Theory of R-functions
and Applications:
A Primer*

Vadim Shapiro**

91-1219
July 1991

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This document is also available as CPA Technical Report CPA88-3, Cornell
Programmable Automation, Sibley School of Mechanical Engineering, Ithaca
NY 14853. It was prepared while the author was a member of the CPS project,
and was supported by the General Motors Corporation (through a Corporate
Fellowship) and by the National Science Foundation under grant MIP-8719196.
This report was revised with the support of The Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research Contract
NO00014-88-K-0591.

**On leave from the Computer Science Department, General Motors
Research Laboratories, Warren, Ml 48090, shapiro@gmr.com. Current
address: Department of Computer Science, Cornell University, Ithaca, NY
14853, shapiro@cornell.edu.



Theory of R-functions
and Applications:
A Primer *

Vadim Shapiro!

November 1988
(Revised June 1991)

*This document is also available as CPA Technical Report CPA88-3, Cornell Programmable Automation,
Sibley School of Mechanical Engineering, Ithaca, NY 14853. It was prepared while the author was a member
the CPA project, and was supported by the General Motors Corporation (through a Corporate Fellowship)
and by the National Science Foundation under grant MIP-8719196. This report was revised with the support
of The Advanced Research Projects Agency of the Department of Defense under Office of Naval Research
Contract N00014-88-K-0591.

tOn leave from the Computer Science Department, General Motors Research Laboratories, Warren, MI
48090, shapiro@gmr.com. Current address: Department of Computer Science, Cornell University, Ithaca,
NY 14853, shapiro@cs.cornell.edu.



Foreword

An R-function is real-valued function characterized by some property that is completely
determined by the corresponding property of its arguments, e.g., the sign of some real func-
tions is completely determined by the sign of their arguments. More generally, such a
property could be determined by some partition of the real axis. If the axis is partitioned
into k subsets, each R-function corresponds to a companion function of k-valued logic. This
relationship allows one to represent a logical predicate of n variable by a real-valued function
of n arguments. The latter can be evaluated, differentiated, and possesses many other inter-
esting properties. V. L. Rvachev first suggested R-functions in 1963. Since then, he and his
colleagues have significantly developed the theory and found many applications. Their work
is described in a numerous books and articles, unfortunately mostly in Russian. A complete
list of references through 1987 can be found in [Shi88].

An important application of R-functions is in the description of geometric objects. Any
object defined by a predicate on “primitive” geometric regions (e.g. regions defined by a sys-
tem of inequalities) can now be represented by a single inequality, or equation. Furthermore,
these real-valued functions can be constructed so that they have certain useful logic and dif-
ferential properties. Application of theory of R-functions could have a profound effect on
many problems where geometric information can be accounted for analytically. For example,
according to [Rva82], R-functions have found applications in many unexpected areas, such
as study of stability of motion, medical diagnostics, and chemical engineering, in addition
to those described in this report.

This primer summarizes some basic results from the theory of R-functions and describes
(rather superficially) some of the applications studied in the Soviet Union. As far as I know,
this is the first such introduction to R-functions in English. Its main prupose is to stimulate
interest in R-functions in the research community; it is not intended to serve as a compre-
hensive reference. While this document contains no original results, absorbing, translating,
interpreting, and condensing the contents of the references did require a substantial judge-
ment on my part. The original sources offer a wealth of additional material that was omitted
for the sake of simplicity and coherence of this document. Thus, I also accept the respon-
sibility for all mistakes, misinterpretations, and omissions in this report. While the main
applications of R-functions have been in the description of geometric objects, the developed
theory does not seem to rely on many known results in combinatorial, algebraic, and com-
putational geometry and topology. In an effort to preserve the spirit of the original work, I
resisted making “improvements” in the presentation.

My current interest in R-functions is stimulated by their obvious relationship to geometric
and solid modeling. It remains to be seen whether problems in geometric modeling can be
formulated and solved using this theory. Topics of interest include automatic construction
of real functions with desired properties, relationship to regularized Boolean operations on
solid objects, interference detection, robust computations, and applications in design and
analysis of solids.

Lastly, I would like to thank Vadim Komkov who pointed me to the 1967 book by Rvachev
[Rva67], and Rick Palmer who suggested a number of improvements in this primer.
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1 Theory of R-functions

1.1 R-functions.

Some real-valued functions of real variables have the property that their signs are completely
determined by the signs of their arguments and are independent of the magnitude of the
arguments. For example, the function W, = zyz is negative if the number of its negative
arguments is odd and positive otherwise. A similar property is possessed by functions

Wy = z+y+/ay+22+y2,

Wy = 2+x2+y2+z2,
W, = x+y+z—\/x2+y2—\/x?+z2—\/y2+z2+\/z2+y2+z2,

Ws = zy+2z+4|z—yz|,

and so on. Table 1.1 shows how the signs of these functions depend on the signs of their
arguments.

For comparison, here are some functions whose sign depends not only on the sign of the
arguments but also on their magnitude:

We = zyz+1,
W; = sinzy,

Ws = z+y+2z—yz2+y?

and so on. Specifying distribution of signs for arguments of functions W; — Wy completely
determines the corresponding sign distribution of the functions; functions Ws, W7 and W
do not behave in this fashion.

Besides the partition of real numbers into positive and negative, there are infinitely
many choices for partitions. For example, one can partition real numbers into rational and
irrational numbers, or, say, into all real numbers in interval [0,1], and the the rest of the
real numbers. It is possible to introduce several or even infinitely many gradations when
subdividing the set of real numbers. In general, any such partition I' of the set of real
numbers (based on some criterion) also determines a set R(T') of those real functions that
in some sense “inherit” the partition criterion (sign, rationality, membership in [0, 1], etc.).
Such functions will be called R-functions.

In this document, we will only consider R-functions defined by the decomposition of the
real axis into positive and negative numbers, namely partition I'} = {(—o0,0] and [0, +00)}.
Including zero in both intervals may seem strange, and we will return to this issue in section
1.6. For the time being, we assume that zero is always signed: +0, or —0; this allows us to
determine whether it belongs to the set of positive or negative numbers. Consider a function
Sy(z) defined on the real axis as follows:

0 ifz < -0,
Sa(z) = {1 if z > +0.



Lzlylz[W |Wo [Ws | W, | W]
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Table 1: The signs of real functions W; — Wy depend only on the signs of their arguments
z,y,and z

The foregoing concept of R-function implies that a function y = f(z1,...,z,) is an
R-function if there exists a Boolean! function Y = F(Xj,...,X,) such that the following
equality is satisfied:

Sg[(f(.’l!l, T2y, .’L‘,-,)] = F[Sz(l‘l), 52(232), ey Sz(.’l?n)]

We will refer to this Boolean function as a companion function of a given R-function. Infor-
mally, a real function is an R-function if it can change its property (sign) only when some
of its arguments change the same property (sign).

It further follows that to every Boolean function there correspond an infinite number
of R-functions. For example, the Boolean companion function for R-function w; = zy is
X © Y (X is equivalent to Y). Just check to see that

Sa(zy) = S2(z) & Sa(y).
But logical equivalence is also a Boolean companion function for R-functions like

w, = zy(l+2+y?),
wy = (1-277)(3¥-1),

and so on. The set of all R-functions that have the same companion Boolean function is
called a branch of the set of R-functions. Since the number of distinct Boolean functions of
n arguments is 22", there are also 22" distinct branches of R-functions of n arguments.

In this document, by Boolean functions we mean functions of the Boolean algebra of logic with truth
value 1 and false value 0. Such functions can be defined using logical operations A, V, and — on n logical
variables.



1.2

Branches and systems of R-functions.

The following is only a partial list of some general properties of R-functions. Complete

proofs, as well as many additional properties, can be found in the references, notably in
[Rva67] and [Rva82].

1.

The set of R-functions is closed under composition. In other words, any function
obtained by composition of R-functions is also an R-function.

If a continuous funetion y = f(z1,...,z,) has zeros only on coordinate hyperplanes
(i.e. y = 0 implies that one or more z; = 0,5 = 1,2,...,n), then y is an R-function;

Product of R-functions is another R-function (because Boolean companion of the bi-
nary product is logical equivalence). If R-function y = f(zi,...,z,) belongs to some
branch, and g(zi,...,z,) > 0 is an arbitrary function, then the function fg also be-
longs to the same branch;

If f; and f; are R-functions from the same branch, then the sum f, + f; is an R-function
belonging to the same branch;

. If f is an R-function whose companion Boolean function is F', and C is some constant,

then Cf is also an R-function. The Boolean companion function of Cf is F if C > 0,
or ~Fif C <O0.

If f(x1,...,zn) is an R-function whose Boolean companion function is F(Xj,...,X,)
and f can be integrated by z;, then function

T
#(z1,...,2n) = /(; f(z1,...,z0)dz;
is an R-function whose Boolean companion function is

&(X,...,X,) =[X: & F(Xu,...,Xa).

The following functions are R-functions (followed by the Boolean companion function
in parethesis):

C = const; (logical 1)

T = —z; (logical negation —)
1 AL 22 = min(z1,z2); (logical conjunction A)
z1 Vi T2 = max(zy,z3); (logical disjunction V)

The set of R-functions is infinite. However, for applications, it is not necessary to know
all R-functions; we only need to be able to construct R-functions that belong to any specified
branch. This leads to the notion of sufficiently complete systems of R-functions.



Theorem 1 ([Rva67]) Let H be some system of R-functions, and G be the corresponding
system of companion Boolean functions. The system H is sufficiently complete, if the system
G 13 complete.

The criteria for completeness of the system of Boolean functions are well understood
[Rva82, page 53|. For example, take G = {0,-X,X; A X;}. It is well known that all
logic functions can be constructed using just conjunction and negation; in other words, G is
complete. Let us define R-negation and R-conjunction as

T = —z;
Ty NoT2 =T1+ 22— V.’E% +$%

Theorem 1 states that an R-function from any branch can be defined using composition of
just these two functions.

Theorem 2 ([Rva74, page 62]) Every branch of the set of R-functions contains at least
one continuous R-function.

Since the R-conjunction and the R-negation as defined above are both continuous func-
tions, this result follows directly from Theorem 1. It is worth noting that, if the real axis
were subdivided into two intervals (—oco, 0) and [0, +00) (i.e. 0 is considered to be a positive
number), the Theorem 2 would not be true. To see this, observe that any R-negation f(r)
(i.e. R-function whose companion Boolean function is logical negation) would have to be
discontinuous at z = 0 [Rva74, page 58].

1.3 Sufficiently complete systems of R-functions.

Following Theorem 1, it is fairly easy to come up with any number of sufficiently complete
systems of R-functions. In this section we compare several such systems. QOur main consid-
erations include simplicity, continuity, and differential properties, as well as convenience of
use. As the first step, let us decide on the basic system of Boolean companion functions that
is complete. It is customary to choose such a system as

G ={0; ~X; Xi A Xy XiV X},

even though only one of conjunction and disjunction is required to form a complete system.
Using property 7 in the previous section, we can see that

Ry(T) = {-1; —z; min(z,,z,); max(z;,;)}

is the corresponding sufficiently complete system of R-functions (subscript 1 will become
clear below). Furthermore, since

min(z,, z3) + max(z1,z2) = 71 + 23, and min(z;, ;) max(zy,z2) = 7,72,



min(z,, z2) and max(z,, z7) are the smallest and the largest root respectively of the equation
22 — (21 4 23)z + 1129 = 0.

Solving this equation, we get

(1 + 22 — /(21 — 22)?);

[1 + 22 + /(21 — 22)?].

The operation of V22 can be replaced with |z| which is convenient for computational
purposes. Because |z, — x| is not differentiable along the lines r; = z,, system R;(T') is not
usable in many applications where differential properties of R-functions are important. For
this and other reasons that will become clear later, we want to generalize the above system

by finding alternative R-disjunction and R-conjunction. In particular, we obtain a system
R,(T') as follows:

min(z,,z;) =

max(zy, z;) =

N = N

T1 A Ty = m(xl + x5 — \/:cf + 73 — 20z, 7,);
_ 1 2 2
Ty Vq Ty = T a(zl + x5+ \/xl + 23 — 2az,1,),

where a(z,r2) is an arbitrary symmetric function such that —1 < a(z;,z;) < 1.

Note that the multiplier 1/(1 + «) is always positive and thus does not affect which
branch an R-function belongs to. It is needed for validity of certain differential properties
of functions in R,(T) in section 1.5. The precise value of o often may not matter, and it
will be set to constant. For example, = 1 would yield the system R;(T') defined above.
Similarly, a = 0 results in the system Ro(T') which uses:

Ty /\01‘251?1-*-172—\/37%’1"23%;
Ty Vo T2 = T1 + 2 + (/23 + 73

This system may sometimes be advantageous because the defined R-functions are not dif-
ferentiable only at the point (0,0).
Let us also introduce a system RT(I') using:

m
2.

T1 AP 23 = (21 Aa T2) (22 + z2)7;

T1 VD 22 = (71 Va 22) (22 + 22) 2.

These R-functions are analytic everywhere except at the origin, where they are at least m
times differentiable (i.e. they are in C™).

One may wonder whether the above R-functions are as simple as possible. For example,
can we find a sufficiently complete system of R-functions among polynomials? The answer is
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no. It was shown in [Rva67] that addition and mupliplication alone are not enough to define
a sufficiently complete system of R- functions. On the other hand, a sufficiently complete
system does not have to use /- For example,

m Ty +T2\™ . m Ty —T2\™ . m

T AG T2 = ( ! 5 2) sign(z; + z2)™*! — (sz) sign(z; — z2)™;
T+ To\™ . T —z2\™ .

T, V@ T = ( ! 5 2) sign(z; + z2)™*! + (—12—2) sign(zq — z2)™

are also legitimate choices. Other sufficiently complete systems of R-functions can be found
in [Rva82]. Given any of the above sufficiently complete systems of R-functions, we can
construct R-functions for any companion Boolean function.

Example 1.1 Consider an Ro-function corresponding to the Boolean function Y = (=X1AX;)V(X;A-X3) :

Yy = (T1Moz2) Vo(z1A072)

= —n+zy—\Jrl+zi+z -z 2} + 123
1
2
+ a1tz - ot + 2D+ (1 -2 - 23 +237] .

After simplification we get
23112

Vzi+ 23 - 2129 + /21 + 23

y:

If we happen know that either z; or z; in Example 1.1 are not zero we can further drop
the positive multiplier to obtain y = —z,7;, an R-function that belongs to the same branch.
Naturally, in many cases, other properties of R-functions are also important and such a
simplification cannot be used. Other simplification techniques are also known, for example for
n-ary R-disjunctions and R-conjunctions. But, more generally, optimization of R-functions
according to some criteria remains a challenging open problem [Rva82, page 127].

1.4 Logic properties of elementary R-functions.

R-functions of the sufficiently complete systems possess a number of properties that are

similar to the properties of their companion Boolean functions. Specifically, for any system
R,(T) as defined, we have:

1. T=1z;

2. 21 Ao T2 = T3 Ny Ty



6. (21 Aa T2) + (21 Va 22) = 1 (21 + 22);
7. (21 Ao mg)(xl Va T2) = 1—};301:52;

8. 1 Ngz2=0 — 11=0,22>20, or z;,=0,2; > 0;
9. £1Vqz2 =0 — 11=0,z,50, 0rz;=0,z; <0.

It is easy to show that the above properties are also valid for R-functions in system R™(T)
(properties 6 and 7 need to be changed appropriately). If a = 1, the functions z; A; z, and
Ty Vi T, possess the following properties in addition to the above.

l.zAN =12
2. zVyz =1
3.z AT =—|2;
4. zV| T = |z;
5. 1 A1 (T2 Ay 23) = (21 A1 T2) A T34
6. 1 Vi (22 Vi 23) = (21 V1 22) V) T3;
7. 1 A1 (22 V1 23) = (21 A1 T2) Vi (21 AL 23);
8. &1 Vi (z2 A1 23) = (21 V1 T2) A1 (71 V) T3);
9. (z1 M1 z2) Vi Ty = 45
10. (21 Vi 22) A 21 = 245

Because of these properties and other computational considerations, R-functions in the
system R, (') are more convenient to use when the constructed R-functions do not need to
be differentiable.

1.5 Differential properties of the elementary R-functions.

Using an appropriate system of R-functions from R™(T), it is possible to construct a com-
posite R-function from any branch such that it is m times continuously differentiable every-
where. While R-functions are interesting in their own right, most applications require that
arguments of R-functions are some other real functions (not necessarily R-functions.)

Suppose we are given an R-function y = f(z;,z2,...,,) and we substitute for its argu-
ments some real functions ¢y, s, ..., ¢,. The obtained function y = f(¢1,2,...,¢¥n) is not,
generally speaking, an R-function. Nevertheless, by appropriately choosing a system of R-
functions as a basis, certain differential properties of the composite function f (1,925 - ,®n)
can be guaranteed.



Let f(x1,732,...,7,) be some R-function which is a composite of functions z; A, z3,
T3 Vq T2, and Z. Suppose that the argument z, appears in expression f (z1,%2,...,Z,) only
once. Let us fix the values of all other arguments in f. Then, in order to compute the
value of f(z,), it is necessary to perform a number of operations, possibly including several
R-negations of z;, or of sub-expressions containing ;. The number of such R-negations will

be called the inversion degree of the argument z;. For example, in y = z; A, (2 V4 Z3) the
inversion degree of z; is 1, the inversion degree of z; is 2, and the inversion degree of z3 is 3.

Theorem 3 Let R-function f(zi1,z2,...,2,) be a composite of the R-functions z; Aq 2,
T1 Vo T2, and T such that argument z, appears in f only once and has the inversion degree
m. Suppose functions ¢1,¢a,...,9n, and f are continuously differentiable and satisfy the

following conditions at point M,
QOI(MO) = Ov @t(MO) 56 0, 1= 2$3’ ceey My

=0.
M,

f(‘Pl»‘Pz, s 7‘19'1)
Then, for any vector direction l, the following equality holds

In particular, suppose that 1,2 € C! are real functions. Then the following special cases
of the Theorem 3 are easier to visualize.

[‘gif(%, P25--0s ‘Pn)]

Mo

o If p1(Mp) = 0, and ¢2(Mo) > 0, then, for any vector direction I,

3] _ 3991)
[5(% Aa 972)] Mo = ( al Mo.
o Similarly, if ¢1(Mp) = 0, and ¢2(Mp) < 0, then, for any vector direction I,
0 a‘/91)
— Va =|— .
[azw1 “"2)] Mo ( ETAM

Further generalizations [Rva82] and additional results concerning behavior of second-order
derivatives of some R-functions [Rva67] have also been proved, but are not presented here.

1.6 Other partitions of the real axis.

We have chosen the sign of a real number as the criterion for partition of real numbers, but
it is not obvious what the “correct” partition I' of the real axis is. Specifically, consider three
such partitions:

F2 = {(_0030)’ [0,+OO)},
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Fg = {("OO’OL [0’+°°)}§
Iy = {(~00,0), 0, (0,+00)}.

All three seem to be suitable, since all distinguish between the positive and the negative
real numbers. But they are different in handling of zero. Does it matter? Turns out that
it does, because each partition determines the set of associated R-functions R(T') and their
properties.

The sets R(I';), R(T'}) and R(T3) intersect [Rva74, page 57]. For example, functions
Y1 = &1 + T2 — |21 — 72| and y; = I** + [*2 4 [*3 belong to each of these sets, i.e. y; and y,
are R-functions for each of the above partitions. At the same time, function y = z;z, is in
R(T3) and R(T'9) but is not in R(T;), and function y = z2z2(1 — z,)? is in R(T'y) but is not
in R(T'3), and so on. .

It can also be shown that some branches of both R(I';) and R(I'3) do not contain any
continuous R-functions. This will turn out to be an important consideration for applications
described here, and is one of the main reason for choosing I' as the “standard” partition.

One may wonder why we would bother with I'; to begin with. Note that I'; partitions the
real axis into three intervals, not two. This forces one to use 3-valued logic for the companion
functions as opposed to the Boolean functions. (In fact, this notion is generalized to a
function of k-valued logic in [Rva82]. Essentially, such a partition allows one to specifically
distinguish zero value from all other values, which is not possible with either I'; or I') and may
be important for some applications. On the other hand, R(I';) contains some R-functions
with “undesirable” properties and 3-valued logic brings complications of its own [Rva82).
To make a long story short, it turns out that all continuous functions in R(I'3) are also in
R(T9). Thus, we rely on Boolean algebra and use only R9-functions, but occasionally treat
them as Rj-functions. This allows us to use 3-valued logic in order to identify and to rule
out any situations where zero values may cause anomalies or ambiguities.

These and related issues are formally studied in [Rva82], [RR79], and [Rva74]. On the
other hand, only I') was used in [Rva67], while I'; was employed in [RKSU73] and [RS76]
which are more concerned with applications.
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2 The inverse problem of analytic geometry

2.1 Problem formulation

In his 1637 treatise “Geometry” Descartes suggested the method of coordinates to establish
the correspondence between geometric objects (points, lines, bodies, etc.) and analytical
objects (numbers, equations, inequalities, etc.). Since then, for various historical reasons,
much attention has been paid to the so-called direct problem of analytic geometry: the
study of curves and surfaces specified by given equations. This also led to the discovery and
development of differential and integral calculus.

The inverse problem, i.e., the description of specified geometric objects with equations,
was also posed and solved for a small set of objects of a very simple form: straight line, circle,
conic sections, second-degree surfaces, and some others. Such objects are typically described
by an equation f = 0, where f is a polynomial in two or three variables. Polynomials is the
simplest class of functions that are built using just constants, addition, and multiplication.
Yet significant difficulties are encountered when one tries to study or solve equations with
functions from even this simplest class. This, seemingly, leaves little hope that the inverse
problem can be solved for more general objects. However, it turns out that by introducing
certain additional operations it is possible to significantly increase the descriptive power
of the analytical method. Below, we describe how to construct an equation for geometric
objects of practically arbitrary shape, thus solving the inverse problem of analytic geometry,
at least in principle.

2.2 Functions for object description

The set of all points in space E™ where a function y = f(z1,...,z,) takes on zero values
will be called a drawing described by the equation f(z,...,z,) = 0. Similarly, the set of all
points in the Euclidean space E™ where a function f(z;,...,z,) takes on non-negative values

is called a region described by the inequality f(z,,...,z,) > 0. Clearly, these definitions
are somewhat arbitrary. We can similarly talk about geometric objects described by f > 0,
f<0,f<0, f#0,and so on [Rva74].

If we restrict our choices to the functions f from the set C° of all continuous functions
in E", the corresponding set of drawings will include all closed sets in E™ [Rva74, page 33].
Many of such closed sets are not interesting for our applications, e.g. it may be difficult to
draw an arbitrary infinite set of points containing all its limit points. Thus the space of all
continuous functions is too big, and so are the spaces C™ (n times continuously differentiable
functions) and C°.

On the other hand, the set C4 of real functions that are analytic everywhere is too small.
For example, it does not contain any functions describing a rectangle [Rva82, page 144]. The
same limitation applies to the set of rational functions that describe the so-called algebraic
drawings of curves and surfaces, e.g. straight line, circle, plane, hyperbola, quadric surfaces,
etc.

12



Since the algebraic drawings include many familiar simple geometric objects, and the
corresponding polynomial functions have been extensively studied, it make sense to think of
them as “building blocks”, or primitives. If we allow these primitives to be combined using
the logical operations (“and” A, “or” V, “not” -, etc.), most geometric objects of practical
interest can be described. Such sets are called semi-algebraic sets, and their drawings are
called semi-algebraic drawings. Among others, the semi-algebraic sets include unions of
semi-algebraic drawings and any sets whose points satisfy systems of algebraic equations
and inequalities. At the same time, there are semi-algebraic sets that are not algebraic;
such sets cannot be described by (a system of) equations. In other words, in terminology of
[Rva82], the system of algebraic functions is not algorithmically complete.

We could expand the set of primitives to include all elementary sets defined by any arith-
metic, logarithmic, and trigonometric functions. Boolean combinations of such primitives
result in semi-elementary sets and drawings respectively. It is easy to show that the system
of elementary functions is algorithmically complete, i.e. any semi-elementary set is also an el-
ementary set. Yet, despite their great usefulness and broad application, the semi-elementary
sets suffer from a serious disadvantage: their drawings are not specified by equations of
the form f = 0. As a result, using the geometric information analytically in various ap-
plications can be complicated and difficult. The problem is solved using R-functions; the
following sections show how to construct appropriate equations and inequalities for arbitrary
semi-elementary sets.

2.3 From Boolean expressions to real functions

Suppose we are given a description of a geometric object D C E"

D=F[(¢l_>.0)7“"(¢m20)]’ (1)

where real-function inequalities ¢;(z1,...,z,) > 0 define primitive geometric regions, and F
is a set function constructed using standard set operations N, U, — on these primitive regions.
Alternatively, replacing the set operations by the corresponding logical functions A, V, =, we
can view F' as a Boolean logic function. The equation 1 becomes a predicate equation

F[S2(¢1)7“-352(¢m)] = 13 (2)
which holds for all points p € D C E™.
We seek a single real-function inequality f(zi,...,z,) > 0 that defines the composite

object D. Note that Egs. 1 and 2 may define an arbitrary subset of E™, while any inequality
f = 0 defines a closed subset of E". Hence, we restrict our attention to those Boolean
functions that map closed sets into closed sets, called closing functions. It is well known
that the class of all such functions is functionally closed. Then we have the following general
result [Rva74, page 97):
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Figure 1: Rectangular region A;A;A3A4 is defined by the intersection of the horizontal and
vertical strips

Theorem 4 Let F(X;,...,Xn) be a closing Boolean function that is the companion of

a continuous R-function f(z1,...,zZm). Then for any continuous real functions ¢;, 1 =
1,2,...,m, and a closed region D C E™ given by Eq. 2, D can be defined by the inequality
f(1,...,6m) 2 0. (3)

In other words, to obtain a real function defining the region D constructed from primitive
regions ¢; > 0, it suffices to construct an appropriate R-function and substitute for its
arguments the real functions ¢; defining the primitive regions. To see that the theorem 4 is
true observe that

S2{f(¢1,- .. 8m)] = F[S2(1) - - ., S2(dm)]-

Therefore, as the predicate, Eq. 3 is true for any point p € D and is false for all points p ¢ D.
Thus, given a definition of any complex object as a Boolean combination of some primitives,
a single real-function inequality can be constructed, using any sufficiently complete system
of R-functions described in section 1.3.

Example 2.1 Suppose region Q is a vertical strip w; = a? — 22 > 0, and €, is a horizontal strip w; =
b2 — z% > 0 (Figure 1). Let us use R-conjunction u; Ag uz. The inequality

(a® —z}) Ao (b? — 23) 2 0

defines the rectangular region A;A2A43A44 formed by the intersection of the two strips. This inequality can
be rewritten as

az+b2—:tf—-:c§—\/(02—2:f)2+(b2—z§)2_>_0.

On the other hand, if we use the R-conjunction u; A; uz, the inequality defining the rectangular region
becomes
a?+b% -zt 22— |a?-b2—z2 422 >0.

Similarly, we can obtain an inequality using m times continuously differentiable R-conjunction u; AJ® uj.
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Figure 2: Region 2 can be defined by a Boolean combination of the primitive regions.

From now on we will use R-conjunctions and R-disjunctions as elementary functions, i.e.
we will just write u; AT uy, u; Vi uz, etc. We know how to evaluate and differentiate these
functions, and the notation becomes much simpler.

Example 2.2 Let us write an equation for the boundary of the region shown in Figure 2. First choose the
primitive regions as:

Q = (9-2z2-y?>0) - disk of radius 3,
Q = (22-1>0) — vertical strip,
Q = (y—z2>0) — halfplane,

Q = (y+z2>0) — halfplane.

It is easy to check that the region € is defined by the Boolean predicate
[(Qa A 94) \% Qg] A (Qa \% Q4) A Q.

Substituting the expressions from the primitive definitions into appropriate Ro-functions, we get:
Q= {{[(y— z) Ao(y+;t)] Vo (2% — 1)} Ao {[(y—z) Vo (y+z)] Ao (9 — z? —yz)} > 0}.

Theorem 4 assumes that a region is specified as a Boolean function F of m primitive
regions. Intersection of these primitives partition E™ into a number of regions, which is
usually much smaller than 2™ possible Boolean truth assignments. In fact, the ratio of non-
empty regions in the decomposition of E™ to 2™ rapidly goes to zero, as m — oo. Thus
many Boolean functions define empty sets. In other words, Boolean predicates defining
regions can be viewed as partially specified logic functions with a large number of “don’t
care” conditions. These “don’t care” conditions can be often used to simplify Boolean and
real-function expressions.
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Figure 3: Eliminating interior zero points

2.4 Boundaries and interiors of regions

In the examples 2.1 and 2.2, replacing the inequality sign > by equality = results in an equa-
tion of the boundary of the defined regions. However, in general, this is not true. Just because
we have found f(zi,...,2m) > 0, it does not automatically imply that f(zy,...,2m) =01s
the desired equation of the drawing. For example, set S defined by f(zi,...,Zm) = 0 can
contain points interior to S. This ambiguity is explained by the inclusion of zero in the set of
positive numbers when we have partitioned the real axis. Such situations can be controlled
(and, if necessary, eliminated) by the choice of the primitive real functions and disallowing
certain 3-valued logic functions [Rva82, page 150].2

Figure 3(a) shows a more interesting example, where points satisfying f(z,y) = 0 lie in
the interior of the region defined by f(z,y) > 0. Here, the drawings of the primitive regions
(the two rectangles) define their respective boundaries, but the drawing of the combined
region does not correspond to its boundary. Figure 3(b) shows that the interior zero points
- can be “covered” by unioning an additional primitive region. Similarly, a region defined by
f = 0 may not contain any points satisfying f > 0, i.e. there are only boundary points.

Automatic detection of such situations is a difficult problem. In some cases, these “pecu-
liarities” can be eliminated by constructing an alternative Boolean expression that uses the

2This requires a different partition I's of the real axis and transition to 3-valued logic, as described in
section 1.6.
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same primitives. But, more generally, additional primitive regions may be required.

The above procedures assume that for any desired geometric object S, a predicate (in
Boolean or 3-valued logic) can be constructed using some geometric primitives for which the
defining inequalities are known. Usually, this is not a problem. With the exception of the
above “peculiarities”, the boundary of an object S naturally suggests appropriate primitives.
At other times, suitable approximations can be used. There are also special situations,
where the procedure of obtaining a predicate equation (and hence the construction of the
corresponding real function) can be completely automated. For example, an algorithm to
construct a Boolean predicate for any two-dimensional linear polygon is given, using only
halfplanes associated with the polygon’s sides [RKSU73].3

Another common situation arises when only the boundary L of an object S need be
defined by an equation f(z,...,z,) = 0, but the interior and exterior of S need not be
distinguished. In this case, let L be a union of (boundary) elements /;,7 = 1,...,k, and
suppose we construct a predicate and real function equation f; = 0 defining every element /;.
For example, an equation of a straight-line segment connecting points (z;,y;) and (z2,y,) is
given by

$(z,y) = {(e—2)W2—0)~ (¥ —y1)(@2 — )] +
d? 1+ T2\ 2 1 2\21271/2
b (G- o= T - (- Y

4 2
B 142_+(z_z1;$2)2+(y_yl';'y2)2]2=0’

where d is the length of the line segment [RvaT74, page 128]. Function ¢ is zero at all points
lying on the segment and is strictly positive everywhere else. Similarly, one can write an
equation for a circular arc, or for a planar face (polygon in E®) of a polyhedron, but this task
becomes difficult for more complicated boundaries. Union of elements I; defines the desired
boundary L, and there are several methods to derive an equation of L, given the primitive
functions f;,i = 1,...,k. The easist method is to define L by [I¥ f; = 0, but this function
may not be attractive numerically; many other choices are possible, e.g. any R-conjunction

of f;’s also defines L.

2.5 Equations of trimmed curves, surfaces, and regions

Sometimes it is desirable to derive a function such that f(z,...,z,) = 0 describes a segment
of a curve, or some portion of a surface. More generally, we could be interested in some part
of an (n — 1)-dimensional hypersurface lying inside an n-dimensional region in E".
Suppose, for example, we need an equation of a segment of the curve f(z,y) = 0 lying
inside the region ¢(z,y) > 0 (Figure 4). The curve defined by f = 0 can be considered as
an intersection of two regions f > 0 and —f > 0, and defined by an equality —f2 > 0; then

3As far as I know, this reference precedes the recursive “Decreasing Convex Hull” algorithm that became
popular in 1980s in the Western literature.
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Figure 4: The intersection of the curve f(z,y) = 0 and a region ¢(z,y) > 0 defines a segment
of the curve.

the segment can be considered as an intersection of the curve and the region ¢ > 0. Thus
we can write an equation for the curve segment as the intersection of the two regions:

(=fHAg e >0 (4)

But the left-hand side of Eq. 4 is identically zero for all points of the curve segment; hence
we can we can replace sign > by = to get an equation of the curve segment. Similarly one

derives an equation f(z,...,z,) = 0 defining a portion of a curve, surface, or hypersurface
lying inside an n-dimensional space.
An n-dimensional region D is usually defined by an inequality ¢(z,,z2,...,2,) > 0. In

order to specify the same region D by an equation, consider it in (n + 1)-dimensional space
{z,z1,22,...,2a}, as the intersection of the hyperplane z = 0 with the the cylinder ¢ = 0.

Thus, for example,
zhop =z+p — /22 + 2

¢—lpl=0 (5)

as an equation for an arbitrary region D defined by ¢ > 0. Similar procedure can be used
to obtain an m-times differentiable equation for D.

Setting z = 0 we get

Example 2.3 Let us write an equation for a chess board (Figure 5a.) The equation should be satisfied
everywhere inside the dark squares as well as at all the points of the boundary. Suppose the size of the
squares is unity. For primitive regions we select

Dy, = (sinrz >0)
D, = (sinmy>0)
Dy = 32-z'—y*—|2?-¢?|>0
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Figure 5: Constructing an equation for a chess board.

The region D, is a system of vertical strips (see Figure 5b) intersecting z-axis at segments [2k, 2k + 1], (k =
0,+1,+£2,...). Similarly the region D; is a system of horizontal strips (Figure 5c). The region D3 defines

the square region A; A3A3A4 corresponding to the whole board. The region of interest to us can be defined
as

[(Dl A Dz) \ (T)-l /\Eg)] A Ds.
Noticing that (Dy A D3) V (D1 A D3) = D; 4 D;, the above Boolean predicate becomes
(Dl E=4 Dz) A Ds.

Then the inequality
(sinwz sinTy) Ag (32— 22 —y? — |22 - y?|) >0

defines the region D. Applying Eq. 5, we obtain the equation for the chess board

(sin 7z sinwy) Aq (32 — 22 — y? — |22 — ?|) - |(sin 7z sin 7y) Ay (32 — 22 — y? — |22 - v =o.

2.6 Normal and normalized equations

There is an infinite number of equations that define a given drawing. Specific situations often
require that these equations possess various additional properties. Suppose L is a drawing in
E? and p € E? is an arbitrary point. Then the distance from p to the drawing L is defined
as

p(p,L) =inf p(p,q), g€ L (6)
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where p(p, q) is the distance between the points p and ¢. If for every point p € E? f(p) =
p(p,L), then f(zy,...,z,) = 0 is called a normal equation, and function f is called the
normal function of a drawing L.

Example 2.4 A normal equation of a line in E? is given by
|z cosa + ysina — D| =0,

where D is the distance to the line from the origin, and a is the angle between the z-axis and the direction in
which D is measured. The distance from any point p = (z, y) to the line is given by p = |z cosa+ysina— D).
Similarly, a normal equation of a plane in E3 is given by

|zcosa+ ycos B+ zcos 3 — D| =0,

and a normal equation of a circle in E? with radius R and centered at a point (a, b) is

V@ —ap + (- b2 - R|=0.

If f, and f, are normal functions for drawings L, and L, respectively, then

fi Av fa = min(fy, f2) (7)

is the normal function for the drawing L = L; U L,. Normal equations for simple objects
such as line segments and circular arcs E? and polygons positioned in E3 can be constructed
using appropriate R-functions. These simple objects can be viewed as standard boundary
elements that can be “glued” together to form a boundary of more complex objects, whose
normal equation is obtained using Eq. 7.

Normal functions are important in many applications, notably for constructing admissible
approximations to solutions of boundary value problems (see section 3.3). There are at least
two reasons preventing their use:

o Determining normal equations for more general objects is a difficult problem. For
example, this problem reduces to solving a fourth order algebraic equation for an
ellipse, and transcendental equations for logarithmic and sinusoidal curves;

o A normal function for a drawing L may have discontinuous partial derivatives at points
that are equidistant from L, which makes it unsuitable for many applications.

Thus, we are led to the notion of normalized function (and equation) for a drawing, which is,
in some sense, an approximation of a normal function that can be constructed for complex
objects and has desired differentiable properties. Specifically, let L be a drawing and let v
be a normal vector at some regular? point p € L. Then equation w(z) = 0 of L is called
normalized to m-th order if function w(z) satisfies

ow *w
'w(.’lt)=0|L, 'a‘;ILzl, E’?|L=0(k=2’3“"m) (8)

A point p € L is regular if there is a unique normal to L at p.
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at all regular points of L. Note that the normal function of L is normalized to an arbitrary
order. The conditions 8 mean that function w behaves approximately as the distance function
p defined in Eq. 6 along the normal v in the neighborhood of L.

There are several methods of the first order normalization. Suppose a function w € C™,
w = 0, and %% > 0 on L. Then the function

w' = w(w? + | Vul?)~F € cm? (9)

is normalized to the first order, i.e. %“;—' = 1. In practice, this method of normalization
may be difficult to use for complicated functions. Fortunately, many R-functions preserve
normalization properties. For example, let w; > 0 and w; > 0 be inequalities defining
regions §; and 2, respectively such that w; and w; are normalized to the first order. Then
it can be shown that the functions w; A, we and w; V, w, are also normalized to the first
order.

A number of techniques for normalization to the m-th order are also known [Rva82].
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3 Applications

3.1 Problems of mathematical programming.

A typical mathematical programming problem is that of finding a point z° = (29,...,22)
in some n-dimensional region @ € E™ where some function f(z) = f(zi,...,,) reaches a
maximum or a minimum value. The region 2 is usually specified as a union of N systems
of inequalities

oki(T1y...,20) 20, 1=1,..., M,

where each ox; > 0 defines a region T, and k¥ = 1,..., N. In other words, the region of

interest is given as

Q=UJ(N%), i=1,....,.M, k=1,...,N. (10)
k i

Using R-functions, (2 can be defined by a single inequality

* *x

w(z)=\/(Aow) 20, i=1,...,.M, k=1,...,N, (11)
k i

where A*, V* are any R-conjunctions and R-disjunctions respectively. Thus, any such prob-
lem of mathematical programming can be reformulated as follows: find a point z° in a region
() defined by a single inequality w(z) > 0, such that f(z) is maximum (or minimum).

In practice, it is often possible to estimate that the desired value of the goal function f(z)
is 20 € [Zmin, Zmax]- In that case, R-functions can be used to transform the original problem
into a sequence of the unconstrained optimization problems. Let us define a region To(2)
defined by inequality

z—= f(.’E) 2 03 Zmin £ 2 < Zmax; (12)

for every fixed value of z, and consider a region Q(z) = Q2 N Ty(2) defined by an inequality

q(z,2) = w(z) Ao [2 = f(z)] > 0. (13)

If 2 > 2z, then the region Q(z) has interior points, and if z < zg, then Q(z) is an empty
set 0. Assuming that Q(z) is bounded, and w, f are continuous functions, it follows that
the maximum value of the goal function f(z) is achieved when go(2) = max; ¢(z,z) = 0.
Note that go(z) is monotone in z. Thus, the original problem is transformed into a sequence
of the optimization problems (each problem is defined by a fixed value of z € [zmin, Zmax])

of the function ¢(z,z) without any constraints on z. Additional details can be found in
[Rva67, Rva82].

3.2 Optimal placement of geometric objects.

The following material was first discussed in [Rva67], further developed in [Sto75, SP78,
SS80], and is summarized in [Rva82).
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Many practical problems belong to the class of problems in optimal placement of geo-
metric objects. Among them: maximizing the number of objects of similar shape that can
be cut out from a piece of material,® minimizing the quantity of material necessary to pro-
duce certain shapes, various optimal packaging problems, and so on. Consider the following
two-dimensional example of such a problem.

Given a planar piece of material that is fixed in the global coordinate system {z,y}, let
; be a rigid planar object that is fixed at some location and is defined by the inequality
N = [wi(z,y) > 0], such that w; > 0 in the interior of 2, w; = 0 for points of the boundary
09, and w; < 0 outside of ;. The object has three degrees of freedom in the plane: z;,y,
determine the position of Q; with respect to the global coordinate system, and 8, defines its
orientation. The same object Q; in general location can be defined by

N = {wr[(z — z1)cos b, + (y — y1)sinby; —(z — z1)sinb; + (y — y1)cos 6,) >0}. (14)

Consider now two such objects, Q; and Q, that are to be placed on a single sheet Q. It
is often important to define conditions under which the two objects do not overlap (i.e. the
interiors of the two objects to not have any points in common). Suppose they do overlap.
Then the region of their intersection S = ; NQ; is defined by some function ¢ = w; AT w,,
which is non-negative in S and is negative outside of S. It follows that the two objects do
not overlap if and only if S is either empty or contains only boundary points. In other words,
we can define the non-overlap condition as

—fgif)fso(x,y,$1,y1,91,$2ay2,92) 20, (15)
where z;,y;,0; are position and orientation of ;. If both ©; and Q, are convex it is not
difficult to construct equations so that the function ¢ in the inequality (15) has a unique
global maximum, which can be computed numerically starting from an arbitrary point.
Otherwise, there may be multiple extrema, in which case the problem is much more difficult.

Given a number of objects, they can be “glued” together by taking their union (i.e. by
applying R-disjunction). Because pairwise non-overlap conditions must be satisfied simul-
taneously, the global non-overlap condition (for all objects involved) can be written as an
R-conjunction of all the non-overlap conditions. In particular, sufficiently good approxima-
tions of various geometric objects can be obtained as unions (covers) of circular balls. In this
case, the problem simplifies significantly, because the non-overlap conditions can be written
in a closed-form, and the search for the extrema is not required. Closed-form expressions for
non-overlap conditions can be also written in other cases, for instance, for objects bounded
by linear and circular arc segments.

Straightforward generalizations of the above methods allow us to formulate constraints for
problems involving variable-form material and n deformable objects 2, ..., 2, whose shapes
may be determined by additional parameters. Placement of n objects of similar shape often
leads to geometric problems with high degree of periodicity and symmetry, which can be

SEfficient nesting of blanks to minimize the amount of sheet metal scrap is one important example of
such problems.
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taken into account during the construction of the corresponding real functions [Rva82]. R-
functions can also be useful for defining objective functions whose extrema correspond to the
best (in some sense) placement of the geometric objects, e.g. to minimize distances between
objects, or the amount of “scrap” on the piece of material.

These techniques allow us to pose problems in optimal placement as problems of math-
ematical programming which then can be reformulated using the methods described above
in section 3.1, and solved using various numerical algorithms.

3.3 Boundary value problems

Probably the most important area of application of R-functions to date is in constructing
approximate solutions for boundary value problems. For example, [Rva67] describes applica-
tion to problems of elastic torsion and contact, [RKSU73] and [RK87] are completely devoted
to problems of plate bending and vibration, [RS76] deals mostly with problems of thermo-
dynamics, and [Rva82] contains references to problems on electrostatics and magnetism. A
family of software systems that generate solutions of physical field problems from high-level
mathematical descriptions are described in [RMS86], [RM83], and [RK87].

3.3.1 Bundles of functions satisfying boundary conditions

A drawing in E™ can be specified by an infinite number of different equations. If dQ =
[w(z) = 0] is some drawing, and @ is a bounded sign-preserving function, then 90 = [w® =
0]. More generally, if & : E® — E™,

u=wd, (16)

defines the bundle of all possible functions equal to zero on Q. @ can be a vector or
tensor function and is called the undetermined component of the bundle. The problem of
constructing a bundle of functions equal to zero on the boundary of a given region is a special
case of a more general problem of finding a bundle of functions possessing various properties
at different points of some geometric object, such as coincide with some known functions,
have specified normal derivatives, and so on.

Suppose that the boundary 90 = (J; 99Q;, where 9, are possibly overlapping boundary
pieces, and for each of them we have a boundary condition of the type

‘Plan.- = ‘Pi|an.~- (17)

Each 9Q; can be defined by a real-valued function w; such that w; = 0 for all points of 39,
and w; > 0 for all points outside of 312;. We need to construct a function ¢ such that it
satisfies the boundary conditions (17) and is defined everywhere in Q. In other words, we
need to “glue” all these individual boundary conditions together. There are several ways of
accomplishing this. For example,

_prwil 4t omwp!
w1_1+"‘+w;,1

+ wd (18)
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is a bundle of functions that assume the desired values on each 99; and is defined almost
everywhere in §) (except corner points).

Equation (18) is an example of the Langrange-Taylor-Hermite interpolation formulas
where desired functions and their derivatives are specified not only at individual points, but
also on curves, surfaces, or hypersurfaces. [Rva82] discusses other interpolation techniques
resulting in bundles of functions satisfying various differential properties, as well as their
relationship to the classical methods.

3.3.2 Structure of solutions for boundary value problems

The ability to construct bundles of functions that satisfy given boundary conditions is impor-
tant for approximating solutions of boundary value problems. Typically, a boundary value
problem can be reduced to determination of some function u such that in some region it
satisfies

Au = f ’ (19)
with boundary conditions specified on the boundary 9Q = |J; 9€2; as

Liu=¢p;,ondQ;i=1,...,m, (20)

where A and L; are some differential operators, f and ¢; are functions defined in §2 and on
0N. If a solution u can be found such that it satisfies all equations (19) and (20), then u is
the exact solution of the boundary value problem.

There are very few practical cases for which the exact solutions are known to exist;
instead, we usually seek a function that approximates the exact solution in some sense.
Among variational or projective approximation methods, popular are the so-called direct
methods which reduce a boundary value problem to the solution of a system of algebraic
equations. All such methods approximate the solution of a boundary value problem with a
function of the form .

Un = Y ckgk + ¥, (21)

k=1

where function ¢ is chosen so that u, = ¢ on 9f) satisfies the appropriate boundary con-
ditions of (20), functions gx form a complete and linearly independent system of functions,
and coefficients ¢; are determined by solving the system of linear equations. The differ-
ences between various direct methods (e.g., Ritz/Galerkin, Finite-Element, Courant, etc.)
are determined by (1) choice of the functions gi, and (2) method of computing coefficients
ck- These differences are important because they determine the ease of constructing the
approximate solution, as well as numerical stability and convergence of the solution method.
We will see now that R-functions significantly simplify and unify the techniques available
for construction of admissible approximations in Eq. (21).

Consider the simplest Dirichlet boundary value problem, with homogeneous boundary
conditions: Eq. (20) is simply

ul5q = 0.
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Let w be a real function satisfying
w>0inQ, w=0 ondN.

Then choose approximation of u from the bundle of functions defined in Eq. (16) as

U, =W Z Ck‘ﬁk, (22)
k=1
where undetermined functions ®,,®,,...,®, can be chosen from the complete system of

functions, such as from a sequence of polynomials® (algebraic, trigonometric, or other clas-
sical), or various functions with finite support (e.g. splines). If the boundary conditions are
not homogeneous, but are specified by a system of Eqs. (17), the admissible approximation
can be constructed using Eq. (18) in the form

I A

+ w E P,

w e tug k=1

Introduction of derivatives in the boundary conditions significantly complicates the struc-
ture of the solution. For instance, the Neumann boundary conditions are given as

3_u
v

=¥
an

where v is a normal to 99 (if it is defined). Generally speaking, it is not enough to “glue”
the boundary conditions together as for the Dirichlet problem; we may also need to assure
the existence of these derivatives in the domain 2, may have to normalize the admissible
approximation, and so on. Constructions for various boundary value problems (including
mixed boundary conditions, tangential derivatives, fourth-order differential equations, and
many others) have been studied in great detail in [Rva74] and [Rva82].

The above considerations lead to a notion of the structure of the solution of a boundary
value problem. It is an expression

u= B((p’ w7‘p)’

which satisfies boundary conditions ¢ prescribed on the boundary defined by w, and where &
is the undetermined component of the solution. The bundles of functions defined in Eqs. (16)
and (18) are simple examples of such structures. Structures for many common boundary
value problems have been constructed [Rva82, RM83]. More generally, the theory of R-
functions allows us to construct solution structures for problems with intricate boundary
conditions, and to account for known behavior near singularities. The concept of solution
structure seems to unify the various direct methods for solving boundary value problems
and make explicit their differences. For example, the choice of undetermined functions ®
is an important consideration affecting numerical stability and convergence of approximate
solutions. These and many additional topics are studied in [Rva82].

6According to [RM83], such a construction was first suggested by Kantorovich [KK58].
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