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ABSTRACT 

  The static and dynamic coefficients of friction were determined for two apple cultivars against four 
different surfaces (masonite, rubber, paper, plastic) at surface moving velocities of 0.42 to 16.67 mm/s. 
Over this range of velocities, friction coefficients increased by 30 to 100%. Sliding velocity affected 
dynamic coefficient more than preloading velocity affected the static coefficient. Differences between the 
tested surfaces were most pronounced at the intermediate velocity of 4.17 mm/s. The effect of velocity and 
surface varied inconsistently between the two cultivars. 
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INTRODUCTION 
Optimum design of equipment and systems for producing and delivering fresh fruit requires 

information about various physical properties such as the coefficient of friction. The sliding of fruit against 
machine parts or another product during handling often reduces product quality. That frictional 
characteristics depend on many factors has already been recognised by Mohsenin (1986) and (Puchalski and 
Brusewitz, 1996a). Cooper (1962) determined the static and dynamic (kinetic) coefficients of friction of 
apples while rolling on various surfaces. The coefficient of friction for apples on various surfaces was 
reported by Vis et al., (1969). Chen and Squire (1971) said that the dynamic coefficient of friction of 
oranges increased with higher sliding velocity on metal and masonite surfaces. The higher friction 
coefficients were greater on pre-conditioned surfaces than on clean surfaces. Puchalski and Brusewitz 
(1996b) found that preloading velocity in the range of 0.33 to 8.33 mm/s significantly affected the static 
coefficient of friction, but sliding velocity did not affect the dynamic coefficient of watermelons on six 
different surfaces. Schaper and Yaeger (1992) measured the static and dynamic coefficients of friction of 
potatoes on nine types of materials. The coefficients were lowest for potatoes on polyethylene sheet and 
highest on galvanized steel. Moisture affected the static coefficients more than the surface material whereas 
surface materials affected dynamic coefficients more than moisture for beans and peanuts (Chung and 
Verma, 1989). The objective of this study was to determine the effect of preloading velocity on the static 
coefficient and sliding velocity on dynamic coefficient of friction for four different surfaces and two apple 
cultivars. 
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MATERIALS AND METHODS  
 

Two apple cultivars were selected having different size and surface characteristics (Table 1). 
‘McLemore’ skin was more yellow when fully ripe and had less dense tissue than ‘Gala’. The fruit were 
harvested from an eastern Oklahoma commercial orchard at their optimum maturity based on flesh firmness 
and color on 24 July (‘McLemore’) and 15 August (‘Gala’). The apples were handpicked, placed in produce 
paper trays (20 cells/tray) and packed into cardboard fruit boxes (60 apples/box). Care was taken to 
minimise fruit damage during transport. Apples were sorted by mass and dimension to obtain greater 
uniformity of fruit on a specific test date. The apples were placed into storage at 6oC, 95 % RH for 2 to 25 
days. Apples were removed from storage 12 h before friction measurement to allow them to reach room 
conditions (24oC and 55 % RH). ‘McLemore’ were tested starting on 29 July and ‘Gala’ starting on 18 and 
29 August and 9 September against all friction surfaces. Additionally, ‘McLemore’ was tested on 25 July 
and 4 August against only masonite. For each beginning test date, it took one-to-four days to obtain all 
friction measurements for all four surfaces. 
 

Table 1. Apple characteristics; mean (M) and standard deviation (S.D.) for N=240. 

 Measurement Mass, g Dimension, mm Moisture 

Content, % 

Firmness, 

N 

Cultivar date  Min Max    

  M S.D. M. S.D

. 

M. S.D. M. S.D. M. S.D. 

McLemore 25 July 

29 July 

4 Aug 

151.4 

155.6 

148.6 

17.3 

13.2 

13.0 

72.1 

73.1 

71.3 

2.8 

2.3 

2.6 

74.0 

74.9 

74.3 

3.2 

2.4 

2.9 

85.2 

84.8 

84.1 

1.3 

0.8 

0.8 

55 

53 

48 

13 

12 

14 

            

Gala 18 Aug 

29 Aug 

9 Sep 

160.1 

145.3 

140.0 

13.4 

9.4 

8.5 

70.7 

69.2 

66.9 

2.3 

5.7 

0.8 

72.7 

70.5 

68.9 

2.4 

2.2 

1.2 

83.3 

82.7 

82.8 

1.2 

0.9 

1.4 

67.6 

62.3 

61.3 

7.8 

13.3 

11.8 

 
Friction measurements were made using a custom made device for single samples. The basic 

principle of the friction tester (developed by Puchalski and Brusewitz, 1996a) is a stationary sample holder 
and a horizontally moving friction surface above the sample. The sample holder was connected through a 
pivoting arm to a counter weight to produce the required normal force. A rigid, flat friction surface 0.1 m 
wide and 0.6 m long was bolted to the underside of a pulling plate supported by a precision rail and linear 
bearing to minimise friction. The friction surface was pulled horizontally by the Instron’s vertically moving 
crosshead with a nonstretching 1.0-mm diameter steel cable through a pulley. The Instron’s crosshead was 
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set at a velocity that was considered the preload velocity for static coefficient and sliding velocity for the 
dynamic coefficient. The six velocities selected were; 0.42, 0.83, 1.67, 4.17, 8.33 and 16.67 mm/s. The four 
friction surfaces used were; rough side of construction-grade tempered masonite, rubber like that used for 
agricultural conveyors, paper like that found on unwaxed cardboard, and plastic boxes. All surfaces were 
cleaned by compressed air before each test to remove any contamination from previous tests. Testing was 
done at constant normal force of 17 N over a travelling distance of 40 mm. 
 Analog values of friction force and time (displacement) data from the Instron universal testing 
machine were digitised and sent by a data acquisition system to a personal computer.  Data were sampled at 
the rate of 5,10 or 20 Hz, in proportion to the sliding velocity.  During a test run, the digitised friction force 
data were used to compute the friction coefficients. 
The static and dynamic coefficients of friction were computed by the formula: 

µ = F/N            (1) 
where: µ - coefficient of friction, 

F - friction force, 
N - normal force. 

Once the test was started, force increased with time as the surface resisted movement until it started to 
move at which time the force declined slightly. This first peak force was used to calculate the static 
coefficient of friction. Thereafter, the friction force tended to level off and that was considered the dynamic 
coefficient of friction (Schaper & Yaeger ,1992). After friction measurements, flesh firmness was 
determined destructively on one cheek of each apple using an Effegi™ firmness tester with an 11.1 mm 
diameter probe. Ten replicates were run for each combination of six velocities, four surfaces and two 
cultivars. 
 

RESULTS 
The effect of surface type and cultivar 

ANOVA showed that both coefficients of friction were significantly affected by sliding velocity, 
surface type and cultivar. The main effects were all significant at the 0.05 probability level and the 
interactions were all significant for friction dynamic coefficient of ‘Gala’ (Table 2). Static and dynamic 
coefficients of friction data for ‘Gala’ and ‘McLemore’ are shown in tables 3 and 4, respectively. The static 
coefficients ranged from 0.261 to 0.475, 0.284 to 0.415, 0.207 to 0.307 and 0.462 to 0.941 for apples 
against masonite, paper, plastic and rubber, respectively. The dynamic coefficients were 0.246 to 0.497, 
0.207 to 0.452, 0.182 to 0.577 and 0.519 to 1.031 for the same surfaces, respectively. 

 
There were significant differences in the coefficients of friction between the two cultivars. ‘Gala’ 

had higher static and dynamic coefficients of friction on rubber and paper and lower on masonite than 
‘McLemore’. Among the surface materials tested plastic, with a very smooth surface, showed the lowest 
static and dynamic friction coefficients for both cultivars. Rubber, having the softest surface, had the 
highest values. Standard errors for replications were 0.015, 0.018, 0.017 and 0.038 for static and dynamic 
coefficients of friction against masonite, paper, plastic and rubber respectively. 
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Table 2. Analysis of variance probabilities for significant F values of static and dynamic 

coefficient of friction  

Coefficient  Independent variable Cultivar 

Of friction  Gala McLemore 

  F P F P 

 

 

 

Static 

 

 

 

Velocity, Sp 

Surface, S 

Measurement date, MD 

SpxS 

SpxMD 

SxMD 

SpxSxMD 

108.63 

1526.23 

18.48 

29.12 

0.94 

11.91 

2.045 

<0.001 

<0.001 

<0.001 

<0.001 

0.499 

<0.001 

0.001 

32.06 

517.44 

7.54 

1.49 

1.50 

<0.001 

<0.001 

0.001 

0.109 

0.143 

 

 

 

Dynamic 

Velocity, Sp 

Surface, S 

Measurement date, MD 

SpxS 

SpxMD 

SxMD 

SpxSxMD 

323.70 

2888.40 

118.58 

36.92 

6.84 

8.71 

2.33 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

41.21 

718.40 

12.92 

7.39 

0.46 

 

<0.001 

<0.001 

<0.001 

<0.001 

0.918 

The effect of velocity 
 The analysis of variance showed a significant effect of preload velocity on the static and sliding 
velocity on dynamic coefficient of friction (table 2). Generally, the static and dynamic coefficients of 
friction for both cultivars decreased as the velocity increased from 0.42 to 1.67 mm/s and then significantly 
increased (fig.1 and 2). The lowest static coefficients for ‘Gala’ occurred at 0.83 and 1.67 mm/s against 
masonite, paper and plastic respectively (table 3). ‘McLemore’ also had the lowest static coefficients of 
friction at 0.83 and 1.67 mm/s but for different friction surfaces i.e., for plastic, rubber, masonite, and paper 
(table 4). The lowest dynamic coefficient occurred at 0.42 mm/s for ‘Gala’ and 0.83 mm/s for ‘McLemore’ 
against all friction surfaces, except for paper. For both cultivars, sliding velocity affected the dynamic 
coefficient more than the preloading velocity affected the static coefficient of friction on rubber and plastic. 
This effect was more pronounced for ‘Gala’ than for ‘McLemore’. The average increases in dynamic 
coefficient of friction on rubber and plastic over the range of 0.42 to 16.67 mm/s were 88 and 67 % of its 
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lowest value for ‘Gala’ and ‘McLemore’, respectively. The largest changes in static coefficient of friction 
for Gala occurred at 4.17 mm/s preloading velocity on masonite as an effect of test date (table 3). The 
highest changes in dynamic coefficient of friction were sliding velocities over 4.17 mm/s on masonite and 
plastic. Coefficients of variation ranged from 18.5 to 23.4 %.  
 
Table 3. Static and dynamic coefficient of friction as affected by velocity (as a preloading for 

static and sliding for dynamic) and friction surface for ’Gala’ (data N=30 were averaged over 

three test dates) 

 
Friction  Friction surface * 

Coefficient  

velocity 

Masonite Paper Plastic 

 (mm/s)* 18 Aug. - 9 Sep. 20 Aug. - 11 Sep. 21 Aug. - 12 Sep. 19 A

  Min Max C.V., % Min Max C.V., % Min Max C.V., % Min 

 

 

 

Static 

0.42 

0.83 

1.67 

4.17 

8.33 

16.67 

0.294 

0.264 

0.261 

0.289 

0.309 

0.375 

0.340 

0.330 

0.344 

0.406 

0.412 

0.475 

7.5 

11.8 

14.9 

17.0 

14.8 

12.2 

0.307 

0.309 

0.309 

0.294 

0.310 

0.376 

0.365 

0.338 

0.353 

0.364 

0.382 

0.415 

10.1 

5.0 

6.8 

11.8 

11.5 

5.7 

0.225 

0.213 

0.207 

0.217 

0.244 

0.267 

0.232 

0.242 

0.250 

0.234 

0.282 

0.307 

2.2 

6.6 

10.8 

3.5 

7.2 

7.0 

0.462 

0.536 

0.559 

0.644 

0.865 

0.832 

            

 

 

Dynamic 

0.42 

0.83 

1.67 

4.17 

8.33 

16.67 

0.256 

0.246 

0.280 

0.307 

0.335 

0.323 

0.302 

0.312 

0.377 

0.469 

0.497 

0.465 

8.5 

12.8 

15.3 

20.9 

19.3 

18.5 

0.253 

0.258 

0.296 

0.301 

0.320 

0.297 

0.266 

0.320 

0.383 

0.378 

0.452 

0.395 

2.7 

10.6 

12.9 

11.4 

20.9 

18.9 

0.182 

0.193 

0.210 

0.257 

0.285 

0.360 

0.192 

0.225 

0.270 

0.393 

0.432 

0.577 

2.7 

7.6 

12.4 

20.9 

21.6 

23.4 

0.519 

0.656 

0.744 

0.846 

0.956 

0.985 

 
* Significant at 5 % level 
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Fig. 1. Effect of velocity (preloading for static and sliding for dynamic) on static and dynamic 

coefficients of friction on masonite and rubber surfaces for two measurements dates for ‘Gala’ 

and ‘McLemore’ apples. 
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Fig. 2. Effect of velocity (preloading for static and sliding for dynamic) on static and dynamic 

coefficients of friction on paper and plastic surfaces for ‘Gala’ and ‘McLemore’ apples. 
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Table 4. Static and dynamic coefficient of friction as affected by velocity (as a preloading for 

static and sliding for dynamic)  and friction surface for ‘McLemore’ on test date starting 29 July 

(N=10) 

Friction  Friction surface * 

coefficient Velocity Masonite Paper Plastic Rubber 

 (mm/s) Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Static 0.42 

0.83 

1.67 

4.17 

8.33 

16.7 

0.409 

0.394 

0.350 

0.375 

0.372 

0.452 

0.031 

0.032 

0.027 

0.036 

0.041 

0.045 

0.358 

0.325 

0.284 

0.301 

0.316 

0.371 

0.039 

0.032 

0.023 

0.038 

0.029 

0.041 

0.260 

0.237 

0.248 

0.262 

0.269 

0.298 

0.038 

0.028 

0.036 

0.036 

0.016 

0.036 

0.647 

0.595 

0.618 

0.666 

0.621 

0.749 

0.051 

0.076 

0.119 

0.101 

0.058 

0.117 

          

Dynamic 0.042 

0.83 

1.67 

4.17 

8.33 

16.67 

0.354 

0.329 

0.341 

0.365 

0.430 

0.468 

0.019 

0.031 

0.029 

0.035 

0.047 

0.053 

0.260 

0.225 

0.220 

0.207 

0.271 

0.268 

0.052 

0.025 

0.031 

0.022 

0.058 

0.053 

0.214 

0.220 

0.235 

0.267 

0.297 

0.353 

0.023 

0.019 

0.035 

0.042 

0.052 

0.055 

0.659 

0.550 

0.575 

0.781 

0.839 

0.933 

0.066 

0.109 

0.114 

0.114 

0.092 

0.059 
* Significant at 5 % level 

 
 
Relationship between the friction coefficient and velocity 
 The effect on the friction coefficient of velocity for the two apple cultivars against various friction 
surfaces are shown in figures 1 and 2. A regression analysis was performed to find the best fitting 
equations. Determination coefficients, R2 from regression analyses for ‘Gala’ are given in table 5. Similar 
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results were found for ‘McLemore’ (data not presented). In general, for all measured dates correlation 
coefficients were lowest for static and dynamic coefficients on paper and highest for static friction on 
masonite and rubber and for dynamic friction on plastic and rubber surfaces.  

 
 

 

Table 5. Determination coefficients R2 of regression analyses of friction coefficient vs. velocity 

(preloading for static and sliding for dynamic) against various friction surfaces on different 

measurement dates for Gala 

Friction Friction Measurement date 

Coefficient surface 18 Aug. 29 Aug. 9 Sep. 

  Linear Polyn. Power Linear Polyn. Power  Linear Polyn. Power 

 

Static 

Masonite 

Paper 

Plastic 

Rubber 

0.88 

0.69 

0.87 

0.78 

0.91 

0.95 

0.87 

0.97 

0.53 

0.32 

0.53 

0.98 

0.99 

0.88 

0.88 

0.73 

0.99 

0.88 

0.89 

0.99 

0.78 

0.62 

0.80 

0.92 

0.85 

0.68 

0.76 

0.76 

0.94 

0.95 

0.77 

0.93 

0.92 

0.86 

0.45 

0.81 

           

 

Dynamic 

Masonite 

Paper 

Plastic 

Rubber 

0.61 

0.31 

0.97 

0.63 

0.96 

0.85 

0.99 

0.89 

0.87 

0.71 

0.94 

0.92 

0.73 

0.42 

0.95 

0.89 

0.96 

0.50 

0.98 

0.95 

0.95 

0.66 

0.99 

0.99 

0.51 

0.46 

0.87 

0.78 

0.95 

0.95 

0.96 

0.99 

0.87 

0.84 

0.97 

0.98 

 

 
 
 
Polynomial equations produced the highest correlations between coefficient of friction and velocity 

for all tested friction surfaces. However, linear and power equations provided an excellent fit against plastic 
(R2 =0.76 to 0.97) and rubber surfaces (R2 = 0.81 to 0.98). Since the polynomial equation was the single 
best equation, it was selected as the single equation to compare regression coefficients among friction 
surfaces (tables 6 and 7). Rubber had the highest regression coefficients for the static and dynamic 
coefficients of friction while plastic had the lowest coefficient. Regression coefficients for “c” appear to be 
a good parameter to assess a friction material’s relationship between velocity and friction coefficient. 
Rubber having the highest  “c” value is a material having high risk of damage, while plastic with smallest 
“c” value has less risk of damage to fruit. 
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Table 6. Regression coefficients of polynomial equation (y = a x2 + b x + C) between friction 

coefficient and velocity (preloading for static and sliding for dynamic) against friction surfaces for 

‘Gala’ (on 18 Aug. test date) 

Friction Friction Regression coefficient  R2 

Surface coefficient a b C  

Masonite Static 

Dynamic 

-0.0003 

-0.0008 

0.002 

0.018 

0.27 

0.24 

0.91 

0.96 

      

Paper Static 

Dynamic 

0.0005 

-0.0007 

-0.005 

0.014 

0.31 

0.25 

0.95 

0.85 

      

Plastic Static 

Dynamic 

-0.0000005 

-0.0003 

0.0024 

0.015 

0.21 

0.19 

0.87 

0.99 

      

Rubber Static 

 

Dynamic 

-0.0030 

 

-0.0034 

-0.077 

 

0.080 

0.48 

 

0.57 

0.97 

 

0.89 
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Table 7. Regression coefficients of polynomial equation (y = a x2 + b x + C) between friction 

coefficient and velocity (preloading for static and sliding for dynamic) against friction surfaces for 

‘McLemore’ (on 29 July test date) 

Friction Friction Regression coefficient R2 

Surface coefficient a b C  

Masonite Static 

Dynamic 

0.0008 

-0.0003 

-0.010 

0.013 

0.40 

0.33 

0.78 

0.94 

      

Paper Static 

Dynamic 

0.0007 

-0.0001 

-0.009 

0.006 

0.33 

0.23 

0.60 

0.52 

      

Plastic Static 

Dynamic 

-0.00005 

-0.0003 

0.0025 

0.013 

0.25 

0.21 

0.85 

        0.99 

 

      

Rubber Static 

Dynamic 

0.0007 

-0.0013 

-0.006 

0.043 

0.63 

0.56 

0.82 

0.90 

 
Discussion 

These results at low velocity agree with the behaviour of dry engineering materials as noted by 
Mohsenin (1986) who observed that the friction force decreases as the velocity increases. The increase in 
dynamic coefficient of friction for apples at higher sliding velocities may be caused by a temperature rise at 
higher sliding velocitys as noted by Chen and Squire (1971) for oranges. Puchalski and Brusewitz (1996b) 
found the opposite relationship however, between the coefficient of friction and preloading velocity for 
watermelon.  

These increases in static coefficient of friction for ‘McLemore’ were different from ‘Gala’ possibly 
because of differences in internal structure and surface wax properties which derive from differences in 
ripening of the fruit (Corey et al., 1988). The effect of sliding velocity on dynamic coefficient of friction of 
both cultivars was more evident for surfaces of rubber and plastic that may cause higher temperatures.  
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Table 8. Summary - effect of velocity (preloading for static and sliding for dynamic) on friction 

coefficient for different friction surfaces  m, p, l, r (masonite, paper, plastic, rubber) and cultivars 

G, M. (‘Gala’, ‘McLemore’). x  =  highest significant changes 

Characteristic Cult.  Velocity  mm/s 

of friction  0.42 0.83 1.67 4.17 8.33 16.67 

Coefficient  m p l r m p l r m p l r m p l r m p l r m p l R 

Lowest value  

of static 

G 

M 

    x x  

x 

x 

x 

 

x 

 

x 

x              

Lowest value  

of dynamic 

G 

M 

x x x x  

x 

 

x 

 

x 

 

x 

                

Start in signif.  

increase of static 

G 

M 

            x x  

x 

x 

x 

  

x 

x   

x 

   

Start in signif. 

increase of dynamic 

G 

M 

     x   x  x x  

x 

  

x 

 

x 

   

x 

     

Largest changes 

between cultivars 

for static 

  

X 

 

x 

 

x 

  

x 

        

x 

  

x 

     

x 

 

x 

   

Largest changes 

between cultivars  

of dynamic 

               

x 

      

x 

 

x 

   

Largest changes 

with storage of static 

G 

M 

   x       x x 

x 

x    x    x   X 

Largest changes 

with storage for 

dynamic 

G 

M 

           x  x   x x   x x x x 

 
A summary of the effect of velocity (preloading and sliding) on friction coefficient as affected by 
friction surfaces is presented in table 8. To obtain characteristics of the friction coefficient one 
needs to know the velocity and type of friction surface. The results of this study could be used for 
protecting products against damage or as an indicator of changes between cultivars during 
storage. Sliding velocity of 4.17 mm/s was the threshold where friction coefficient started to 
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increase significantly depending on friction surface and cultivar. Among the velocities tested, the 
higher ones (8.33 and 16.67 mm/s) produced the largest differences in static and dynamic 
coefficients of friction between cultivars against rubber and masonite, respectively. Largest 
changes in coefficient of friction appeared at 8.33 and 167 mm/s velocities against masonite 
surface. 

CONCLUSIONS 
Velocity is a friction parameter that can damage fruit as a result of sliding of one body against other. 

This study found that the static and dynamic coefficients of friction increased 30 to 100% with increases in 
velocity (either preloading and sliding) from 0.42 to 16.62 mm/s. The effect of sliding velocity for both 
cultivars was more evident on the dynamic coefficient than the effect of preloading velocity on static 
friction for rubber and plastic. Among velocities, 4.17 mm/s had the largest difference between tested 
surfaces and cultivars. A second-degree polynomial was the best model to describe the relationship between 
friction coefficients and velocity. 
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