First-class Synchronous Operations in
Standard ML*

J. H. Reppy

TR 89-1068
December 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported, in part, by the NSF and ONR under NSF grant CCR-85-14862.

First-class synchronous operations in Standard ML*

J.H. Reppy
Cornell University
jhr@cs.cornell.edu

December 20, 1989

Abstract

In [Reppy88], we introduced a new language mechanism, first-class synchronous
operations, for synchronous message passing. In our approach, synchronous operations
are represented by first-class values called events. Events can be combined in various
ways, allowing a user to define new synchronization abstractions (e.g., remote procedure
call), which have equal status with the built-in operations.

This paper describes this mechanism and presents a new implementation of events as
part of a coroutine package for Standard ML. The coroutine package is written entirely
in SML, using first-class continuations, and provides very light-weight processes. First-
class continuations provide a natural way to represent events that closely follows an
operational semantics for events.

1 Introduction

We have developed a coroutine package for Standard ML (SML)HMMS86,HMTsS] t},,¢ sup-
ports first-class synchronous operations(Rerpy88], This package has been implemented in
the SML of New Jersey (SML/NJ) system[AM87] using first-class continuations, which
are an experimental feature of SML/NJIPM]. Because the SML/NJ implementation of

continuations is very cheap, our coroutine package provides very light-weight threads.

The purpose of this paper is two-fold: to provide a guide to users and to describe the
implementation. We assume a reasonable familiarity with SML. Section 2 describes the
package and section 3 provides a number of examples and programming techniques. The

implementation is described in section 4 and the source code is given in the appendices.

2 Concurrent SML

Concurrent SML is not a new language per se, but rather a set of concurrency primitives
written in SML. The design of Concurrent SML has been heavily influenced by the author’s

*This work was supported, in part, by the NSF and ONR under NSF grant CCR-85-14862

earlier work on Pegasus (done at AT&T Bell Laboratories)[RG86Reppy88] which provides
dynamic process creation, message passing on typed channels, and first-class synchronous
operations. In this section we describe the standard features of Concurrent SML, then we

motivate and describe events.

2.1 Processes and channels

The basic concurrency mechanisms of Concurrent SML (and Pegasus) are taken from

AmberlCardelli8] Figyre 1 gives the interface signature for these primitives. New processes

eqtype procid

val process : (unit -> unit) -> procid
val getpid : unit -> procid
val pid2string : procid -> string

type ’a chan

val channel : unit -> ’1a chan
val send : (’a * ’a chan) -> unit
val accept : ’a chan -> ’a

Figure 1: Basic concurrency primitives

are dynamically created by applying process to a “(unit -> unit)” value. This creates
a new thread to evaluate the argument and returns the procid of the new process. The
function getpid returns the procid of current (i.e., calling) process; pid2string is used to

make a printable string from a procid.

Processes communicate by synchronous message passing on typed channels. New chan-
nels are created by the channel function!. The send and accept functions provide syn-
chronous message passing. When a process executes a send operation, it offers a message
on a channel and waits until another process offers to accept the message; we say that the

send and accept operations matched.

An important operation that most synchronous communication systems provide is a
select operation. This operation allows a process to offer a number of communications
simultaneously. The first operation that matches an operation by another process is selected.
Although Concurrent SML does not provide a select operation, the mechanism described
below provides the full power of select.

!The “’1a” in the result type of channel is a weak type variable. The result type must be weakly
polymorphic to insure the soundness of the type system.

As an illustration of programming with channels and processes, consider figure 2, which

is a stream-style program for computing prime numbers. We use “int chan” values to

(* from : int -> int chan *)
fun from n = let
val ch = channel ()
fun count i = (send (i, ch); count (i+1))
in
process (fn () => (count n)); ch
end

(* filter : (int * int chan) -> int chan #*)
fun filter (p, inCh) = let
val outCh = channel ()
fun loop () = let val i = accept inCh

in
it ((i mod p) <> 0) then send (i, outCh) else ();
loop ()
end
in
process (loop); outCh
end

(* sieve : unit -> int chan *)
fun sieve () = let
val primes = channel ()
fun loop ch = let val p = accept ch
in
send (p, primes);
loop (filter (p, ch))

end
in
process (fn () => (loop (from 2))); primes
end

Figure 2: Sieve of Eratosthenes

represent streams of integers. The function from applied to n returns the infinite integer
stream, n,n + 1,...|| The function filter takes an integer p and a stream of integers and
produces a stream with the multiples of p filtered out. These functions are used by sieve
to produce a stream of prime numbers. Each time sieve finds a new prime, it adds another
filter to the stream.

2.2 Events

The channel I/O mechanism described in the previous section is fairly standard, found
in languages such as CSP[Hoare85] occam(INMOS83] 3nd A mberlCardellise], In Concurrent
SML, however, send and accept are actually derived from the more general mechanism of
first-class synchronous operations[Reppy88]. This mechanism addresses a number of problems

with the conventional mechanism.

The example from the previous section provides a good illustration of a major problem
with conventional message-passing mechanisms. We are implementing the abstraction of
integer streams using channels, but the representation is not hidden. Thus there is nothing
to stop the user from inserting an arbitrary value into the stream of primes. The obvious

solution is to package the channel in a function

(* sieve : unit -> (unit -> int) *)
fun sieve () = let

val primes = channel ()

fun loop ch = .

in
process (fn () => (loop (from 2)));
(fn () => (accept primes))

end

Unfortunately, this creates another problem: we have hidden the synchronization aspect
of “getting the next prime.” Thus there is no way to get the effect of a select operation
on the stream of primes. We are forced to choose between abstraction and flexibility. Our
solution to this is to make synchronous operations first-class, which allows us to have our

cake and eat it too.

Consider the meanings of send and accept: a process executing a send waits until
another process is ready to receive and then transmits the message; a process executing
an accept waits until another process offers a message and then receives it. Both of these
operations can be characterized as “wait until the operation can be completed and then do
it.” This is the intuition behind first-class synchronous operations; we separate the waiting
(i.e., synchronization) from the actual operation. We call these operations event values.

Figure 3 gives the interface of this mechanism.

More formally, a “r event” value is a synchronous operation that, upon synchronization,
returns a value of type 7. The functions receive and transmit are used to build events

that describe channel I/O operations. For example, the definition

val evt = transmit ("hello world", ch)

type ’a event
exception Sync
val sync : ’a event -> ’a

val choose : ’a event list -> ’a event
val wrap : (’a event * (’a -> ’b)) -> ’b event

val transmit : (’a * ’a chan) -> unit event
val receive : ’a chan -> ’a event
val wait : procid -> unit event

val noevent : ’a event
val rdyevent : unit event
val anyevent : unit event

Figure 3: Events

binds evt to an event value describing the operation of sending the string "hello world"
on the channel ch. To actually send the message we apply the sync operation to evt. It
follows that the standard channel I/O operations are easily defined using events

fun send (x, ch) = sync (tramnsmit (x, ch))
fun accept ch = sync (receive ch)

We can use events to provide an abstract interface to the stream of primes without

hiding the synchronization aspect of the abstraction.

(* sieve : unit -> int event *)
fun sieve () = let

val primes = channel ()

fun loop ch = ...

in
process (fn () => (loop (from 2)));
receive primes

end

The power of the event type comes from the choose and wrap operations, which allow
events to be combined to form new synchronization abstractions. The choose operation
builds an event value for the non-deterministic selection from a list of events. The wrap
operation provides a way to bind a wrapper function to an event. The wrapper is applied
to the result of the event it wraps; the following rule illustrates this. A CSP-style select

mechanism can be implemented using choose and wrap. For example, the following expres-

sion will either read an integer from c1 and square it, or will read an integer from c2 and
add 10 to it2

sync (choose [
wrap (receive ci, (fn i => (i*i))),
wrap (receive c2, (fn i => (i + 10)))])

The function wait builds an event for synchronizing on the death of a process. There are
three base event values that have special semantics. The value noevent, which is equivalent
to “choose []”, is never satisfied. The value rdyevent is always immediately satisfied.
The value anyevent is similar to rdyevent, except that when synchronizing on a choice of
events, anyevent values have lower priority than the other events. This property can be

used to implement polling. For example, the function

fun pollChan ch = sync (choose [
wrap (receive ch, (fn x => SOME x)),
wrap (anyevent, (fn () => NONE))])

returns NONE if there is no message waiting on ch, otherwise it returns the message3. Note
that rdyevent would not work here, because in the situation where there is a message

waiting on ch, there is a possibility that the rdyevent will be selected.

2.3 Semantics

The semantics of events are given informally in [Reppy88] in terms of the canonical event

form. A canonical event has the form
choose[wrap(bevy, f1), ..., wrap(bevy,, fr))

where the bev; are base events. A collection of rewrite rules are given in [Reppy88], which

map event values to equivalent canonical event values.

The meaning of applying sync to a canonical event is given by: first, poll the bev;
looking for immediately satisfiable events and choose one if available; second, if there are no
immediately satisfiable events, then suspend the process until one of the events is satisfied;
finally, apply the corresponding wrapper function to the result of the satisfied event and

return it as the result.

?The SML expression “[e1,...,en 1” evaluates to a list of n elements.
3This is using the SML option type, defined as “datatype ’a option = NONE | SOME ’a”

3 Programming with events

Events provide a powerful mechanism for implementing new synchronization and commu-
nication abstractions. In this section we first give some small examples of programming
techniques using events and then give a complete example of the implementation of a new

abstraction.

3.1 Programming techniques

Events provide a tremendous amount of flexibility in defining new synchronization mecha-
nisms, and there is no way that we could catalogue them all here. Instead, we give some

small examples of the programming techniques that are available.

The choose operation provides a “parallel or” mechanism, but it is also possible to
implement a “parallel and” operation. The following curried function returns an event that

produces the folding of two events.

(* pAnd : ((’a => ’b) -> ’c) -> (’a event * ’b event) -> ’c event *)
fun pAnd £ (evi, ev2) = choose [
wrap (evi, fn x => £ (x, sync ev2)),
wrap (ev2, fn y => £ (sync evi, y))]

The expression

sync (pAnd (op + : (int * int) -> int) (receive c1, receive c2))

will read an integer from channel c1 and one from c2 (in some order) and return their sum.

Another important application of events is building remote procedure call (RPC) style
interfaces. The following function builds the client and server sides of a RPC interface to a

function.

(* mkRemote : (’1a -> ’1b) -> ((’1a -> ’1b event) * unit event) *)
fun mkRemote £ = let
val argCh = channel() and resCh = channel()
fun clientF x = wrap(transmit(x, argCh), fn () => (accept resCh))
val serverF = wrap(receive argCh, fn x => (send (f x, resCh)))
in
(clientF, serverF)
end

This can be used to build a static interface to a server. For example, the following server

produces system-wide unique identifiers.

val (getId : int event) = let
val cnt = ref 0
val (get, put) = mkRemote (fn () => ((!cnt) before (inc cmt)))
fun loop () = (sync put; loop())
in
process loop; get ()
end

We saw above that anyevent can be used to poll for input, but it can also be used to
implement Ada’s conditional entry-call mechanism(PoD83], If entryFn is an event value for
a RPC, then the following is a conditional entry call of it.

choose [
entryFn,
wrap (anyevent, fn () => (raise ServerNotReady))]

If the server is not ready to handle entryFn, then the exception ServerNotReady is raised.
This example illustrates that we can treat user-defined synchronous operations, such as

entryFn, on an equal basis with the built-in operations.

It is sometimes useful for a server to manage dynamic lists of clients. For example,
a window manager needs to monitor output requests for a variable number of windows.
One way to implement this is by using a unique identifier for each window, and tagging
all requests with this identifier. Another approach is to use a different channel for each
client. The server process then can maintain a list of clients and their events. The following
code manages a dynamic list of clients and deals with the situation in which a client dies

unexpectedly.

datatype client = Client of (procid # unit event)
val (clients : client list ref) = ref nil

fun removeClient pid = let
fun find ((c as Client(p, _)) :: rest) =
if (p = pid) then rest else c :: (find rest)
in
clients := find (!clients)
end

exception DeadProc of procid

fun mkEvent () = let
fun £ (Client(pid, ev)) = choose [
ov, wrap (wait pid, fn () => (raise (DeadProc pid)))]
in
choose (map £ (!'clients))

end

fun serverLoop ev = serverLoop (
(sync ev; ev) handle (DeadProc pid) => (removeClient pid; mkEvent()))

Each client is represented by it procid and an event value that is the amalgamation of
the server-side events for the client. From this representation mkEvent builds an event that

catches the death of the client; the server then removes dead clients from its client list.

3.2 Buffered multi-cast

As a final illustration of concurrent programming using events, we present the complete
implementation of a new communication abstraction: buffered multi-cast channels. A multi-
cast channel has a number of output ports. When a process sends a message on a multi-
cast channel, it is replicated once for each output port. Output ports are buffered, so
message sending is asynchronous. Messages appear at output ports in the same order. This

abstraction has the following interface:

type ’a mchan
type ’a port

val mChannel : unit -> ’ia mchan

val newPort : multicast : ’a mchan -> ’a port
val multicast : (’a * ’a mchan) -> unit

val readPort : ’a port -> ’a event

New multi-cast channels are created using mChannel and new ports using newPort. The
multicast operation asynchronously broadcasts a message to the ports of a multi-cast
channel and readPort returns an event value for receiving a message from a port. Figure 4

is the implementation of this interface.

The representation of a mchan value consists of a request channel and a response channel
for communicating with a dedicated server process. The functions multicast and newPort
are implemented as requests to the server process; in the case of newPort, the server responds

with a new port.

For each associated output port, there is a port process. When the server receives a
message request, it sends it to a port process. The port process adds the message to its
buffer and sends the message to another port process. In this way, the message is propagated
to all of the ports. The server and port processes both represent the next port to propagate
the message to by the function value outFn. Initially, when there are no ports, outFn is a

no-op. The function mkPort, which creates new ports, takes the server’s current outFn as

datatype ’a request = Message of ’a | NewPort

datatype ’a mchan = MChan of (’a request chan * ’a port chan)
and ’a port = Port of ’a event

(* mChannel : unit -> ’a mchan *)
fun mChannel () = let
val reqCh = channel() and respCh = channel()

fun mkPort outFn = let
val inCh = channel() and msgCh = channel()
fun portLoop buffer = portLoop (
sync (choose [
(case buffer

of nil => noevent
| (x :: rest) => wrap (transmit(x, msgCh), fn () => rest)),

wrap (receive inCh, fn m => (outFn m; buffer ¢ [m]))]))
in
process (fn () => portLoop nil);
((fn m => send (m, inCh)), Port(receive msgCh))
end
fun serverLoop outFn = let

fun handleReq (NewPort) = let
val (outFn’, port) = mkPort outFn

in
send (port, respCh);
outFn’

end
| handleReq (Message m) = (outFn m; outFn)

in
serverLoop (sync (wrap (receive reqCh, handleReq)))
end
in
process (fn () => serverLoop (fn _ => ()));
MChan(reqCh, respCh)
end

(* newPort : ’a mchan -> ’a port *)
fun newPort (MChan(reqCh, respCh)) = (send (NewPort, reqCh); accept respCh)

(* multicast : (’a * ’a mchan) -> unit *)
fun multicast (m, MChan(reqCh, _)) = send (Message m, reqCh)

(* readPort : ’a port -> ’a event *)
fun readPort (Port ev) = ev

Figure 4: Multi-cast channels

10

an argument and returns a new outFn that talks to the newly created port process. We
can view the port processes as forming a linked list with the outFn values playing the roles
of links and the initial no-op outFn as the null link.

In addition to the outFn, each port process has a channel for receiving messages, a
buffer for messages and an output channel. When there are messages in the buffer, the
port process synchronizes on the choice of sending the first buffered message and receiving
another message from the server. When the buffer is empty, the port process waits for the

next message from the server.

4 Implementation

Concurrent SML is implemented in SML/NJ. The implementation consists of two files:
“events.sig,” which contains the interface signature, and “events.sml,” which contains

the actual implementation. The source text of these files are included as appendices.

The implementation relies heavily on first-class continuations, so we first give a brief
introduction to SML/NJ’s continuation mechanism. Then we describe the implementation

of processes, channels and events using continuations.

4.1 Continuations

The continuation of an expression is a function that executes the rest of the program, when

given the result of the expression as an argument. For example, in the program

it (a < b) then £() else g()

the continuation of “(a < b)” can be described as “if the value is true, then call £, otherwise
call g”.

In SML, continuations are a parameterized abstract type with two operationsPMI:

type ’a cont
val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> (’a -> ’b)

A 7 cont is the type of a function representing the rest of the program with a formal pa-
rameter of type 7. Continuations are created using callcc (call with current continuation)

and are applied using throw. A simple example is the expression
callcc (fn (k : int cont) => (throw k 5; 6)) + 7

11

The variable k is bound to the int cont that adds 7 to its argument; the throw applies k
to 5, giving 12.

4.2 Implementing processes

Using first-class continuations, it is possible to implement light-weight processes (or threads)
directly in a high-level language[Wand80.HFW84] Ip 3 conventional implementation of process
abstraction, a process state vectoris maintained for every suspended process; the state vector
contains the necessary information to restart the process. A continuation is an abstraction
of exactly this information; thus we can represent a suspended process by its resumption

continuation.

Our implementation of processes and process management is similar to that of [Wand80]
and [HFW84], so we skip most of the low-level details here.

For type-checking convenience, we represent process resumptions as

" type proc = (unit -> unit)

Each process also has an associated procid, which is a record of process specific information.
There is a global variable, currentProc, that references the procid of the current thread.

Two functions

val enqueue : (procid * proc) -> unit
val dequeue : unit -> (procid * proc)

are used to manage the process ready queue. The next process is dispatched by

val dispatch : unit -> ’a

The return type of dispatch is unconstrained, since it never returns (as are the return
types of raise and throw).

Process creation is worth looking at in more detail.

(* create a new process *)
fun process £ = callcc (fn parent_k => let
val pid = newPid()
fun child () = (
(£ ()) handle exn => (
print (pid2string pid); print " uncaught exception ";
print (System.exn_name exn); print "\n");
notify pid;
dispatch())

12

fun parent () = (throw parent_k pid)
in
enqueue (pid, child);
enqueueCurProc parent;
dispatch ()
end)

The body of the child process is wrapped in an exception handler. This will catch any
exceptions missed by the process body, print a message and terminate the thread cleanly.

The call to notify is used to support the wait event and is discussed below.

This implementation of processes is very light-weight. For example, running the sieve
program of section 2 to find the 1000th prime number requires a total of about 350,000
bytes of live data, including the or about 350 bytes per process (and this includes the cost
of 1000 channels). This is in direct contrast with more conventional thread packages, which
use several hundred bytes for the process state vector and thousands of bytes for the process
stack. The low space cost of threads is principally a result of the fact that SML/INJ does

not use a run-time stack[AJ89],

4.3 Implementing channels

Figure 5 gives the data-types used to represent channels. A channel consists of an input

datatype ’a chanq = CHANQ of {
front : (bool ref * ’a) list ref,
rear : (bool ref * ’a) list ref

}
datatype chan_state = IDLE | INPUT_WAIT | OUTPUT_WAIT

datatype ’a chan = CHAN of {

state : chan_state ref,

inq : (procid * ’a cont) chang,

outq : (procid * ’a * unit cont) chang
}

Figure 5: Channel data structures

queue and an output queue; it can be in one of three states: IDLE, when both queues are
empty; INPUT_WAIT, when there are waiting processes in the input queue; and OUTPUT_WAIT,
when there are waiting process/message pairs in the output queue. At anytime, at most
one of the queues will be non-empty. The “bool ref” slots are used to unlog pending I/O

operations (described below). The functions

13

val insert : (’a chanq * bool ref * ’a) -> unit
val remove : ’a chanq -> ’a

are used to manage the channel waiting queues. Although send and accept can be imple-

mented using events, they are actually implemented directly for efficiency reasons.

4.4 Implementing events

To motivate the implementation of events, we examine the implementation of the P oper-
ation on binary semaphores, which is perhaps the simplest synchronous operation. In our
setting, it has the implementation (we separate out the body of the operation for pedagogical

reasons)

datatype semaphore = SEMAPHORE of {
£lg : bool ref,
waitq : unit cont list ref

}

(*+ P : semaphore -> unit *)
fun P (SEMAPHORE{flg, waitq}) = let

fun Pbody (resumek) = if (!flg)
then (flg := false)
else (waitq := !waitq @ [resumek]; dispatch())

in

callcc Pbody
end

Notice that the resumption continuation of the calling process is a free variable in the body
of the operation. This observation, which holds for all synchronous operations, is the key
to the implementation of events. It suggests that an “’a event” value can be represented
by an “(’a cont -> ’a)” value. With this representation, an event-style implementation
of P is

(* P : semaphore -> unit event #*)
fun P (SEMAPHORE{flg, waitq}) = let

fun Pbody (resumek) = if (!flg)
then (flg := false)
else (waitq := !waitq @ [resumek]; dispatch())

in

Pbody
end

It follows that sync is implemented directly by callcc and wrap is implemented by
fun wrap (evt, f) = fn k => (throw k (f (callcc evt)))

14

Unfortunately, this simple representation of events is unable to support the choose
operation. When synchronizing on an event composed of several base events, there are
three steps that we must take:

e Polling: first we must poll the base events to see if any of them are immediately
satisfiable.

o Logging: if there are no immediately satisfiable events, then we must add the process
to the waiting queues of the base events.

o Unlogging: when one of the base events is satisfied, we must remove the process from
the other base events’ waiting queues.

An event is represented by a list of base event descriptors. A base event descriptor is

a pair of functions: a polling function and the event function (see figure 6). The polling

datatype evt_sts = EVT_ANY | EVT_READY | EVT_BLOCK
type ’a base_evt = (unit -> evt_sts) * (bool ref * ’a cont -> unit)

datatype ’a event = EVT of ’a base_evt list

Figure 6: Event data structures

function is used to determine if a base event is immediately satisfiable; it returns EVT_ANY
for anyevent, EVT_READY for other immediately satisfiable events, and EVT_BLOCK for base
events that are not immediately satisfiable. The event function implements the synchronous
operation, logging, and wrapper. To deal with unlogging, we use a boolean flag shared
among all of the base events of an event; this flag will be set to true when one of the
base events is satisfied®. These dirty items are ignored by the polling functions. This

representation of events is essentially the canonical event form described in [Reppy88].

The implementation of sync (figure 7) uses the function extract to poll the list of events.
If this is non-empty, sync then uses the function select to select one of the immediately
satisfiable events. The function random (not shown) generates the selection index; we
currently use a psuedo round-robin scheme. If there are no immediately satisfiable events,
then we log the synchronization point continuation with the base event waiting queues and
dispatch the next process.

Figure 8 contains the implementation of wrap. This is basically our previous imple-
mentation (with a slight modification to handle the extra argument) distributed over the

list of base events. The continuation return_k is necessary to avoid applying the wrapper

*This trick is due to Norman Ramsey at Princeton University.

15

datatype ’a ready_evts
= NO_EVTS (* no ready events *)
| ANY_EVTS of (int * ’a base_evt list) (% list of ready anyevents *)
| RDY_EVTS of (int * ’a base_evt list) (* list of ready events *)

val extract : ’a base_evt list -> ’a ready_evts

(* sync : ’a event -> ’a *)
fun sync (EVT el) = callcc (fn sync_k => (
case ol
of nil => ()
| [(pollFn, evtFn)] => (case pollFn()
of EVT_BLOCK => evtFn (ref false, sync_k)
| _ => evtFn (ref true, sync_k))
| el => let
fun select (n, 1) = let
val (_, evtFn) = nth (1, random n)
in
oevtFn (ref true, sync_k)
end
in
case extract el
of NO_EVTS => let
val evtflg = ref false
fun log (_, evtFn) = evtFn(evtflg, sync_k)
in
app log el
end
| ANY_EVTS anyevts => select anyevts
| RDY_EVTS evts => select evts
end
(* end case *);
dispatch()))

Figure 7: Implementing sync

function when logging the event. The choose operation is implemented by flattening the
list of event lists.

Base events are represented by singleton lists. For example, the implementation of
transmit is given in figure 9. The polling function first cleans the head of the input queue,
removing any dirty items. Then it tests to see if any process is waiting for input. The event
function must deal with two cases: either the input queue is empty and the current process
must be added to the output waiting queue, or there is a process waiting for input and both

processes can proceed. The implementation of receive is symmetric.

16

(* wrap : (’a event * (’a -> ’b)) -> ’b event *)
fun wrap (EVT el, f) = let
fun wrap’ (nil, evts) = evts
| wrap’ ((tstFn, evtFn) :: rest, evts) = let
fun evtFn’ (flg, k) = callcc (fn return_k => (

throw k (£ (callcc (fn wrapper_k => (

evtFn (£1g, wrapper_k);

throw return_k ()))))))

in
wrap’ (rest, (tstFn, evtFn’) :: evts)
end
in
EVT(wrap’ (el, nil))
end

Figure 8: Implementing wrap

The implementation of the base events anyevent, rdyevent and noevent are trivial:
anyevent and rdyevent have polling functions that return EVT_ANY and EVT_READY, re-

spectively, and trivial event functions; noevent is represented by the empty base event
list.

The wait function allows synchronization on process termination. This is implemented
by a list of waiting processes in the procid object. The wait event function adds the
calling process to the waiting list. When a process dies, it calls notify, which dispatches

the waiting processes. As with channels, we use a dirty flag to mark obsolete entries on the

waiting list.

5 Summary

We have presented the design and implementation of a coroutine package in SML/NJ. Our
package provides very light-weight processes as well as a flexible mechanism for implement-
ing user-defined synchronization abstractions. We have shown how to use this mechanism
to implement a number of synchronous operations. The implementation is included in the

appendices.

17

(* transmit : (’a * ’a chan) -> unit event *)
fun transmit (msg, chan as CHAN{state, ing, outq}) = let
fun pollFn () = (case (!state)
of INPUT_WAIT =>
if (clean inq) then (state := IDLE; EVT_BLOCK) else EVT_READY
| . => EVT_BLOCK)
fun evtFn (f1g, kont) = (case (!state)
of INPUT_WAIT => let
val _ = if (not (!£1g)) then (flg := true; raise Sync) else ()
val (rpid, rkont) = remove inq
in
enqueue (rpid, fn () => (throw rkont msg));
enqueueCurProc (throw kont)
end
- =>(
insert (outq, flg, (getpid(), msg, kont));
state := QUTPUT_WAIT))
in
EVT[(pollFn, evtFn)]
end

Figure 9: The transmit function

18

References

[AT89)

[AMS87]

[Cardelli86]

[DM]

[DoD83]
[HFW84]

[HMMS6]

[HMTss]

[Hoare85]

[INMOS83]

[Reppy88|

[RG86]

[Wand80]

Appel, A.W. and T. Jim. “Continuation-passing, closure-passing style,” Con-
ference Record of the 16th Annual ACM Symposium on Principles of Program-
ming Languages, January 1989, pp. 293-302.

Appel, A.W. and D.B. MacQueen. “A standard ml compiler,” Functional Pro-
gramming Languages and Computer Architecture, Lecture Notes in Computer
Science 274, Springer-Verlag, September 1987, pp.301-324.

Cardelli, L. “Amber,” Combinators and Functional Programming Languages,
Lecture Notes in Computer Science 242, Springer-Verlag, 1986, pp.21-47.

Duba, B. and D. MacQueen. “Type-checking first-class continuations,” in
preparation.

United States Department of Defense. Ada reference manual, 1983.

Haynes, C.T., D.P. Friedman and M. Wand. “Continuations and coroutines,”
Conference record of the 1984 ACM Conference on Lisp and Functional Pro-
gramming, 1984, pp. 293-298.

Harper, R., D. MacQueen and R. Milner. “Standard ml,” ECS-LFCS-86-2,
Laboratory for Foundations of Computer Science, Department of Computer
Science, University of Edinburgh, 1986.

Harper, R., R. Milner and M. Tofte. “The definition of standard ml (version
2),” ECS-LFCS-88-62, Laboratory for Foundations of Computer Science, De-
partment of Computer Science, University of Edinburgh, 1988.

Hoare, C.A.R. Communicating Sequential Processes, Prentice-Hall, Englewood
Cliffs, New Jersey, 1985.

INMOS Limited. Occam Programming Manual, Prentice-Hall, Englewood
Cliffs, New Jersey, 1984.

Reppy, J.H. “Synchronous operations as first-class values,” Proceedings of the
SIGPLAN’88 Conference on Programming Language Design and Implementa-
tion, June 1988, pp. 250-259.

Reppy, J.H. and E.R. Gansner. “A foundation for programming environments,”
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environments, December 1986, pp.
218-227.

Wand, M. “Continuation-based multiprocessing,” Conference Record of the
1980 Lisp Conference, August 1980, pp. 19-28.

19

A events.sig

signature EVENTS =
sig

(** processes **)
type procid
type proc
val process : (unit -> unit) -> procid
val yield : unit -> unit
val getpid : unit -> procid

val pid2string : procid -> string

(** channels *x)
type ’a chan

val channel : unit -> ’1a chan

val send : (’a * ’a chan) -> unit
val accept : ’a chan -> ’a

(#* events *x)
type ’a event

exception Sync

val sync : ’a event -> ’a

val wrap : (’a event * (’a -> ’b)) -> ’b event
val choose : ’a event list -> ’a event

val anyevent : unit event

val rdyevent : unit event

val noevent : ’a event

val transmit : (’a * ’a chan) -> unit event
val receive : ’a chan -> ’a event

val wait : procid -> unit event

(* reset the system *)
val reset : unit -> unit

end (* signature EVENTS *)

20

B events.sml

The following is the complete source code for the events package.

structure Events : EVENTS =
struct

fun reverse (nil, rl) = rl
| reverse (x :: rest, rl) = reverse(rest, x :: rl)

(** Processes *x)

datatype procid = PROCID of {
pid : int,
isDead : bool ref,
waiters : (procid * bool ref * unit cont) list ref

}

(* return a string representation of a process id *)
fun pid2string (PROCID{pid, ...}) = implode ["[", makestring pid, "]"]

type proc = (unit -> unit)

(* the process ready queue *)
local
(* the queue of ready processes waiting to be run *)
val (rdyQFront : (procid * proc) list ref) = ref nil
val (rdyQRear : (procid * proc) list ref) = ref nil
in

exception AllDead (* raised when the process queue is empty *)

(* remove a (procid * proc) pair from the ready queue. *)
fun dequeue () = (case (!rdyQFront)
of (p :: rest) => (rdyQFront := rest; p)
| nil => (case reverse(!rdyQRear, nil)
of (p :: rest) => (rdyQFront := rest; rdyQRear := nil; p)
| nil => raise AllDead))

(* add a (procid * proc) pair to the ready queue. *)
fun enqueue p = (case (!rdyQFront)
of nil => (rdyQFront := reverse(!rdyQRear, [p]); rdyQRear := nil)
| _ => rdyQRear := p :: !rdyQRear)

(* reset the queue *)
fun resetProcQ () = (rdyQFront := nil; rdyQRear := nil)

end (* local *)

local
(* generate new process ids *)

21

val nextPid = ref 0
fun newPid () = let val id = !nextPid
in
nextPid := id + 1;
PROCID{pid = id, isDead = ref false, waiters = ref nil}
end

(* the current process *)
val currentProc = ref (newPid())

(* notify any waiting processes of the death of a process *)
fun notity (PROCID{isDead, waiters, ...}) = let
fun notify’ (pid, flg, kont) = if (!flg)
then (flg := true; enqueue (pid, throw kont))
else ()
in
isDead := true;
app notify’ (!waiters)
end

in

(* add the current process to the ready queue *)
fun enqueueCurProc resume = (enqueue(!currentProc, resume))

(* dispatch the next process on the ready queue *)
fun dispatch () = let

val (nextpid, nextProc) = dequeue ()

in
currentProc := nextpid;
nextProc ();
dispatch ()

end

(# create a new process *)
fun process f = callcc (fn parent_k => let
val pid = newPid()
fun child () = (
(£ ()) handle exn => (
print (pid2string pid); print " uncaught exception ";
print (System.exn_name exn); print "\n");
notify pid;
dispatch())
fun parent () = (throw parent_k pid)
in
enqueue (pid, child);
enqueueCurProc parent;
dispatch ()
end)

(* yield control to the next process *)
fun yield () = callcc (fn k => (enqueueCurProc (throw k); dispatch()))

22

fun getpid () = (!currentProc)

(* reset the system, clearing the ready queue *)
fun reset () = (nextPid := 0; resetProcQ())

end (* local *)

(** Channels **)

datatype ’a chanq = CHANQ of {
front : (bool ref * ’a) list ref,
rear : (bool ref * ’a) list ref

}
datatype chan_state = IDLE | INPUT_WAIT | OUTPUT_WAIT

datatype ’a chan = CHAN of {
state : chan_state ref,
inq : (procid * ’a cont) chang,
outq : (procid * ’a * unit cont) chanq

}

(#* Channel queue routines *x)
fun newq () = CHANQ{front = ref nil, rear = ref nil}

(* insert an item into a channel queue *)
fun insert (CHANQ{front, rear}, flg, item) = (case (!front)
of nil => (front := reverse(!rear, [(flg, item)]); rear := nil)
| _ => rear := (flg, item) :: !rear)

(* remove an item from a channel queue and set its dirty flag *)
fun remove (CHANQ{front, rear}) = (case (!front)
of nil => let val ((flg, x) :: rest) = reverse(!rear, nil)
in
front := rest; rear := nil; flg := true; x
end
| ((£1g, x) :: rest) => (front := rest; flg := true; x))

(* Clean a channel of satisfied transactions. We do this incrementally to
* give a amortized constant cost. Basically we guarantee that the front
* of the queue will be unsatisfied. Return true if the resulting queue
* is empty.
*)
fun clean (CHANQ{front, rear}) = let
fun clean’ nil = nil
| clean’ (1 as ((flg, _) :: rest)) = if !flg then clean’ rest else 1
in
case (clean’ (!front))
of nil => (case clean’(reverse(!rear, nil))

23

of nil => (front := nil; rear := nil; true)
| 1 => (front := 1; rear := nil; false))
| 1 => (front := 1; false)
end

(* channel : unit -> ’ia chan *)
fun channel () = CHAN{state = ref IDLE, inq = newq(), outq

newgq()}

(» send : (’a * ’a chan) -> unit *)
fun send (msg, CHAN{state, ing, outq}) = callcc (fn send_k => (
if ((!state = INPUT_WAIT) andalso (clean inq)) then state := IDLE else ();
case (!state)
of INPUT_WAIT => let
val (rpid, rkont) = remove inq
in
enqueue (rpid, fn () => (throw rkont msg));
enqueueCurProc (throw send_k)
end
I = (
insert(outq, ref false, (getpid(), msg, send_k));
state := QUTPUT_WAIT)
(* end case *);
dispatch()))

(* accept : ’a chan -> ’a %)
fun accept (CHAN{state, inq, outq}) = callcc (fn accept_k => (
it ((!state = OUTPUT_WAIT) andalso (clean outq)) then state := IDLE else ();
case (!state)
of OUTPUT_WAIT => let
val (spid, msg, skont) = remove outq
in
enqueue (spid, throw skont);
enqueueCurProc (fn () => (throw accept_k msg))
end
I = (
insert(inq, ref false, (getpid(), accept_k));
state := INPUT_WAIT)
(* end case *);
dispatch()))

(#* Events **)
exception Sync
datatype evt_sts = EVT_ANY | EVT_READY | EVT_BLOCK
type ’a base_evt = (unit -> evt_sts) * (bool ref * ’a cont -> unit)

datatype ’a event = EVT of ’a base_evt list

24

local
datatype ’a ready_evts
= NO_EVTS (* no ready events *)
| ANY_EVTS of (int * ’a base_evt list) (* list of ready anyevents *)
| RDY_EVTS of (int * ’a base_evt list) (* list of ready events *)

(* Extract a list of ready events by polling a list of base events. Priority
* is given to events other than anevent. *)
fun extract nil = NO_EVTS
| extract ((evt as (pollFn, _)) :: rest) = (case (pollFn ())
of EVT_ANY => extract_any (1, rest, [evt])
| EVT_READY => extract_rdy (1, rest, [evt])
| EVT_BLOCK => extract rest)
and extract_rdy (n, nil, rdy_evts) = RDY_EVTS (n, rdy_evts)
| extract_rdy (n, (evt as (pollFn, _)) :: rest, rdy_evts) = (case (pollFn ())
of EVT_READY => extract_rdy (n+1, rest, evt :: rdy_evts)
| _ => extract_rdy (n, rest, rdy_evts))
and extract_any (n, nil, any_evts) = ANY_EVTS (n, any_evts)
| extract_any (n, (evt as (pollFn, _)) :: rest, any_evts) = (case (pollFn ())
of EVT_ANY => extract_any (n+1, rest, evt :: any_evts)
| EVT_BLOCK => extract_any (n, rest, any_evts)
| EVT_READY => extract_rdy (1, rest, [evt]))

(* Generate index numbers for "non-deterministic" selection. We use a
* round-robin style policy. *)

val cnt = ref 0

fun random i = (('cnt mod i) before (inc cnt))

(* sync : ’a event -> ’a *)
fun sync (EVT el) = callcc (fn sync_k => (
case el
of nil => ()
| [(pollFn, evtFn)] => (case pollFn()
of EVT_BLOCK => evtFn (ref false, sync_k)
| _ => evtFn (ref true, sync_k))
| o1 => let
fun select (n, 1) = let

val (_, evtFn) = nth (1, random n)

in
evtFn (ref true, sync_k)

end

in
case extract el
of NO_EVTS => let
val evtflg = ref false
fun log (_, evtFn) = evtFn(evtflg, sync_k)
in
app log el
end
| ANY_EVTS anyevts => select anyevts

25

| RDY_EVTS evts => select evts
end
(* end case *);
dispatch()))

(* wrap : (’a event * (’a -> ’b)) -> ’b event *)
fun wrap (EVT el, f) = let
fun wrap’ (nil, evts) = evts
| wrap’ ((pollFn, evtFn) :: rest, evts) = let
fun evtFn’ (f£1g, k) = callcc (fn return_k => (

throw k (£ (callcc (fn wrapper_k => (

evtFn (flg, wrapper_k);

throw return_k ()))))))

in
wrap’ (rest, (pollFn, evtFn’) :: evts)
end
in
EVT(wrap’ (el, nil))
end

end (* local *)

(* choose : ’a event list -> ’a event *)
fun choose evts = let
fun choose’ (nil, nil, el) = el

| choose’ ((EVT evt) :: rest, nil, el) = choose’ (rest, evt, el)
| choose’ (evts, e :: rest, el) = choose’ (evts, rest, e :: el)
in
EVT (choose’ (evts, nil, nil))
end

(** Base events **)

(* anyevent : unit event *)
val anyevent = EVT[
((fn () => EVT_ANY),
(fn (_, k) => enqueueCurProc (throw k)))]

(* rdyevent : unit event *)
val rdyevent = EVT[
((fn () => EVT_READY),
(fn (_, k) => enqueueCurProc (throw k)))]

(* noevent : ’a event *)
val noevent = EVT[]

(* transmit : (’a * ’a chan) -> unit event *)
fun transmit (msg, chan as CHAN{state, inq, outq}) = let
fun pollFn () = (case (!state)
of INPUT_WAIT =>
if (clean ing) then (state := IDLE; EVT_BLOCK) else EVT_READY

26

| _ => EVT_BLOCK)
fun evtFn (flg, kont) = (case (!state)
of INPUT_WAIT => let
val _ = if (not (!£1g)) then (£lg := true; raise Sync) else ()
val (rpid, rkont) = remove inq
in
enqueue (rpid, fn () => (throw rkont msg));
enqueueCurProc (throw kont)
end
= (
insert (outq, flg, (getpid(), msg, kont));
state := OUTPUT_WAIT))
in
EVT[(pollFn, evtFn)]
end

(* receive : ’a chan -> ’a event *)
fun receive (chan as CHAN{state, ing, outq}) = let

fun pollFn () = (case (!state)

of OUTPUT_WAIT =>
if (clean outq) then (state := IDLE; EVT_BLOCK) else EVT_READY
| _ => EVT_BLOCK)

fun evtFn (flg, kont) = (case (!state)

of OUTPUT_WAIT => let

val _ = if (not (!flg)) then (flg := true; raise Sync) else ()
val (spid, msg, skont) = remove outq
in

enqueue (spid, throw skont);
enqueueCurProc (fn () => (throw kont msg))
end
I - =
insert (inq, flg, (getpid(), kont));
state := INPUT_WAIT))
in
EVT[(pollFn, evtFn)]
end

(* wait : procid -> unit event *)
fun wait (PROCID{isDead, waiters, ...}) = let
fun pollFn () = if ('isDead) then EVT_READY else EVT_BLOCK
fun evtFn (flg, kont) = (
if (!isDead)
then enqueueCurProc (throw kont)
else waiters := (getpid(), flg, kont) :: !waiters)
in
EVT [(pollFn, evtFn)]
end

end (* structure Events *)

27

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif

