A Category Theoretic Analysis of
Predicative Type Theory

Michael I. Schwartzbach

TR 86-793
(Ph.D. Thesis)

December 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

A CATEGORY THEORETIC ANALYSIS OF
PREDICATIVE TYPE THEORY

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Michael Ignatieff Schwartzbach
January, 1987

© Michael Ignatieff Schwartzbach 1987
ALL RIGHTS RESERVED

Biographical Sketch

Michael Ignatieff Schwartzbach was born on the 15th of August 1961 in Copen-
hagen, Denmark. A few years later he (was) moved to Arhus, Denmark where
he started his academic career by reading monosyllabic prose and molding clay
figurines. The demands on him soon intensified; eventually Michael could spell
the word monosyllabic and was allowed to leave high school. His great love for
empty formalism in 1979 prompted him to begin studying mathematics and com-
puter science at Aarhus University; his great production of empty formalism in
1984 prompted the university to award him a Cand.Scient. degree. Impressed
by the grandiloquence of American academic titles, Michael enrolled at Cornell
University to further pursue the study of computer science; he was pleased to
find himself a Master of Science in the summer of 1986. Michael sincerely hopes

that twenty years in school will prove sufficient.

iii

Dedication

To Noulé.

iv

Acknowledgements

First of all, I want to thank Prakash Panangaden for being an excellent friend
and advisor from the first day we both came to Cornell. The success of this
project is largely due to his optimism and inspiration. Secondly, I am grateful to
Robert Constable for giving me a reason to study type theory and for showing me
encouragement whenever I needed it. I thank Richard Shore for serving patiently

on my committee.

I have had many interesting discussions with my collegues at Cornell. In particu-
lar, Nax Mendler has been very helpful; I thank him for teaching me type theory
and for spending time on me that he should have used writing his own thesis.

Charles Elkan showed his better qualities by helping me with IATEX.

I am indebted to my many friends at Cornell for entertaining me during my
stay; in particular, my playmates around the office provided lots of fun. Anne
Rogers deserves special praise for putting up with me during the many two-dwarf

days (Grumpy and Sleepy) I suffered while writing my thesis.

Finally, I am grateful to Erik Meineche Schmidt, Aarhus University, and the
Danish Research Council for making my stay at Cornell possible in the first

place.

Table of Contents

1 Introduction

1.1 What are Type Theories?,
1.2 Martin-Lof’s Theory
i.3 Categorical Theories
14 SUMMATY . . v vt v e
2 (ategorical Type Theory
2.1 Concepts from Category Theory
2.2 RelationalClosures v v vt i vt i i vttt e e
23 ACategoricalClosurec00iveeon...
2.4 The Categorical Type Theory
8 Consistency
3.1 TheDefinition
3.2 Consistency of the Hierarchy
3.3 An Inconsistent Extension 0.,
4 HXefining the Theory
4.1 Sequents, Types,and Terms
4.2 Propositional Types,
43 Thelnteger Type o o i i i i it ittt ittt
44 Sigmaand PiTypes ittt
4.5 Subtypes and Quotient Types
4.6 Recursive and Infinite Types
4.7 Computation Rules.
4.8 Equality Types« v v i v i v i it et i e
49 PureTypesand Termso
4.10 Diagrams as Type Constructors
5 Conclusions
5.1 The Impact ofour Theory
52 Fature Workt

10
11
19
24
35

37
37
40
42

List of Figures

2.1
2.2
2.3
2.4
2.5

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Conesand CoCOMES . « & v v v v v v v v vttt e e 13
Limits and Colimits vt v v vt v .. 14
Characterization and Comprehension in a Topos 18
The Constructionof Images 32
Pullback Situationottt 33
T = L induces morphism from1toO. 39
Product Types v o i it ittt i ittt e e 50
Coproduct Types v o v v i i i ittt ittt 51
D 1 o 53
o S 54
The Inhabitation Predicate 55
Subtypes . . . i i i e e e 56
Quotient Types v v v v v i i it 56
Cochainand Colimit, 58
Chainand Limit v, 59
Introduction Rule for Recursive Types 60
Elimination Rule for Recursive Types 60
Introduction Rule for Infinite Types, 61
Elimination Rule for Infinite Types 62
A Grid-shaped Diagram 69

vii

Chapter 1

Introduction

This thesis gives a category theoretic analysis of predicative type theories. In
this chapter we shall give a brief introduction to the concept of type theories and

summarize our methods and results.

1.1 What are Type Theories?

The word type has acquired numerous different meanings in computer science
and logic; it is sometimes hard to see any connection between various accepted
usages. The notion of type one usually thinks of in the context of formal systems
is used to classify and restrict the terms of a theory; in particular, we want to

consider computational theories.

The purpose of restriction is to obtain guarantees of certain semantic proper-
ties. In logic one typically wants to rid oneself of logical paradoxes. Bertrand
Russell is credited for the first use of types, when he defined his version of set
theory. The paradox he fought arose through smpredicativity. A definition is

deemed impredicative when it employs structures that have not yet been fully

1

defined and which include the structure being defined, e.g. the set of all setsis an
impredicative concept. In logic the problem arises with quantification. Russell
defined a so-called predicative hierarchy of sets, where the sets at any level could

only be constructed of sets defined at previous levels.

In programming languages one important semantic property is the absence of
run time errors. Traditional programming languages were designed with this
in mind. For example, the PASCAL language allows the programmer to assign
types to variables and procedures, which impose restrictions on their use. These
restrictions guarantee the absence of obvious misuses. Another vital semantic
property is termination, which is not adressed by the type systems of most pro-
gramming languages. The problem is that in PASCAL one can assign a type to
any procedure — even one that diverges. The type theories we are interested in

do not type all diverging programs.

It is well-known that no computational theory can capture all the total recur-
sive functions and nothing else. The usual way around this is to include all the
partial recursive functions and argue that individual programs are actually total.
Another approach is to include only a subset of the total recursive functions and
argue that the selection is sufficiently large; this is the motivation behind type

theories. The classic example of this process comes from the A-calculus.

The untyped A-calculus [2,11] presents exactly the partial recursive functions.
By adding a system of finite types one obtains the (simple) typed A”-calculus,
which contains no diverging terms. Unfortunately, in this system one can only
represent extended polynomials, which is a sadly small class of computable func-

tions. An entire branch of type theory has been devoted to capturing larger and

larger classes of total recursive functions as typed A-terms. This is done by em-
ploying ever more complex and sophisticated type systems and by adding typed
term constants. By merely adding an iteration combinator to the A"-calculus,
one can represent the functions definable through primitive recursion. By adding -

recursion combinators for all types one obtains a far larger class of functions.

On the forefront of this process we find the second-order typed A’-theory [8].
This is an extension of typed A-calculus, where types can serve as parameters
to terms. On top of this is built the higher-order Theory of Constructions [6],
which was intended to serve as a foundation for constructive mathematics. It is
an impredicative theory, but it is still consistent. Per Martin-Lof’s earliest the-
ory was impredicative and inconsistent. One walks a delicate balance between

impredicativity and inconsistency.

Another main branch of type theory was started with the introduction of Per
Martin-Lof’s intuitionistic theory of types [15], which was also motivated by the
desire to define a foundation for constructive mathematics. It has roots in com-
mon with the original attempt by Church to use the A-calculus as a basis for logic,
but it is unique in using Rusell’s predicative type hierarchy to form higher-order
universes of types. It has been studied and extended by the vPrl project headed
by Robert Constable [4].

1.2 Martin-Lof’s Theory

The vPrl theory (and our work) gets its philosophical ballast from Martin-Lof’s

theory of types. We feel it is appropriate to outline its main features.

Types are expressions of a constructive approach to forming collections; i.e. they

are analogous to sets. Following Bishop’s conception of sets, a type consists of
elements and an equality relation between elements. To define a type one gives
a way of recognizing its members and a way of determining when two elements
are equal. Elements are represented by terms, which are divided into two classes:
canonical and non-canonscal. Canonical terms are the irreducible elements, they
name the values, whereas non-canonical terms are expressions that denote values.
The computational element enters as a method of reduction, through which non-
canonical terms may be transformed into equivalent canonical terms. A term is
deemed typeable when it can be reduced to a canonical term in some type; it is

possible for a typeable term to contain untypeable subterms.

Types may be composed through type constructors. These are presented in a
very uniform scheme defining the formation of a new type, the sntroduction of
canonical terms, the elimination (or analysis) of terms, and the equality between
terms. We can illustrate these concepts through a simple example: the product
type constructor. If A and B are types we posit that we can form the product
type A x B. If a is a term of type A and b is a term of type B we introduce
< a,b > as a canonical term of type A x B. If t is a term of type A x B we
give the two elimination forms pri(t) and prr(t) as non-canonical terms of type
A respectively type B. These may be transformed into canonical terms through
the two reductions: pri(< a,b >) = a and prr(< a,b >) = b. Finally, we say that
two canonical terms < a,b > and < a@',b' > are equal exactly when a and a' are

equal terms of type A and b and &' are equal terms of type B.

A key point in this approach is that types may be viewed as propositsons and
their terms as proofs. Thus, a proposition is true exactly when its correspond-

ing type is inhabited by some term. The product type serves as conjunction in

this context; the sum type corresponds to intuitionistic disjunction. This gives
a natural intuitionistic logic and is the basis for the proposstions-as-types and
truth-as-inhabstation slogans, where a proposition is realized as a type that is
inhabited exactly when the proposition is provable. In this setting, implication
is a mechanism for transforming proofs; a proof of A = B maps proofs of 4 to
proofs of B, i.e. it is an element of the function type A — B. The important
¥ and IT type constructors are the type equivalents of existential and universal
quantifiers. For example, the elements of X(z € A, B(z)) are pairs of the form
< a,B(a) > where a is an element of A; this just means that a proof of an

existential 3(z € A, B(z)) consists of a witness a and a proof of B(a).

1.8 Categorical Theories

The above mentioned examples of type theories arose in much the same man-
ner. Starting with a computational theory, most often based on the A-calculus,
one annotated the terms by types and restricted the reduction rules to fit this
framework. Hence, the typed terms form a subset of the full set of computational
terms. In the theories inspired by Martin-Lof it is possible for typed terms to
contain untypeable subterms; this can be considered an undesirable feature, as
it makes it almost impossible to give a compositional theory of meaning. There

is, however, a completely different approach to defining type theories.

This method is extensively treated by Lambek and Scott [13]. Given any class
of categories with some amount of structure one can define its internal language,
which is essentially a syntactic representation of the objects and morphisms that
are forced to exists in all of these categories. This may be viewed as a type theory,
where objects act as types and morphisms act as terms. By proving soundness

of certain reduction rules one obtains a computational theory; an important dif-

ference is that no untyped terms exist. The classes of categories considered by
Lambek and Scott [13] are cartesian categories, cartesian closed categories, and

toposes, with or without natural numbers objects.

Sometimes these two methods coincide. It is a well-known result that the inter-
nal language of a cartesian closed category is exactly the simple typed A-calculus
[12,7]. In other cases the similarities are deceptive; the internal language of a
topos is called intuitionistic type theory [13]. It is, however, very hard to com-
pare to the Martin-Lof theories, but it is certainly quite different. A closer match
is found in the work of Seely [18], where locally cartesian closed categories are
shown to give rise to parts of the standard Martin-Lof type theory, but without

the predicative hierarchy or the computational aspects.

An advantage of the categorical approach is an instant model theory; any cate-
gory in the class selected is a model of the corresponding type theory. Also, it
seems that one makes fewer arbitrary choices when defining the type structure,
but that may just be an illusion brought on by the familiarity of certain classes

of categories.

Our goal is to derive a hybrid approach and obtain a type theory that is categori-
cally inspired and which captures the eloquence of the vPrl theory, including the
full predicative hierarchy and the plentitude of type constructors. When deﬁning
our class of categories, we are willing to import an external computational theory,
but the typed terms of our system will not be a subset of the computational terms
and no typed term will contain untyped subterms; furthermore, the meaning of
terms and types is given in a purely compositional manner. We view this as a

cleaner theory than Martin-Lof’s original.

1.4 Summary

In this section we outline our categorical approach. The basic realization that
sparked this project was that any universe level of the vPrl theory could be viewed
as a category. The objects are the types and the morphisms are the typed terms.
Clearly, composition is associative and there is an identity morphism for every
object. This would have been an only mildly interesting observation if we had
not further realized that some of the fundamental type constructions could be
expressed as standard categorical constructions. For example, the type Void is
the initial object, and the product and sum constructions are the categorical
product and coproduct. With even greater interest we observed that the Il 'and
¥ constructors looked like large products and coproduct of infinite discrete di-
agrams. One by one, the different type constructors revealed their categorical

nature. It became appearant that the connection was very strong.

We wanted to demonstrate that it is possible in categories with sufficient struc-
ture to emulate a type theory that contains the fundamental properties of the

vPrl theory, i.e. the same type constructors and the predicative hierarchy.

The first problem was to find the appropriate class of categories. We seemed
to need something larger than a topos, since we had to construct limits and col-
imits of infinite diagrams. Since countable diagrams clearly would be sufficient
we thought of countably bicomplete categories. This, however, gave rise to some
problems. The syntax of our type theory should arise as the snternal language of
our categories, and with uncountably many diagrams we would be hard pressed
to get a canonical finitary syntax. It was clear though that we would never need
a diagram that could not be obtained as the range of a partial recursive function.

This was the final insight needed.

It remained a problem to classify such categories. Completeness is most often
restricted by cardinality, or some specific set of diagram shapes is given. It is not
possible to capture recursively enumerable diagrams in this manner. We decided
to axiomatize the internal language directly and define our class of categories as
those in which this language could be sensibly interpreted. This is less backwards
than it may seem; the class of cartesian closed categories is really equationally

presented (as are most others).

We have to import some external notion of computation to define the r.e. dia-
grams, but it has no importance which exact syntax we choose. What we ended
up with is a method that, given a set of postulated objects and morphisms, con-
structed a term category with an appropriate amount of structure. The countably
many objects and morphisms of this category are equivalence classes of terms. A
term category is finitely bicomplete, and has exponents and a subobject classi-
fier, i.e. it is a topos. But beyond that, it is what we could call r.e. bicomplete,
that is every r.e. diagram has a (co)limit that is (co)universal among all r.e.
(co)cones. This, for example, immediately gives us a natural numbers object as
the colimit of the diagram 1, 1+ 1, 1+ 1+ 1,... A natural numbers object is
often explicitly introduced to provide recursion on arbitrary types. Term cate-
gories are analogous to term algebras in many ways; for example, a term algebra

may be viewed as an actual algebra or as a language describing a class of algebras.

Given the term category construction it is easy to form a predicative hierar-
chy of categories that can mimic the universe hierarchy of vPrl. The lowest level
is given as the term category with no constants. A sucessor level is obtained

by explicitly introducing a universe object whose elements are encodings of the

objects in the previous level, and then applying the term category construction
again to this (large) set of constants. This would not have worked if we had used

countably bicomplete categories.

Having constructed this inclusive hierarchy of term categories we are left won-
dering if they perhaps all are trivial, i.e. if all the objects are isomorphic. We
can rule out this possibility by obtaining a structure preserving functor from
each term category into the category of sets and functions and, thus, achieve a
consistency result. This construction is inductive and relies on the natural well-

foundedness of the term categories.

We can now show how the type constructors of the vPrl theory can be emu-
lated in these categories, mostly as a simple limit or colimit of some diagram.
In this manner, we develop the propositional type constructors: product, sum,
and exponent, the ¥ and II constructors, subtypes and quotient types, and the
constructors for recursive and infinite types. Furthermore, we can propose any
diagram as a potential type constructor, and we give generic introduction and
elimination rules for such types. A standard categorical result then tells us that
this plentitude of type constructors may be reduced to just four, two of which

are new to type theories (but which can be obtained from the existing ones).

Chapter 2

Categorical Type Theory

Categories are out. Inventors of categorses shall find blight .

— Linda Ronstadt .

This chapter describes the syntax and the equality relations of our categorical type
theory. As its construction is heavily inspired by standard category theoretic
concepts, we will first provide a brief introduction to category theory. This
exposition is limited to the concepts we shall need and is primarily intended
to establish our terminology; a comprehensive introduction and tutorial may be
found in [1,10,14,13]. We then give a general rule based method for constructing
relations of terms; the method is similar to algebraic specifications and to first-
order theories. The relations we can construct are all recursively enumerable. We
apply this method to construct a term category, which is essentially a semantic
meta-language describing a class of categories. With this in hand we proceed to

present our predicative type theory as an inclusive hierarchy of term categories.

10

11

2.1 Concepts from Category Theory

Definition 2.1.1 A category K consists of a class Obj(K), called the objects
of K, together with, for each pair A, B of objects of K, a set K(A, B), called the
morphisms of K from A to B. We write f : A — B to indicate that f is a

morphism from A to B. We require that the followsng conditions are satisfied:

For any three objects A,B, and C of K, there is a composition operation

.: K(A, B) x K(B,C) — K(A,C) which satisfies the associativity aziom
f-(g-B)=(f-9)-h

For any object A of K, the set K(A, A) contains a special morphism Id, that

satisfies the identity azsoms
f-lda=f, Idp-g=g

There are numerous examples of categories in the literature. The canonical ex-
ample is SET, where the objects are all sets and the morphisms from A to B
are the functions between the sets. A contrasting example is any poset (P,C),
where the objects are the elements of P and the morphisms from p to q is the
singleton set {e} if p C ¢ and @ otherwise. We can capture most of the usual set
theoretic notions in the categorical setting and, thus, generalize them to apply to
other categories. This work has been taken furthest through the study of toposes

[9,13].

Definition 2.1.2 An isomorphism between two objects A and B in a category
i3 a pair of morphisms f : A — B and g : B — A such that g- f = Id4 and

f-g=1Idg. A category in which all objects are ssomorphic is called degenerate.

In SET this just establishes a bijection; in a poset only identical elements are

isomorphic.

12

At this point it is worth pointing out some concepts that are often employed
in discussions of category theory. Duality is used both formally and informally to
describe situations that differ only in that the direction of morphisms is reversed.
For instance, cones and cocones described below are dual concepts. Some con-
cepts are self-dual, e.g. isomorphisms. An object A is deemed universal when it is
special amongst objects with a certain property in the manner that whenever any
other object B has the same property, there is induced a uniqgue morphism from
B to A making a certain diagram commute. For this reason universal objects
are unique up to isomorphism, since uniqueness forces the induced morphisms
between them to be isomorphisms. The dual situation is called counsversalsty.

As described below, limits are universal and colimits are couniversal.

We can define a very general notion of constructions in categories. This requires

some initial machinery.

Definition 2.1.3 A diagram D in a category K i3 a directed graph (Vp, Ep)
where Vp C Obj(K) and Ep(A, B) C K(A, B). The diagram is said to commute
if the compositions of morphisms along any two paths with the same end-points

yield the same results.

Thus, a diagram is a directed graph built out of objects and morphisms. In a

poset diagrams always commute; this is not the case for SET.

Definition 2.1.4 A cone A over a diagram D in a category K is a family of ‘
morphisms m% : C — A, for some fized O(A) € Obj(K) and all objects A € Vp,
such that for every f € Ep(A, B) we have f-m% =m35. Dually, a cocone v over
D is a family of morphisms mY : A — O(V), for some fired O(v7) € Obj(K)
and all objects A € Vp, such that for every f € Ep(A, B) we have m} = mg - f.

13

cone cocone

diagram diagram

Figure 2.1: Cones and Cocones
Cones and cocones are sketched in figure 2.1.

Definition 2.1.56 A limit over a diagram D in a category K 13 a cone A over
D such that for any other cone A' over D there is induced a unique morphism
p(A',A) : O(A') — O(A) such that for all A € Vp: mﬁ' = ms - u,n).
Dually, a colimit over D is a cocone 7 over D such that for any other cocone

' over D there is induced a unique morphism u(7, ') such that for all A€ Vp:

my = p(v, V') my.

These concepts are sketched in figure 2.2. Limits and colimits, which are clearly -
unique u.p to isomorphism, produce many of the interesting constructions in
different categories. In SET limits and colimits of arbitrary diagrams exist; in a
poset they correspond to the infimum respectively the supremum of the nodes of
the diagram and, thus, may or may not exist. As an example we can look at the
binary discrete diagram ({4, B},0), i.e. the graph with two nodes and no edges.
In SET the limit of this diagram is the cartesian product A x B and the colimit
is the disjoint union A+ B; in a poset the limit is the greatest lower bound AN B

14

cocone

diagram diagram

Figure 2.2: Limits and Colimits

and the colimit is the least upper bound AU B. If D is a collection of diagrams
in a category K, we say that K is D-complete if the limits of all diagrams in
D exist in K. Similarly, K is D-cocomplete if all colimits exist. K is called

D-bicomplete if it is D-complete and D-cocomplete.

Definition 2.1.8 The limit of the empty diagram is called the final object 1.
The colimit of the empty diagram is called the initial object 0.

Hence, for any object A there are unique arrows!: A — 1and!:0 — A. In SET
the initial object is @ and the final object is a singleton set. In a poset the initial

object is L and the final object is T, if they exist.

We can use the final object to define a concept of elements of objects, as it

is done in topos theory.
Definition 2.1.7 An element of an object A ts a morphism from 1 to A.

The elements of a SET-object is just its set-theoretic elements; in a poset only

T has an element.

15

We need to introduce a novel extension of these concepts and define constructions

that are almost limits and colimits.

Definition 2.1.8 Let ¢ be some property of cones and D a diagram. Call the
cones for which ¢ holds the $-cones. Then a ¢-limit of D is a unisversal $-cone

over D.

Clearly, if ¢; = ¢2, then a ¢,-limit is also a ¢;-limit; hence, a limit is a ¢-limit

for any ¢. We can give a similar definition of ¢-cocones.

One very important construction does not arise as the limit or colimit of any

diagram. It is, however, defined as an object with a certain universal property.

Definition 2.1.9 If A and B are objects we define their exponent B4 to be an
object with a special morphism eval : A x BA — B, such that whenever we have
an object C and a morphism f : AxC — B there i3 induced a unique morphism

curry(f) : C — BA such that (Ids x curry(f)) - eval = f.

In SET the exponent B# is just the set of functions from A to B; the eval-map
is application and the curry-map is just that. A poset that is finitely bicomplete
and has exponents is called a Heyting algebra [9]. The existence of finite bilimits
state that finite sets have least upper bounds and greatest lower bounds. The
exponent of two elements a and b is called the relative pseudo-complement and

is the greates element of the set {z:anN z C b}.

Category theory arose as a framework for relating different topics in mathemat-
ics, e.g. algebra and topology. This is done by defining a concept of mappings

between categories.

16

Definition 2.1.10 A covariant fanctor F from K, to K, maps objects to
objects and morphisms to morphisms such that for any object A € Obj(K,) we

have
F(Id,) = Idp(a)

and for any A, B € Obj(K,) and f,g € K,(A, B) we have
F(f-9)=F(f)-Flg)

A contravariant functor s defined similarly, except that is satisfies the equa-
tion

F(f-g9)=F(g)- F(f)

A function that embeds a well-founded poset into the powerset of some set may

be viewed as a covariant functor from that poset to SET.

We are often interested in functors with special properties.

Definition 2.1.11 A functor that i3 injective on objects and morphssms s called
an embedding functor. A functor is said to preserve limits, colimits or ez-
ponents if it commutes with their construction, e.g. F preserves ezponents iff
F(BA) = F(B)F4), F(eval- (a x g)) = eval - (F(a) x F(g)), and F(curry(f)) =
curry(F(f)).

The previous example functor is an embedding that preserves exponent, limits,

and colimits.

Definition 2.1.12 A monic s a morphism f that s left-cancellable; that 1s,
for any two morphisms h and k if f-h = f -k then h = k. Dually, an epic is
a morphism that is right-cancellable, so that for any two morphisms h and k if

h-f=k-f then h=k.

17

In SET a monic is an injection and an epic is a surjection; in a poset all morphisms
are monics and epics. Quite often we will not have monics when we need them,

but we can obtain the monic part of any morphism in the following manner.

Definition 2.1.13 An epi-mono factorisation of a morphism f : A — B s
an object f(A), a monic sim(f) : A — f(A), and an epic f* : f(A) — B, such
that f*-im(f) = f. Factorizations are ungiue up to ssomorphism and always

exist in finitely bicomplete categories.

In SET f(A) is the set {f(a) | a € A}, ¥m(f) is the obvious inclusion and f* is
f restricted to f(A).

The final concept we need allows us to form subcollections in categories. It

uses the traditional comprehension principle expressed categorically.

Definition 2.1.14 A subobject classifier is an object () with a special mor-
phism T : 1 — Q, such that for any monic f : A — B there 1s induced a unique
morphism x; : B — Q such that A s the limit of the diagram with morphisms
T:1— Q and xy : B — Q, and the lsmit morphism from A to B is f. x; 1s
called the character of f. We define L=x1:1—Q, where!:0— 1. Wecall T
and 1 truth values of Q2.

In SET the subobject classifier is the set {T, F'} and the character of a monic f
is the characterictic function of sm(f). In a poset the subobject classifier is not

a meaningful concept. Notice that for all monics f we have that x; = Xim(s)-

A topos is a finitely bicomplete category with exponents and a subobject clas-
sifier. In a topos one can interpret notions such as sets, predicates, and logic
connectives. The object (1 is seen as a collection of truth values; in particular,

it has the elements T and L, but there may be many more. It is possible to

18

£ i(¢)
A———*B {B| @} -------- 2
!J e L b
v v
11— 0 — 0
T T

Figure 2.3: Characterization and Comprehension in a Topos

define logic connectives in this setting; for example, conjunction is a morphism
A:QxQ— Q such that A- < T,T >= T. It can be defined as the character
of the monic < T, T >: 1 — I x (). Objects can be interpreted as sets; their
elements are the categorical elements, i.e. the morphisms from 1. A predicate
on an object A is interpreted as a morphism A —). An object A is a subobject
of an object B iff there exists a monic f : A — B; we may think of f as the
inclusion of A into B. The key observation, and the fact that we will be using,
is the duality between characters and subobjects, i.e. any subobject of B yields a
unique character on B, and every character on B yields a unique (up to isomor-
phism) subobject of B. This is summed up in the topos theoretic comprehension
principle, which is illustrated in figure 2.3. Given any subobject f : A — B we
obtain its character x; : B — (; given any predicate ¢ : B — (1 we obtain the
subobject {B | ¢} and the inclusion monic (@) : {B | ¢} — B. The character
is unique by definition of the subobject classifier and the subobject is unique up
to isomorphism, since it is a limit. This gives us the fundamental connection,
viz. xi¢¢) = ¢. It is now possible to define the usual set operations, such as
intersection, union, and complement on subobjects. The method is very simple:

to obtain the intersection of two subobjects we form the comprehension of the

19

conjuction of their two characters. A further development makes it possible to
handle also quantifiers. The logic of a topos is in general sntuitionistic, i.e. the
law of excluded middle does not hold. This is true in e.g. the topos SET® of pairs
of sets and functions; the topos SET is classical. This approach is quite different
from the propositions-as-types philosophy, where actual truth values are absent
and a proposition is viewed as the collection of its proofs; our work will contain

a categorical version of the propositions-as-types method.

2.2 Relational Closures

This section presents a rule based method of defining relations over terms in a
language. We shall need this tool to define the terms of our theory. The method
seems quite versatile and is presented in its fullest generality. It is simpler than
and similar to the definition of first-order languages. We present a simple sequent
calculus of relations of strings over some alphabet. Next we introduce inference
rules and proofs. Finally, the closure is defined as the sets of tuples for which
membership can be proven. The main point of this technique is to formalize what

is meant by saying that a system obeys certain rules.

We assume that we are given a collection of relation symbols of various arities
{Ry,R,, ...}, some alphabet T, and a set of variables X. We call the strings in

I'* terms and the strings in (I' U X)* terms with variables.

Definition 2.2.1 A structure © assigns for each n-ary relation symbol R a

concrete relation O[R] C (I™*)". Structures are ordered by inclusion, where we

say ©, C O, if for all R we have 6,[R] C 6.[R].

We now present an inference system that allows us to reason about strings be-

longing to relations.

20

Definition 2.2.2 A sentence i3 an n-ary relation symbol and n terms with

variables
R(ty, ¢tz ..., t0)

A sequent i3 a pair consisting of a finite list of sentences and a sentence
81,82, ...,8k 8

The s;’s are called the hypothesis of the sequent and s the conclusion of the

sequent.

If 0 = 8,8, ...,8 F 8 is a sequent, and {z;,%;, ...,Za} is the set of variables

in o, we think of it as corresponding to the formula
VZy,Z2, ..., Zn E[*81 A A... A8, => 3
When the hypothesis is empty, we write s rather that I s.

Definition 2.2.3 An assignment to a set of variables V C X 13 a function
a:V = (TUX)*. Iftis a term with variables, we define t[a] to be t with each

occurrence of a variable v € V replaced by a(v).
This defines a homomorphism from (I' U X)* to (I' U X)*.

Definition 2.2.4 A rule s of the form

o
01,02 ...,0n

where o and the o;’s are sequents.

The rule is written in refinement style; hence, it appears upside-down when com-

pared to ordinary sequent calculus rules.

If we are given a structure K we want to construct its closure with respect to a

collection of rules, by adding terms to the relations as demanded by the rules.

21

Definition 2.2.56 If K is a structure and p is a collection of rules, we define
a p, K-proof to be a finite tree whose nodes are sequents, and which satisfies
the following requirements: each node and its descendants are related through the
image of a rule by some assignment, or related through an application of the

implication rule
H+-C
HF:S; HSFC

for any sentence S, or related through an application of the universal special-

isation rule
HFC

HEC
where H is the image of H' and C is the image of C' under some assignemnt,
or the node is a leaf of the form S,,Sz, ...,Sa F Si, or the node is a leaf of
the form H + R(ty,ts, ...,t,), where the t;’s are terms (without variables) and
<ttt ..., tn >E K[R] (we call such leaves K -axioms).

We shall write H -, x S to indicate the existence of a p, K-proof with root H - S.
This is not an unusual notion of proof; they are in fact just proofs in a first-order

theory, when we restrict ourselves to the simple sequent formulas.

Definition 2.2.6 If K is a structure and p 13 a collection of rules, we define

p(K) to be the structure where

p(K)[R] = {< ti,t2, ..., ta > |Fpx R(t1ytzy ... 5t0)}
We call p(K) the p-closure of K.
We can give a formal justification for calling this a closure.

Theorem 2.2.7 The p-construction is a closure operation on structures in the

sense of [13]; that i3, K C p(K), K € L= p(K) C p(L), and p(p(K)) € p(K).

22

Proof: These are all trivial consequences of the definition of p, K-proof. O

We can observe a useful fact about the closure, which will prove vital at a later

stage; it is basically a restatement of the fact that first-order theories have r.e.

theorems.

Theorem 2.2.8 If K is r.e. then p(K) is r.e.

Proof: Clearly, the collection of p, K-proofs is r.e. if we ignore the validity of
K-axioms. Hence, an r.e. computation can generate all such pseudo-proofs and
for each of them, using concurrency or so-called dove-tasling, verify the finitely
many K-axioms at its leaves. Hence, the collection of p, K-proofs is r.e. when K
is r.e. But then to test membership < ¢,¢;, ...,t, >€ p(K) we can generate all

p, K-proofs and look for one whose root is F R(ty,tz, ...,t,). O

We shall illustrate this method by constructing the integers. The relation sym-
bols we need are O € Int and O = O € Int (the O’s are place-holders). We

define the following rules; variables are written in bold-face.

0 € Int sn € Int rn € Int
(1) (2) n € Int (3) n € Int
n=n € Int m=n € Int k=m € Int
(4) n € Int (5)n=m € Int (6)k=n €Int; n=m € Int

sn=sm € Int (8)pn=pmelnt
n=m € Int n=m € Int

(7)

spm=n € Int
n € Int

psm=n € Int
n € Int

(9) (10)

23

Let © be the closure of the empty structure with respect to these rules. The way
© defines the integers is as the set of equivalence classes of ©(0 € Int) under
©(0 = O € Int). We can illustrate the concept of proofs by proving that for

any integer z we have ppsz = pspz.

x € Int - ppsx = pspx € Int
x € Int psx = spx € Int
x€IntF psx=x €Int x €Int - x=3spx € Int
x €Int I x € Int x € Int I spx=x € Int
x €Int F x € Int

This construction seems similar to that of a term algebra, but as this exam-
ple illustrates, it is a more powerful specification tool than equational algebras.
The cost is, naturally, that the relations specified in this manner often will be

undecidable.

Theorem 2.2.9 For any algebrasc specification with positive equations, its term

model can be obtatned as a relational closure.

Proof: For every sort S we define relation symbols for equality and mem-
bership: O € S and O = O € S. For every function symbol f with arity
S, 82, ...,8, — S we add the rules

f(x1,%3,...,Xn) €S
X1 € S1;X3 € Ss;...,Xp €Sy

(formation)

f(xl,xh'“sxn) = f(YI’yz’- . -syn) €S
X =y1E€S5;X3=yY23€S,;...,Xn =Yn € Sn

(congruence)

For each equality relation we give rules for reflexivity, symmetry and transitiv-
ity, and for each algebraic equation ¢, = ¢, between terms of sort S with free

variables s; of sorts S; for 1 € {1,2,...,n} we add the rule

$r=¢2€S
51 € 51;83€ S;;...,8n €S,

(equation)

24

It is now easy to see that the term model is obtained by taking the quotient
of each sort relation in the closure with respect to the corresponding equality

relation. O

2.3 A Categorical Closure

This section presents a closure construction of a category of terms. We want to
obtain a category that contains a given set of postulated objects and morphisms,
and which is closed under the formation of exponents and (almost) limits and
colimits of certain diagrams. A crucial decision to make is which diagrams to
include; the collection must be countable for naming purposes and it must be
easy to reason about. Diagrams that in a certain sense are computable seem to
be the natural choice. For reasons to be disclosed later we also want a subob-

ject classifier. The technique of relational closures is just what we need to do this.

We give a particular set of relation symbols over a standard alphabet I'; we

use O as a place-holder.

OO0bj 0O =00b;

O:0—-0Mor 0O=0:0— 0OMor

0O Dia 0O = 0ODia
a

o(o) e :0(0)—0o(o)eo

Apart from these we need to define a theory of computable functions that allows
us to form infinite diagrams. This takes us beyond the theory of toposes, which
is the basis of type theory in [13]. Infinity never arises without being explicitly

postulated; in [13], a natural numbers object is introduced. We, however, are

25

interested in ezpressiveness rather than minimality and need a wide variety of
infinite diagrams and accompaning infinite objects. We will not be specific about
which exact formalism we use for this purpose. Any standard notation will do;
what we actually write down will be informal descriptions of clearly computable
schemes. Our programs compute on strings in I'*. We introduce the following

relation symbols:

OComp 0O(O) |=0OComp

and give rules establishing that f Comp holds iff f represents a computable
function as described above, and f(t) |= s iff f on input ¢ terminates and equals
s. We shall not write these rules in details as they would be tedious and quite
standard. An expression of the form f(¢) is called a redez. We shall allow redices
to mix with the other relations in the following manner: for each n-ary relation

symbol R we introduce a new n-ary relation on redices R with the following rule

R(ay, s, ...,)
R(t),t2, ...,t0), a; |=t; Comp

(computation)

This simply means that when redices are present in rules, we must proceed by
evaluating them, if possible, and then apply the relation. Thus, non-termination

of a redex will prevent a relation from holding.

The rules we require follow here; variables are written in bold-face. In this

presentation we take a rule
01,025 .-.;0%

to abbreviate the rules

26

and we will not distinguish between R and R.

Equality Rules.

= by

(reflexivity) x=x0b

y=x0b)

t - -

ymmetry) I=2

e x =5 Obj
(transitivity) X=yO0bj; y =3 0b)

(stability) m : 83 — by Mor

m : a; — by Mor; a; = a3 Obj; by = ba Obj

We include similar rules for the other equality relations.

Category Rules.

1d(x) : x — x Mor

(identity) < Ob;
(composition) f:x —(>8y ;)lo: ;:’YA{-(:: Mor

(cancellation) f- ‘d(;‘) : : : ;‘ }_{:,f Mor

(cancellation) 1d(y) ff :i‘;;{*o:' Mor
i) o i o
(equality) f-g=f g :a—cMor

f=f":b—cMor,g=g':a— bMor

We shall from here on suppress the parentheses around compositions.

There are some subtle points concerning the representation of diagrams that

27

must be discussed. We wish to denote a diagram by a list of morphisms; discrete
objects would be represented by their identity morphisms. This, however, implies

an unfortunate ambiguity. The list
{f:A— B,g: B— A}

has four different interpretations as a diagram, depending on which objects we
choose to identify. We shall remove this confusion by adding identification tags
to the objects, so that objects with the same tag are to be considered identical.

In this notation the four interpretations of the above list are denoted as follows:

{f: A(1) = B(1),9: B(1) — A(1)} {f: A(1) = B(1),9: B(1) — A(2)}
{f: A(1) = B(1),9: B(2) — A(1)} {f:A(1) — B(1),9: B(2) — A(2)}
We shall use this in-line notation for diagrams throughout the text. For a subtle
technical reason explained in chapter 4 we shall use morphisms as identification
tags rather than integers. The use of integers in the text can be thought of as

some preselected set of different morphisms (cf. theorem 3.1.4).

Diagram Rules.

(formation) Ir] D t ¢
r: Comp; r(n) |=<m,a,b,i,j > Comp-m:a—b Mor
: m : a(i) — b(j) € [r]; a(i) € [r]; b() € [r]
(membership) [r] Dia; r(n) |=<m,a,b,i,j > Comp
(equality) di =d; Dia

d; Dia; d3 Dia; Sub(dy,d3); Sub(da,d;)

where Sub(x,y) abbreviates
m:a(i) > b(j) e xt-m:a(i) —>b(j) €y

The equality on diagrams is quite weak. This just means that we will have sev-

eral isomorphic but different objects in our category. If we insisted on having a

skeletal category, we could add a rule identifying isomorphic objects.

Limit Rules.

(formation)

(equality)

(limit cone)

(commutativity)

(universality)

(commutativity)

(identification)

(uniqueness)

lim(d) Obj
d Dia
lim(d;) = lim(d3) Obj
: dy = d3 Dia
L(d,a,i) : lim(d) — a Mor
d Dia; a(i) € d
m - L(d,a,i) = L(d,b,j) : lim(d) — b Mor
dDia; m:a(i) —b(j) € d
univ(x,k,d) : x — lim(d) Mor
Cone(x,k,d)
Lcommi(x, k, d, univ(x, k,d))
Cone(x,k,d)

L(d,a,i) = L(d,c,]j) : lim(d) — a Mor

d Dig; a(i) € d; ¢(j) € d; a=cObj;i=j:p — qMor

f = univ(x,k,d) : x — lim(d) Mor

Cone(x,k,d); f : x — lim(d) Mor; Lcomm(x,k,d,f)

where Cone(x,k,d) abbreviates

x Obj; k Comp; a(i) € d + k(a,i) :x — a Mor;

m:a(i) > b(j) € d m-k(a,i) =k(b,j) : x — b Mor;

a(i) €ed,c(j) e d,a=cO0bj,i=j:p—qMort

k(a,i) = k(a,j) : x — a Mor

and Lcommi(x,k,d,f) abbreviates

a(i) € d k(a,i) = L(d,a,i) - f:x — a Mor

28

The definition of a cone is complicated; it states that the cone must provide a

morphism to every object in the diagram, that each little triangle involving a

29

morphism of the diagram must commute, and that on equal objects with equal
tags the cone morphisms must be equal, which has the effect of essentially re-
moving duplicates from the diagram. Only some cones can be proven to satisfy
this property; those that can we call p-cones (provable cones). Similarly, a p-limit
is a universal p-cone. Clearly, any cone over a finite diagram is a p-cone, since
it is a finite collection of morphisms that can be trivially computed. This is an

instance of the notion of ¢-cones we introduced in section 2.1.

Colimit Rules.

. colim(d) Obj
(formation) d Dia
. colim(dy) = colim(d3) Obj
(equality) d, = d; Dia

C(d,a,i) : a — colim(d) Mor
d Dia; a(i) € d

C(d,a,i) =C(d,b,j) -m: a — colim(d) Mor

(colimit cone)

(commutativity) 1Dis o o) S B0) € 4
e SRRt
(couniversality) coundv(x, lgoiln :E’:’f:,(:; — x Mor

(commutativity) Ceomm (é':;cl:‘o’:e,(‘:,uk':t:)(x’ k,d))

(uniqueness) f = couniv(x,k,d) : colim(d) — x Mor

Cocone(x,k,d); f: colim(d) — x Mor; Ccomm(x,k,d,f)
where Cocone(x,k,d) abbreviates

x Obj; k Comp; a(i) € d k(a,i): a —x Mor;

m: a(i) = b(j) € d I k(a,i) =k(b,j) -m:a— x Mor,

a(i) € d,c(j) €d,a=¢cO0bj,i=j:p—qMort
k(a,i) = k(a,j) : a — x Mor

and Ccomm(x,k,d,f) abbreviates
a(i) € d k(a,i)=f-C(d,a,i) : a — x Mor
The cocones defined in this manner we call p-cocones. As before, we define a *

p-colimit to be a couniversal p-cocone.

Exponent Rules.
ezp(a,b) Obj

(formation) < Oty b OBy
(equality) 6?1(2’:3);;?1(2’1, b’% g)jbj

(evaluation) eval(a,b) ::Oxb ;’311:(3:;) — b Mor

RS
(commutativity) Eco’:tn:': :’: f;; ;“l’:;y (£))

(uniqueness) g = curry(f) : ¢ — ezp(a,b) Mor

f:axc— bMor;, g:c— exp(a,b); Ecomm(a,b,c,f,g)

where Ecomm(a,b,c,f,g) abbreviates
eval(a,b) - (id(a) x g) =f :a x ¢ — b Mor

and x abbreviates well-known concepts from the product.

Morphism Abstraction Rules.
We also want a way of introducing morphisms directly through well-defined com-
putations.

morph(f) : a — b Mor
f Comp; a Obj; b Obj; func(f,a,b)

(abstraction)

31

where func(f,a,b) abbreviates
x=y:1—aMorlf(x)=Ff(y):1—bMor

i.e. f transforms elements of a into elements of b and respects equality.

morph(f) -x =f(x) : 1 — b Mor
morph(f) : a — b Mor; x: 1 — a Mor

(application)

The functions we provide morphism abstractions for we call p-functions (provable

functions).

Image Rules

To facilitate the construction of a subobject classifier we shall give notation for
images, i.e. the monic part of epi-mono factorizations. These rules are really
redundant; images are consequences of finite limits and colimits.

f(a) = lim(A;) Obj; im(f) = L(A2,b,1) : f(a) — b
f:a—bMor

(image)
where A, represents the diagram
{C(A4,b,1) : b(1) = colim(A,)(1), C(Ay,b,2) : b(1) — colim(A,)(1)}
and A, represents the diagram
{f:a(1) = b(1), f:a(l) — b(2)}

This is very straight-forward: A, is a pushout diagram and A, is an equalizer

diagram. The construction of images is illustrated in figure 2.4.

Subobject Classifier Rules.

(classifier) f105

T:1— Q Mor

(T)

C(A1,b,2)

(character)

(pullback)

(uniqueness)

32

f(a)

b /// \\

: lm(f) // \\\

| CaubD)

v /' - \\\
- colim(Ay) p C(A1,b,1) ¢

b colim(A1)
C(A1,b,2)

Figure 2.4: The Construction of Images

char(im(f)) : b — Q Mor
f:a— bMor

Pullback(im(f), f(a),b, char(sm(f)))
f:a—bMor

g = char(im(f)) : b — Q Mor
f:a — b Mor; g:b — Q Mor; Pullback(sim(f), f(a),b,g8)

where Pullback(h,¢c,d,g) abbreviates

lim(A) = ¢ Obs; L(A,d,1)=h:c —d Mor

and A represents the diagram {T : 1(1) — (1),¢ : d(1) — Q(1)}. This situa-

tion is illustrated in figure 2.4. Notice, that the subobject classifier only provides

characters for images of morphisms. This is because a naive definition of monics

would only yield characters for provable monics, which would leave us with a

deficient subobject classifier. In this manner we avoid such problems, since we

can easily construct the image of every morphism, and xy = Xim(s) When f is a

monic.

Figure 2.5: Pullback Situation

Definition 2.3.1 If K i3 a structure in this context, we call its relational closure

with respect to these rules the categorical closure of K, CC(K).

We shall construct the term category generated by K. Define

0(K) = CC(K)(a 0b5)/CC(K)(a = O Oby)

M(K) = CC(K)(O: o — O Mor)/CC(K)(O =0O:0— O Mor)

D(K) = CC(K)(a Dia)/CC(K)(O = O Dia)
Definition 2.3.2 T C(K) is the category with objects O(K) and morphisms M(K),
where the identity of [A] € O(K) is [1d(A)] € M(K) and we define composition
by [f]- (9] =[f - g].
We have constructed a quite interesting category.

Theorem 2.3.3 T C(K) is finitely bicomplete and cartesian closed, has a subob-

ject classifier and a natural numbers object; hence, it is in particular a topos in

the sense of [13].

Proof: Every diagram [d] € D(K) has a p-limit [lim(d)] and a p-colimit
[colim(d)]. Similarly, any two objects [a], [b] € O(K) has the exponent [ezp(a, b)].
The category is finitely bicomplete since every finite diagram is computable, ev-
ery finite cone is a p-cone, and every finite cocone is a p-cocone. The subob-
ject classifier is [}]; this works because monics and images are the same con-

cept in a category with pushouts and equalizers, so for any monic [f] we have

34

xin) = lchar(im(f))]. We can also construct a natural numbers object. De-
fine Np = 1 and Ny, = N; + 1, and let N be the colimit of the diagram
A = Ting : N; = Niy,}. Define k to be the colimit morphism Ny — N. Our zero
morphism 0 : 1 — N is 0. Construct the A-cocone {k+1-in;: N, — N}. The
induced morphism is our successor morphism S : N — N. Suppose 1 ERYRAY|
is given. Let ¢o = f and @41 = @i+ g- @i, and let § : N — A be induced by the
A-cocone {¢; : N; = A}. Then clearly ¢-0= fand g-¢=¢-5. lfalsoy-0=f
and g- ¢ = - S then ¢ - k = ¢4, so uniqueness of the induced morphism ensures

that ¢ = ¢. Hence, N is a natural numbers object. O

This result does not reveal a very important property of the term-category,

namely that it has computable limits and colimits of computable diagrams.

We want to argue inductively about the objects and morphisms in the cate-
gory. For example, to verify some property of the limit of a diagram, we want
to first look at the components of the diagram, and then argue that the limit
. operation preserves that property. To know that this process will terminate we

need to establish some notion of well-foundedness.

Definition 2.3.4 If £ and y are morphisms or objects in the category, we write
z C y if z ts a component of the construction of y. Ezamples are: if a is an
object or a morphism in the diagram d then a C lim(d); both a and b are smaller
. that ezp(a,b); if m is a morphism in the cone (z,k) over the diagram d, then
m C univ(z, k,d).

The nature and well-definedness of this ordering should be intuitively obvious.

Theorem 2.3.6 The ordering C on TC(K) i3 well-founded.

Proof: This amounts to observing that T C(K) is really defined through an

inductive process, where we start with K and at successor stages add the terms

35

formed by using the proof rules on previously defined terms. This is an inductive
definition that will close below wCX. Now, the ordering ¢, C ¢, merély states

that ¢, is introduced at an earlier stage than ¢,. Hence, C is well-founded. O

2.4 The Categorical Type Theory

We propose T C(0), the category generated by the empty structure, as a type
theory. The objects are types and the morphisms are terms. We shall later see
that we may think of the diagrams as type constructors. From the result in the-
orem 2.3.3 we may expect this to be a rich theory; chapter 4 is dedicated to

demonstrating its usefulness.

" We call TC(®) our core theory; it contains all the types and terms of ultimate
interest. At a glance, it may seem that T C(®) is empty but this is not so. Clearly,
the empty diagram is computable, so we immediately get the initial and final ob-
jects, 0 and 1. From there on, it is obvious that we can build more complicated

objects and morphisms.

To accomodate a higher-order predicative theory as described in [4], we shall
construct a stratified version that will give us a hierarchy of categories. De-
fine H, = TC(P) and K, = 0. We construct successor levels as follows: Define
Ky = CC(K;) UUNI;, where UNI; is the structure containing a special object
U; and a morphism u;(T) : 1 — U; for every object T in H;. Now we can define
H;yy = TC(Kiy1). The Hy’s form an inclusive hierarchy; if + < 5 there is an ob-
vious inclusion functor I;; : H; — Hj;. This is a very simple and straight-forward

way of obtaining a predicative hierarchy; each object in H; becomes an element

36

of U;. Iterating this process gives us the hierarchy with which we shall match the

universe hierarchy of the vPrl theory.

Definition 2.4.1 We call the sequence {H;};>; the hierarchy of categorical
types.

In chapter 4 we shall show how these categories embodies sufficient structure to

represent the types and terms of the vPrl theory.
Theorem 2.4.2 Fach H; i3 r.e.

Proof: Clearly, @ is r.e., and theorem 2.2.8 tells us that every iteration pre-

serves the r.e. property, since each UN; is also r.e. O

This is an important property, which we shall use to argue that certain dia-

grams providing the link between H; and H;, are computable.

We could continue this construction through higher ordinals. For example, de-
fine K, = U; K;UUNI, and H, = TC(K,) where UNI, is the structure with
a special object U, and a morphism p,(T) : 1 — U, for every object T in U; H;.
These extensions are mostly curiosities at this point; one might idly wonder if

the inductive limit of this process would yield an impredicative theory.

Chapter 3

Consistency

A foolish consistency is the hobgoblin of small minds .

— Ralph W. Emerson .

The consistency of our theory is the subject of this chapter. We suggest a formal
definition and give a model theoretic proof that it holds for our theory. Finally,
we point out that extensions of the free category construction may render the

result inconsistent.

3.1 The Definition

In the previous chapter we defined an inclusive hierarchy of categories {H;} and
proposed it as a type theory. But nothing we have shown so far precludes that
some or all of the H;’s are degenerate. We might proceed to build higher-level
concepts in this theory, only to find out later that we have been talking about a

degenerate category, which, on the surface is a very rich theory, indeed.

Definition 3.1.1 A category is consistent :f the objects O and 1 are not iso-

morphic.

37

38

This a reasonable concept; the 0 and 1 objects may be viewed as a variation
of true and false when we employ the propositions-as-types principle, so this
definition merely emulates the usual notion of consistency. We are not surprised

to obtain the following result.
Theorem 3.1.2 A topos is consistent iff it i3 non-degenerate.

Proof: Let H be any topos. If it is degenerate then clearly it is inconsis-
tent. Now, suppose ¢ : 1 = 0 is given. Let A be any object. The unique
morphism ! : A — 1 induces a morphism ¢-! : A — 0. For any object B we
have that H(0,B%) = H(0 x A, B), so 0 x A is also initial; hence, 0 = 0 x 4.
The morphisms ¢! : A — 0 and Id, : A — A induces a unique morphism
<¢\Idy > A—0x A Now < ¢!,Idy > w4 :0x A— 0x A is unique due to
initiality, so < ¢!, Id4 > ‘74 = Idoxa and 74 : 0 X A = A Hence, 0 = A. Since

this holds for any A, we conclude that all objects are isomorphic. O

Corollary 8.1.3 A topos is inconsistent iff st has a morphism 1 — 0.

Inconsistency turns out to be equivalent to the identification of the topos theoretic

truth values.
Theorem 3.1.4 In a topos, T = L {ff it 13 inconssstent.

Proof: Suppose the category is inconsistent and, hence, degenerate. Then
(1 2 1, so there is only one morphism 1 — 2, but then T = L. Suppose now

that T = L. By definition O is the limit of the diagram
A={T:1(1) = Q(1),L:1(2) = 1)}
Since, T = L we see that

{Id: 1(3) — 1(1),Id : 1(3) = 1(2), T : 1(3) — Q(1)}

39

Figure 3.1: T = L induces morphism from 1 to 0

is a A-cone, so universality of the limit induces a morphism 1 — 0, and the

category is inconsistent. The situation is shown in figure 3.1. O

It may appear that comsistency is too weak to ensure that the objects corre-
spond to our intuition of interesting types. The following result indicates the

depth of our definition.

Theorem 3.1.5 If TC(K) is consistent then its natural numbers object N has

R, distinct elements, viz. {S'0}i>o.

Proof: Suppose that m < n but S™0 = S"0. Given any g : 1 — A and
f: A — A there is induced a unique ¢ : N — A so that ¢ - 50 = f'g. Now let
A=0x0x...xQ be the n-fold product of M’s. Define g : 1 — A to be the
morphism induced by the diagram

(T:1-0Q(1),L:1—-0() (§=2,...n)}

i.e., intuitively the tuple < T,L1,1,...,L >. Define f : A — A to be the
morphism induced by the diagram

{”i+lmodn A — Q(') (’ = 1)27 cee ’n)}

40

i.e., intuitively a cyclic right-shift. Now from the assumption we infer that
f™g = f"g and, hence, that » f™g = m f"g, from which we conclude that

T = 1, so TC(K) is inconsistent, which is a contradiction. O

In a similar way, we are able to convince ourselves that we can satisfy any re-

quirement of non-identification that our intuition demands.

It remains to prove consistency of the H;’s. One very hard way to do this would
be to proof-theoretically show that 0 and 1 are non-isomorphic in each H;. This
would involve quantification over every possible pair of morphisms between 0 and

1, which hardly seems practical. We are led to a model-theoretic argument.

3.2 Consistency of the Hierarchy
We can demonstrate consistency through the following argument.

Theorem 3.2.1 A topos T is consistent iff there is a consistent topos M and a

functor F : T — M that preserves limits and colimits.

Proof: If T is consistent we can use the identity functor T — T. Conversely,
let F: T — M be as described and suppose that T is inconsistent, i.e. there ex-
ists a morphism m : 17 — Or. This gives us a morphism F(m) : F(1r) — F(Or).
But since F preserves limits and colimits we have F(1r) = 1ps and F(Or) = Ops.

Hence, F(M) : 1ps — Oy is a morphism and M is inconsistent, which is a con-

tradiction. O

The target category we shall use is SET.

Observation 8.2.2 SET s a consistent topos.

41

Proof: In section 2.1 it is argued that SET is a topos. Since in SET we have

0=0, 1 = {e} and isomorphism is bijection it is clearly consistent. O

We now show how to construct the required functors.

Theorem 38.2.3 For each H; there is a functor F; : H; — SET preserving lsmits,

colimits, ezponents, and subobject classifier.

Proof: First build F; inductively as follows. Map 2 to the subobject classi-
fier of SET, i.e. a set with two elements {¢t, fi}; let Fy(T) : 1 — {¢¢, fi} select
the element tt. Map identity morphisms to identity functions and compositions
to compositions. Given any diagram d we can get a corresponding diagram
in SET by interpreting each component of the diagram. We define F; to map
lim(d) to the SET-limit and colim(d) to the SET-colimit of the corresponding
SET-diagram. The construction of SET-bilimits is detailed in [1]. Given a p-
cone (z,k) over d it can be interpreted in set as a cone over Fy(d), so we map
univ(z, k, d) to the induced morphism in SET; similarly for p-cocones. The expo-
nent ezp(a, b) is mapped to the set of functions F}(a) — F;(b); we define eval(a, b)
as Fi(eval(a,b))(f,z) = f(z), and curry(f) as Fi(curry(f))(c)(z) = f(c,2).
If f is a computation transforming elements of a into elements of b we define
Fy(morph(f))(z) = Fi(y), where f(z) = y. Let f:a — b; in SET Fi(sm(f)) is
the inclusion function from Fi(f)(Fi(a)) to Fy(b); Fi(char(im(f))) is the char-
acteristic function x : Fy(b) — {tt, ffi} where x(z) = ttiff z € F\(f)(Fi(a)). It is
immediate that F, is a well-defined functor preserving the required constructions.
Now assume we have a functor F; : H; — SET. We can extend F; to the functor
F.4, in the following way: first extend it to cover the universe object by defining
Fipr(Us) = {8} x Obj(H;) and Fiyy (pi(T)) =< i, T >; next extend it to the new

constructions in Hiy; \ H; in a manner analogous to the definition of F;. O

42 .

This tells us that we can interpret the hierarchy in SET in an interesting and

nontrivial way.
Corollary 3.2.4 All the H;’s are consistent.

Proof: This follows immediately by combining the results in this section. O

3.3 An Inconsistent Extension

The T C(O)-construction is a wonderful mechanism that creates an interesting
category seemingly out of thin air. One could easily be lead to assume that the
closure could be extended to include most other useful constructs. This section
will demonstrate that the requirement of consistency imposes severe restrictions

on what can successfully be put on one’s wish list.

Definition 3.3.1 A retract-universal object in a category ts an object T, such

that for any object A there is a pasr of morphisms
ra:A—=T,8,:T— A

such that s4 - r4 = Id,.

This is a fairly common construct; most categories of domains have universal
objects, which are in particular retract-universal [19]. We could easily include

such a feature in our closure, by adding the following rules.

Universal Object Rules.

(Universal) Y 0b

43

R(a) :a — T Mor; S(a): T — a Mor
a Obj

(Retract Pair)

S(a) - R(a) =1id(a) : a — a Mor
a Obj

(Retraction)

Unfortunately, we have now constructed an inconsistent category.

Theorem 3.3.2 Including retract-universal objects guarantees that T C(K) is in-

conssstent.

Proof: Just observe that S(0) - R(1) is a morphism 1 — 0 in TC(K), which

by corollary 3.1.3 implies inconsistency. O

One could view this result a version of Girard’s Paradoz [8]: the impossibil-
ity of having a type of all types. The analogy is not strong, however, since the
concept of retractions is a rather heavy-handed way of expressing the type-of-all-
types notion. Universal objects could be maintained consistently at the cost of
either completeness or cocompleteness, which shows that we have many choices

when designing a theory in this framework.

Chapter 4

Refining the Theory

In the end everybody must understand for himself .

— Per Martin-Lof .

The theory we have defined seems to be far removed from more conventional
type theories. In this chapter we shall recover many well-known concepts by
demonstrating how they can be emulated in our theory. In particular, we shall
attempt to represent the vPrl theory [4] as faithfully as possible. This project will
not succeed entirely, in part because the v Prl theory as it stands is too voluminous
to be manageable, but also because variations of the vPrl concepts often seem to
emerge more naturally from the categorical concepts than the originals do. We

feel, however, that we can capture the essence of the vPrl theory.

4.1 Sequents, Types, and Terms

Refining our theory is a process of high-lighting certain objects and morphisms
that we consider to be of particular interest and showing how their special prop-
erties can yield practical rules describing their behavior. The interesting objects

are called types and the interesting morphisms are called terms. It is usually

44

45

the case that if A and B are types then all the morphisms between A and B
are terms, but we will not insist on this property. It is understood that if an
object is not a type today, it may become a type tomorrow; all that is required
is that we find a practical use for it overnight. Thus, the notion of types and
terms is open-ended, but bounded: the collection of types may grow, but a type
will always be an object. Of course, we are subject to the possibility of extend-
ing the term category construction and, thus, admitting many more potential
types. The claim that we will not want to look for types outside our current hier-

archy is a statement of faith, which we may well be forced to retract in the future.

We need to develop some notation before we can define the kind of rules we
shall use. If B: A — U; is a morphism in H;,,, then X(A, B) is the diagram in
H; described by the following computation: On input < a,T > we verify that
a is 2 morphism 1 — A; we then verify that T is an object; next we verify that
B-a = p;(T); if we terminate at this point we output < d(T) : T, T, a,a >. This
has the effect of generating the discrete diagram of all the elements of U; that are
selected by B and elements of A. Notice, that tagging with morphisms allows us
to specify that equal objects selected by different representatives of an element
of A are identified, whereas objects selected by different elements of A are kept

distinct.

Definition 4.1.1 We call X(A, B) the indexed collection generated by A and
B.

Notice, that any such indexed collection already existed in H;; the morphism B

in H;;, was merely used to point it out.

Definition 4.1.2 If B: A — U; is a morphism, then o(A, B) is the colimit of
X(A, B).

46

We can now define a sequent, our unit of inference; notice that this is entirely

different from the concept of sequent we used in chapter 2.
Definition 4.1.3 A sequent i3 of the form:
zy: Ay, To: Ag(Z1),. .., Zn : Ap(Z1,Z2y ..y Zn-1)
b(zy, 22y ..., 2Zn) € B(21,2Z2, ...,Zn)

Define So = 1 and Si41 = 0(Sk, Ax); we say that the sequent holds if we can

prove the following conditions in the closure CC(K;4,):
-~ A : Sy — U; Mor, for1<k<n
-F+B:S,— U; Mor
- FbComp; BComp
—ap:1—1Mor,P,P,, ...,P,}
b(ay, a2, -..,8,) : 1 — B(ay,az, ...,a,) Mor
where Py 1sag : 1 — T Mor, Ay - ag—y = pi(Ti) : 1 — U; Mor
—ay=¢y:1—1Mor,Q,,Q2, ...,QnF
B(ay,as, ...,a8,) = B(cy,c2y ...,€n) Obs
—ag=¢o:1—1Mor,Q,Qz, ...,Qn,t+
b(a,as, ...,8,) =b(c1y€2y ... Cn) : 1 — B(ay,aq, ...,a,) Mor
where Py isay =ci : 1 — Ti Mor, Ay - ap—y = pi(Tk)

This is merely a tedious way of spelling out the requirements for sequents with
dependent hypotheses as they are encountered in predicative type theories [4,15]:

Each A; must define an object when it is provided elements from A,, 4., ..., Az_y;

47

B is a computation that given elements from each A; produces an object, b is
a computation that given elements from each Ap produces an element of the
corresponding B, and both b and B are required to respect the equalities of
the Ay’s. All these requirements allow us to think of b as defining a function
in the category H;,,, which may be viewed as a particularly strong existential
statement. The sequents we shall use will normally be much simpler than the

most general version. A simple example is a projection:
z: A,y: B(z) ki 4(z,y) € C(z,y)

where B and C are always yielding the object D. This sequent holds, since given
input z and y we can define ¢ to output the y. Clearly, in this situation we
can satisfy all the conditions above; they all become very simple. We shall allow
ourselves to use a more liberal notation and exploit lack of dependencies; we will

normally write the sequent as
z:A,y:DFyeD

This is far more readable and can consistently be read as short-hand for the for-

mal notation.

We define rules in a very standard way.

Definition 4.1.4 A rule s of the form

5
51,52 -2 5n

where S and the S;’s are sequents. The rule asserts that if the S;’s hold then S
will hold.

We are now ready to define some types and rules. Beware that these rules do

not define the types, which are just suggestive names for existing objects. Each -

48

rule must be proven sound, i.e. we must show that it asserts a true fact about

the term categories.

When proving a rule sound we are faced with what seems to be a very large
proof burden. In practice, however, it is a quite manageable task. We are partly
saved by the equally complex assumptions that the rules provide us, but we can
also make use of the following simple observation: If a,f,... are computations
that on input h are known to produce elements of 4, B, ... we can construct any
well-formed morphism expression using a,f,... in place of elements and know
that the resulting computation on input A produces instances of the morphism
expression and can be proven to respect equality. For example, if we know that
given an element of H, a produces an element of A — B and f produces an
element of B — C, we can define the computation 8- a that on input A produces
B(h) - a(h) which is an element of A — C. If now a and § are known to preserve
equality of H it follows easily that so does #(h)-a(h), since composition is defined
to preserve equality of its arguments. Hence, we have proven soundness of the
rule:

h:HF (B(h) - a(h)(h)e A—C
h:H+a(h)le A—-B; h:H-pBh)eB—-C

which, if we assume the convention that computations without explicit arguments

depend on the entire hypothesis, we can write as

HF-B.-aecA—-C
H+-a€cA—- B, H-FfeB—-C

All simple constructions have been defined to preserve equality, and in the case of
morphisms induced by universality and couniversality we get functionality from

the inherent uniqueness.

49

4.2 Propositional Types

The propositional types are defined as follows:

— Void is 0, the limit of the empty diagram.

— A x B is the limit of the binary discrete diagram {4, B}.
— A+ B is the colimit of the binary discrete diagram {4, B}.
— A — B is the exponent of A and B.

We derive the following rules.

(Void-elim) H,z: Voidl any(z) €T

Here we define any(z) = univ(T,0,0) - z, i.e. the composition of the uniquely
induced morphism from T to 0 and z. Since composition preserves equality, we

can prove that any is functional.

HF<ab>cAxB
HracA HFbeB

(x-intro)

Here < a,b >= univ(1, {a,b}, {4, B}) is defined to be the morphism induced
by the cone {a,b} over the diagram {A, B}. This is a finite cone that can triv- .
ially be expressed by a computation. Uniqueness of this construction ensures
functionality.

HFpri(z)e A HtFprr(z) € B
H+-zc€ Ax B Hr-ze Ax B

(x-elim)

We define pri(z) = L({A, B}, A) - z, i.e. the composition of z and the left
projection of the product. Again, functionality follows easily. Similarly, prr(z) is

z composed with the right projection of the product. Product are illustrated in
figure 4.1.

50

<a,b>

A

a AXB
prl / \ prr
A B

Figure 4.1: Product Types

Hlinlla)e A+ B Htinr()e A+ B
HFa€c A Ht+beB

(+-intro)
Here inl(a) is C(A, B, A) - a, i.e. the composition of a with the left injection into °
the coproduct, and snr(b) is defined similarly.

H | decide(f,g) € A+ B—C
Hr-feA—-C,HgeB—-C

(+-elim)

Here decide(f,g) = couniv(l,{f,g},{A, B}), i.e. the unique morphism induced
by the finite cocone {f, g} over the diagram {4, B}. Coproducts are illustrated
in figure 4.2.

HFXf)eA— B
H,z: Al f(z) € B

(—-intro)

We notice that the antecedent of this rule tells us that f can be abstracted as
a morphism, so we define A(f) = curry(morph(f)). Functionality follows since

currying always preserves equality and f by assumption preserves equality.

HtF f(a) e B
HFacA H+-f€eA—B

(—-elim)

51

decide(f,g)

____.____’ O

A+B
inl / \ inr
A B

Figure 4.2: Coproduct Types

Here f(a) denotes eval(A, B)-(ax f), i.e. the application of f to a. Functionality

follows trivially.

These types and rules are called propositional since they are obviously closely
connected to intuitionistic propositional logic with the standard propositions-as-

types interpretation.

4.3 The Integer Type

The type Int is the natural numbers object; it is used to perform induction.

HFO0€ Int HI S(n) € Int
HFne Int

(Int-intro)

Here, 0 and S are just the zero and successor morphisms of the natural numbers

object.

Htiter(b,f) € Int = T
Hr-nelnt; H-beT;H+ f:T —-T

(Int-elim)

52

We know that ¢ and f induces a unique morphism ¢ : Int — T, so we can merely

define ster(t, f) = ¢. This is a very simple induction rule; we can also allow the

type to vary.

H,n: Intt ind(n,b, f) € T(n)
HF T € Int — U;; induction(d, f,T)

(Int-elim)

where induction(b, f, T) abbreviates:
HEbeT(0); Hyn: Int,z: T(n)F f(z) € T(S(n))

Here, ind(n, b, f) is simply the computation that produces f"(b). Notice, that the
ind-term is just a computation; we cannot define an #nd(b, f)-term with domain

Int and hope to type it.

4.4 Sigma and Pi Types

We now describe the quantification types ¥ and II. If A is an object and B is a
morphism A — U; we define:

— TI(A, B) is the limit (product) of the diagram X(4, B).

— ¥(A, B) is the colimit (sum) of the diagram X (4, B).

This captures the intuition that II- and X-types are products and sums of their
components; our rules mirror this fact.

H |- in(a,b) € £(A, B)

(2-intro) HracA HF b€ Bla)

We define in(a,b) = C(X(A, B),B(a)) - b, i.e. the composition of b with the

injection morphism indexed by a. Functionality is no problem here.

H | decide(g) : £(A,B) = C
H,z: Al g(z) € B(z) = C

(2-elim)

53

Z(A,B)
decide(g) ,.-”

C «<—B(a) in(a,b)

Figure 4.3: ¥ Types

We first notice that g forms a cocone over X (A, B); the hard part of proving this
is to show that g denotes the same morphism on objects with the same tag in
the diagram, but that is exactly the condition that g is functional. Hence, we
can define decide(g) = couniv(C, g, X(A, B)), the unique morphism induced by
g. T types are illustrated in figure 4.3. This rule is quite different from the vPrl
rule, and it may not be obvious that we have defined a strong ezistential type.
Recently this type constructor has attracted attention because its presence in
an impredicative theory yields inconsistency. The question is whether we given
an element of £(A, B) can decide what its index is, i.e. if we have a morphism
proj : (A, B) — A such that for all a,b we have proj - in(a,b) = a. We can
easily get this by building the cocone (4,p) over X(A, B) where p for each a
contains the morphism a- couniv(B(a),0,0) from B(a) to A; now we can define

proj = couniv(A,p, X(A, B)).

HtF A(f) € II(A, B)
H,z: A}t f(z) € B(z)

(IT-intro)

Again, we realize that f forms a cone over X(A4, B), and we can define A(f) to

be univ(1, f, X(A4, B)).

54

1
f
A(D
[» II(A,B) | fla)
f(a) l
B(a)

Figure 4.4: II Types

HF f(a) € B(a)
HF fcli(A,B); HFac A

(T-elim)

Here we merely define f(a) = L(X(A,B),B(a)) - f, i.e. f composed with the
projection morphism indexed by a. II types are illustrated in figure 4.4. Notice,
how these rules are similar to the rules for the —-type; this tells us that we could

obtain the —-type as a restricted version of the II-type.

4.5 Subtypes and Quotient Types

To construct these types we first need an ¢inhabstation predicate, i.e. a morphism
I: U; — Q such that for all A we have I-pu;(A) = T iff A has an element. To get
this we first build the diagram A described by the following computation: On
input < ¢, T > we verify that T is an object; next we verify that ¢ is a morphism
1 — T; if we terminate at this point we output < 1d(1),1,1,4d(T),sd(T) >. This
process defines A as the discrete diagram of 1’s, one for each inhabited type. Now
we build a cocone (U;, k) over A, where k for each inhabited type T contains the
morphism p;(T) from the corresponding copy of 1 to U;. Clearly, the induced -

morphism ¢ = couniv(U;, k, A) is monic, so we can define I = char(im(4)), the

99

1—» 21— 1

Figure 4.5: The Inhabitation Predicate

character of ¢. This situation is illustrated in figure 4.5. With this in hand we

can proceed.

If A is an object and B : A — U; is a morphism then
— {A| B} is the limit of the diagram S(4,B)={I-B: A—-Q,T:1—Q}.
i.e. the subobject with character I- B.

. H | sub(a) € {A| B}
({}-intro) Hraca HFbeBa)

Form the cone ¢ = {proj : £(A,B) — A, T : £(4A, B) — Q} over S(A,B). We
can now define sub(a) = couniv(X(A, B),c,S(A,B)) - a.

) HF sup(z)e A
({}-elim) Hrze{A|B}

We define sup(z) = L(S(A, B), A) - z, i.e. £ composed with the inclusion of the
subobject into A. Subtypes are illustrated in figure 4.6. As these rules demon-
strate, this subtype construction is very much like a E-type, except that the proof

part has been supressed.

If A is an object and B: A x A — U; is a morphism then

— A/B is the colimit of the diagram

56

- g——————

Figure 4.6: Subtypes

A/B
/' ‘\
S
e prr\\
R sup >
{AxA|B} —» AxA A
prl

Figure 4.7: Quotient Types
Q(A,B)={sup: {Ax A| B} - Ax A,prl,prr: Ax A — A}

We get an obvious introduction rule; each element in A has an equivalence class

in A/B.

HV\[a] € A/B

(/-intro) HracA

We can simply define [a] = C(Q(A, B), A) - a. Quotient types are illustrated

in figure 4.7. We would expect to get an elimination rule from the couniversal

57

properties of the quotient, but it turns out that we are unable to express it until

we have defined equality types.

4.6 Recursive and Infinite Types

We now turn our attention to w-inductively defined types, e.g. lists, trees, and
streams. Recursive and infinite types in type theory are developed by Mendler,
Constable, and Panangaden [5,17). They are defined by morphisms from U; to
U;, with certain restrictions. Such a morphism maps objects of H; to objects of
H;, but it is not defined on morphisms. We can only give meaning to morphisms
F : U; — U; that can be extended to covariant, continous or cocontinous endo-
functors on H;; we call these morphisms inductive. The adjective (co)continous
means that F' must preserve (co)limits. This may seem like a severe requirement,
but we have never encountered a common inductive (data)-type constructor that

failed to meet it.

To illustrate this we focus on the most common class of inductive definitions:
expressions over one variable using constants, +, x, and —. If we must insist
that the variable does not occur in the domain of any —-type, i.e. that the
expressions must be strongly positive, we are guaranteed to get a covariant and
continous functor. But the functor z — (z — A) is contravariant and neither
continous nor cocontinous. All the strongly positive expressions, however, are °
continous. The —-type constructor is, however, not cocontinous in its second
argument either in general categories. In certain categories of domains the —-
functor is bicontinous in both its arguments, and one can actually solve equations
such as T = T — T [19]. Thus we arrive at similar restrictions as [4], but with
a completely different motivation. In [16] the requirements have been weakened

to just posstive expressions of which z — ((z — A) — B) is an example. These

58

rec(F)
A4 RR
i 7, 1 ~
/”/,’ // \\\ \\\
P 14 / \ N
e Pid / \ N
- P ’ \ .
Pad /’ ! \ A
Pie s’ / \ S
’ 4 7 \ N
-7 /’ / \ N
o pad J \\ :

Figure 4.8: Cochain and Colimit

expressions are all covariant but demonstrably not continous or cocontinous; only
the property of monotonicity is used by Mendler [16]. It is not entirely clear how
we could use this broader definition; at the very least we would lose the property

that an inductive type is fsomorphic to its unfolding.

Let F : U; — U; be inductive. Then cochain'(F) is the diagram obtained by
iterating F on the unique induced morphism couniv(F(0),9,0) : 0 — F(0), and
chain(F) is the diagram obtained by iterating F on the unique induced mor-
phism univ(F(1),0,0) : F(1) — 1. These diagrams are clearly both computable. °

We can now define:
— rec(F) is the colimit of cochain(F).
— inf(F) is the limit of chain(F).

These constructions are illustrated in figures 4.8 and 4.9. It is now clear why
we must insist on covariant functors; a contravariant functor would alternate
the direction of morphisms in (co)chains. When the functor is cocontinous it
follows that the colimit of F(cochain(F)) is F(rec(F)); but cochain(F) and
F(cochain(F)) is essentially the same diagram, so couniversality tells us that

rec(F) = F(rec(F)). Similarly, continuity yields inf(F) = F(inf{F)). However,

59

1 «—— F(1) «— F2(1) «— F3(1) «—

Figure 4.9: Chain and Limit

(co)continuity is not necessary to derive sensible induction rules, so it is con-
ceivable that we could introduce a notion of monotonicity and define inductive
types as in [16]. We can think of the recursive type as the smallest solution to
z = F(z) and correspondingly of the infinite type as the largest solution (the
ordering being intuitive rather than formal). For example, if F(z) = 1+ A x z

then rec(F) defines finite lists and inf(F') defines streams.

We get some very pleasing rules.

H I inc(n, z) € rec(F)
H,n: Intt z € Fr(0)

(rec-intro)

Here F™(0) abbreviates iter(F,0)(n). The rule states that we can obtain an
element of the recursive type by including an element from any unfolding. We
can merely define inc(n,z) = C(cochain(F), F*(0)) - z. This introduction rules

is illustrated in figure 4.10.

H '\ def(f) € rec(F) — B
Hr feF(B)— B

(rec-elim)

This rule tells us how to define recursive functions on recursive types. Soundness

is a little complicated to demonstrate. We clearly have the unique morphism

rec(F)

Fn(0) inc(n,x)

Ix

Figure 4.10: Introduction Rule for Recursive Types

f
F(B) — B
+ :

def(f)
F(rec'(F)) —_ relc(F)

Figure 4.11: Elimination Rule for Recursive Types

from O to B; applying F yields a morphism from F(0) to F(B); composing with
f we get a morphism from F(0) to B. By iterating this we get a morphism
from each F™(0) to B. But then we have a cocone p over cochain(F) and we
can define def(f) = couniv(B,p, cochain(F)). This elimination rule is illustrated
in figue 4.11. To see how this rule works we shall define a lenght function on
lists, i.e. a morphism length : rec(F) — Int, where F(z) = 1+ A x z. Our rule
tells us to define a morphism 1+ A x Int — Int; let 0 : 1 — Int be the zero
morphism and let S : Int — Int be the successor morphism. Then we can define

length = def{decide(0, S - prr)).

61

f
B—— F(B)

gen(f) E i

v v
inf(F) — F(inf(F))

Figure 4.12: Introduction Rule for Infinite Types

The rules for infinite types are dual in nature.

H | gen(f) € B — inf(F)
H\ feB— F(B)

(¢nf-intro)

We see that elements on an infinite type must be generated inductively. As
before we start with the unique morphism from B to 1; applying F we get a
morphism from F(B) to F(1); composing with f we get a morphism from B to
F(1). By iterating we get a morphism from B to each F"(1). But then we have
a cone p over chain{F) and we can define gen(f) = univ(B,p,chain(F)). This
introduction rule is illustrated in figure 4.12.

H,n: Int} app(n,z) € F*(1)
HF z € inf(F)

(¢nf-elim)

The rule states that from an element of the infinite type we can get an element
of any approximant. We simply define app(n,z) = L(chain(F),F"(1)). - z. This

elimination rule is illustrated in figure 4.13.

It is tempting to speculate on what happens if we form the limit of a cochain or
the colimit of a chain. This turns out not to be very interesting; regardless of
what F is, we find that the colimit of chain(F) is 1 and the limit of cochain(F')

is 0.

62

inf(F) app(n,x)

Fn(1)

Figure 4.13: Elimination Rule for Infinite Types

It seems reasonable that we could handle transfinite recursive type definitions,
too. In that case we would first form the w-cochain as before, but then extend it
with the objects rec(F), F(rec(F)), F*(rec(F)), and so on, which would produce
a 2w chain. This seems to generalize to arbitrary recursive ordinals, but we have

not investigated this further.

4.7 Computation Rules

Till now, we have just given suggestive names to certain objects and morphisms
and demonstrated how we could obtain rules similar to those of the vPrl the-
ory. Throughout this discussion it has been tacitly assumed that we have chosen
the correct interpretation, and we have certainly not violated out intuitive under-
standing of types and terms at any point. There is, however, a formal requirement
that we must meet. A critical aspect of type theory is its computational con-
tent, i.e. the existence of a reduction relation on terms. The reduction relation

is specified through computation rules, so to make any claim of modelling the

63

vPrl theory we must verify that all the reduction rules on terms are valid in our
theory, i.e. they must all respect equality of morphisms. Of course, since we
have different rules we will get different reductions, but they should be immedi-

ately recognizable as variations of the ¥Prl reduction rules. We use > to denote

reduction.
X: pri-<a,b> pDa
prr-<a,b> b b
+: decide(f,g) -inl(a) > f-a

decide(f, g) - inr(b) > g-b
— A(f)(a) > fla)
T decide(g) - in(a,b) > g(a) - b
IL: A(f)(a) > f(a)
O sup - sub(z) b z
rec. def(f)(inc(n,z)) > I(n) -z
I(0)p!
I(S-n) > f-F(I(n))
where ! is the unique morphism from 0 to B
inf: app(0, gen(f)) > !

app(S - n, gen(f)) > F(app(n,gen(f))) - f

where ! is the unique morphism from B to 1

Apart from these, we also have the reduction B¢ from the underlying computa-

tion system; we use that in the following general reduction rule:
tbcs=>tps

Notice, that since the elimination rule for the quotient type is missing, we cannot

provide a reduction rule either. This hole will be filled out after we introduce

equality types.

The soundness of these rules is immediate by expanding the definitions of the

terms.

4.8 Equality Types

To fully express all the rules of the vPrl type constructors we must introduce a

simple version of equality types. They are types of the form
I(tlat2) T)

that are inhabited iff ¢, and ¢, are equal terms of the type T. Hence, they serve
to reflect part of the meta-theory of vPrl back into the theory. We have to add
them explicitly, which means for each equality type finding an existing object
that is equivalent to it with respect to inhabitation. Fortunately, this is very
easy; we can take advantage of the formulas-as-types paradigm and merely spell
out the equality predicates in the language of types. Thus, equality types are

derived concepts in our theory. The translation is as follows.

Void: I(any(z),any(y),T) =1

Int:

I(< a,b>,< d',} >, A x B) =(a,d, A) x 1(b,¥, B)
1(inl(a), inl(a'), A + B) = I(a,d', A)

I(inr(b),inr(¥'), A + B) = 1(b,t', B)

1(inl(a), inr(b), A+ B) =0

1(inr(b),inl(a), A+ B) =0

I(f,9,A— B) =1l(a : A,1(f(a),g(a), B))

1(0,0, Int) = 1

I(S - 5,5 - m, Int) = I(n,m, Int)

1(0,S - m, Int) = 0

I(S - 5,0, Int) =0

I(in(a, b), in(a", b'), T(A, B)) = I(a, d', A) x 1(b,¥', B(a))
1(f,9,T1(A, B)) = (a : 4,1(f(a),g(a), B(a)))

1(sub(a), sub(a'), {4 | B}) = I(a,d', A)

I((a], [a"], A/ B) = B(a, d))

I(inc(n, z), inc(m, y), rec(F)) = I(n, m, Int) x I(z,y, F"(0))

I(gen(f), gen(g), B — inflf)) =1(f,9, B — F(B))

65

Furthermore, we have the following general rule for non-canonical terms:
t,' [t: = I(tl,tz,T) = I(t'l, ;,T)

We can illustrate the use of equality types by finally stating the elimination rule
for the quotient type.

HV\[fl: A/B—>C
Hrf: A—C;H,a: A,a': A, B(a,a') F I(f(a), f(a'),C)

(/-elim)

The content of this rule is that a function on A that respects B induces a function

on the quotient. Soundness follows easily; define p to be the cocone
{f-pri-sup: {A|B} —C,f: A—C}

over Q(A, B); commutativity follows from the assumption that f yields equal
values on related elements. Now, we can define [f] = couniv(C, p,Q(A4, B)), and

we are done. The computation rule that accompanies this elimination form is

/: [£]-a] > [£(a)]

Equality types in this simple form clearly do not add any thing to our theory, as
they merely denote already existing types. They reflect equality statements back

into the theory.

4.9 Pure Types and Terms

Earlier, we defined a type to be an interesting object. Looking back, we see that
the type constructors we have described are very uniform, i.e. it is apparant
that they will work on all objects and not just types. Hence, we are faced with
the somewhat philosophical question whether A x B is a type even if A and B

are not. Since there are no technical problems in giving an affirmative answer

67

we shall do so. This is merely a reflection of the fact that we have many more
type constructors than we know what to do with. To remedy this situation
we shall define a pure type to be an object that is built exclusively from the
type constructors we have defined and a pure term to be a morphism that is
built exclusively from the corresponding rules. If we only wanted to work with
pure types and terms we could add that as an extra proof burden on our type
constructors. These correspond to some of the well-formedness conditions for
the vPrl theory, where many of the subgoal in formation rules are various well-
formedness criteria that have been reflected back into the theory. Some of these
we can avoid since we cannot have typed terms with untyped subterms, but
others we have in common with vPrl, as for example functionality requirements

for type constructors.

4.10 Diagrams as Type Constructors

When defining the previous type constructors it was clear that they arose in a
very uniform fashion. In fact, any diagram-scheme D seems to induce two type .
constructors A(D) and Z(D) obtained through a limit and colimit construction

over D. We can even say what their introduction and elimination rules are:

H - univ(X, k, D) - z € lim(D)
HV (X,k,D)cone; H-z € X

(A(D)-intro)

HF L(D,A)-yc A
Hryclim(D);HF A€ D

(A(D)-elim)

H'+ C(D, A) - a € colim(D)

(E(D)-intro) HFAcD HFacA

HF counsv(X,k,D) - ye X
H (X, k,D)cocone; H |- y € colim(D)

(E(D)-elim)

68

These rules are not euntirely formal, but they reveal a pattern that pervades
throughout our work so far. Conversely, we are allowed to think of eny diagram
as defining a type constructor. It is now a deeply interesting question whether
this plethora of type constructors really gives us new types; is it the case that
some small set of type constructors is sufficient? We can provide a seemingly

contradictory answer to this question: yes and no!

Yes, because it is a well-know fact from category theory that with only prod-
ucts and equalizers we can build limits of all diagrams, and with coproducts
and coequalizers we can build colimits of all diagrams. This means, that with
four type constructors we can express all the others, at least up to isomorphism. -
Products and coproducts are just ¥ and II; equalizers and coequalizers are more
obscure and not recognizable as existing type constructors. If we wanted to add
them we could proceed as follows. Let f,g : A — B be two morphisms and let
P(f, g) be the parallel-arrow diagram consiting of f and g suspended between A
and B. Now we define

- EQ(f,9) is the limit of P(f,g)
— COEQ(f,g) is the colimit of P(f,g)

We get the following rules.

HFi(a) € EQ(f,9)

(EQ-intro) HFacA HF I(f-a,9 a,B)
. Hle(z)e A
(BQ-elim) HFz€ EQ(f,9)
HI|i(b) e COE
(COEQ:-intro) '(}“G_ .= BQ(f, 9)

Ht e(h) € COEQ(f,9) — C
H-heB—C,HFI(f -h,g-h,A— C)

(COEQ-elim)

65

These rules are justified in the obvious way. It is clear that these types have no

intuitive content, which is probably why they were not suggested in the first place.

The no part of our answer points out that the soul of type theory is to isolate
interesting type constructors, for which we can give meansngful rules. Minimality
is not a virtue in this context; recusive types may be superfluous, but it seems
very unlikely that we could ever have invented useful induction rules without

viewing them as constructors in their own right.

We can illustrate these ideas by constructing a new diagram and interpreting
it as a type constructor. Look at the infinite, two-dimensional, grid-shaped dia-
gram, built from the two inductive morphisms F' and G, that is shown in figure
4.14; if we call the colimit of this diagram dual(F, G); it is not hard to see that
dual(F,G) 2 rec(F) x rec(G). Thus a seemingly new type constructor is reduced

to a combination of existing ones.

i

H

F2(0)x0 —»

!

F(0)x0 —

!

0x0 —>

H
i

F2(0)xG2(0)

!

F(0)xG(0)

!

0xG(0)

—>

—

!

Fi(0)xGi(0)

!

F2(0)xG3(0)

!

F(0)xG2(0)

!

0xG2(0)

Figure 4.14: A Grid-shaped Diagram

—>

—>

Chapter 5

L
Conclusions
-We now assess our achievements and point out future research directions.

5.1 The Impact of our Theory

The categorical type theory we have presented is a simplified and diagramatically
inspired version of predicative type theory. Aside from some important details
the theory is essentially a variant of Martin-Lof’s theory and the vPrl theory.
One of our principal contributions was to spell out a model theoretic notion of

consistency. It argues heavily in favor of the consistency of comparable theories.

We have shown how different type constructors may be viewed as instances of
simple, standard category theoretic constructions, viz. limits and colimits of com-
putable diagrams. This realization may help to discover interesting introduction
and elimination rules in a standard manner. Our consistency result immediately

generalizes to all future type constructors that can be expressed in this way.

Our theory can serve as a tool for analysis of theories of this general nature;

71

72

in particular, one easily obtains results about the inconsistency of certain exten-
sions. Thus for example, the notion Type:Type interpreted as the existence of a

retract-universal type is easily shown to be inconsistent.

We have successfully managed to separate the notions of computations and typed
terms. In the vPrl theory typed terms are obtained by typing arbitrary compu-
tations, and typed terms may contain untypeable subterms. In our theory typed
~ terms are essentially built from typed combinators, and the computations enter

as a way of describing diagrams.

5.2 Future Work

We see many interesting studies emerge from this project.

We hope to use our framework to analyze extensions of the theory; in particu-
lar, we are interested in impredicative higher-order constructs. These are present
in the theory of constructions [6], which is built on top of the 2nd order poly-
morphic lambda calculus. It has a special sub-class of types called propositions,
which possibly forms a topos. Thus, in this setting propositions are types, but
some types are not propositions. Quantification over an arbitrary type yields a
proposition. As the set of propositions is viewed as a type, a proposition can
quantify over all propositions — a clearly impredicative phenomenon. We want
to investigate whether our hierarchy of term categories can be identified as a

stratification of some part of this theory.

Many meta-mathematical questions naturally arise: We would like to obtain
some normalization results about our categorical theory. We expect to have cer-

tain unsverse relativity results, i.e. the validity of certain proofs in arbitrary

73

universe levels. Such results have been obtained for the vPrl theory by S. F.

Allen in his upcoming thesis.

It is not known how to weaken the notion of continuity to allow for transfi-
nite recursive types. We are at the present limited to such recursive definitions
that reach their closure after w many unfoldings. The work of N. P. Mendler [16]

employs a notion cf monotonicity that we aspire to express categorically.

Finally, we hope to find interesting models that can reveal more than just con-
sistency. The set valued model we have provided merely formalizes our intuition
that types may be viewed as sets with special properties. A topological model
could perhapsm allow us to regain the notion of computational approzimations
that is at the heart of the Scott semantics. It is already the case that that

elements of infinite types must be understood through their computational ap-

proximations.

Bibliography

[1] M. A. Arbib and E. G. Manes. Structures, Arrows and Functors. The Cat-

egorical Imperative. Academic Press, 1975.

[2] H. P. Barendregt. The Lambda Calculus: Its Syntaz and Semantics. Vol-
ume 103 of Studies in Logic, North-Holland, 2nd and revised edition edition,
1984.

[3] R.Burstall and D. Rydeheard. Computational category theory. 1985. Type-

set Manuscript.

[4] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, 1986.

[5] R. L. Constable and N. P. Mendler. Recursive definitions in type theory. In
Proceedings of Logics of Programs ’85, Springer-Verlag, 1985.

[6] T. Coquand and G. Huet. Constructions: a higher order proof system for
mechanizing mathematics. In Proceedings of EUROCALSS5, Linz, Springer-
Verlag, 1985.

[7] P.-L. Curien. Categorical Combinators, Sequential Algorithms, and Func-
tional Programming. Pitman-Wiley, 1986.

[8] J.-Y. Girard. Interprétation fonctionelle et elimination des coupures dans

I’arithmetique d’order superieur. Ph.D. thesis, Paris, 1972.

74

BIBLIOGRAPHY 75

[°]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

R. Goldblatt. Topoi: The Categorical Analysis of Logic. Volume 98 of
Studies in Logic and the Foundations of Mathematics, North-Holland, 1979.

H. Herrlich and G. E. Strecker. Category Theory: An Introduction. Volume 1
of Sigma Series in Pure Mathematics, Heldermann Verlag, 1979.

J. R. Hindley and J. P. Seldin. Introduction to Combinators and Lambda
Calculus. Volnme 1 of London Mathematics Society Student Tezts, Cam-
bridge University Press, 1986.

J. Lambek. From lambda calculus to cartesian closed categories. In To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
tsm, Academic Press, 1980.

J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. .
Volume 7 of Cambridge Studies in Advanced Mathematics, Cambridge Uni-
versity Press, 1986.

S. MacLane. Categories for the Working Mathematician. Volume 5 of Grad-
uate Texts sn Mathematics, Springer-Verlag, 1971.

P. Martin-L6f. An intuitionistic theory of types: predicative part. In Pro-
ceedings of Logic Colloquium ’78, North-Holland, 1975.

N. P. Mendler. Inductive Definition and Infinite Objects in Constructive
Type Theory. Ph.D. thesis, Cornell, 1986. In preparation.

N. P. Mendler, P. Panangaden and R. L. Constable. Infinite objects in type
theory. In Proceedings of Symposium on Logic in Computer Science 86,
IEEE Computing Society Press, 1986.

R. A. G. Seely. Locally cartesian closed categories and type theory. Mathe-
matical Proceedings of Cambridge Philosophical Society, 95, 1984.

BIBLIOGRAPHY 76

[19] M. B. Smyth and G. D. Plotkin. The category theoretic solution of recursive
domain equations. Siam Journal of Computing, 11(4), 1982.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif

