and update d —performed at
most n#k times and only when t has exactly k distinct elements.

We implement bag t wusing an AVL tree T with d nodes; each node is a
pair (v.,c.), where v. 1is one of the distinct elements of t and cj is
the number of times vj occurs in t. This requires 0(k) space.

Operation 1 calls for initializing T to an empty tree —a constant-time
operation. Operation 2, searching for an element in t, Trequires time
0(log(k)), since T has at most k mnodes. In total, operation 2

contributes time O(n*log(k)). Operation 3, inserting an element into t,
calls for finding the value in a node j of T and adding 1 to c., or, if
the element is not in t, adding it to T with count 1. In any case, the
time is no worse than 0(log(k)), and operation 3 contributes time
0(n*log(k)).

Operation 4, deleting k distinct elements from t when it has exactly k
elements, calls for subtracting 1 from count c¢. for each node j of AVL
tree T and, if c. becomes 0, deleting node j from T. This takes time
at most O(k*log(k)f. Since operation 4 is performed at most n¥k times, the
total time spent in operation 4 is O((ntk)xkxlog(k)), which is O(n*log(k)).

Hence, the total time spent in operations dealing with bag t is
0(n*log(k)).

5. on the Complexity of Detecting Repeated Elements

We begin by introducing a class of algorithms, called decision-tree algo-
rithms, for determining whether any value occurs more than n¥k times in
b[0:n-1]. Each decision-tree algorithm consists of algorithm (5) (given
below), together with a decision tree, which controls its execution. A deci-
sion tree D 1is a finite tree with the following characteristics:

1. Every nonterminal node of D has a 1label (i, 3)» where
0<i<n,0<j<n. The label is used to refer to elements b[i] and
b[j]-

2. Every nonterminal node has three branches, with labels <, = and >.

3. Every terminal node has an label YES or NO.

4, Given b[0:n-1], execution of algorithm (5) begins with ¢ being the
root of the tree and terminates with ¢ Dbeing a terminal node; the
label of ¢ 1is YES if some value in b occurs more than n%k times
and NO otherwise.

(5) c:= root of D;
do c is a nonterminal node with label (i, j) =
Suppose b[i]l opb[j], where op is one of the
operators <, =, >, and let x be the son of
node c¢ that is labeled op. Execute <c:= X
od

Execution of algorithm (5) begins at the root of the decision tree and
proceeds along some path to a terminal node, and the label at the terminal
node indicates whether some value occurs more than nfk times in b. The
path taken depends only on comparisons of array elements. All algorithms for
solving the problem that are based on comparing elements of b can be thought
of as decision-tree algorithms; further, decision trees enjoy the advantage

that the next action following a comparison can depend on all previous com-
parisons, without incurring the attendant cost.

We proceed as follows. Let r=nétk. Hence, n#(r+l)<k<nir. We intro-
duce a set of lists, called r-lists, each with n elements. We show (lemma
(8) that there are

n!

£!™¥T%(n mod 1)

different r-lists. Next, we show (lemma (9)) that execution of a decision-
tree algorithm (with a given decision tree) terminates at a distinct terminal
node for each assignment of an r-list to b. Hence, a decision tree has at
least as many terminal nodes as there are r-lists, so that the longest path
length in a decision tree is at least

0(log(m! / (£!**T%(n mod 1))))

O(n*log(n) - (n#r)*r*xlog(r) - log(n mod r))
O0(n*log(n) - n*log(r))

0(n*log(nsr))

0(n*log(k))

v Vv

This leads directly to

(6) Theorem. Any algorithm based on comparing array elements requires at least
O(n*xlog(k)) comparisons to determine whether some value(s) occurs more
than n#k times in b[O:n-1]. 0O

(7) Definition. An r-list is a list of n elements in which each of the
values 0,1y eoepn3r-1 occurs r times and the value n#r occurs
nmod r times. [

(8) Lemma. There are n!/(r!n?r*(n mod r)) different r-lists. [

Proof. An r-list can be constructed as follows. Choose any r indices out
of n and store the value 0 there; choose any r indices out of the remain-
ing n-r possible indices and store the value 1 there; ...; after r*(n%r)
values have been stored, store the value nir in the remaining n mod r
positions. The number of different r-lists corresponds to the number of dif-
ferent possible choices in the procedure given above, which is

nir -1 n-i*r
o (T
i=0

which simplifies to the expression given in the lemma. [J

(9) Lemma. Consider a fixed decision tree. Execution of a decision-tree
algorithm for different r-lists terminates at different nodes. O

Proof. No value occurs more than r times in an r-list; hence, execution of
a decision-tree algorithm with an r-list terminates at a node labelled NO.
Define a new list L=L1®L2 from different r-lists L1 and L2 as follows:

L[j]=min(Ll[j]. thj])s for 05j<n.
Obviously, L satisfies the following for any indices i and j:

(10) L1[i] <L1[j] A L2[i] <L2[3j] = L[i] <L[j]
L1[i)=11[j] A L2[il =12[j] = L[il=L[j]
L1[i] >L1[j] A L2[i] >12[j] = L[i] >L[j]

Further, we show in lemma (11) that if L1 and L2 are different then some
value in L occurs more that r times, so that execution of the decision-
tree algorithm with input L terminates on a node with label YES.

Now assume the contrary of the lemma: execution of a decision-tree algo-
rithm terminates at the same node x for both L1 and L2. Hence, the exe-
cutions follow the same path in the decision tree. By property (10), execu-
tion of the decision-tree algorithm on list L must follow that same path,
and hence must end in a terminal node with label NO. Since some value occurs

more than r times in L, this is a contradiction. [

(11) Lemma. If r-lists L1 and L2 are different, then some value occurs
more than r times in L=L1®L2,.

Proof. Let sl(v) and s2(v) be the set of indices (positions) in L1 and
L2, respectively, where a value that is at most v appears:

sl(v)
s2(v)

{j | L1[j1sv}
{3 1 L2[31sv}

Since L1#L2, there is some v satisfying sl(v) #s2(v). For v2nir,
sl(v) =s2(v) ={1, 25 «..,n}. Hence, for some, w<n3r, sl(w) #s2(w) holds.

Suppose iesl(w)us2(w). Then either Ll[ilsw or L2[ilsw, so that
L[i] = min(L1[i], L2[i]) £ w. From the definition of r-list and the fact that
w <nir, Isl(w)| = |s2(w) | = (w+l)*r holds. Since sl(w) #s2(w),
Isl(w)|u Is2(w)| > (w+l)*r. By the pigeon-hole principle, some value that is
at most w must appear more than r times in L. [

References

[1] Boyer, B. and J. Moore. MJRTY: a fast majority-vote algorithm. Submitted
for publication.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif

