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Abstract

We consider the Riemannian geometry defined on a convex set by the Hessian of a self-
concordant barrier function, and its associated geodesic curves. These provide guidance
for the construction of efficient interior-point methods for optimizing a linear function over
the intersection of the set with an affine manifold. We show that algorithms that follow the
primal-dual central path are in some sense close to optimal. The same is true for methods
that follow the shifted primal-dual central path among certain infeasible-interior-point
methods. We also compute the geodesics in several simple sets.
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1 Introduction

In the last fifteen years, interior-point methods have become one of the most intensely
studied methods for both linear programming and certain convex programming problems,
because of their excellent computational and theoretical properties; see, e.g., Karmarkar
[4], Nesterov and Nemirovskii [8], M. Wright [13], and S. Wright [14]. Perhaps their great-
est successes have been for linear and semidefinite programming (in the latter, a linear
function is optimized over the set of symmetric matrices satisfying linear equations and
the further requirement that the matrix be positive semidefinite). However, the approach
is applicable in principle to any finite-dimensional convex programming problem [8] (here
viewed as the optimization of a linear function of a decision variable subject to linear
equality constraints and the constraint that the variable lie in a closed convex set with
nonempty interior). The key ingredient identified by Nesterov and Nemirovskii is the
construction of a so-called self-concordant barrier function for the constraint set (with-
out the equality constraints), whose derivatives provide provably good local ellipsoidal
approximations to the constraint set that avoid the combinatorial complexities of linear
programming or the nonlinear complexities in other applications.

There are many versions of interior-point methods, but all are based on removing
the constraint set and adding a multiple of the barrier function to (some version of) the
objective function. Then a step is taken towards a minimizer of the resulting simpler
problem. A basic version of this procedure uses the objective function itself, and changes
the multiple from one iteration to the next. The set of minimizers as the multiplier changes
forms the so-called central path for the problem. This approach can be taken just for the
original problem, giving the primal central path, or for the original problem and its dual
simultaneously, yielding the primal-dual central path.

In the brief discussion above we assumed that we had available a strictly feasible
point, satisfying all the linear equality constraints as well as lying in the interior of the
constraint set. This is of course a strong assumption, and in practice modified methods
are employed; one such uses the shifted primal-dual central path [9].

The archetypical versions of these algorithms use short steps to guarantee polynomial
complexity. At each iteration, a step is taken that has some bounded length less than
one in the norm defined by the Hessian of the barrier function at the current iterate. The
beautiful properties of self-concordant barrier functions then assure that good progress
can be made in moving towards the appropriate minimizer. Hence the algorithm as a
whole takes a sequence of short steps, each measured in the local norm associated to that
iterate. It is therefore natural to consider the corresponding Riemannian metric defined
on the interior of the constraint set, and in particular shortest paths in this metric, or
geodesic curves. Algorithms whose iterates lie on or close to such geodesics are presumably
efficient. (We note that in practice longer steps are often taken if they yield good iterates,
but the directions suggested by short-step methods are likely to be good for taking longer
steps also.)

The first discussion of these ideas in relation to the complexity of optimization al-
gorithms appears in Karmarkar [5] for linear programming. A different view, relating to
homotopy algorithms in general, is discussed in Todd [12]. Here we consider arbitrary self-
concordant barriers and the resulting Riemannian geometry, concentrating on geodesics
and their relation to interior-point methods.
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We note that the Riemannian geometry of homogeneous self-dual cones has been
studied extensively in the mathematics literature, as it relates to the classification of
these cones via Jordan algebras – see Koecher [6] and Rothaus [10] as well as Güler
[2], who brought this line of research to the attention of optimizers. But their concerns
were far removed from the complexity of optimization algorithms. Also, differential and
Riemannian geometry has been studied in optimization in relation to the need to remain
feasible – see, e.g., Tanabe [11] and Edelman et al. [1]. In this paper, however (at least
in feasible methods), the algorithms move in the intersection of an affine manifold and
the interior of the constraint set, and thus maintaining feasibility is not an issue. The
Riemannian geometry is instead used to induce good search directions, and hopefully
produce “optimal” algorithms.

In the next section we introduce self-concordant barriers, the associated Riemannian
geometry, and geodesics. Section 3 introduces some terminology allowing us to relate
geodesic curves to finite iterative processes. In the following section we consider curves
in the direct product of several sets equipped with Riemannian metrics, and relate the
resulting distances and geodesic curves to those in the constituent sets. Direct products
arise in many applications, and also when considering primal-dual methods. Section 5
contains our main results. We show that the primal-dual central path comes within a
factor of

√
2 of being geodesic, and hence that paths that follow it are close to “optimal.”

For infeasible-interior-point methods, we show that the shifted primal-dual central path
is also within a factor of

√
2 of being geodesic. Finally, in Section 6 we give geodesic

curves for several simple sets: the nonnegative orthant, a hypercube, the semidefinite
and Lorentz cones, and the epigraph of the parabola in two dimensions, with their usual
self-concordant barriers.

2 Definition and main properties

Let Q ⊂ E be a closed convex subset of a finite-dimensional real vector space E. Let us
assume that the interior of Q is nonempty and that it contains no straight line. Then,
Q admits a self-concordant barrier F (x) with a finite parameter value ν (Nesterov and
Nemirovskii [8]). This means that F is a three-times continuously differentiable convex
function defined on the interior of Q, tending to ∞ as its argument approaches a point in
the boundary of Q, and satisfying the two key inequalities

D3F (x)[h, h, h] ≤ 2(D2F (x)[h, h])3/2

and

DF (x)[h] ≤ (νD2F (x)[h, h])1/2
(2.1)

for any x ∈ intQ and h ∈ E. We call F a ν-self-concordant barrier. (In the terminology
of [8], this is a ν-strongly self-concordant barrier.)

We define F ′(x) ∈ E∗, the dual of E, by 〈F ′(x), h〉 := DF (x)[h], F ′′(x) : E → E∗

by 〈F ′′(x)h1, h2〉 := D2F (x)[h1, h2], and F ′′′(x) : E → L(E,E∗) by 〈(F ′′′(x)h1)h2, h3〉 :=
D3F (x)[h1, h2, h3]. With a slight abuse of notation, we also write F ′′′(x)[h1, h2, h3] for
D3F (x)[h1, h2, h3], and F ′′′(x)[h1, h2] for (F ′′′(x)h1)h2 ∈ E∗.

If Q is a cone K, then F is called ν-logarithmically homogeneous if

F (τx) = F (x) − ν ln τ
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for any x ∈ intQ and τ > 0. Then, by differentiating this equation once, twice, and three
times, we find

F ′(τx) = τ−1F ′(x), 〈F ′(x), x〉 = −ν,
F ′′(x)x = −F ′(x), 〈F ′′(x)x, x〉 = ν,
F ′′′(x)[x] = −2F ′′(x).

(2.2)

It is easy to see from these relations that the second inequality in (2.1) always holds.
We will assume that F is smooth (infinitely differentiable). This barrier defines a local

norm at any x ∈ intQ:
‖u‖x := 〈F ′′(x)u, u〉1/2.

By Theorem 2.1.1 in [8], intQ contains the open unit ball {y ∈ E : ‖y− x‖x < 1} around
any such x. Let us fix two points x0, x1 ∈ intQ. Consider a piecewise smooth curve ξ(t),
t ∈ ∆ := [0, 1], such that

ξ(0) = x0, ξ(1) = x1,

and ξ(t) ∈ intQ for all t ∈ ∆. We call ξ a curve from x0 to x1. Then the Riemannian
length of ξ, or the Riemannian distance between x0 and x1 along ξ, is defined as follows:

ρξ(x0, x1) :=

1
∫

0

‖ξ′(t)‖ξ(t)dt.

Let us denote the whole family of such curves by C(x0, x1). Then the Riemannian distance
between x0 and x1 is

ρ(x0, x1) := inf
ξ∈C(x0,x1)

ρξ(x0, x1).

We call a curve from x0 to x1 ∈ intQ normal if

‖ξ′(t)‖ξ(t) is constant for almost all t ∈ ∆.

Thus, for a normal curve ξ from x0 to x1 we have

‖ξ′(t)‖ξ(t) ≡ ρξ(x0, x1), for almost all t ∈ ∆.

Lemma 2.1 Any differentiable curve can be reparametrized in normal form.

Proof: Consider a curve ξ(t) with endpoints x0 and x1, assumed distinct. Let us define
a new trajectory ξ̂(τ(t)) := ξ(t), where τ(t) is a solution of the following differential
equation:

τ ′(t) =
‖ξ′(t)‖ξ(t)
ρξ(x0, x1)

, τ(0) = 0.

Then ‖ξ̂′(τ)‖ξ̂(τ) = ρξ(x0, x1) for almost all τ ∈ ∆. Therefore ξ̂(1) = x1.
�

One reason for using piecewise smooth rather than smooth paths is that reparametriza-
tion may make a smooth path only piecewise smooth. Indeed, if ξ(t) := 1 + (1 − 2t)2

is a smooth path from 2 to itself in int [0,∞) with the standard logarithmic barrier
F (x) := − lnx, then the reparametrized normal curve is ξ̂(τ) = 2|1−2τ |, which is not
differentiable at τ = 1/2. (Another reason is that two piecewise smooth paths can be
concatenated to give another such.)

Henceforth, most of the curves we consider will be normal.
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Theorem 2.1 (a) (intQ, ρ) is a complete metric space.
(b) For any x0 and x1 ∈ intQ, there is a smooth normal path ξ̂ from x0 to x1 with

ρξ̂(x0, x1) = ρ(x0, x1).

(c) Let ξ̂ be as in part (b). Then

F ′′(ξ̂(t))ξ̂′′(t) + 1
2F

′′′(ξ̂(t))[ξ̂′(t), ξ̂′(t)] = 0, for all t ∈ ∆. (2.3)

(d) Consider ξ̂(t) as in part (b). If Q is a cone K and F is logarithmically homoge-
neous, then the function 〈F ′(ξ̂(t)), ξ̂′(t)〉 is constant in t.

Proof: That ρ defines a metric on intQ is a standard result; see for example Helgason
[3], p. 51. The completeness is a consequence of Lemma 3.1 below, which relates ρ(y, x)
to ‖y − x‖x when either is small (see Corollary 3.1). Then part (b) follows; see Theorem
10.4 of [3].

Part (c) is also a standard result: this turns out to be the “geodesic equation” after
computing the appropriate Christoffel symbols, see [3], (3) on p. 30, in our terminology.
We give an argument here for completeness. Let η be any smooth mapping from ∆ to E
vanishing at 0 and 1, and consider the path ξs := ξ̂+ sη from x0 to x1, which lies in intQ
for sufficiently small (in absolute value) s. Then, since ξ̂ is the shortest path from x0 to
x1, the derivative of ρξs(x0, x1) with respect to s at 0 must be zero, so

∫ 1

0

1

2‖ξ̂′(t)‖ξ̂(t)
d

ds
(F ′′(ξ̂(t) + sη(t))[ξ̂′(t) + sη′(t), ξ̂′(t) + sη′(t)])

∣

∣

∣

∣

s=0
dt = 0,

or
∫ 1

0

1

2‖ξ̂′(t)‖ξ̂(t)

[

F ′′′(ξ̂(t))[ξ̂′(t), ξ̂′(t), η(t)] + 2F ′′(ξ̂(t))[ξ̂′(t), η′(t)]
]

dt = 0. (2.4)

From our assumption that ξ̂ is normal, we know that ‖ξ̂′(t)‖ξ̂(t) is constant in t (not just

almost everywhere, since ξ̂ is smooth by part (b)) and equal to ρ(x0, x1).
Now we evaluate the second term in (2.4) using partial integration, to get

ρ(x0, x1)

∫ 1

0

1

‖ξ̂′(t)‖ξ̂(t)
F ′′(ξ̂(t))[ξ̂′(t), η′(t)]dt =

∫ 1

0
F ′′(ξ̂(t))[ξ̂′(t), η′(t)]dt

=
[

F ′′(ξ̂(t))[ξ̂′(t)]η(t)
]1

0
−
∫ 1

0

[

F ′′′(ξ̂(t))[ξ̂′(t), ξ̂′(t)] + F ′′(ξ̂(t))[ξ̂′′(t)]
]

η(t)dt.

The first term on the right hand side vanishes by the boundary conditions on η. Hence,
from (2.4) we deduce

− 1

ρ(x0, x1)

∫ 1

0

[

F ′′(ξ̂(t))[ξ̂′′(t)] +
F ′′′(ξ̂(t))[ξ̂′(t), ξ̂′(t)]

2

]

η(t)dt = 0. (2.5)

Since this holds for all η satisfying the boundary conditions, by choosing the support of η
to be clustered about any t ∈ (0, 1) and η(t) to point in an arbitrary direction, we conclude
that the expression in brackets vanishes, so that (2.3) holds at this t, for all t ∈ (0, 1).
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For part (d), we use the properties F ′(x) = −F ′′(x)x and F ′′′(x)x = −2F ′′(x) of
logarithmically homogeneous barriers. Then we obtain

d

dt
〈F ′(ξ̂(t)), ξ̂′(t)〉

= 〈F ′′(ξ̂(t))ξ̂′(t), ξ̂′(t)〉 + 〈F ′(ξ̂(t)), ξ̂′′(t)〉
= 〈F ′′(ξ̂(t))ξ̂′(t), ξ̂′(t)〉 + 〈−F ′′(ξ̂(t))ξ̂(t), ξ̂′′(t)〉
= 〈F ′′(ξ̂(t))ξ̂′(t), ξ̂′(t)〉 − 〈F ′′(ξ̂(t))ξ̂′′(t), ξ̂(t)〉

= 〈F ′′(ξ̂(t))ξ̂′(t), ξ̂′(t)〉 +
1

2
F ′′′(ξ̂(t))[ξ̂′(t), ξ̂′(t), ξ̂(t)] (by (2.3))

= 〈F ′′(ξ̂(t))ξ̂′(t), ξ̂′(t)〉 − 〈F ′′(ξ̂(t))ξ̂′(t), ξ̂′(t)〉 = 0 (by the last line in (2.2)).

�

In particular, when Q is a cone, Item (d) of the above theorem implies that F (x) is
a linear function of time along any geodesic curve. (As pointed out by a referee, this is
related to the fact that intQ, as a Riemannian manifold, is isomorphic to the product
of the hypersurface {x ∈ intQ : F (x) = 0} and the real axis with its usual Riemannian
structure.)

Any normal curve as in part (b) above we call a geodesic curve from x0 to x1. Note that
in the literature, e.g., in [3], a geodesic refers to a normal curve that satisfies the necessary
condition (2.3); such curves always give shortest paths between any two sufficiently close
points lying on them, but not necessarily globally – consider great circles on a sphere.
We will call these curves “local geodesics,” reserving the term geodesic for shortest paths,
which are our main interest.

Note that the Riemannian metric has the following properties.
1. Clearly, we have the triangle inequality:

ρ(x0, x2) ≤ ρ(x0, x1) + ρ(x1, x2), x0, x1, x2 ∈ intQ,

and symmetry:
ρ(x0, x1) = ρ(x1, x0), x0, x1 ∈ intQ.

2. The metric is invariant with respect to nonsingular linear transformations of vari-
ables. Indeed, let the matrix A be nonsingular. Then we can define the set

Q̄ := {y : Ay ∈ Q}.

For this set a natural barrier function is as follows:

F̄ (y) := F (Ay).

Then it is easy to see that the Riemannian length of any curve ξ(t) in Q̄ using the barrier
F̄ is the same as the Riemannian length of the curve Aξ(t) in Q using the barrier F . If
A is an automorphism of Q such that F̄ differs by a constant from F , then we have just
one Riemannian metric defined on intQ = int Q̄ using either F or F̄ , and it is invariant
under transformation of its endpoints by A; that is, A is an isometry.
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3. If Q = K is a convex cone, equipped with a logarithmically homogeneous barrier,
then the Riemannian distance is homogeneous of degree zero:

ρ(τx0, τx1) = ρ(x0, x1), τ > 0.

4. The Riemannian metric is also dual invariant. Namely, consider the conjugate
function

F∗(s) = max
s

[−〈s, x〉 − F (x)].

Denote by Q∗ ⊆ E∗ its domain (i.e., the set of all s satisfying F∗(s) < ∞). Then, using
the local norm defined by F ′′

∗ (s), s ∈ intQ∗, we can define a Riemannian metric ρ∗ in Q∗.

Proposition 2.1 (a) For any x0, x1 ∈ intQ we have

ρ(x0, x1) = ρ∗(−F ′(x0),−F ′(x1)).

(b) If ξ(t) is a geodesic in Q, then ξ∗(t) = −F ′(ξ(t)) is a geodesic in Q∗. Moreover,

F ′′(ξ(t))ξ′′(t) = ξ′′∗ (t), t ∈ ∆.

Proof: Note that the derivatives of the primal and dual barrier are related in the following
way:

F ′
∗(−F ′(x)) = −x,

F ′′
∗ (−F ′(x)) = [F ′′(x)]−1,

F ′′′
∗ (−F ′(x))[h] = [F ′′(x)]−1F ′′′(x)

[

[F ′′(x)]−1h
]

[F ′′(x)]−1.

(2.6)

Let ξ(t) be an arbitrary curve in intQ. Denote ξ∗(t) = −F ′(ξ(t)). Then

ξ′∗(t) = −F ′′(ξ(t))ξ′(t), (2.7)

ξ′′∗ (t) = −F ′′(ξ(t))ξ′′(t) − F ′′′(ξ(t))[ξ′(t), ξ′(t)]. (2.8)

The equation (2.7) shows that

‖ξ′∗(t)‖2
ξ∗(t) = 〈F ′′(ξ(t))ξ′(t), F ′′

∗ (−F ′(ξ(t)))F ′′(ξ(t))ξ′(t)〉
= 〈F ′′(ξ(t))ξ′(t), [F ′′(ξ(t))]−1F ′′(ξ(t))ξ′(t)〉 = ‖ξ′(t)‖2

ξ(t).

Hence ρ∗ξ∗(−F ′(x0),−F ′(x1)) = ρξ(x0, x1). We also note that this process is reversible:
for any curve ξ∗(t) in intQ∗, we can define ξ(t) := −F ′

∗(ξ∗(t)) and the above analysis still
holds. That proves part (a) of the proposition, and the first part of (b).

Now let ξ(t) be a geodesic. Then (2.8) and (2.3) give

ξ′′∗ (t) = −F ′′(ξ(t))ξ′′(t) − F ′′′(ξ(t))[ξ′(t), ξ′(t)] = F ′′(ξ(t))ξ′′(t).
�

If Q is a cone K and F is ν-logarithmically homogeneous, then so is F∗ on Q∗ = K∗ :=
{s ∈ E∗ : 〈s, x〉 ≥ 0 for all x ∈ K}. Moreover, we have

F∗(−F ′(x)) = −〈−F ′(x), x〉 − F (x) = −F (x) − ν (2.9)

in this case.
5. Sometimes the following trivial lower bound is useful.
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Lemma 2.2 For any x0, x1 ∈ intQ we have

ρ(x0, x1) ≥
1√
ν
| F (x0) − F (x1) | .

Proof: Indeed, since F (x) is a self-concordant barrier, for any curve ξ(t) in Q the Cauchy-
Schwarz inequality yields:

‖ξ′(t)‖ξ(t) ≥ |〈F ′(ξ(t)),ξ′(t)〉|
〈[F ′′(ξ(t))]−1F ′(ξ(t)),F ′(ξ(t))〉1/2

≥ 1√
ν
| 〈F ′(ξ(t)), ξ′(t)〉 |

≥ ± 1√
ν
(F (ξ(t))′t.

�

3 Some terminology

The main goal of this paper is to provide further justification for some trajectories and
iterative schemes used in interior-point methods. The existing complexity analyses provide
strong motivation: our results show that, in some sense, they cannot be improved. First of
all let us show how the Riemannian metric can be used in the analysis of iterative proceses.
We need the following lemma, which also enables us to show that our Riemannian metric
space is complete.

Lemma 3.1 Let x, y ∈ intQ with r := ‖y − x‖x < 1. Then

r − 1
2r

2 ≤ ρ(x, y) ≤ − ln(1 − r). (3.10)

Also, if ρ(x, y) ≤ κ− 1
2κ

2 for some κ ∈ [0, 1), then ‖y−x‖x ≤ κ < 1 and hence the bounds
above hold.

Proof: Consider the trajectory η(t) := x+ t(y − x), t ∈ ∆. Then

ρ(x, y) ≤
1
∫

0
‖η′(t)‖η(t)dt =

1
∫

0
〈F ′′(η(t))(y − x), y − x〉1/2dt

≤
1
∫

0

〈F ′′(x)(y−x),y−x〉1/2

1−‖η(t)−x‖x
dt =

1
∫

0

r
1−trdt = − ln(1 − r),

where the second inequality follows from Theorem 2.1.1 in [8].
In order to prove the lower bound, consider any geodesic ξ from x to y. Denote by t̄

the moment when this curve hits the boundary of the ellipsoid {z : ‖ z − x‖x ≤ r} for
the first time. Clearly, such t̄ is well defined since ‖ξ(1)−x‖x = r. Then, for the function
δ(t) = ‖ξ(t) − x‖x we have by the Cauchy-Schwarz inequality

δ′(t) =
1

δ(t)
〈F ′′(x)(ξ(t) − x), ξ′(t)〉 ≤ ‖ξ′(t)‖x.
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Therefore, again using Theorem 2.1.1 in [8], we have

ρ(x, y) ≥
t̄
∫

0
‖ξ′(t)‖ξ(t)dt ≥

t̄
∫

0
(1 − δ(t))δ′(t)dt

= δ(t̄) − 1
2δ

2(t̄) = r − 1
2r

2.

This completes the proof of the first part.
For the last part, assume to the contrary that r := ‖y − x‖x > κ, and choose κ′ ∈

(κ,min{1, r}). Then any geodesic from x to y must hit the boundary of the ellipsoid
{z : ‖ z − x‖x ≤ κ′}, say for the first time at y′. Hence, by the first part of the
lemma, since ‖y′ − x‖x = κ′ < 1, ρ(x, y′) ≥ κ′ − 1

2(κ′)2 > κ − 1
2κ

2. But this contradicts
ρ(x, y′) ≤ ρ(x, y) ≤ κ− 1

2κ
2.

�

Corollary 3.1 (intQ, ρ) is a complete metric space

Proof: Let {xk} be a Cauchy sequence, and choose K so that ρ(xl, xm) ≤ 3
8 for all

l,m ≥ K. Then ‖xm − xl‖xl
≤ 1/2 for such l,m from the lemma, and in particular,

‖xk − xK‖xK
≤ 1/2 for all k ≥ K. This implies that the sequence has at least one limit

point. If there were two distinct limit points, then it would be easy to reach a contradiction
by choosing points xl and xm, with l,m arbitrarily large, arbitrarily close to these two
limit points, and using similar arguments.

�

Let us introduce now the notion of a short-step sequence. Let XN ≡ {xk}Nk=0 ⊂ intQ
be a finite sequence. We call the value N the length of the sequence XN .

Definition 3.1 The sequence XN is called a κ-short-step sequence if its upper step length

κ(XN ) := max
0≤k≤N−1

‖xk+1 − xk‖xk

is bounded away from 1 by κ: κ(XN ) ≤ κ < 1.
We call a short-step sequence XN α-regular if its lower step length

α(XN ) := min
1≤k≤N−2

‖xk+1 − xk‖xk

is bounded away from 0 by α: α(XN ) ≥ α > 0. (We allow an exception at the endpoints
because it may be necessary to allow small steps in the neighbourhood of x0 and xN .)

Our interest in sequences of this type is motivated by the fact that the best complexity
results in interior-point theory are justified by short-step methods. Moreover, long-step
methods are often motivated by short-step algorithms, maybe using the same directions
but allowing line searches. Hence analysis for short-step methods can also help in designing
better long-step approaches. In our terminology, such methods generate regular short-step
sequences.

Let us relate the length of a short-step sequence with the Riemannian distance between
its initial and final points.

9



Lemma 3.2 For any κ-short-step sequence XN we have

ρ(x0, xN ) ≤ −N ln(1 − κ).

Proof: In view of Lemma 3.1 we have:

ρ(x0, xN ) ≤
N−1
∑

i=0

ρ(xi, xi+1) ≤ −N ln(1 − κ(XN )).

�

This trivial result has an important consequence.

Corollary 3.2 The length of an arbitrary κ-short-step sequence XN going from x ∈ intQ
to y ∈ intQ is bounded below:

N ≥ ρ(x, y)

− ln(1 − κ)
.

�

Conversely, we have

Lemma 3.3 For any κ ∈ (0, 1) and any x, y ∈ intQ, there is an α-regular κ-short-step

sequence XN from x to y with α =
(

1 − e−1/2
)

κ, whose length can be bounded as follows:

N ≤ ρ(x, y)

κ− 1
2κ

2
+ 2.

Proof: Divide any geodesic from x to y into segments using points x1, x2, . . . , xN−1 so
that, with x0 := x and xN := y, ρ(xk, xk+1) ≤ κ− 1

2κ
2 for k = 0, . . . , N − 1, with equality

for all except possibly k = N − 1. Clearly N can be bounded as stated. Moreover, by
Lemma 3.1, for rk = ‖xk−xk+1‖xk

we have rk ≤ κ and, for k < N−1, κ− 1
2κ

2 ≤ − ln(1−rk)
which gives

rk ≥ 1 − e−κ+
1
2κ

2 ≥
(

1 − e−1/2
)

κ.
�

The above inequalities suggest the following definition of optimal sequences.

Definition 3.2 Given positive absolute constants c1 and c2, we call a short-step sequence
XN (c1, c2)-optimal (or just optimal) for going from x0 to xN if

N ≤ c1 · ρ(x0, xN ) + c2.

Many interior-point schemes are based on approximately following certain curves in the
feasible set. It is convenient to have some relations between the length of such sequences
and the Riemannian length of the curves.

Lemma 3.4 Let an α-regular short-step sequence XN follow a curve ξ(t) at the proximity
level β, i.e.,

‖xk − ξ(tk)‖xk
≤ β, k = 0, . . . , N,

for some t0 < t1 < . . . < tN , where β ∈ [0, 1). Then

ρξ(ξ(t0), ξ(tN )) ≥ (N − 1)[α − 1
2α

2 + 2 ln(1 − β)].
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Proof: Indeed,

ρξ(ξ(t0), ξ(tN )) =
N−1
∑

i=0
ρξ(ξ(ti), ξ(ti+1))

≥
N−2
∑

i=0
ρ(ξ(ti), ξ(ti+1))

≥
N−2
∑

i=0
[ρ(xi, xi+1) − ρ(ξ(ti), xi) − ρ(xi+1, ξ(ti+1))]

≥ (N − 1)[α − 1
2α

2 + 2 ln(1 − β)].
�

Thus, we can estimate the length of a regular short-step path-following sequence by the
Riemannian length of the corresponding curve. Therefore we need the following definition.

Definition 3.3 A curve ξ(t), t ∈ ∆ is called τ -geodesic for some τ ≥ 1 if

ρξ(ξ(t0), ξ(t1)) ≤ τ · ρ(ξ(t0), ξ(t1))

for any t0, t1 ∈ ∆. If τ is an absolute constant, then we call the curve sub-geodesic.

Note that τ = 1 corresponds to a geodesic curve.
Finally, we establish the following result.

Theorem 3.1 Let an α-regular short-step sequence XN follow a τ -geodesic curve at the
proximity level β. Assume that these parameters satisfy the relations:

α− 1
2α

2 + 2 ln(1 − β) ≥ γ1, β ≤ 1 − γ2

where τ , γ1, and γ2 are positive absolute constants. Then XN is (c1, c2)-optimal for going
from x0 to xN for c1 := τ/γ1 and c2 := 1 − 2c1 ln γ2.

Proof: Indeed, let XN follow a τ -geodesic curve ξ(t). Then

N ≤ ρξ(ξ(t0), ξ(tN ))

α− 1
2α

2 + 2 ln(1 − β)
+ 1 ≤ τ

γ1
ρ(ξ(t0), ξ(tN )) + 1.

It remains to note that ρ(xi, ξ(ti)) ≤ − ln(1 − β) ≤ − ln γ2 for i = 0 and i = N and use
ρ(ξ(t0), ξ(tN )) ≤ ρ(x0, xN ) + ρ(x0, ξ(t0)) + ρ(xN , ξ(tN )) from the triangle inequality.

�

4 Curves in direct products

In what follows we often work with curves in a direct product of convex sets. Therefore we
need to present some properties of the Riemannian metric in such a product. Note that
in this section, subscripts refer to the components of a point or a curve in the different
spaces rather than points in a single space in some sequence.

Normal curves allow us to compute easily the metric in the direct product of sets:

11



Lemma 4.1 Let the Riemannian metrics ρi in the convex sets Qi be defined from the
self-concordant barriers Fi, i = 1, . . . ,m, and let the Riemannian metric ρ in the convex

set Q := Πm
i=1Qi be defined from the self-concordant barrier F (z) :=

m
∑

i=1
Fi(zi), z =

(z1, . . . , zm) ∈ intQ. Consider m normal curves ξi(t) connecting xi, yi ∈ intQi, and let
x = (x1, . . . , xm), y = (y1, . . . , ym).

(a) The curve ξ(t) = (ξ1(t), . . . , ξm(t)) from x to y is normal for the set Q = Πm
i=1Qi,

with respect to the barrier F . Moreover, we have

ρξ(x, y) =

[

m
∑

i=1

ρ2
ξi(xi, yi)

]1/2

.

(b) ρ(x, y) =

[

m
∑

i=1
ρ2
i (xi, yi)

]1/2

.

(c) If the curves ξi(t) are τ -geodesic in Qi, for any τ ≥ 1, then the curve ξ(t) is
τ -geodesic in Q.

Proof: Indeed, since all ξ are normal, we have:

‖ξ′(t)‖2
ξ(t) =

m
∑

i=1
〈F ′′

i (ξi(t))ξ
′
i(t), ξ

′
i(t)〉

=
m
∑

i=1
ρ2
ξi

(xi, yi),

which is independent of t, for almost all t ∈ ∆.
For part (b), consider any path η from x to y in intQ and let ηi denote its components

in the Qi’s. Let (vi) denote the m-vector with components vi. Then, with obvious
notation,

ρη(x, y) =

∫

‖η′(t)‖η(t)dt

=

∫

‖(‖η′i(t)‖ηi(t))‖2dt

≥ ‖
∫

(‖η′i(t)‖ηi(t))dt‖2

≥ ‖(ρi(xi, yi))‖2,

so that ρ(x, y) ≥ ‖(ρi(xi, yi))‖2. However, the first statement shows that we achieve
equality when each ηi is a geodesic curve from xi to yi in intQi. This proves part (b).

The third statement is evident.
�

For a geodesic curve we can prove a converse statement.

Lemma 4.2 Let the Riemannian metrics in the convex sets Qi be defined from the self-
concordant barriers Fi, i = 1, . . . ,m, and similarly in the set Q = Πm

i=1Qi equipped with
the barrier

F (z) =
m
∑

i=1

Fi(zi), z = (z1, . . . , zm) ∈ intQ.

12



Then any geodesic curve ξ(t) = (ξ1(t), . . . , ξm(t)) in Q is composed of curves ξi(t) that
are geodesic in Qi.

Proof: Let ξ go from x to y, and ξi from xi to yi for each i. Then, with the same notation
as in the previous lemma,

ρ(x, y) =

∫

‖ξ′(t)‖ξ(t)dt

=

∫

‖(‖ξ′i(t)‖ξi(t))‖2dt

≥ ‖(
∫

‖ξ′i(t)‖ξi(t))dt‖2

≥ ‖(ρi(xi, yi))‖2

= ρ(x, y).

Hence we have equality throughout, which implies that the curves ξi(t) are geodesic in
Qi.

�

Although we have stated them for Riemannian metrics derived from self-concordant
barrier functions, Lemmas 4.1 and 4.2 hold for general products of Riemannian manifolds.

In the following, we are interested in the product of just two Riemannian manifolds,
corresponding to the interiors of the primal and dual cones in a primal-dual pair of opti-
mization problems, and in the primal, dual, and primal-dual central paths. It is important
to note that, even in this restricted setting, the conclusion of Lemma 4.2 fails to hold for
sub-geodesic curves (see Section 6.1). Some intuition that the projections of sub-geodesic
curves can be arbitrarily bad follows from the following result.

Theorem 4.1 Let K be a closed, pointed, and solid cone equipped with a ν-self-concordant
logarithmically homogeneous barrier F (x). Let x(t), t ∈ ∆, be an arbitrary piecewise
smooth primal curve in intK. Define a dual curve by

s(t) := −ω(t)F ′(x(t))

in the dual cone K∗, where ω(t) is a smooth strictly positive function whose derivative is
positive (or negative) in ∆.

If the curves x(t) and s(t) are orthogonal:

〈s′(t), x′(t)〉 = 0, for almost all t ∈ ∆, (4.11)

then the primal-dual curve z(t) := (x(t), s(t)) is
√

2-geodesic in K̂ := K×K∗ with respect
to the barrier

F̂ (z) := F (x) + F∗(s).

The length of this curve is given by the following expression:

ρz(·)(z(t0), z(t1)) =
√
ν | ln

ω(t1)

ω(t0)
|, t0, t1 ∈ ∆.
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Proof: Without loss of generality, we can assume that ω ′(t) > 0, t ∈ ∆. Note that
(almost everywhere in ∆)

s′(t) = −ω′(t)F ′(x(t)) − ω(t)F ′′(x(t))x′(t),

which gives

F ′(x(t)) = − 1

ω′(t)
s′(t) − ω(t)

ω′(t)
F ′′(x(t))x′(t). (4.12)

At the same time, since F (x) is logarithmically homogeneous, we have x(t) = −ω(t)F ′
∗(s(t))

(see (2.6)). Thus,

F ′
∗(s(t)) = − 1

ω′(t)
x′(t) − ω(t)

ω′(t)
F ′′
∗ (s(t))s′(t). (4.13)

Further,

F̂ (z(t)) = F (x(t)) + F∗(s(t)) = F (x(t) + F∗(−ω(t)F ′(x(t)) = −ν − ν lnω(t)

using (2.9). Therefore,

〈F ′(x(t)), x′(t)〉 + 〈s′(t), F ′
∗(s(t))〉 = −ν ω

′(t)
ω(t)

.

Using now the relations (4.12), (4.13) and (4.11), we get the following:

ν ω
′(t)
ω(t) = 〈 1

ω′(t)s
′(t) + ω(t)

ω′(t)F
′′(x(t))x′(t), x′(t)〉 + 〈s′(t), 1

ω′(t)x
′(t) + ω(t)

ω′(t)F
′′
∗ (s(t))s′(t)〉

= ω(t)
ω′(t) (〈F ′′(x(t))x′(t), x′(t)〉 + 〈s′(t), F ′′

∗ (s(t))s′(t)〉)

= ω(t)
ω′(t)‖z′(t)‖2

z(t).

Thus, ‖z′(t)‖z(t) =
√
νω′(t)/ω(t). Note that F̂ (z) is a 2ν-self-concordant barrier. There-

fore, in view of Lemma 2.2, for any t0, t1 ∈ ∆, t0 < t1, we obtain:

ρz(z(t0), z(t1)) =
t1
∫

t0

‖z′(t)‖z(t)dt =
√
ν[lnω(t1) − lnω(t0)]

=
√
ν
[

1
ν

(

F̂ (z(t0)) − F̂ (z(t1))
)]

=
√

2
[

1√
2ν

(

F̂ (z(t0)) − F̂ (z(t1))
)]

≤
√

2ρ(z(t0), z(t1)).
�

Note that the condition (4.11) in Theorem 4.1 can be achieved for a rather wide family
of curves in K just by choosing an appropriate function ω(t).

Proposition 4.1 Let x(t) be a smooth curve in intK along which the derivative of
F (x(t)) is always positive (or always negative). Define the function ω(t) as a solution
of the following differential equation:

ω′(t)
ω(t)

= −〈F ′′(x(t))x′(t), x′(t)〉
〈F ′(x(t)), x′(t)〉 .

14



Then for the dual trajectory s(t) = −ω(t)F ′(x(t)) we have

〈s′(t), x′(t)〉 ≡ 0.

Proof: Indeed, s′(t) = −ω′(t)F ′(x(t)) − ω(t)F ′′(x(t))x′(t).
�

5 Lower bounds on the complexity of short-step

methods

Now we are ready to analyse some important trajectories in interior-point path-following
schemes. Let us start with the primal-dual central path.

5.1 Feasible primal-dual central path

Consider the following conic minimization problem:

min
x

〈c, x〉,

s.t. Ax = b ∈ Rm,

x ∈ K ⊂ Rn,

(5.14)

where K is a closed, pointed, and solid convex cone and the matrix A has full row rank.
Let F (x) be a ν-self-concordant logarithmically homogeneous barrier for K. The primal
central path is the set of points x(t) defined as follows:

x(t) := arg min
x

{t〈c, x〉 + F (x) : Ax = b}, t ∈ R+.

The problem dual to (5.14) has the following form:

max
s,y

〈b, y〉,

s.t. AT y + s = c,

s ∈ K∗.

For this problem we also can introduce a central path, consisting of the points

(s(t), y(t)) := arg min
s,y

{−t〈b, y〉 + F∗(s) : AT y + s = c, y ∈ Rm}, t ∈ R+.

Now we can consider the following primal-dual problem:

min
x,s,y

〈c, x〉 − 〈b, y〉,

s.t. Ax = b,

AT y + s = c,

x ∈ K, s ∈ K∗, y ∈ Rm.

(5.15)
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Then, the primal-dual central path is just the concatenation of the primal and dual paths:
the set of points

z(t) := (x(t), s(t)), t ∈ R+.

Here we can omit the component y(t) since it can be found from the system of linear
equations of the primal-dual problem.

Note that z(t) ∈ int K̂ = int (K ×K∗). The barrier for the cone K̂ is

F̂ (z) := F (x) + F∗(s), z := (x, s) ∈ int K̂.

Note that the value of parameter of this barrier is ν̂ = 2ν.
Let us present a well-known duality theorem (see, for example, [7]).

Theorem 5.1 (a) If the primal-dual feasible set in (5.15) has a strictly feasible primal-
dual point (i.e., x ∈ intK and s ∈ intK∗), then the optimal value of this problem is zero
and the primal-dual central path is well defined.

(b) Along the primal-dual central path we have the following identity:

s(t) = −1

t
F ′(x(t)). (5.16)

(c) z(t) = arg min
z=(x,s),y

{F̂ (z) : Ax = b, AT y + s = c, 〈c, x〉 − 〈b, y〉 ≤ ν
t }.

�

Now we can use Theorem 4.1 to prove the following statement.

Theorem 5.2 Any segment of the primal-dual central path is
√

2-geodesic in K̂ with
respect to F̂ .

Proof: Indeed, in view of the system of linear equations in (5.15) we have

Ax′(t) = 0, AT y′(t) + s′(t) = 0.

Therefore
〈s′(t), x′(t)〉 = −〈AT y′(t), x′(t)〉 = −〈Ax′(t), y′(t)〉 = 0,

and, noting (5.16), we can apply Theorem 4.1.
�

Corollary 5.1 If our starting point is close to the primal-dual central path, then any
regular short-step central-path-following scheme is optimal for traveling to the set

{z = (x, s) ∈ K̂ : for some y, Ax = b, AT y + s = d, 〈c, x〉 − 〈b, y〉 ≤ ε}.

Proof: The proof follows from Theorem 5.2, Theorem 3.1, and part (c) of Theorem 5.1.
�

Note that the statement of the theorem is applicable to all sequences in K̂; they are
allowed to be infeasible for the system of linear equations of the problem (5.15).

Unfortunately, we do not see how to prove such a result for the primal central path
with respect to the cone K.
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5.2 Shifted primal-dual central path

This path arises in infeasible-start interior-point primal-dual schemes. The idea of this
approach (see [9]) is to solve the following minimization problem:

min F (x) + F∗(s) − ln τ − lnκ,

(x, y, s, τ, κ) ∈ F :=















































Ax = rx + τb,

AT y + s = rs + τc,

〈c, x〉 − 〈b, y〉 + κ = rc,

x ∈ K, s ∈ K∗, y ∈ Rm, τ ≥ 0, κ ≥ 0.

(5.17)

It can be proved that the feasible set of this problem F is always unbounded. There-
fore, the minimization of the self-concordant barrier for this set (the objective function in
(5.17)) gives in the limit a recession direction (x̄, ȳ, s̄, τ̄ , κ̄). If in this direction the compo-
nent τ̄ is positive, then the point (x̄/τ̄ , ȳ/τ̄ , s̄/τ̄) is an optimal solution to the primal-dual
problem (5.15). If the component κ̄ is positive, then we can get some infeasibility certifi-
cates for (5.15) (see [9]) for details).

The advantage of the formulation (5.17) is that we can always choose the corresponding
residuals rx, rs and rc to have our starting point

(x0, y0, s0, τ0, κ0) ∈ int K̄ = int (K ×Rm ×K∗ ×R+ ×R+)

feasible for the system of linear equations in F :

rx := Ax0 − τ0b, rs := AT y0 + s0 − τ0c, rc := 〈c, x0〉 − 〈b, y0〉 + κ0.

For the sake of simplicity, let us introduce new notation:

x̄ := (x, τ) ∈ K̄ := K ×R+, F̄ (x̄) := F (x) − ln τ,

s̄ := (s, κ) ∈ K̄∗ := K∗ ×R+, F̄∗(s̄) := F∗(s) − lnκ.

z̄ := (x̄, s̄), F̂ (z̄) := F̄ (x̄) + F̄∗(s̄),

and let us suppress y from the variables of the problem (5.17). Then this problem can be
written as

min F̂ (z̄),

s.t. Bz̄ = r,

z̄ ∈ K̄ × K̄∗.

(5.18)

Denote
l(z̄) := 〈s0, x〉 + 〈s, x0〉 + τ0κ+ κ0τ.

Now we can define the shifted primal-dual central path:

z̄(t) := arg min{F̂ (z̄) : Bz̄ = r, l(z̄) = (ν + 1)(t + 1)}.
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Theorem 5.3 ([9]). Let us choose z̄0 as follows:

x0 ∈ intK, s0 = −F ′(x0), τ0 = κ0 = 1, y0 = 0.

Then the shifted primal-dual central path is well defined and z̄(1) = z̄0. Moreover, along
this path we have the following identities:

s(t) = −tF ′(x(t)), τ(t)κ(t) = t. (5.19)

�

Using this statement it is easy to prove the following important fact.

Theorem 5.4 Any segment of the shifted primal-dual central path is
√

2-geodesic in the
cone K̄ × K̄∗ with respect to the barrier F̂ (z̄).

Proof: Indeed, the equations (5.19) can be written in the following form:

s̄(t) = −tF̄ ′(x̄(t)).

On the other hand, in view of the structure of the linear system in F we have the following:

Ax′(t) = τ ′(t)b, s′(t) +AT y′(t) = τ ′(t)c, 〈c, x′(t)〉 − 〈b, y′(t)〉 + κ′(t) = 0,

where y(t) corresponds to s(t). Therefore

〈s̄′(t), x̄′(t)〉 = 〈s′(t), x′(t)〉 + τ ′(t)κ′(t)

= 〈τ ′(t)c−AT y′(t), x′(t)〉 + τ ′(t)(〈b, y′(t)〉 − 〈c, x′(t)〉)

= −〈Ax′(t), y′(t)〉 + τ ′(t)〈b, y′(t)〉 = 0.

Thus, using Theorem 4.1 we get the result.
�

Hence, regular short-step path-following strategies for the shifted primal-dual central
path are optimal for reaching the set {z̄ : Bz̄ = r, l(z̄) = (ν + 1)M} for any M > 1 (see
[9] for discussion).

6 Geodesic curves for simple sets

In this section we derive the form of geodesic curves for some standard convex sets. Some
of these sets are direct products of simple one-dimensional sets. In such cases we apply
Lemmas 4.1 and 4.2, which tell us how to construct geodesic curves for direct products.
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6.1 Positive orthant

We can represent the positive orthant Rn
+ as a direct product of one-dimensional rays.

Choosing the barrier function f(τ) = − ln τ as a barrier for a positive ray, we obtain from
(2.3) the following equation for its geodesic curves:

ξ(t)ξ′′(t) = (ξ′(t))2.

Moreover, this holds componentwise for any geodesic curve in intRn
+. Let us change

variables: v = lnx (componentwise). Then for the curve β(t) := ln ξ(t) we have

β′′(t) = 0, t ∈ ∆.

Thus, any geodesic curve connecting two points x and y in intRn
+ has the form

ξ(t) = exp[(1 − t) ln x+ t ln y] = xty1−t

(componentwise). It is clear that this does indeed give the unique geodesic curve for the
case n = 1, and then Lemma 4.1, part (c), and Lemma 4.2 show that it also gives the
unique geodesic curve for general n. In view of Theorem 2.1 and Lemma 4.1, we have

ρ2(x, y) = 〈F ′′(x)ξ′(0), ξ′(0)〉

=
n
∑

i=1

1
x2

i

(

xi ln
yi
xi

)2
=

n
∑

i=1
(ln yi − lnxi)

2 .
(6.20)

Thus the transformation x → v := lnx is an isometry between Rn
+ with the Riemannian

metric ρ and Rn with the Euclidean metric. Note that, in v-space, Lemma 2.2 corresponds
to ‖∆v‖2 ≥|∑∆vi | /

√
n, a consequence of the Cauchy-Schwarz inequality.

We can use this example to show that projections of sub-geodesic curves are not
necessarily sub-geodesic. Consider the path in intR2

+ defined by

x(t) :=



























(

exp[α(1/2 − t)]
exp[t− 1/2]

)

, 0 ≤ t ≤ 1/2,

(

exp[t− 1/2]
exp[α(1/2 − t)]

)

, 1/2 ≤ t ≤ 1,

where α > 1. In v-space, this corresponds to a line segment from (α/2,−1/2)T to the ori-
gin followed by one from the origin to (1/2,−α/2)T . It is easy to see that 〈F ′(x(t)), x′(t)〉 =
α − 1 > 0 for t ∈ ∆, t 6= 1/2, so that F is increasing. Using Proposition 4.1 we find a
corresponding path s(t) in intR2

+ which satisfies the hypotheses of Theorem 4.1. Indeed,
we obtain

s(t) :=



























(

exp[−α/2 − (β − α)t)]
exp[1/2 − (β + 1)t]

)

, 0 ≤ t ≤ 1/2,

(

exp[1/2 − (β + 1)t]
exp[−α/2 − (β − α)t)

)

, 1/2 ≤ t ≤ 1,

with β := (α2 +1)/(α− 1). Then the path (x(t), s(t)) is
√

2-geodesic. However, using the
corresponding path in v-space, we find that ρx(x(0), x(1)) =

√
α2 + 1 while

ρ(x(0), x(1)) = ‖((α/2,−1/2)T − (1/2,−α/2)T ‖2 = (α− 1)/
√

2,

and the ratio is unbounded as α tends to 1 from above.
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6.2 The hypercube

In order to simplify our calculations, consider the n-dimensional hypercube in the following
form:

Q := {x ∈ Rn : | xi |≤
π

2
, i = 1, . . . , n}.

(An arbitrary hyperrectangle can be treated by a trivial affine transformation.) As before,
we can represent Q as a direct product of the intervals [− π

2 ,
π
2 ]. Let us introduce for this

interval the following barrier function:

f(τ) := − ln cos τ.

Note that
f ′(τ) = tan τ, f ′′(τ) = sec2 τ, f ′′′(τ) = 2 tan τ sec2 τ.

Clearly, this function is a 1-self-concordant barrier for the interval [− π
2 ,

π
2 ].

In view of equation (2.3), any geodesic curves for this interval must satisfy the following
differential equation:

ξ′′(t) + tan ξ(t)(ξ′(t))2 = 0,

or (ln ξ′(t))′ = (ln cos ξ(t))′. Therefore

ξ′(t) = c · cos ξ(t), (6.21)

where c is a positive constant. Consider the function

ψ(τ) := ln(sec τ + tan τ).

Note that ψ′(τ) = [tan τ sec τ + sec2 τ ]/[sec τ + tan τ ] = sec τ . Thus, the equation (6.21)
can be rewritten as follows:

(ψ(ξ(t)))′ = c.

Therefore, any geodesic curve connecting x and y in (− π
2 ,

π
2 ) has the following form:

ξ(t) = ψ−1(ψ(x) + t(ψ(y) − ψ(x))), t ∈ ∆.

It is clear that this does indeed give the unique geodesic curve for the case n = 1, and
then Lemma 4.1, part (c), and Lemma 4.2 show that applying the formula componentwise
also gives the unique geodesic curve for general n.

Using Theorem 2.1 and Lemma 4.1 we get the following:

ρ2(x, y) = 〈F ′′(x)ξ′(0), ξ′(0)〉

=
n
∑

i=1

[

(ψ−1(ψ(xi)+t(ψ(yi)−ψ(xi))))′t=0

cos xi

]2

=
n
∑

i=1
[ψ(yi) − ψ(xi)]

2 .

Again, ψ applied componentwise is an isometry between Q with the Riemannian metric
ρ and Rn with the Euclidean metric.
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6.3 Cone of positive semidefinite matrices

Let Sn be the space of symmetric positive semidefinite matrices of order n. Consider
Q = K := Sn+, the cone of symmetric positive semidefinite matrices in Sn. Let us endow
this cone with the natural n-self-concordant logarithmically homogeneous barrier

F (X) := − ln detX.

Theorem 6.1 Let X,Y ∈ intSn+. Denote

λi(X,Y ) = λi[X
−1/2Y X−1/2], i = 1, . . . , n,

where λi[A] is the ith eigenvalue of the symmetric matrix A ∈ Sn. Then

ρ(X,Y ) =

[

n
∑

i=1

ln2 λi(X,Y )

]1/2

and the shortest path from X to Y is

ξ(t) := X1/2(X−1/2Y X−1/2)tX1/2.

Proof: Note that the Riemannian metric is invariant with respect to appropriate non-
singular affine transformations of variables. Therefore, for any X, Y � 0 we have

ρ(X,Y ) = ρ(I,X−1/2Y X−1/2),

where I is the identity matrix. A further affine transformation diagonalizes X−1/2Y X−1/2.
Thus, we need to compute the distance between I and an arbitrary diagonal matrix Z � 0.
Note that the characteristic equation (2.3) in our case has the following form:

ζ−1(t)ζ ′′(t)ζ−1(t) − ζ−1(t)ζ ′(t)ζ−1(t)ζ ′(t)ζ−1(t) = 0.

That is
ζ ′′(t) = ζ ′(t)ζ−1(t)ζ ′(t), ζ(0) = I, ζ(1) = Z.

It is easy to see that
ζ̄(t) = Z t, t ∈ ∆,

is a solution to this equation (since Z is diagonal, this can be viewed as the diagonal
matrix whose diagonal entries are the tth powers of those of Z). In order to compute its
Riemannian length, we note that ζ̄ ′(t) = ln(Z)ζ̄(t), so that

〈F ′′(ζ̄(t)ζ̄ ′(t), ζ̄ ′(t)〉 = 〈ln(Z), ln(Z)〉 =
n
∑

i=1

ln2 λi(Z).

(Again, ln(Z) can be viewed as the diagonal matrix whose diagonal entries are the loga-
rithms of those of Z.) Thus ρζ̄(I, Z) = ‖ ln λ(Z)‖2.

We have shown that ζ̄ is a local geodesic from I to Z. However, in this example,
the Riemannian metric resulting from F coincides (up to a constant multiple) with that
arising from the negative of the Hessian of the logarithm of the norm given by Rothaus
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[10] for the interior of this cone (see Güler [2]). Corollary 4.13 in [10] shows that there is
a unique local geodesic connecting any two points, and since any geodesic must be a local
geodesic, ζ̄ is the unique geodesic from I to Z.

The corresponding path from I toX−1/2Y X−1/2 is ξ′(t) := (X−1/2Y X−1/2)t, where for
an arbitrary symmetric matrix W , W t is the matrix QDtQT , with QDQT the eigenvalue
decomposition of W and Dt defined as above for the diagonal matrix D. Finally, the
corresponding path from X to Y is then ξ(t) as given in the theorem.

�

6.4 Lorentz cone

.
Let us consider Q = K, where K is the Lorentz cone:

K := {z = (τ, x) ∈ R1+n : τ ≥ ‖x‖2}.

Let us endow this cone with the 2-self-concordant logarithmically homogeneous barrier

F (z) := − ln(τ 2 − ‖x‖2
2), z ∈ intK.

For any z0, z1 ∈ intK denote

σ(z0, z1) := max{λ : z0 − λz1 ∈ K}.

Proposition 6.1 For any z0, z1 ∈ intK we have

ρ(z0, z1) = [ln2 σ(z0, z1) + ln2 σ(z1, z0)]
1/2.

Proof: Note that K is a homogeneous cone. Therefore there exists an automorphism A

which maps z0 to e0 = (1, 0n): e0 = Az0. Indeed, if z0 = (τ0, x0) and ρ0 :=
√

τ2
0 − ‖x0‖2

2,
then A is represented by the matrix

1

ρ0

(

− τ0
τ0+ρ0

0

0 I

)

+

1
ρ0(τ0+ρ0)





(

1
0

)(

τ0
−x0

)T

+

(

τ0
−x0

)(

1
0

)T

+ 1
ρ0

(

τ0
−x0

)(

τ0
−x0

)T


 .

Denote w1 = Az1 and assume that w1 6= e0. Then

ρ(z0, z1) = ρ(e0, w1).

As in the previous example, the metric here coincides (up to a constant multiple) with that
arising from Rothaus’s [10] norm, and so the geodesic is unique. In view of the symmetry
of the cone K, the geodesic curve from e0 to w1 must belong to the plane spanned by
these vectors, since, if not, its reflection in this plane would be another geodesic. Because
of the rotational symmetry of the barrier function, we can assume that n = 2. Denote

e1 = e0 − σ(e0, w1)w1, e2 = w1 − σ(w1, e0)e0.

22



Then in the basis (e1, e2) our vectors have the following representation:

e0 =
(

1
1−σ(e0,w1)σ(w1 ,e0)

, σ(e0,w1)
1−σ(e0,w1)σ(w1 ,e0)

)

,

w1 =
(

σ(w1,e0)
1−σ(e0,w1)σ(w1 ,e0)

, 1
1−σ(e0,w1)σ(w1 ,e0)

)

.

Note that the denominator in the above expressions is strictly positive since the nonzero
vectors e1 and e2 lie in K and for any s ∈ intK∗ we have

0 < 〈s, e1〉 = 〈s, e0 − σ(e0, w1)w1〉 = 〈s, e0 − σ(e0, w1)(e2 + σ(w1, e0)e0)〉

= (1 − σ(e0, w1)σ(w1, e0))〈s, e0〉 − σ(e0, w1)〈s, e2〉.

Observe that the points e1 and e2 are positive multiples of the extreme rays of the cone
(1, 1) and (1,−1). Now the barrier for a point (τ, x) =: λ1e1 + λ2e2 is

− ln(τ2 − x2) = − ln(τ + x) − ln(τ − x) = − lnλ1 − lnλ2 + κ

for some constant κ, and so the Riemannian metric coincides with that for R2
+ when

points are represented in terms of the basis (e1, e2). Thus, in view of relation (6.20) we
have

ρ2(e0, w1) = ln2 σ(e0, w1) + ln2 σ(w1, e0).

It remains to note that

σ(e0, w1) = σ(z0, z1), σ(w1, e0) = σ(z1, z0).

�

Given the explicit form of A and the known geodesics in R2
+, the form of the geodesic can

be computed in a straightforward if tedious way.

6.5 Epigraph of the parabola

In this section we derive the family of geodesic curves for the following two-dimensional
set

Q := {z = (x, y) ∈ R2 : y ≥ x2}.
The Riemannian metric in this set is defined using the natural 1-self-concordant barrier

F (z) := − ln(y − x2).

Proposition 6.2 For any points z0 = (x0, y0), z1 = (x1, y1) from intQ with x0 6= x1 the
corresponding geodesic curve can be written in the form

y =
1

2
x2 + ax+ b,

for some constants a, b. If x0 = x1 then the unique geodesic curve is a straight vertical
line.
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Proof: In order to find the form of geodesic curves, we need to solve equation (2.3).
Denote ω(z) := y − x2. Consider the two functions

gx(z) := ∂F (z)
∂x = 2x

ω(z) ,

gy(z) := ∂F (z)
∂y = − 1

ω(z) .

In order to work with equation (2.3), we need first to compute the directional derivatives
of these functions. For a direction h = (hx, hy) ∈ R2 we have

ω′(z)[h] = hy − 2xhx, ω′′(z)[h, h] = −2(hx)
2. (6.22)

Therefore

g′x(z)[h] =
2hx
ω(z)

− 2x

ω2(z)
ω′(z)[h] =

2

ω2(z)
(ω(z)hx − xω′(z)[h]), (6.23)

g′′x(z)[h, h] = − 4hx
ω2(z)

ω′(z)[h] +
4x

ω3(z)
(ω′(z)[h])2 − 2x

ω2(z)
ω′′(z)[h, h]

= − 4

ω3(z)

[

ω(z)ω′(z)[h]hx − x(ω′(z)[h])2 + 1
2xω(z)ω′′(z)[h, h]

]

, (6.24)

g′y(z)[h] =
ω′(z)[h]
ω2(z)

=
1

ω2(z)
(hy − 2xhx), (6.25)

g′′y (z)[h, h] =
ω′′(z)[h, h]
ω2(z)

− 2
(ω′(z)[h])2

ω3(z)

= − 2

ω3(z)

[

(ω′(z)[h])2 − 1
2ω(z)ω′′(z)[h, h]

]

. (6.26)

Now let z be a function of t: z(t) = (x(t), y(t)). Let us rewrite the equations (6.23) and
(6.25) using the direction h = z ′′(t). We have

ω′(z(t))[z′′(t)] = y′′(t) − 2x(t)x′′(t).

Therefore (in the following we frequently omit the arguments for simplicity)

g′x(z(t))[z
′′(t)] =

2

ω2

[

ωx′′ − xy′′ + 2x2x′′
]

, (6.27)

g′y(z(t))[z
′′(t)] =

1

ω2

[

y′′ − 2xx′′
]

. (6.28)

For the direction h = z′(t) we have

ω′(z(t))[z′(t)] = y′ − 2xx′,

ω′′(z(t))[z′(t), z′(t)] = −2(x′)2.
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Therefore, the relations (6.24) and (6.26) can be rewritten as follows:

g′′x(z(t))[z
′(t), z′(t)] = − 4

ω3

[

ω(y′ − 2xx′)x′ − x(y′ − 2xx′)2 − xω(x′)2
]

, (6.29)

g′′y (z(t))[z
′(t), z′(t)] = − 2

ω3

[

(y′ − 2xx′)2 + ω(x′)2
]

. (6.30)

Note that from equation (2.3) we must have

g′x(z(t))[z
′′(t)] = − 1

2g
′′
x[z

′(t), z′(t)].

In view of equations (6.27) and (6.29) this is

2
ω2

[

ωx′′ − xy′′ + 2x2x′′
]

= 2
ω3

[

ω(y′ − 2xx′)x′ − x(y′ − 2xx′)2 − xω(x′)2
]

.

Similarly, since we need

g′y(z(t))[z
′′(t)] = − 1

2g
′′
y [z

′(t), z′(t)],

in view of equations (6.28) and (6.30) we have

1
ω2 [(y′′ − 2xx′′] = 1

ω3

[

(y′ − 2xx′)2 + ω(x′)2
]

.

These equations are equivalent to

ω2x′′ − ωx(y′′ − 2xx′′) = ω(y′ − 2xx′)x′ − x[(y′ − 2xx′)2 + ω(x′)2],
ω(y′′ − 2xx′′) = (y′ − 2xx′)2 + ω(x′)2,

which are in turn equivalent to

ω[y′′ − 2xx′′ − (x′)2] = (y′ − 2xx′)2,
ωx′′ = (y′ − 2xx′)x′.

(6.31)

Let us suppose first that both x′(t) and y′(t)−2x(t)x′(t) are nonzero for a particular t.
Then, equating the two expressions for ω(z(t)), we find (y ′−2xx′)x′′ = [y′′−2xx′′−(x′)2]x′

so that (y′ − xx′)x′′ = [y′′ − xx′′ − (x′)2]x′ or

[

(y − 1
2x

2)′

x′

]′
=

[

y′ − xx′

x′

]′
=
y′′ − xx′′ − (x′)2

x′
− y′ − xx′

(x′)2
x′′ = 0.

Hence locally (y − 1
2x

2)′ = ax′ for some constant a, and thus y = 1
2x

2 + ax+ b for some
constants a and b.

Now we deal with the exceptional cases. First note that the condition that the local
norm of z′(t) be one becomes x′(t)g′x(z(t))[z

′(t)] + y′(t)g′y(z(t))[z
′(t)] = 1, or

(y′ − 2xx′)2

ω2
+

2(x′)2

ω
= 1.

If y′(t)−2x(t)x′(t) = 0 for some t, then (6.31) gives x′′ = 0 and y′′−2xx′′− (x′)2 = 0 at t.
Then the norm condition above shows that (x′)2 = ω/2 and hence y′′ = (x′)2 = ω/2. But
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then y′(s)− 2x(s)x′(s) = 0 cannot hold in a neighborhood of t, since then its derivative is
zero, but at t this is y′′ − 2xx′′ − 2(x′)2 = −(x′)2 = −ω/2 < 0. (This condition is possible
at a point: it holds for x(t) = a in the parabolic solution above.)

If x′(t) = 0 for some t, then (6.31) gives x′′ = 0, the norm condition implies y′ =
y′−2xx′ = ω, and so a solution to this is x(t) = ξ constant, y(t)−ξ2 = ω(z(t)) = α exp(t)
for some constant α. This solution gives a vertical line. Since any geodesic is smooth, it
cannot switch from the parabolic solution to the straight-line solution, so the proposition
is proved.

�
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