SUCCINTNESS OF DESCRIPTIONS OF
UNAMBIGUOUS CONTEXT-FREE LANGUAGES*

Erik Meineche Schmidt

TR 76-277

April 1976

Department of Computer Science
Cornell University
Ithaca, New York 14853

—
This work was supportced in part by Aarhus University, Aarhus,
Denmark and by "Thanks to Scandinavia, Inc.", New York.

SUCCINTNESS OF DESCRIPTIONS OF
UNAMBIGUOUS CONTEXT-FREE LANGUAGES*

Erik Meineche Schmidt

Abstract:

There is no recursive function bounding the succintness
gained using ambiguous grammars over unambiguous ones in the

description of unambiguous context-free languages.

X . . .
This work was supported in part by Aarhus University,
Aarhus, Denmark and by "Thanks to Scandinavia,-Inc.",
New York.

1. Introduction

In this paper we examine the relationship between the
size of ambiguous and unambiguous context-free grammars'genera-
ting the same language. We show that for certain languages
the presence of ambiguity in a gramﬁar allows it to be much
smaller than any unambiguous one. Specifically we show that
for any recursive function there is a language such that the
gap between the size of the two types of grammars is not
bounded by the function.

The same result is known in two other cases. Meyer
and Fischer [Meyer & Fischer] proved it for descriptions
of reéular (in fact cofinite) languages using finite automata
and ambiguous context-free grammars, and Valiant [Valiant]
recently proved it for deterministic pushdown automata and
unambiguous grammars. Both results are based on the idea
of encoding large Turing Machine computations in sméll context-
free grammars [Hartmanis]. The result in'[Meyer & Fisher]
follows easily from this whereas Valiant has to prove a
"repetition lemma" for dpda's in order to get his theorem.

Here we also use the encoding of TM computations but
rather than the dpda property we use Ogdens Lemma for context-
free languages [Ogden] in an argument which is similar to the

proof of the existence of (inhcrently) ambiguous languagdes.

2. Encoding of Turing Machine Computations

In order to talk about economy of descriptions we
first have to define what we mean by size of Turing Machines
and context-free grammars. We use the same definition as

in [valiant].

Definition

a) Let M be a TM with g states and s tapesymbols.

The size of M (size(M)) is equal to g-t.

b) Let G be a context-free grammar.+ It's size
(size(G)) equals the total number of occurrences
of terminal and nonterminal symbols in the

productions.

The Turing Machines we consider is the class (denoted
by Z2) of deterministic, one-tape (one-way infinite) machines
which halt when started on blank tape. For technical reasons

they are modified in the following way.

1) We add four new states (q,r,t,f) and make g the

start state and f the only final state.

2) The instructions are modified such that the
machine from g enters its original start state
without moving — and such that it when in onc of the

original final states does the following:

+ .
We assume that the grammars contain no uscless symbols.

l. rewinds the tape using state r

2. enters state t and marks all used
tape-squares with the symbol A

3. goes into state f and halts scanning
the first blank square on the tape.
3. We make sure that the machine never prints a

blank.

Let)/ be the class of modified ZF-machines. Clearly
the 9//-machines use the same amount of tape as the corre-
sponding ZZ-machines.

Now let M be an arbitrary machine from G .
We shall only be interested in the (finite) computation
obtained by starting M on blank tape and we shall assume
that it is of even length. From now on we refer to it as
simply "the computation" or "M's computation". With M
we associate the following two languages whose elements
are M-configurations pairwise related by M's transition func-

tion NextM.

M _ L LRy, o Ra , R *
Ly = {xpdxgdx fgto b, o#xo #x, |n>1, X ,€qB
& (|xy |=lx5,9] A %y, = Nexty (x,.)) for 0<i<n}
M - ' 1 RL 1 mn R 1 4 *
LZ {#yo#yl#yzn N #y2n__2ny2n_l#y2nu lnz_l, y2n € A*f

= NextM(y))

2i+1

& Uy =150l A vpi
' for 0<i<n}

xR is the mirror-image of x and B is the blank symbol.

Note that x is the start configuration for M's computa-

0
tion (padded with blanks) and that Yon is some halting con-
figuration for M.

It is easy to see that L? g
context-free grammars G? and Gg respectively whose sizes

and L have unambiguous
are no bigger than a constant times the size of M. If we

take their union we get a.grammar GM for the language

M M

_ M
L" =L UL

2

- having the property that
. M .
size(G') < c.size(M)

for some constant c. This grammar however is ambiguous

because L? n Lg = {2z} where =z represents M's computation

(co’cl""’CZn) in the following way.

- R R "
z = #20#21#22#"'#z2n—1#22n"
N+1-]|c, |
where z, = ¢y B and N 1is the amount of tape used

during the computation. Note that all the zi's . have the

same length.
M

2

grammar. One way oi constructing such a grammer is to first

Since L? n L is finite LM also has an unambiguous

construct a pda Pg accepting L?. From P? we construct another
pda Rg which bchaves like P§ except it uses its finite control
to check that it does not accept z. From Rg we construct a

N)
grammar G;.and take its union with GT. The resulting grammar

is unambiguous and it generates LM. Its size however is larger
than |z| because the extra states used in R? to "look for"
z results in extra nonterminals in Gg,.

In the next section we are going to prove that any non-

ambiguous grammar for LM must be big if 2z 1is long.

3. A property of unambiguous grammars for LM

Here we prove that since the word z has inherited two
different structures (one from L? and another from Lg) it
will have two different derivations in any small grammar
generating LM. The proof is very similar to the prodf that
'{aibjck]i = j V j = k} is an ambiguous language which can be
found in [Aho & Ullman, p. 205). It uses the following result

from [Ogden].

Lemma (Ogden)

Let G be a context-free grammar with m symbols (terminals
and nonterminals), let & be the length of the longest right-

2m+3}. If

handside of the productions and let k = max {3, %
z € L(G), |z| > k and if k or morc positions in z are designated
as being "distinguished" then z can be written as uvwxy such

that

1) w contains at least one of the distinguished

positions

2) either u and v both contain distinguished positions

or x and y both contain distinguished positions

3) wvwx has at most k distinguished positions

4) there is a nonterminal A such that
ok * * c sk ..
S => uAy => uvAxy => ulexly => uvlwxly
for all i > 0

Using Ogden's Lemma we can prove the key lemma of the

paper.

Lemma 1

Let M be in 9/ and let N be the amount of tape
used in its computation. Let G be any context-free grammar
genefating LM and let Xk be the constant from Ogdens Lemma.

If N > k! + X then G is ambiguous.

Proof: Because of the restrictions on the machines in G

the "computation" looks as follows:
Z = #qB...B#b...Bp#.t.#tAcO.A#A-..Af#

where all groups (strings between #'s) are of length N+1
(state and N tapesymbols). We will show that if N > k! + k
then 2z has two different derivations in G (recall that

. M M

{z} = Llln L2).

Assume that N = k! + j where N > j > k and consider

the word
o al 0y O
~ 1 AN 1T T
z' = #qB...BIB...BpH... ... $A..... FtALLCLARAL L AT
e N N — e~ e

kKi+j k!i+j k147 j J

which is obtained from =z by replacing its last two groups
by shorter ones. Let z' = #a#al#az#a3# where the a's are
as shown above. z' is in LM (it is in Lg) so if we let the
j A's in oy be distinguished Ogdens Lemma applies and we can

write write z' as

z' = uvwxy
where u,v,w,x and y have properties 1)-4). We shall show
that |x] = |v| # 0 and that v is in a, and x is in a;. The

argument is as follows

l) since w contains a distinguished position

xy is a suffix of a3#.

2) If both u and v contain distinguished positions
v and x would both be contained in a3#. Then the
- word uvzwxzy would be of the form #a#al#az#aé#
where]al! # Iazl and |a,| # la% | but there is no
such word in LM. Hence both x and y must contain

distinguished positions and it follows that

X is a nonempty string of A's in Oy

3) If w contains a, we could again by pumping get
a word in the language such that the length of the last
three groups were different. But that implies that

v contains something in Ay

4) If v contains a marker (#) it must contain an even
number of them (the length of M's computation is even).
Assume that v contains markers and consider the

following situation:

|] -—
z' =un # ey # o, # o, #
| D
v .ow XY

Then

uvzwxzy =u n#al#...n#al#az#a3'#

R S

2
v v w x7y

and we have the same contradiction as in 2). Since
the case where Vv contains #az# can be treated similarly

we conclude that v is contained in Q-

5) If v contains t or |v| # |x| we get a
contradiction on the word uwy so

v is a string of A's and |x]| = |v| # 0.

Since x contains distinguished positions only we know that
| x] < k (vwx contains at most k distinguished positions),
which means that |x| divides k!. Now there is a nonterminal

X and a derivation of z'

X * *
S => uXy => uvXXy => uvwxy

It
N

* .
but then we can repeat the subderivation X => vXx
k!/|x| times to get z

s &5 uxy 55 u vl+k!/llegl+k!/lxly:> itk /vl xl+k!/|xly -

In order to get the other derivation of z we consider the word

z" = #gB...B#B...Bp#...B#.....#tA.. . A#A...Af}
: — e N
3 3 ki+] ki+3 ki+]

where we have now replaced the first two groups in z with shorter
ones. Let B, = gB ... B and g, =B ... Bp, where the B's in
Bl are distinguished. Using Ogdens Lemma again we can write z"

as

27T WV ¥ Yy
and arguing exactly as before we can show that vy is contained
in By + X; in B, [xll =]vll # 0 and there is a nonterminal

Y such that 2z is derived in the following way

N 1+k!/[vll 1+k!/|x

*_—_: —_—
s > uy Y yl > ulvl Y x

1|
1 Yy

. l+k!/[vl| l+k!/[x1|
=>u,v, . WyXg y, = 2-

Now it only remains to be shown that these two derivations of
z must have different derivation trees. Assume the contrary.
Then since X generates A's and Y generates B's no node in the
tree labelled X can be a descendant of avnode labelled Y and

vice versa. lence there is a terminal word t such that ulYth

10

is a sentential form. But then we obtain the derivation

*
YtXy => uv,w.Xx

*
§ =>u 11

tvwxy = 2

1 1

where

-zt = #81#82# N B IR #az#al#

— —
N N

z''' however is not in LM so we have proved that z has two

different derivations in G, which means that G is émbiguous. O

4. The size of an unambiguous grammar for LM.

We use lemma 1 to show that the size of any unambiguous
grammar for LM must grow with the amount of tape used in M's

computation.

Lemma 2
Let M be a machine in G/ whose computation uses N tape

. M
squares. If Gﬁ is an unambiguous grammar generating L~ then
. 1
s1ze(G%) > c[fog fog N] /2
where c is a constant.

Proof: In the following C,Cy1CysCq are suitable constants.

From lemma 1 we know that

(22m+3)! + 22m+3 > N

from which we get

2m
N < Cl (£2m)2

11

Taking fog gives

f0g N < 209 c, *+ g 2m 2o0g (lzm)
< e, 23m
< e, (24)3(£+m)

and hence
2
fog fog N < Cy (2+m)~ .

Using the fact (which is easy to verify) that for any grammar

G size(G) > % (2+m) we get
size(qT) > c[fog fLog N]l/2

which is what we want.

Now we can easily prove our theorem.

Theorem

There is no recursive function F with the following

property.

For all ambiguous context-free grammars Ga generating
an unambiguous language there exists an unambiguous

grammar G, generating the same language such that
51ze(Gu) < F(51ze(Ga))

Proof:

. : M .
Assume the contrary and consider some L where M -.1is

. . . M
in @y: sSince LM has an ambiguous grammar G1 such that

C

size(Gg) < const.+sizc (M)

12

we get - using lemma 2 and the function F (which we may assume
to be increasing) -

c[20g fog N]l/2 < size(Gﬂ) < F(size(GZ)) < F(const. size(M))

where N is the amount of tape used in_M's computation. But
this means that there is a fixed recursive relation between N
and size(M) for all machines in 9/ and this immediately enables
us to decide whether an arbitrary TM halts when started on blank
tape.

Thus we have a contradiction and we may concludé that the

theorem is true. O

5. Conclusion

The result proved in this paper answers one of the
questions left open in [Valiant]. If we consider the relative
succintness gained using finite automata, deterministic push-
down automata, unambiguous context-free grammars and ambiguous
context-free grammars we get the following table representing

the known relations (also from [Valiant]).

description
used
type of fa dpda ucfg acfg
language
described
fa 1 recursive ? nonrec
dpda ‘ 1 nonrcc nonroc
ucfg 1 nonrcc
acfqg 1

13

The recursiveness of fa - dpda was proved in [Stearns]. The

nature of the relation between fa and ucfg is still open.

Acknowledgement

I wish to thank Leonard Berman for his remarks on the

first draft of this paper.

14

References

aho, A.V. and J.D. Ullman [1972]. The Theory of Parsing,.
Translation and Compiling, Vol. 1l: Parsing, Prentice-Hall,
Englewood Cliffs, N.J. :

Hartmanis, J. [1967]. Context-free Languages and Turing Machine
Computations. Proc. Sympos. Appl. Math., Vol. 19, Amer.
Math. Soc., Providence, R.I., 1967, 42-51.

Meyer, A.R. and M.J. Fisher [1971]. Economy of Description
by Automata, Grammars and Formal Systems. 12th Amer.
Sympos. on Switching and Automata Theory, 188-191.

Ogden, W. [1968]. A Helpful Result for Proving Inherent
Ambiguity. Mathematics Systems Theory 2:3, 191-194.

Stearns, R.E. [1967]. A Regularity Test for Pushdown Machines.
Information and Control 11, 323-340. ‘

valiant, L.G. [1975]. A Succinctness Result for Descriptions
of Deterministic Languages. TR 70, Centre for Computer
Structures, University of Leeds.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif

