
1

A Characterization Study of NCSTRL Distributed
Searching
Naomi Dushay
Dept. of Computer Science
Cornell University
Ithaca, NY 14853-7501
naomi@cs.cornell.edu

James C. French
Dept. of Computer Science
University of Virginia
Charlottesville, VA 22903
french@cs.virginia.edu

Carl Lagoze
Dept. of Computer Science
Cornell University
Ithaca, NY 14853-7501
lagoze@cs.cornell.edu

Abstract

NCSTRL, the Networked Computer Science Technical Reference Library, is a federated digital library
based on the Dienst architecture. One aspect of this architecture is distributed searching, with digital
library queries being dispatched from query routers to globally distributed indexers that process them and
return results. We studied user data for a two-month period at five query routers in order to characterize
some key performance aspects of distributed searching in an operational digital library. This study
uncovered the following characteristics. Query processing at NCSTRL servers involves significant time
waiting for responses from indexers. Each indexer’s availability and response times appear unique to each
query router. Different indexers’ availability and response times are not similar from the viewpoint of a
single query router. Query router waiting time for indexers is larger than indexer processing time, implying
that communication time over the network is significant. We close by examining the breakdown of
NCSTRL queries: the number of fielded vs. non-fielded queries, and the complexity of these queries.

1 Introduction

Currently, most resource discovery on the World Wide Web employs an architecture where queries are
processed at a single indexing site, which may be replicated for localized network access. Well known
examples of this architecture are the commercial Web search engines such as Yahoo!1 and Infoseek2. While
the utility of this architecture has been proven, it is limited by a number of key factors including scalability,
lack of domain specificity, and intellectual property restrictions [7]. Consequently, future digital library
systems will require mechanisms for effectively distributing queries across multiple search engines.

The Cornell Digital Library Research Group3 is investigating and designing federated digital library
architecture that employs such distributed searching. This architecture has three logical components related
to distributed searching:

1) Indexers are servers that index metadata for digital library documents and process queries on that
metadata, returning the URNs of documents that match the queries.

2) User Interfaces are servers that permit user entry of queries, dispatch them to query routers, and then
format and display the results returned by the query routers.

3) Query routers are servers that dispatch queries (entered at user interfaces) to distributed indexers and
combine the results received from those indexers.

These components and a few others form the foundation of the globally distributed Networked Computer
Science Technical Reference Library (NCSTRL)4, which provides the testbed for this paper.

1 http://www.yahoo.com
2 http://www.infoseek.com
3 http://www.cs.cornell.edu/NCSTRL/CDLRG/cdlrg.htm

2

There are many dimensions to the distributed searching problem. Some of these have been extensively
examined by the distributed database community, in particular the optimal distribution of indexing
information across LANs and controlled WANs [3]. Areas that have received attention within the digital
library community include query translation [2], content summarization for query routing [6], and protocols
for meta-searching and metadata collection [1, 5].

Our research focuses on the issues related to routing queries based on performance and reliability both of
network connections and indexers. The purpose of this study is to further our understanding of operational
issues affecting distributed searching, so that more sophisticated searching methods can be developed and
used if warranted.

This paper is organized as follows. The first two sections provide background for the remainder of the
paper: in section 2, we describe the mechanisms for distributed searching in NCSTRL, and in section 3 we
describe our data collection methodology. The next four sections are the heart of the paper, presenting
distributed search data. Section 4 analyzes the contribution of indexer response time to total query router
response time, section 5 analyzes the performance and reliability of index servers from the perspective of
query routers, section 6 analyzes indexer performance independent of network latencies, and section 7
analyzes query complexity. We close with some concluding remarks in section 8.

2 Overview of Distributed Searching in NCSTRL

The Networked Computer Science Technical Reference Library (NCSTRL - pronounced “ancestral”) is an
operational digital library employing a distributed search architecture. The NCSTRL collection is globally
distributed and made available through the Dienst [10]federated digital library architecture [12]. Dienst is
an open architecture and protocol [4] for distributed digital libraries that was developed as part of the
DARPA-funded Computer Science Technical Reports Project5. These characteristics – global distribution,
open interface, and production availability – make NCSTRL an ideal testbed for distributed digital library
research (indeed, NCSTRL is one of the collections in the DARPA-funded Distributed Integration
Testbed6).

The Dienst architecture specifies the operational characteristics of semi-autonomous core digital library
services. Repositories store and provide access to digital documents, the structure of which is described by
the Dienst document model. Indexers process queries against the descriptive metadata for these documents.
Collection services provide the mechanisms for federating these and other services into digital libraries.
User interface gateways provide human access to these federated services. The Dienst architecture also
describes an open, extensible protocol for communicating among and with these digital library services.

The NCSTRL collection consists of institutions, or publishing organizations, each of which (at a minimum)
provides a repository of digital documents and descriptive metadata [11] for those documents. These
institutions are a combination of Ph.D. granting computer science departments, ePrint repositories,
electronic journals, and research institutions. The descriptive metadata for the documents in each
repository is indexed at one or more indexers. As shown in Figure 1, indexers in NCSTRL are overlapped,
rather than replicated or disjoint; that is, any two indexers may process metadata from both the same and
different repositories. At the time of publication of this paper (December 1998), there were over 100
NCSTRL repositories and approximately 50 NCSTRL indexers worldwide.

4 http://www.ncstrl.org
5 http://www.cnri.reston.va.us/cstr.html
6 http://www.cnri.reston.va.us/integration-testbed.html

3

Repository A Repository B Repository C

Indexer 1:
RA

Indexer 2:
RA, RB, RC

Indexer 3:
RB, RC

Figure 1 - NCSTRL indexing topology

While not formally defined in Dienst as a separate digital library service, in this paper we use the notion of
a query router (QR), as described in [8]. The QR is effectively an intermediary between user interfaces
(UI) and indexers. In operation, the UI passes user entered queries to the QR, from which it subsequently
receives search results. The QR chooses indexers to process the query, sends the search to the indexers,
merges the search results, and returns the results to the UI. The UI then formats the results and delivers
them back to the user.

The QR determines how to route queries by using data that it derives from its periodic (every 30 minute)
communication with the collection service. This collection service data specifies the distribution of
indexing information (per institution) among the indexers -- for example, Stanford’ s documents may be
indexed at I1 and I2, and Cornell’ s at I2 and I3. This interaction and the resulting routing of queries to
specific indexers are illustrated in Figure 2.

Query Routers

Index
Servers

Collection
Server

Figure 2 - Query routing based on collection service data

As is well known, global connectivity between Internet nodes varies dramatically. In order to improve
search response times to users in a globally distributed digital library, NCSTRL indexers have been
grouped into connectivity regions [9]. A connectivity region is defined as a set of nodes on the network
that among them have low latencies and a resistance to failure relative to nodes outside of the region.
Connectivity regions are implemented as part of the Dienst collection service. The collection service is
distributed among a set of regional meta servers (RMS) – one per connectivity region – and a master meta

4

server (MMS) from which each RMS derives its region-specific information. Every query router is
associated with one connectivity region and thereby derives its collection view from the RMS for its
respective region. The result is that, unless a failure occurs, each QR restricts its interactions to Dienst
indexers within the same connectivity region. This regional configuration is illustrated in Figure 3.

Connectivity
Region A

MMS

(Master Meta Server)

Connectivity
Region B

Dienst QR

Dienst QR

Dienst QR

RMS

Dienst QR

Dienst QR

Dienst QR

RMS

mapping B from
 repositories to indexers

mapping A from
 repositories to indexers

Figure 3 - Connectivity regions

Even with a controlled set of indexers limited to a QR’ s connectivity region, indexers sometimes fail to
respond to the QR within a time deemed acceptable by users. Replication of NCSTRL metadata at multiple
Dienst indexers allows for fault tolerance. Data from the collection server specifies an ordering of
replicated indexing servers; one is designated as primary, another as secondary, and so on. If one indexer –
the primary indexer – doesn’ t respond to a search by a timeout value (determined by a server configuration
value), another indexer – the secondary (or tertiary, etc.) indexer – can be contacted so complete search
results are delivered to the user.

Our experience with NCSTRL has shown that poor performance or failure of an individual indexer can
persist over time, for example, a network or server failure usually is not repaired immediately. Rather than
continuing to attempt contact with a failing indexer on successive searches, it is preferable that the QR
“remember” the failure of the respective indexer and temporarily change the ordering of the indexers for a
repository as given by the NCSTRL MMS.

To implement such behavior, Dienst QRs use a simple reliability algorithm. Each time an indexer fails a
connection attempt from a QR or fails to respond before the search timeout, the respective QR increments a
failure counter for that indexer; the failure counter is subsequently cleared when a query is successfully
completed. This failure counter is then used as follows. When a QR chooses indexers from the mappings
provided by the collection service, it applies a reliability test: has this indexer failed to respond to a search
request before the timeout for x consecutive times? (where x is a configuration variable). If an indexer on
the list fails this reliability test, the indexer is then demoted; i.e. a primary indexer becomes secondary and
the secondary indexer is promoted to primary. After z seconds have passed, where z is another
configuration variable, the indexer is promoted back to its normal position in the hierarchy.

The actual mechanics of a QR handling a search request is then as follows. When the QR receives a query
from a UI, it selects indexers to contact by stepping through the ordered lists of indexers for each
publishing institution in the query, looking for the first indexer on the list that isn't demoted and that doesn't
fail the reliability test. Once the QR has an indexer for every publishing institution specified in the search
query, the search is then sent out to the selected indexers – this is called phase one of the search. The QR
tracks whether or not each indexer responds within the phase one search timeout, and accumulates search
results. If one or more indexers fail to reply, there is another phase of searching, phase two, in which the

5

QR tries to use another indexer (chosen by continuing down the ordered list of indexers for the affected
publishing institutions). Phase two searching, if it is necessary, ends when the indexers selected for phase
two have all responded or when the phase two search timeout (another Dienst configuration variable) is
reached, whichever comes first. The search results are then dispatched to the Dienst UI, which formats the
results and delivers them to the user.

This multi-phase searching algorithm is illustrated by the example in Figure 4. In the example, the QR has
received a query from the UI that specifies publishing institutions a, b, c and d. Based on the mapping
from publishing institutions to indexers that the QR received from the collection service, and based on the
accumulated failure counters the QR maintains for indexers, the QR chooses three indexers for phase one.
Search results for publisher a are routed to indexer 1, those for publishers b and d are routed to indexer 2,
and those for publisher c are routed to indexer 3. By the phase one search timeout, indexers 2 and 3 have
responded, but indexer 1 has not. The QR updates its failure counter for indexer 1 and then initiates a
phase two indexer for publisher a. Again using data supplied by the collection service, which indicates that
indexer 4 should be used as publisher a’ s secondary indexer, the query is now sent to indexer 4. The QR
receives a response from indexer 4 before the phase two search timeout, so the QR now has results for all
publishing institutions specified in the query, even though indexer 1 failed to respond before the phase one
search timeout. (Even though the notion of tertiary, etc. indexers is included in the architecture, it is not
implemented. Thus, if the secondary indexer had failed, the user would have received a notification of an
incomplete result set.) Results from indexers 2, 3 and 4 are merged together by the QR and finally are sent
to the UI.

QR

Indexer 1
 (pub a)

query for
publishers a, b, c, d

Indexer 2
 (pub b, d)

Indexer 3
 (pub c)

phase one
search timeout

phase two
search timeout

QR
has complete
search results

X

Indexer 4
 (pub a)

Figure 4 - Phase one and phase two searching

For the purpose of this paper, the QR’ s tasks can be split into two categories. The first of these can be
called QR processing time, which includes 1) choosing indexers to be contacted, 2) sending search requests
to indexers, 3) merging results from the indexers, as well as 4) communicating with the UI. The second of
these is the time the QR spends waiting for indexers to respond. A key part of this study is to examine
whether the time a QR spends waiting for indexers to respond is a significant part of the total time
NCSTRL spends at QRs.

3 What data did we examine?

In this study, we are particularly concerned with NCSTRL operational data that illuminates certain key
factors pertaining to distributed searching performance. The questions we investigate are:

6

1) Whether the time the QR waits for indexer responses is a significant part of the total time the QR
spends processing a query.

2) If an indexer’ s view of its own availability and response time is significantly different from a QR’ s
view of the same indexer availability and response time.

3) If the data a QR gathers about indexer performance should be shared among other QRs.

We also examine the ancillary topic of NCSTRL query complexity to inform research we are planning for
the future.

While NCSTRL has been and still is a unique testbed for researching issues such as these, it is also a
production system. Its features have evolved over time in the form of new versions, but individual sites
have not fully coordinated their evolution to these new versions and the level administration of servers at
individual sites varies. In addition, we discovered through our research some shortcomings in the logs
generated Dienst servers, which are worth noting for future researchers in this area. For example, while we
know that NCSTRL has connectivity regions, we cannot be sure that a given QR was in a particular
connectivity region during the period of our study, nor can we be certain that the QR was not moved from
one connectivity region to another. Moreover, we cannot detect when a QR passed over an indexer because
it was demoted or because it did not pass the reliability test; we can only examine data for actual attempts
to contact indexers.

3.1 What relevant information is in the Dienst logs?

Recall that an individual Dienst server is usually comprised of a UI (which includes QR functionality), an
indexer, and a repository. All of these Dienst services produce Dienst log messages. Dienst logs can
contain four types of messages relevant to searching, as shown in Figure 5.

7 Apr 97 15:11:36 GMT TRANSACTION:: 128.84.218.120 GET
/Dienst/UI/2.0/Query/?boolean=and&author=lagoze&title=&abstract=&all=all&name=.

7 Apr 97 15:20:16 GMT TRANSACTION:: 128.84.218.120 GET
/Dienst/UI/2.0/QueryNF?keywords=lagoze.

7 Apr 97 15:11:57 GMT TRANSACTION:: 128.84.254.169 GET
/Dienst/Index/2.0/SearchBooleanCallback?host=martin.cs.cornell.edu&port=2000&co
okie=891961902&timeout=20&boolean=or&title=lagoze&author=lagoze&abstract=lagoze
&authority=ncstrl.naomipub1&authority=ncstrl.naomipub2.

7 Apr 97 15:11:57 GMT STATISTICS:: Search Collection: 1 hits in 0 seconds.

7 Apr 97 15:12:00 GMT STATISTICS::
boolean=or&title=lagoze&author=lagoze&abstract=lagoze cs-tr.cs.cornell.edu 80 6
8 ncstrl.cc.vt.edu 8080 0 6 elib.stanford.edu 80 0 7 ncstrl.cc.vt.edu 8090 0
7 www.cs.ucla.edu 8001 0 9 ncstrl.mit.edu 80 0 10 lite.ncstrl.org 3803 0 8
cs.gmu.edu 8080 0 5 .

D

C

B

A

Figure 5 - Dienst log messages

The meaning of these messages is as follows:

A. The log entries for fielded and non-fielded queries entered by a user through the UI at this Dienst
server.

B. The log entry for an indexer request received at this server from a Dienst QR.

C. The log entry recorded when the Dienst indexer finishes processing a search query. These
messages are not present in Dienst logs for versions of the Dienst software older than v4-1-0.

7

D. The search statistics log entry recorded when a QR has finished processing a query. It lists the
search criteria followed by the list of indexers called and their response data (or lack thereof) for
this query.

The Dienst logs only indicate elapsed time in seconds; this is something Dienst inherits both from Perl (the
language in which Dienst servers are implemented) and from the design decision to allow easy porting of
Dienst to different varieties of Unix. Note also that for all the elapsed time data in this paper, the whole
numbers are floor values -- a response time of 5 means that the indexer responded in 5 or more, but less
than 6, seconds. Thorough descriptions of how the log data was processed are in Appendices A, B, C and
D.

3.2 What Dienst logs did we examine?

Our data is from the logs of five NCSTRL Dienst servers and spans the period from March 1, 1997 through
April 30, 1997. The five sites were:

1. http://www.ncstrl.org -- the home page of NCSTRL, located at Cornell University. This is the only
Dienst server in our list that does not have all four layers -- it has a UI and a QR, but not an indexer or
a repository layer. We refer to this Dienst server as NCSTRL in the remainder of this paper.

2. http://cs-tr.cs.cornell.edu -- the Cornell University Department of Computer Science Dienst server.
We refer to this Dienst server as CS-TR in the remainder of this paper.

3. http://lite.ncstrl.org:3803 -- the Dienst server at the University of Virginia. It is also the primary
indexer for all NCSTRL participants that only provide a Dienst repository (and no indexer – “lite” sites
in NCSTRL parlance). In March and April of 1997, this server was running Dienst-4-0-b0, which put
all the log data in one big file, rather than in daily files. The relevant large log file was split apart into
daily logs by Perl script that examined timestamps of log messages.

• The log for March 1, 1997 seems incomplete.

• The log for April 26, 1997 seems incomplete.

• The logs for April 27-30, 1997 are empty.

We refer to this Dienst server as LITE in the remainder of this paper.

4. http://sunsite.berkeley.edu -- the University of California at Berkeley Dienst server. We refer to this
server as BERKELEY in the remainder of this paper.

5. http://www.ics.forth.gr/TR -- the Institute of Computer Science, Foundation for Research and
Technology - Hellas (ICS-FORTH) Dienst server.

• The log for April 4, 1997 was not used, as it was corrupted.

• The log for April 12, 1997 seems incomplete.

• There was no log for April 13, 1997.

We refer to this Dienst server as FORTH in the remainder of this paper.

We reiterate that data in our study reflects non-demoted indexers only: we examined indexer performance
from the QR view only when an actual attempt was made to contact the indexer. We also reiterate that our
data reflects connectivity regions that existed at the time of the log entries. In theory, the QRs only
attempted to contact NCSTRL indexers that had low latencies and a high resistance to failure, relative to
other connectivity regions.

8

4 QR view: how significant is the wait time for indexers?

After the Dienst QR receives a query from the UI, it determines which indexers to contact for search
results, sends a search request to those indexers, waits for results, and then merges results and delivers them
to the UI. In this section, we examine the significance of wait time for indexers from the QR point of view
by comparing how long the QR waited for indexers with the total QR processing time.

Sections 4.1, 4.2, and 4.3 pertain to 32,352 queries answered by the five QRs in our study between March
1, 1997 and April 30, 1997. See Appendix A for a full explanation of how the logs were analyzed to obtain
this data.

4.1 QR wait time for indexers

First we examine how long the five QRs in our study wait for search results from indexers. This
information is culled from the search statistics messages in the logs (see “D” in Figure 5), which allows us
to determine the minimum number of seconds the QR waited for indexers to respond. Recall that for all the
data below, as with all the elapsed times reported in this paper, the whole numbers are floor values -- a
response time of 8 means the QR waited less than 9 seconds, but 8 or more seconds for indexers to respond.
For further details on how the logs were analyzed, see Appendix A.

In Table 1, the missing values in the column headed “low”, (the smallest amount of time the QR waited for
responses from indexers, according to our data) are from search statistics log messages that only have
“Server Timed Out” messages for indexer response times.

Table 1 - Minimum number of seconds QR waits for indexer responses

QR no. obs high low mean median mode std dev
cs-tr 14977 25 8.4 8 6 4.1
ncstrl 10800 99 10.8 10 9 4.5
berkeley 5788 98 11.5 11 12 6.1
lite 637 20 2 9.2 9 3 4.9
forth 150 40 2 13.8 11 3 10.3
all QRs 32352 99 9.8 9 9 4.9

Table 1 indicates that the mean wait time for indexers for all QRs in our study is 9.8 seconds. However,
there is a wide range of known minimum wait times, from 2 seconds to 99 seconds, and we can see from
the frequency distribution (Table 2) and the standard deviations that the data is not tightly grouped near the
mean. In fact, the standard deviation for all QRs is 4.9 seconds, exactly half of the mean wait time of all
QRs. Note also that the mean wait time for CS-TR is only 8.4 seconds, while the mean for the FORTH
QR wait time is 13.8 seconds. Thus different QRs vary considerably in their response times.

Nevertheless, 29,904 out of 32,352 observations for all QRs, or 92%, have a minimum wait time for
indexers of less than 16 seconds.

9

Table 2 - Number of observations for Table 1

secs cs-tr ncstrl berkeley lite forth all QRs
0 3 16 222 0 0 241

1-5 4169 599 332 192 38 5330
6-10 6394 5105 1976 200 36 13711

11-15 3874 4082 2483 160 23 10622
16-20 310 616 454 85 15 1480
21-25 227 261 198 15 701
26-30 96 79 8 183
31-35 11 20 9 40
36-40 6 6 6 18
41-45 5 1 6
46-50 0 6 6
51-55 0 2 2
56-60 0 2 2
61-65 1 0 1
66-70 0 0 0
71-75 1 1 2
76-80 0 1 1
81-85 0 0 0
86-90 0 0 0
91-95 0 3 3

96-100 1 2 3

4.2 Total time QR takes to process query

Recall that QR processing includes determining which indexers to contact for search results, sending search
requests to those indexers, waiting for results, merging results and delivering them to the UI. We now
examine the total number of seconds the QR spends processing a query, including the wait for indexer
responses. Appendix A explains how we infer this information from the logs.

Table 3 shows that the mean time spent processing queries for all QRs was 22.3 seconds. As with the QR
wait times for indexer responses (Section 4.1), there was a wide range of values, from a maximum of 126
seconds to a minimum of 1 second, and the data is not tightly grouped.

Table 3 - QR total time (in seconds)

QR no. obs high low mean median mode std dev
cs-tr 14977 112 1 17.3 15 20 11.4
ncstrl 10800 126 2 24.9 22 19 13.8
berkeley 5788 123 6 30.0 28 26 14.0
lite 637 96 2 21.2 19 3 14.5
forth 150 98 2 44.1 53.5 66 25.7
all QRs 32352 126 1 22.3 20 20 13.9

Since we were unable to distinguish between one and two phase searches in the logs in most cases (see
Appendix A), our data contains both types of searches. Recall that a Dienst QR sends a query to a set of
indexers, and if all of those indexers did not respond before the phase one timeout value, then the QR
chooses another set of indexers for a second phase of searching. The QR then waits until it has results from
all phase two indexers or until the phase two timeout, whichever comes first. The amount of extra time a
second phase adds to the QR total time is dependent on three things:

1) The phase one timeout.

10

2) How long it takes the QR to choose phase two indexers.

3) How phase two ends: how long it takes for all phase two indexers to respond and/or the phase two
timeout.

None of this information can be derived from the Dienst logs, so it is unknown for this study.
Nevertheless, while it is possible for the maintainer of a Dienst QR to change phase one and phase two
timeout values, it is likely that these stayed constant for the duration of our study. It is also probable that
the time the QR spent choosing phase two indexers remained fairly constant for our study. It is therefore
reasonable to expect a bimodal distribution of total times for an individual QR, with the first peak
representing one phase searches and the second peak representing two phase searches.

Table 4 - Number of observations for Table 3

secs cs-tr ncstrl berkeley lite forth all QRs
0 0 0 0 0 0 0

1-5 1881 349 0 116 25 2371
6-10 3294 761 247 64 14 4380

11-15 2396 1628 483 77 1 4585
16-20 2231 2066 875 88 2 5262
21-25 2618 1909 723 52 1 5303
26-30 771 1297 1211 77 1 3357
31-35 338 777 625 61 2 1803
36-40 235 423 355 34 0 1047
41-45 1128 441 258 21 4 1852
46-50 34 553 548 35 14 1184
51-55 15 298 253 3 21 590
56-60 9 132 95 1 10 247
61-65 9 54 30 5 8 106
66-70 6 44 26 1 45 122
71-75 5 17 20 1 0 43
76-80 3 18 9 0 1 31
81-85 2 9 8 0 0 19
86-90 0 5 9 0 0 14
91-95 1 8 0 0 0 9

96-100 0 1 1 1 1 4
101-105 0 3 3 6
106-110 0 1 6 7
111-115 1 2 1 4
116-120 1 1 2
121-125 1 1 2
126-130 2 2

In the case of the CS-TR QR, for example, the frequency distribution table in Table 4 shows one peak at 6-
10 seconds with 3,294 observations, and a smaller peak of 1,128 observations at 41-45 seconds. Similarly,
for NCSTRL, the first peak has 2,066 observations at 16-20 seconds and the second, smaller peak has 553
observations at 46-50 seconds. The BERKELEY data is not as cleanly bimodal, but if we view the 723
observations at 21-25 seconds as an anomaly, then the 1,211 observations at 26-30 seconds is the first peak
and the 548 observations at 46-50 seconds is the second peak. Note that the second peak represents the
average of all phase two searches. The lower value for the second peak for CS-TR implies that a smaller
proportion of queries timed out on that machine.

The FORTH data in Table 4 appears trimodal. The first peak is at 1-5 seconds with 25 observations, the
second peak is at 51-55 seconds with 21 observations, and the third peak is at 66-70 seconds with 45
observations. One possible explanation for three peaks instead of two could be that a significant number of

11

phase two searches ended due to phase two timing out: the first peak is for one phase searches, the second
peak represents two phase searches that had all phase two indexers respond, and the third peak represents
two phases searches that timed out in phase two. The spread of data is also reflected in the standard
deviation of 25.7 seconds for FORTH (Table 3) – almost double that of the other QRs.

 The LITE data in Table 4 is not clearly unimodal, bimodal or trimodal – while there is a clear peak of 116
observations at 1-5 seconds, the distribution is somewhat erratic out to 46-50 seconds. Perhaps timeout
values for phase one changed during the two-month observation period, or perhaps there is some other
cause. Despite the spread of data indicated in the frequency distribution, the standard deviation for LITE is
14.5 seconds (Table 3), which is close to the other QRs’ standard deviations.

The lowest mean total QR time is for CS-TR at 17.3 seconds, while the highest mean is FORTH’ s at 44.1
seconds (Table 3). Not only are the means for the individual QRs far apart, but the standard deviations are
large as well. Even so, the CS-TR standard deviation of 11.4 seconds implies that FORTH mean is more
than two CS-TR standard deviations away. Or, we could say that the CS-TR mean is more than one
FORTH standard deviation (25.7 seconds) away from the FORTH mean.

Interestingly, the data for all QRs combined has essentially a unimodal distribution. The interval with the
highest frequency was 21-25 seconds, with 5303 observations. The mean time to process queries for all
QRs is 22.3 seconds and the standard deviation for all QRs is 13.9 seconds. 25,258 observations out of
32,352, or 78%, are processed in less than 31 seconds.

4.3 QR wait time for indexers as a proportion of total QR time

In section 4.2 we examined the total time the QR spent processing each query, including choosing indexers,
sending search requests to the indexers, waiting for search results, merging the results and delivering them
to the UI. In section 4.1, we examined the minimum time the QR waited for indexers to respond. By
comparing these two measurements, we can explore the significance of QR wait time for indexers by
viewing it as a proportion of QR total time. We employ two methods of comparison below.

4.3.1 Individual observation percentages

This method examines the minimum QR wait time as a percentage of the total QR processing time for each
QR observation we examined in the logs. For further details on how we analyzed the logs for this
information, see Appendix A.

Examining the individual observation’ s total QR time spent waiting for indexers (see Table 5), we see that
mean percentages for individual QRs range from BERKELEY’ s 41.2% to CS-TR’ s 61.5%. For all QRs,
the mean percentage of QR total time spent waiting for indexers is 54.2%. So on average, the QR spends
roughly half of its time waiting for indexers to respond.

Table 5 - % of QR total time due to waiting for indexers

QR no. obs high low mean median mode std dev
cs-tr 14977 100 0 61.5 66.7 100 26.2
ncstrl 10800 100 0 51.0 50.0 66.7 19.3
berkeley 5788 91.5 0 41.2 41.9 50 16.1
lite 637 100 4.5 58.7 64.3 100 27.7
forth 150 100 5.8 45.0 35.2 75 29.8
all QRs 32352 100 0 54.2 52.2 100 23.8

Table 5 shows a high of 100% for QRs CS-TR, NCSTRL, LITE and FORTH: all of these QRs have
instances of the wait time for indexers equaling (within one second) the total QR processing time. Since
we know the QR wait time measurement is a minimum, we can be certain that there are instances of QR

12

processing time, other than waiting for indexers, taking less than one second. Again, this illustrates that
waiting for indexers can take a significant proportion of total QR time.

Table 6 - Number of observations for Table 5

% cs-tr ncstrl berkeley lite forth all QRs
0 3 16 222 0 0 241

1-5 14 0 0 1 0 15
6-10 156 22 17 18 7 220

11-15 249 133 95 25 22 524
16-20 493 212 166 32 10 913
21-25 763 390 356 38 13 1560
26-30 750 758 513 19 11 2051
31-35 872 1059 625 27 11 2594
36-40 734 1135 709 24 8 2610
41-45 663 906 648 29 5 2251
46-50 959 1002 843 25 7 2836
51-55 481 600 418 19 3 1521
56-60 790 1063 485 35 6 2379
61-65 453 822 366 37 2 1680
66-70 891 920 224 69 2 2106
71-75 1255 750 77 55 14 2151
76-80 1249 405 16 37 4 1711
81-85 1077 148 3 29 5 1262
86-90 973 137 3 25 5 1143
91-95 294 34 2 7 2 339

96-100 1858 288 86 13 2245

We see low percentages of 0% for CS-TR, NCSTRL, and BERKELEY, a low of 4.5% for LITE and a low
of 5.8% for FORTH in Table 5. These numbers do not necessarily imply that there are instances where QR
wait time for indexers was insignificant compared to QR total time; instead, it is likely that these low
percentages correspond to instances where our measurement of the QR wait time is too low. Recall that
QR wait times are a minimum, as our Dienst log analysis might not detect two phase searches or might
assign non-responding indexers a wait time of zero instead of the phase timeout (See Appendix A). Even
so, we can see from Table 6 that these low percentages for individual observations comprise a very small
proportion of the data. Only 476 observations out of 32,352, or less than two percent, have less than an
11% proportion of QR total time attributed to waiting for indexers to respond.

Actually, given the frequency distribution of percentages shown in Table 6 and given the large standard
deviations (ranging from 16.1 for BERKELEY to 19.8 for FORTH, and an overall standard deviation of
23.8), it seems the percentages of QR total time spent waiting for indexers vary widely. However, given
that QR wait times are a minimum, the values should be interpreted as minimum percentages: it is likely
that some of the percentages are higher than we could infer from the Dienst logs. Since the mean
percentage measurement for all individual observations for all QRs is 54.2%, this method of comparison
corroborates the notion that the time the QR spends waiting for indexers to respond is significant.

4.3.2 Percentage from means

Another way to explore the proportion of QR total time spent waiting for indexers is to compare the mean
number of seconds all QRs spending waiting for indexers to respond to search requests with the mean
number of seconds all QRs spend processing requests.

13

Table 7 - Analysis of QR wait time statistics

mean min. % total
QR wait time mean due to

QR for indexers total QR time wait time
cs-tr 8.4 17.3 49
ncstrl 10.8 24.9 43
berkeley 11.5 30.0 38
lite 9.2 21.2 43
forth 13.8 44.1 31
all QRs 9.8 22.3 44

The mean of the minimum time a QR spends waiting for indexers to respond is copied into Table 7 from
Table 1 in section 4.1, and the mean total QR time in Table 7 is from Table 3 in section 4.2. The percent
total due to wait time column is computed by taking the mean minimum QR wait time as a percentage of
the mean total QR time. We can see from Table 7 that this method shows that for all QRs combined, 44%
of the total QR time is spent waiting for indexers, with values ranging from 31% for the FORTH QR to
49% for the CS-TR QR. Again, this indicates the wait time for indexers to respond to search requests is a
significant part of total QR processing time.

5 QR view of indexers

Having shown in section 4 that QR wait time for indexers is a significant part of QR processing time, we
now wish to examine the QR view of indexer performance. Recall that after the Dienst QR chooses
indexers to process a query, it contacts those indexers and waits for replies. From the QR perspective, there
are two interesting results from each attempt to contact an indexer: 1) did the indexer respond to the QR,
and 2) how quickly did the indexer respond, given that it responded. We explain how we obtained this
information from the Dienst logs in Appendix B.

Note that our study only examines actual attempts QRs made to contact indexers – the observations below
represent QRs’ attempts to contact indexers that are not demoted and that are chosen from the ordered
mapping of publishing institutions to indexers within the QR’ s connectivity region (see section 2). Thus
our study may show indexers as more reliable than they were during the period of study – the NCSTRL
heuristic adaptations to network and other conditions have already eliminated many poorly performing
indexers from the QR’ s communication attempts.

The data below shows that indexer speed and reliability appear different to each QR, and it also shows that
indexers located very near each other on the Internet do not necessarily appear to have similar performance
from the QR point of view. This implies that it is not useful for QRs to share indexer performance
information or to aggregate that information across indexers. Even so, we hope our characterization of
these measurements will inform future algorithms for QR indexer choice, perhaps by aiding the QRs in
making reasonable predictions of individual indexer performance.

5.1 QR view: did the indexer respond?

In this section, we examine whether or not an indexer responded each time that a QR contacted it. For
complete details on what was considered a response and what was considered a non-response, see
Appendix B. The column heading “ ratio” in this section’ s tables is the number of responses for an indexer
divided by the number of attempts the QR made to communicate with the indexer. This ratio is an estimate
of the server availability, that is, the probability that the server will respond if it is contacted.

14

5.1.1 CS-TR QR – indexer response ratios

For the two-month observation period, the CS-TR QR processed 17,240 queries, the largest number of any
of the five QRs studied. In processing these queries, CS-TR made 160,392 attempts to communicate with
individual indexers. These results are shown in Table 8.

Table 8 - Indexer response ratios for CS-TR QR

indexer attempts resp non-resp ratio
cs-tr.cs.cornell.edu:80 14868 14748 120 0.99
cs.nyu.edu:80 1869 1135 734 0.61
dri.cornell.edu:80 14172 14119 53 1.00
ei.cs.vt.edu:8090 13653 13462 191 0.99
lite.ncstrl.org:3803 10370 5457 4913 0.53
ncstrl.cc.vt.edu:8080 16957 14925 2032 0.88
ncstrl.cc.vt.edu:8081 1115 440 675 0.39
ncstrl.cc.vt.edu:8090 15824 15004 820 0.95
ncstrl.cs.cornell.edu:8090 13057 11397 1660 0.87
www.cc.gatech.edu:81 3076 2097 979 0.68
www.cs.dartmouth.edu:80 2510 2185 325 0.87
www.cs.uiuc.edu:80 2785 2735 50 0.98
www.cs.umass.edu:80 13993 12474 1519 0.89
www.cs.umd.edu:80 2322 1433 889 0.62
www.cs.utah.edu:80 910 852 58 0.94
www.icase.edu:80 13761 12473 1288 0.91
www.ics.forth.gr:7000 5162 4598 564 0.89
www.tc.cornell.edu:80 13988 13893 95 0.99
all indexers 160392 143427 16965 0.89

Since the CS-TR QR is located at Cornell University, we would expect indexers located at Cornell to
perform well, as they are unlikely to be more than one or two network hops away. The “ local” indexer at
cs-tr.cs.cornell.edu:80 responded 14,748 out of 14,868 times, giving a ratio of 0.99, while the best ratio,
showing as 1.00, was delivered by dri.cornell.edu, with only 53 non-responses out of 14,172 attempts.
Note that the local indexer on the machine, which should have no network communication problems with
itself, is not the most reliable indexer. Regarding other indexers located at Cornell, www.tc.cornell.edu:80
also had an excellent ratio of 0.99, responding 13,893 out of 13,988 times, however,
ncstrl.cs.cornell.edu:8090 only responded 11,397 out of 13,057 times, for a ratio of 0.87. Thus, within the
cornell.edu domain, there are indexer response ratios ranging from 0.87 to 1.00.

Indexer ncstrl.cc.vt.edu:8081 had the worst ratio of 0.39, but interestingly, the indexer on the same machine
at port 8080 had a ratio of 0.88. It’ s possible that the processes for port 8090 were not as stable as those for
port 8080, or perhaps the attempts to communicate with port 8090 occurred at times of high load on the
Dienst server so it wasn’ t able to respond quickly enough. The indexer at ei.cs.vt.edu, presumably located
near to ncstrl.cc.vt.edu on the network, had a ratio of 0.99, with only 191 non-responses out of 13,653
attempts. Again, this illustrates that network location is not a sole predictor of indexer performance.
Overall, out of the 160,392 attempts the CS-TR QR made to contact indexers, 143,427 were responses,
giving an overall ratio of 0.89 responses / attempts. This finding is consistent with availability measures
taken by others. [14] measured the availability of web servers and found it to be approximately 95%. The
availability of Internet servers has also been measured between 85% and 91% by [13].

5.1.2 NCSTRL QR – indexer response ratios

The NCSTRL QR processed the second largest number of queries: 12,745 of them. Two of the processed
queries were dropped because we were unable to parse the search statistics messages. For the remaining
12,743 processed queries, NCSTRL made 113,517 indexer communication attempts. We dropped 6 of

15

these attempts from our results due to response times over two minutes (there was clearly some server
problem) – refer to Appendix B for more information on how the logs were processed. We therefore
examined 113,511 attempts NCSTRL made to communicate with indexers. These results are shown in
Table 9.

Table 9 - Indexer response ratios for NCSTRL QR

indexer attempts resp non-resp ratio
cs-tr.cs.cornell.edu:80 11632 11514 118 0.99
cs.nyu.edu:80 646 360 286 0.56
dri.cornell.edu:80 11635 11520 115 0.99
ei.cs.vt.edu:8090 11186 11020 166 0.99
lite.ncstrl.org:3803 7190 2628 4562 0.37
ncstrl.cc.vt.edu:8080 17275 14848 2427 0.86
ncstrl.cc.vt.edu:8081 1804 0 1804 0.00
ncstrl.cc.vt.edu:8090 11700 11005 695 0.94
ncstrl.cs.cornell.edu:8090 2851 1712 1139 0.60
ncstrl.cs.cornell.edu:8099 589 589 0 1.00
ncstrl.cs.uiuc.edu:80 194 194 0 1.00
www.cc.gatech.edu:81 1890 1598 292 0.85
www.cs.dartmouth.edu:80 1449 1165 284 0.80
www.cs.uiuc.edu:80 223 0 223 0.00
www.cs.umass.edu:80 10445 9255 1190 0.89
www.cs.umd.edu:80 332 66 266 0.20
www.cs.utah.edu:80 223 0 223 0.00
www.icase.edu:80 10912 10685 227 0.98
www.tc.cornell.edu:80 11335 11247 88 0.99
all indexers 113511 99406 14105 0.88

The NCSTRL Dienst server is also located at Cornell University, and the NCSTRL QR contacted two
“ local” indexers. Indexer ncstrl.cs.cornell.edu:8099 responded 589 out of 589 times, for a perfect ratio of
1.00. However, the indexer on the same machine at port 8090 only responded 1712 out of 2851 times for a
ratio of 0.60. Again, we can only guess that the discrepancies in these ratios are caused by the indexer calls
occurring at different times or by varying reliability of processes associated with different ports.

As with the QR at CS-TR, NCSTRL attempted to contact ncstrl.cc.vt.edu:8080 the most times, and again
that indexer did not have the highest ratio of responses to attempts – only 0.86. The uniqueness of the QR
view is apparent when we realize that NCSTRL tried to contact ncstrl.cc.vt.edu 17,275 times to CS-TR’ s
16,957 attempts, while CS-TR had far more queries to process: 17,240 for CS-TR vs. 12,745 for
NCSTRL. In other words, these two closely located QRs sent different proportions of their queries to the
same indexers due to differences in the demotion/promotion performance data at each QR and possibly due
to differences in the mapping of publishing institutions to indexers.

Another indication that indexer performance appears differently to different QRs, despite proximity on the
network, comes up when we examine the three indexers that never responded to the NCSTRL QR.
ncstrl.cc.vt.edu:8081 did not respond to NCSTRL once in 1,804 attempts, but it responded 440 times out of
1,115 attempts to CS-TR. Both www.cs.uiuc.edu:80 and www.cs.utah.edu:80 responded 0 out of 223
attempts for NCSTRL, but for CS-TR they responded 2,735 out of 2,785 attempts and 852 out of 910
attempts, respectively.

5.1.3 BERKELEY QR – indexer response ratios

We were able to parse all but one of the 7,085 queries processed by the BERKELEY QR. Out of 69,492
attempts to communicate with indexers for the remaining 7,084 queries, we examined 69,483 of them,

16

dropping 9 due to responses times over two minutes. These results are shown in Table 10. See Appendix
B for more information on how the logs were processed.

Table 10 - Indexer response ratios for BERKELEY QR

indexer attempts resp non-resp ratio
cs-tr.cs.cornell.edu:80 6068 5793 275 0.95
cs.nyu.edu:80 966 480 486 0.50
dri.cornell.edu:80 6044 5745 299 0.95
ei.cs.vt.edu:8090 5943 5631 312 0.95
lite.ncstrl.org:3803 4232 1370 2862 0.32
ncstrl.cc.vt.edu:8080 8904 7667 1237 0.86
ncstrl.cc.vt.edu:8081 724 0 724 0.00
ncstrl.cc.vt.edu:8090 6117 5581 536 0.91
ncstrl.cs.cornell.edu:8090 3686 1048 2638 0.28
ncstrl.cs.cornell.edu:8099 1547 1547 0 1.00
ncstrl.cs.uiuc.edu:80 458 458 0 1.00
sunsite.berkeley.edu:80 228 16 212 0.07
www.cc.gatech.edu:81 1311 788 523 0.60
www.cs.dartmouth.edu:80 1190 813 377 0.68
www.cs.uiuc.edu:80 608 0 608 0.00
www.cs.umass.edu:80 5900 4763 1137 0.81
www.cs.umd.edu:80 872 247 625 0.28
www.cs.utah.edu:80 608 0 608 0.00
www.icase.edu:80 5896 5482 414 0.93
www.ics.forth.gr:7000 2275 1797 478 0.79
www.tc.cornell.edu:80 5906 5626 280 0.95
all indexers 69483 54852 14631 0.79

The “ local” indexer for the BERKELEY QR, sunsite.berkeley.edu:80, responded only 16 out of 228 times
for a ratio of 0.07. This is extremely poor performance for an indexer that should be on the same LAN.
However, we do not distinguish between poor network connectivity from the QR to the indexer and
problems with the indexer, so perhaps this indicates that the BERKELEY Dienst server had corrupted
indexes or some other problem affecting indexing during our two month observation period. We note that
no other QR in our study contacted sunsite.berkeley.edu:80 as an indexer, which implies that poor or erratic
performance for BERKELEY was noted by the NCSTRL maintenance team and they removed the
BERKELEY indexer from the NCSTRL MMS’ s ordered list of indexers for the BERKELEY repository.

As with the NCSTRL QR, ncstrl.cc.vt.edu:8081, www.cs.uiuc.edu and www.cs.utah.edu did not respond to
any communication attempts by the BERKELEY QR. And similarly with NCSTRL and CS-TR, the
indexers at ports 8080 and 8090 of ncstrl.cc.vt.edu had response ratios over 0.85 (0.86 and 0.91
respectively), once again disproving the notion that network location and machine availability are sufficient
to explain availability of indexers.

5.1.4 LITE QR – indexer response ratios

The LITE QR processed 796 queries with 6,363 attempts to communicate with indexers. Results are shown
in Table 11.

The “ local” indexer for the LITE QR, lite.ncstrl.org:3803, responded to 396 out of 636 communication
attempts for a ratio of 0.62. This is poor, but the CS-TR, NCSTRL and BERKELEY QRs all had worse
ratios for lite.ncstrl.org:3803 as an indexer: 0.53, 0.37, and 0.32 respectively. It is not clear whether the
differences in the ratios are caused by network connectivity issues or by indexer availability at the specific
times the indexer was contacted. In fact, we cannot distinguish the cause from the Dienst logs.

17

Table 11 - Indexer response ratios for LITE QR

indexer attempts resp non-resp ratio
cs-tr.cs.cornell.edu:80 574 567 7 0.99
cs.nyu.edu:80 97 73 24 0.75
dri.cornell.edu:80 544 539 5 0.99
ei.cs.vt.edu:8090 549 545 4 0.99
lite.ncstrl.org:3803 636 396 240 0.62
ncstrl.cc.vt.edu:8080 456 427 29 0.94
ncstrl.cc.vt.edu:8081 3 0 3 0.00
ncstrl.cc.vt.edu:8090 590 585 5 0.99
ncstrl.cs.cornell.edu:8090 575 557 18 0.97
www.cc.gatech.edu:81 200 102 98 0.51
www.cs.dartmouth.edu:80 98 85 13 0.87
www.cs.uiuc.edu:80 91 88 3 0.97
www.cs.umass.edu:80 546 516 30 0.95
www.cs.umd.edu:80 98 83 15 0.85
www.cs.utah.edu:80 75 69 6 0.92
www.icase.edu:80 539 521 18 0.97
www.ics.forth.gr:7000 145 114 31 0.79
www.tc.cornell.edu:80 547 544 3 0.99
all indexers 6363 5811 552 0.91

We note that the indexer the LITE QR tried to contact the most was the “ local” indexer, while the CS-TR,
BERKELEY and NCSTRL QRs all attempted to contact ncstrl.cc.vt.edu:8080 most often. The LITE QR
also contacted port 8090 on ncstrl.cc.vt.edu more than other ports, unlike CS-TR, BERKELEY and
NCSTRL which all contacted port 8080 the most. As with BERKELEY and NCSTRL, however, the
LITE QR did not get any responses from indexer ncstrl.cc.vt.edu:8081, while ports 8080 and 8090 had
ratios above 0.85 (0.94 and 0.99, respectively).

5.1.5 FORTH QR – indexer response ratios

The FORTH QR only answered 203 queries, all of which we could parse, and furthermore only had 744
attempts to communicate with indexers, one of which had a response time greater than two minutes,
leaving 743 attempts for us to examine. None of the indexers called by the FORTH QR are used by any of
the other QRs because FORTH is in a different connectivity region (see section 2). We are unwilling to
extrapolate much from the FORTH data due to the small number of observations, but we present the
information in Table 12 for completeness.

Table 12 - Indexer response ratios for FORTH QR

indexer attempts resp non-resp ratio
alexandra.di.uoa.gr:80 127 44 83 0.35
carolan.dsg.cs.tcd.ie:1996 120 0 120 0.00
dienst.csi.forth.gr:80 200 197 3 0.99
medoc.informatik.uni-hamburg.de:80 4 4 0 1.00
www-ir.inf.ethz.ch:80 4 3 1 0.75
www.ics.forth.gr:7000 141 137 4 0.97
www.sztaki.hu:80 4 3 1 0.75
www.sztaki.hu:8001 143 91 52 0.64
all indexers 743 479 264 0.64

18

5.1.6 QR view of indexer response ratios -- conclusions

We will now look at response ratios for indexers from the five QRs in our study in order to draw some
conclusions. In Table 13, “ ncstrl” is marked with an asterisk because the NCSTRL QR is at port 80 on the
machine at ncstrl.cs.cornell.edu, while the NCSTRL indexer is at port 8090 at ncstrl.cs.cornell.edu.

Table 13 - Indexer response ratios between studied servers

QR indexer QR indexer QR indexer QR indexer QR indexer
cs-tr cs-tr ncstrl* ncstrl* berkeleyberkeley lite lite forth forth
sees as seen sees as seen sees as seen sees as seen sees as seen

indexer by QR indexer by QR indexer by QR indexer by QR indexer by QR
cs-tr 0.99 0.99 0.99 0.87 0.95 - 0.99 0.53 - 0.89
ncstrl* 0.87 0.99 0.60 0.60 0.28 - 0.97 0.37 - -
berkeley - 0.95 - 0.28 0.07 0.07 - 0.32 - 0.79
lite 0.53 0.99 0.37 0.97 0.32 - 0.62 0.62 - 0.79
forth 0.89 - - - 0.79 - 0.79 - 0.97 0.97

forthcs-tr ncstrl* berkeley lite

The data columns in Table 13 are shown in five groupings of two columns each – one grouping for each
site in our study. The meaning of the two columns within each grouping is as follows, using the first
grouping as an illustrative example. The first data column, headed “ QR cs-tr sees indexer,” shows the
indexer response ratios as perceived by the CS-TR QR for each of the indexers in our study. For example,
the ratio of responses to failures for the NCSTRL indexer as perceived by the CS-TR QR was 0.87. These
figures are taken from Table 8 in section 5.1.1. The second data column, headed “ indexer cs-tr as seen by
QR,” shows the indexer response ratios for the CS-TR indexer, as perceived by the QRs indicated. These
figures are taken from the tables in sections 5.1.1, 5.1.2, 5.1.3, 5.1.4, and 5.1.5. The double column
groupings for other sites in our study are derived similarly. Missing values in Table 13 occur when a QR
didn’ t call a particular indexer, or (similarly) when an indexer wasn’ t called by a particular QR. For
example, the BERKELEY indexer is only called by the BERKELEY QR, implying the MMS’ s ordered list
of indexers for the BERKELEY repository did not include the BERKELEY indexer for any but the
BERKELEY QR (see section 5.1.3).

Examining the data for CS-TR, we see that from the perspective of the CS-TR, NCSTRL and LITE QRs
the CS-TR indexer has a response ratio of 0.99, while from the perspective of the BERKELEY QR the
CS-TR indexer has a response ratio of 0.95 (FORTH didn’ t poll the CS-TR indexer during the study
period). So the CS-TR indexer has a response ratio ranging from 0.95 to 0.99 for the QRs in our study.
Meanwhile, the response ratios of the other indexers in our study, from the perspective of the CS-TR QR,
range from 0.53 for LITE to 0.89 for FORTH, and a ratio of 0.99 for the indexer on the same Dienst server.
So the CS-TR indexer appears more available to other Dienst QRs than the indexers at those sites appear to
it. The implication is that the CS-TR QR was well maintained during the course of our study – the
machine was adequate to the processing tasks demanded of it, and support staff ensured the machine was
up as much as possible.

The LITE QR polls the same four indexers in our study as the CS-TR QR, with response ratios ranging
from 0.62 for the LITE indexer to 0.99 for the CS-TR indexer. The LITE indexer is also contacted by the
same QRs as the CS-TR indexer, and the response ratios range from 0.37 for the NCSTRL QR to 0.62 for
the LITE QR. So in contrast to CS-TR, indexers appear more reliable to the LITE QR than the LITE
indexer appears to other Dienst QRs. The implication is that during the course of our study, the LITE
machine was either poorly maintained or not up to the processing demanded of it. In fact, the LITE
machine was underpowered during the course of this study -- the machine had large indexes, a high
demand, and only one processor. It was in fact upgraded in early summer 1997, soon after the study
period.

19

Another indication that the reliability of the LITE indexer was poor is in the asymmetry between CS-TR
and LITE: the QR at CS-TR has a response ratio of 0.53 for the LITE indexer, while the LITE QR has a
ratio of 0.99 for the CS-TR indexer. We know that the QR view of an indexer depends both on network
connectivity and indexer reliability. In this case, it would appear that the network connectivity between
LITE and CS-TR is good, otherwise the LITE QR could not have a ratio of 0.99 for the CS-TR indexer.
But the low ratio for the CS-TR QR view of the LITE indexer implies poor reliability of the LITE indexer,
given that the network connection is good. This is born out by the low ratios reported for the LITE indexer
by all QRs.

Table 13 also shows that the BERKELEY and LITE QRs view their own indexers as the least reliable of
any of the servers in our study, buttressing the notion that the QR view of indexer reliability depends on
more than good network connectivity and availability of the server. Server load, index sizes, search
characteristics – many factors could contribute to an indexer not responding to a QR before the search
timeout; unfortunately, we cannot diagnose the cause from the Dienst logs.

We can also conclude that indexer response ratios do not appear the same to different QRs. For example,
the NCSTRL indexer has a response ratio of 0.28 for the BERKELEY QR, and a response ratio of 0.97 for
the LITE QR. This discrepancy might be caused by communication attempts being made at different rates
and at different times, or it might be caused by Internet topology. Regardless, the QR’ s view of indexer
availability is unique. This corroborates the notion that the QR view of the availability of an indexer, rather
than an absolute view of the availability of an indexer (that doesn’ t take network connectivity into account),
will be the most useful for predicting indexer performance. The high spread of response ratios in the data
also underlines the need for an adaptive and flexible fault tolerant distributed searching algorithm that
incorporates indexer redundancy.

5.2 QR view: indexer response times, given that the indexer responded

This section analyzes response time data in seconds each time an indexer responded to a QR. For complete
details on how response time data was gathered from the logs, see Appendix B.

Recall that the data below is the floor value of response time in seconds -- a response time of 8 means the
indexer responded in less than 9 seconds, but in 8 or more seconds.

5.2.1 CS-TR QR – indexer response times, given that the indexer responded

The CS-TR QR had 143,427 responses from indexers; these results are shown in Table 14.

The “ local” indexer on the same Dienst server as the CS-TR QR had a mean response time of 1.9 seconds.,
but that was not the fastest indexer. The smallest mean response time was 0.3 seconds from
www.cs.utah.edu:80 for 852 responses. It’ s difficult to believe that Internet connectivity is slower within a
LAN than across the Internet, so we conclude that the Dienst server at CS-TR takes longer to search its
own indexes on average than some other Dienst indexers, perhaps because the index files at CS-TR are
large. We are reminded that Internet topology is not the only factor in the QR view of indexer response
times.

Note that the indexer at ncstrl.cc.vt.edu:8090 had a mean response time of 4.2 seconds to the CS-TR QR,
while the indexer on port 8081 at ncstrl.cc.vt.edu had a mean response time of 13.3 seconds. The Dienst
logs do not provide enough information to explain this. Perhaps port 8081 was contacted at times of higher
load on the server, perhaps the machine at ncstrl.cc.vt.edu is tuned in a way that affects processes for port
8090 and 8080 more favorably than those for port 8081, or perhaps the index files for the different ports are
of different sizes. Whatever the cause, it highlights the notion that different indexers appear different to a
QR, even if they are in the same Internet location.

In addition to the wide range of actual response times, from 25 seconds to 0 seconds, there was a wide
range of mean response times, from 0.3 seconds for indexer www.cs.utah.edu to 13.3 seconds for

20

ncstrl.cc.bt.edu:8081. The spread of means shows it would be ineffectual to combine performance data
from different indexers in order to describe the QR view of indexer behavior.

Table 14 - Indexer response times for CS-TR QR

indexer no. obs high low mean median mode std dev
cs-tr.cs.cornell.edu:80 14748 15 0 1.9 2 2 0.9
cs.nyu.edu:80 1135 14 0 2.8 1 0 3.4
dri.cornell.edu:80 14119 22 0 3.2 3 3 1.4
ei.cs.vt.edu:8090 13462 14 0 1.8 2 2 1.3
lite.ncstrl.org:3803 5457 18 0 7.2 7 7 3.3
ncstrl.cc.vt.edu:8080 14925 25 0 5.1 4 3 3.9
ncstrl.cc.vt.edu:8081 440 25 0 13.3 13 13 7.2
ncstrl.cc.vt.edu:8090 15004 18 0 4.2 3 3 2.5
ncstrl.cs.cornell.edu:8090 11397 15 0 4.4 4 2 3.1
www.cc.gatech.edu:81 2097 15 0 2.7 2 2 2.3
www.cs.dartmouth.edu:80 2185 15 0 7.0 6 6 2.5
www.cs.uiuc.edu:80 2735 14 1 3.0 3 3 1.0
www.cs.umass.edu:80 12474 15 0 4.7 4 2 3.1
www.cs.umd.edu:80 1433 15 1 10.9 11 12 2.8
www.cs.utah.edu:80 852 12 0 0.3 0 0 1.1
www.icase.edu:80 12473 14 0 2.0 2 1 2.1
www.ics.forth.gr:7000 4598 24 0 5.5 5 4 2.7
www.tc.cornell.edu:80 13893 14 0 1.7 2 2 1.0
all indexers 143427 25 0 3.6

5.2.2 NCSTRL QR – indexer response times, given that the indexer responded

The NCSTRL QR had 99,406 responses from indexers; these results are shown in Table 15.

Table 15 - Indexer response times for NCSTRL QR

indexer no. obs high low mean median mode std dev
cs-tr.cs.cornell.edu:80 11514 26 1 5.1 5 5 1.4
cs.nyu.edu:80 360 17 0 5.1 4 4 3.6
dri.cornell.edu:80 11520 26 2 7.0 7 7 1.9
ei.cs.vt.edu:8090 11020 26 0 5.0 5 5 1.6
lite.ncstrl.org:3803 2628 65 0 9.8 10 9 3.2
ncstrl.cc.vt.edu:8080 14848 59 1 8.6 8 7 4.5
ncstrl.cc.vt.edu:8090 11005 99 2 8.2 8 7 3.2
ncstrl.cs.cornell.edu:8090 1712 22 2 7.9 7 6 2.9
ncstrl.cs.cornell.edu:8099 589 21 3 8.7 9 6 3.0
ncstrl.cs.uiuc.edu:80 194 15 6 8.6 8 7 1.8
www.cc.gatech.edu:81 1598 36 1 6.9 6 5 2.6
www.cs.dartmouth.edu:80 1165 19 5 10.7 10 9 2.0
www.cs.umass.edu:80 9255 65 0 6.8 6 5 3.1
www.cs.umd.edu:80 66 21 7 13.0 13 14 2.0
www.icase.edu:80 10685 26 0 4.7 5 4 1.8
www.tc.cornell.edu:80 11247 26 0 5.0 5 5 1.5
all indexers 99406 99 0 6.6

The mean response times for indexers to the NCSTRL QR ranged from 4.7 seconds for www.icase.edu:80
to 13.0 seconds for www.cs.umd.edu:80. Since both the NCSTRL Dienst server and the CS-TR Dienst
server are located at Cornell University, it is interesting that the CS-TR QR had twelve indexers with a

21

lower mean response time than 4.7 seconds, the lowest mean response time for the NCSTRL QR.
Moreover, we see that NCSTRL’ s mean response time for every indexer was higher than CS-TR’ s (e.g.
6.8 seconds for a response from www.cs.umass.edu to NCSTRL and 4.7 seconds for a response from
www.cs.umass.edu to CS-TR). It’ s unlikely these differences are related to network topology, however, it
is possible that the CS-TR QR contacted the indexers at different times than the NCSTRL QR, which
could have caused different network latencies as well as different indexer response times.

The two indexers located on the same machine as the NCSTRL QR had mean response times of 7.9
seconds (ncstrl:8090) and 8.7 seconds (ncstrl:8099). Many indexers not located on the same LAN had a
smaller mean response time to the NCSTRL QR, such as www.cs.umass.edu:80 at 6.8 seconds. Again,
this points to performance factors beyond the state of the network.

The standard deviations for indexer response times to the NCSTRL QR lie in a smaller range than those for
the CS-TR QR: all range from 1.4 seconds to 3.2 seconds except ncstrl:8080 at 4.5 seconds and
cs.nyu.edu:80 at 3.6 seconds. However, we still have a large range of mean response times, from 4.7
seconds for www.icase.edu to 13.0 seconds for www.cs.umd.edu. Once more, a single QR’ s view of
individual indexer performance data indicates that each indexer should be viewed as a separate entity.

5.2.3 BERKELEY QR – indexer response times, given that the indexer responded

We collected 54,852 responses from indexers for the BERKELEY QR; these results are shown in Table 16.

Table 16 - Indexer response times for BERKELEY QR

indexer no. obs high low mean median mode std dev
cs-tr.cs.cornell.edu:80 5793 97 1 5.1 5 4 3.0
cs.nyu.edu:80 480 21 0 6.2 5 4 3.5
dri.cornell.edu:80 5745 92 2 6.3 6 5 2.9
ei.cs.vt.edu:8090 5631 97 0 5.4 5 5 3.1
lite.ncstrl.org:3803 1370 57 2 10.6 11 10 3.4
ncstrl.cc.vt.edu:8080 7667 98 1 8.1 6 4 5.9
ncstrl.cc.vt.edu:8090 5581 92 2 7.6 7 6 3.8
ncstrl.cs.cornell.edu:8090 1048 38 1 7.9 7 6 3.8
ncstrl.cs.cornell.edu:8099 1547 94 2 8.3 8 7 4.2
ncstrl.cs.uiuc.edu:80 458 21 3 7.2 6 6 2.4
sunsite.berkeley.edu:80 16 14 5 7.7 7.5 5 3.0
www.cc.gatech.edu:81 788 91 2 6.8 6 5 4.4
www.cs.dartmouth.edu:80 813 22 3 9.9 9 9 2.5
www.cs.umass.edu:80 4763 94 1 7.8 7 6 3.9
www.cs.umd.edu:80 247 37 6 12.0 12 14 3.2
www.icase.edu:80 5482 97 1 5.1 4 4 3.0
www.ics.forth.gr:7000 1797 97 3 10.9 9 8 6.1
www.tc.cornell.edu:80 5626 92 1 5.2 5 4 2.7
all indexers 54852 98 0 6.8

As with the other QRs, BERKELEY does not see the indexer on its own machine as the fastest indexer.
The mean response time for the BERKELEY indexer was 7.7 seconds, and there were nine other indexers
with smaller mean response times.

The range of mean response times is similar to that of the NCSTRL QR, with a minimum mean response
time of 5.1 seconds for both the CS-TR and www.icase.edu indexers and a maximum mean response time
of 12.0 seconds for www.cs.umd.edu. We observe that the indexer response times for the NCSTRL QR
have more in common with the indexer response times for the BERKELEY QR than with the indexer
response times at the CS-TR QR, despite the similar Internet locations of the NCSTRL and CS-TR Dienst

22

servers. Again we are reminded that the QR view of indexer performance is unique and cannot be
explained by network topology alone.

5.2.4 LITE QR – indexer response times, given that the indexer responded

5,811 indexer responses to the LITE QR were collected; these results are shown in Table 17.

Table 17 - Indexer response time for LITE QR

indexer no. obs high low mean median mode std dev
cs-tr.cs.cornell.edu:80 567 16 0 2.4 2 2 1.8
cs.nyu.edu:80 73 19 0 4.8 3 3 4.8
dri.cornell.edu:80 539 13 0 2.8 2 2 2.1
ei.cs.vt.edu:8090 545 18 0 1.9 1 1 2.0
lite.ncstrl.org:3803 396 20 0 10.2 10 9 4.4
ncstrl.cc.vt.edu:8080 427 19 0 4.3 3 3 3.6
ncstrl.cc.vt.edu:8090 585 18 0 2.5 2 0 2.9
ncstrl.cs.cornell.edu:8090 557 19 0 3.8 3 0 3.2
www.cc.gatech.edu:81 102 9 0 1.4 1 0 2.0
www.cs.dartmouth.edu:80 85 17 0 5.8 5 6 3.6
www.cs.uiuc.edu:80 88 11 0 1.0 0 0 1.8
www.cs.umass.edu:80 516 19 0 4.7 4 2 4.1
www.cs.umd.edu:80 83 16 1 9.9 10 11 3.1
www.cs.utah.edu:80 69 4 0 0.3 0 0 0.7
www.icase.edu:80 521 18 0 1.1 0 0 2.6
www.ics.forth.gr:7000 114 19 2 6.6 5 4 3.5
www.tc.cornell.edu:80 544 80 0 1.2 0 0 3.8
all indexers 5811 80 0 3.4

The LITE QR’ s highest mean response time was for the indexer on the same machine, which is curious.
We also see that LITE’ s view of itself as an indexer (mean 10.2 seconds) was slower than the NCSTRL
QR’ s view (9.8 seconds) or the CS-TR QR’ s view (7.2 seconds) of LITE as an indexer. However, the
NCSTRL and LITE QRs had the same median of 10 seconds and mode of 9 seconds for LITE as an
indexer. Again, this underscores the notion that different QR views of the same indexer are different.

As with the other QRs, we note the wide range of mean response times, from 0.3 seconds for the
www.cs.utah.edu indexer to 10.2 seconds for the LITE indexer.

5.2.5 FORTH QR – indexer response times, given that the indexer responded

Table 18 - Indexer response times for FORTH QR

indexer no. obs high low mean median mode std dev
alexandra.di.uoa.gr:80 44 40 3 12.0 10 4 8.6
dienst.csi.forth.gr:80 197 39 2 8.5 4 3 9.8
medoc.informatik.uni-hamburg.de:80 4 23 5 10.8 7.5 8.3
www-ir.inf.ethz.ch:80 3 20 4 13.0 15 8.2
www.ics.forth.gr:7000 137 38 3 9.8 8 3 7.1
www.sztaki.hu:80 3 10 6 8.3 9 2.1
www.sztaki.hu:8001 91 26 5 12.4 11 7 5.6
all indexers 479 40 2 10

23

The FORTH QR only had 479 responses from indexers. Again, we are unwilling to extrapolate much from
the FORTH data due to the small number of observations, but we present the information in Table 18 for
completeness.

5.2.6 QR view of indexer response times, given that the indexer responded -- conclusions

We will now draw some conclusions by looking at mean indexer response times as viewed by the five QRs
in our study. In Table 19, “ ncstrl” is marked with an asterisk because the NCSTRL QR is at port 80 on the
machine at ncstrl.cs.cornell.edu, while the NCSTRL indexer is at port 8090 at ncstrl.cs.cornell.edu.

Table 19 – Mean indexer response times between studied servers

QR indexer QR indexer QR indexer QR indexer QR indexer
cs-tr cs-tr ncstrl* ncstrl* berkeley berkeley lite lite forth forth
sees as seen sees as seen sees as seen sees as seen sees as seen

indexer by QR indexer by QR indexer by QR indexer by QR indexer by QR
cs-tr 1.9 1.9 5.1 4.4 5.1 - 2.4 7.2 - 5.5
ncstrl* 4.4 5.1 7.9 7.9 7.9 - 3.8 9.8 - -
berkeley - 5.1 - 7.9 7.7 7.7 - 10.6 - 10.9
lite 7.2 2.4 9.8 3.8 10.6 - 10.2 10.2 - 6.6
forth 5.5 - - - 10.9 - 6.6 - 9.8 9.8

forthcs-tr ncstrl* berkeley lite

The data columns in Table 19 are shown in five groupings of two columns each – one grouping for each
site in our study. The meaning of the two columns within each grouping is as follows, using the first
grouping as an illustrative example. The first data column, headed “ QR cs-tr sees indexer,” shows the
mean indexer response times as perceived by the CS-TR QR for each of the indexers in our study. These
figures are taken from Table 14 in section 5.2.1. The second data column, headed “ indexer cs-tr as seen by
QR,” shows the mean indexer response times for the CS-TR indexer, as perceived by the QRs indicated.
These figures are taken from the tables in sections 5.2.1, 5.2.2, 5.2.3, 5.2.4, and 5.2.5. The double column
groupings for other sites in our study are derived similarly. Missing values in Table 19 occur when a QR
didn’ t call a particular indexer, or (similarly) when an indexer wasn’ t called by a particular QR. For
example, the BERKELEY indexer is only called by the BERKELEY QR, implying the MMS’ s ordered list
of indexers for the BERKELEY repository did not include the BERKELEY indexer for any but the
BERKELEY QR (see section 5.1.3).

It is easy to see from Table 19 that different QRs record varying response times for the same indexer – the
QR view of each indexer is unique. For example, the CS-TR indexer has mean response times ranging
from 1.9 seconds for the CS-TR QR to 5.1 seconds for the NCSTRL and BERKELEY QRs. Similarly,
the NCSTRL indexer has response times ranging from 3.8 seconds for the LITE QR to 7.9 seconds for the
BERKELEY and NCSTRL QRs. These differing mean response times from the QR view imply that
sharing QR view indexer performance data may not be useful.

Another interesting feature shown in Table 19 is the similarity between the mean indexer response times as
viewed by the NCSTRL and BERKELEY QRs. Given that the NCSTRL Dienst server is located at
Cornell University in Ithaca, New York and the BERKELEY Dienst server is located in Berkeley,
California, it is surprising how similar these response times are. It is even more surprising to note that the
CS-TR Dienst server is also located at Cornell University in Ithaca, New York, but the NCSTRL QR
response times are most similar to the distant BERKELEY QR. This underlines our previous conclusion:
sharing this sort of data among QRs may not be useful and certainly involves more than knowledge of
Internet topology.

Another conclusion we can draw from Table 19 is that the fastest indexer is not necessarily the indexer on
the same machine as the QR. The CS-TR, NCSTRL, BERKELEY and LITE QRs all see CS-TR as the

24

fastest indexer, despite the network travel required by all by the CS-TR QR. In fact, all of section 5.2
indicates that indexers located nearby on the Internet can be slower than indexers located further away.

We note that the CS-TR QR sees the LITE indexer with a mean response time of 7.2 seconds, while the
LITE QR sees the CS-TR indexer with a mean response time of 2.4 seconds. There is a similar
asymmetry between the NCSTRL QR’ s mean response time for the LITE indexer (9.8 seconds) and the
LITE QR’ s mean response time for the NCSTRL indexer (3.8 seconds). With the limited information
available from the Dienst logs, we cannot tell if these results were caused by server load, index size,
network conditions or any number of other factors affecting indexer performance. Nevertheless, these
asymmetries probably indicate that the LITE machine was underpowered during the course of our study, as
inferred in section 5.1.6.

6 Indexer view: indexer processing time

We now examine the indexer view of indexer processing time. This differs from the QR view of indexers
explored in section 5 in that the indexer view of itself has no network component. We want to explore the
differences between the indexer view and the QR view of indexers to further our understanding of the
uniqueness of the QR view.

The NCSTRL Dienst server does not act as an indexer, and during the period of our study, the LITE Dienst
server did not have a version of the Dienst software that included indexer performance data in the logs. We
therefore only examine indexer processing time for CS-TR, BERKELEY and FORTH. For complete
information on how we got this information from the logs, see Appendix C.

6.1 CS-TR indexer

6.1.1 indexer view of CS-TR indexer

The Dienst server at CS-TR was called as an indexer 45,660 times for the two-month period of our study.
Recall from Figure 5 that for each transaction an indexer should record two log messages – one for the
SearchBoolean message that initiates the indexer query processing (“ B” in Figure 5) and one that is the
Search Collection message indicating the end of the transaction (“ C” in Figure 5). One SearchBoolean
transaction line had an error, but there were only 45,654 Search Collection lines in the CS-TR logs for the
period studied – we expected 45,660 Search Collection messages. 629 Search Collection lines had errors,
and there was one unmatched Search Collection line, leaving 45,024 lines for indexer statistics. Results are
in Table 20 and Table 21. For further information on how the logs were analyzed for indexer view data,
see Appendix C.

According to Table 20, the mean processing time for all calling QRs is 0.1 seconds. But since an indexer
processing time of 0 seconds actually means “ less than one second” , the mean of 0.1 seconds tells us that in
the vast majority of cases, the known indexer processing time was under one second. This is readily
apparent from Table 21, which indicates that 41,525 out of 45,024 observations on the CS-TR indexer, or
92%, are less than one second. The data is fairly consistent across calling QRs: all but three of the calling
QRs had a mean response time of 0.1 seconds or less, and all but one calling QR had a median of 0 seconds
and a mode of 0 seconds.

25

Table 20 - Indexer processing time for CS-TR indexer

calling QR no. obs max min mean median mode std dev
128.122.27.18 177 1 0 0.0 0 0 0.2
128.173.40.200 3 0 0 0.0 0 0 0.0
128.42.1.132 467 1 0 0.1 0 0 0.2
128.84.152.49 396 2 0 0.1 0 0 0.3
139.91.151.4 1 0 0 0.0 0
147.27.12.1 50 0 0 0.0 0 0 0.0
192.76.247.102 1 0 0 0.0 0
192.84.227.1 95 2 0 0.1 0 0 0.3
DBVideo.Stanford.EDU 3390 7 0 0.1 0 0 0.3
DIENST.SRV.CS.CMU.EDU 531 2 0 0.1 0 0 0.3
WHEAT.TC.CORNELL.EDU 87 2 0 0.1 0 0 0.3
a.cs.uiuc.edu 1039 1 0 0.1 0 0 0.3
antares.inf.ethz.ch 5 0 0 0.0 0 0 0.0
brahma.sics.se 3 0 0 0.0 0 0 0.0
cashew.cs.tamu.edu 93 3 0 0.1 0 0 0.3
cs-tr.cs.cornell.edu 14831 13 0 0.1 0 0 0.5
dienst.iei.pi.cnr.it 16 1 0 0.1 0 0 0.3
ei.cs.vt.edu 46 1 0 0.0 0 0 0.2
flounder-f.icase.edu 644 1 0 0.1 0 0 0.2
flounder.icase.edu 67 1 0 0.0 0 0 0.2
guild.cs.cornell.edu 2 0 0 0.0 0 0 0.0
hpschlichter10.informatik.tu-muenchen.de 167 1 0 0.0 0 0 0.2
inf.informatik.uni-stuttgart.de 69 1 0 0.0 0 0 0.1
kernighan.cs.umass.edu 223 3 0 0.1 0 0 0.3
larc.cs.Virginia.EDU 582 3 0 0.1 0 0 0.3
maya.iei.pi.cnr.it 1 0 0 0.0 0
ncstrl.cs.cornell.edu 11560 3 0 0.1 0 0 0.3
pasteur.ics.uci.edu 489 3 0 0.1 0 0 0.3
pita.cs.umd.edu 793 10 0 0.2 0 0 0.7
pooof.cs.utah.edu 44 1 0 0.0 0 0 0.2
researchsmp2.cc.vt.edu 6 1 0 0.2 0 0 0.4
rzfspc51.informatik.uni-hamburg.de 62 1 0 0.0 0 0 0.1
siwenna.cc.gatech.edu 2 0 0 0.0 0 0 0.0
tex.iei.pi.cnr.it 4 1 0 0.5 0.5 0 0.6
tr.cs.washington.edu 736 3 0 0.1 0 0 0.3
ubkaaix6.ubka.uni-karlsruhe.de 61 1 0 0.0 0 0 0.2
windsor.cs.dartmouth.edu 70 1 0 0.1 0 0 0.2
www-ucpress.Berkeley.EDU 5920 5 0 0.1 0 0 0.3
www.bmstu.ru 70 3 0 0.0 0 0 0.4
www.cs.wisc.edu 2221 6 0 0.1 0 0 0.3
all calling QRs 45024 13 0 0.1 0 0 0.4

26

Table 21 - Number of observations for all calling QRs for Table 20

secs no. obs.
0 41525
1 3231
2 166
3 64
4 12
5 9
6 4
7 3
8 2
9 0

10 1
11 4
12 2
13 1

6.1.2 QR views of CS-TR indexer compared with indexer view

Table 22 illustrates the difference between the CS-TR indexer view of itself and the QR view of the CS-
TR indexer. It is immediately apparent that the indexer view shows the same mean response time for all
four calling QRs in our study (the FORTH QR did not call CS-TR as an indexer during the two-month
period), while the QR views of the indexer vary. Thus the indexer view of response time does not appear
to be very useful as a means of illustrating QR view response times.

Table 22 - QR and indexer views of mean times for CS-TR indexer

calling QR indexer view QR view
cs-tr 0.1 1.9
ncstrl 0.1 5.1
berkeley 0.1 5.1
lite 0.1 2.4

According to Table 22, the CS-TR indexer has a mean response time of 0.1 seconds for the four QRs in
our study that call this indexer. CS-TR as a QR perceives the mean response time for the CS-TR indexer
as 1.9 seconds, so there is approximately a two-second discrepancy between the mean processing time of
the CS-TR indexer view and the CS-TR QR view. The discrepancy can be explained by indexer
overhead not included in the Search Collection messages (see Appendix C), and by connection time for the
CS-TR indexer to receive an http protocol request and to send a response back to the CS-TR QR.

The NCSTRL QR, which is also located in the Cornell University Computer Science department, had a
mean response time of 5.1 seconds for the CS-TR indexer during our study. Likewise, the BERKELEY
QR recorded a mean response time of 5.1 seconds for the indexer. The network travel times, the
connection times and indexer overhead account for nearly all of the mean response times from the
NCSTRL and BERKELEY QR view, as compared with less than one second response times from the
indexer view.

The LITE QR recorded a mean response time of 2.4 seconds for the CS-TR indexer. This is a smaller
mean response time than that for NCSTRL, which seems odd since NCSTRL is closer to CS-TR on the
network. This reminds us that the QR view of an indexer’ s response time is unique to each QR – network
latency and connection times will vary from one QR to another, so they are best tracked by the QRs
themselves.

27

6.2 FORTH indexer

6.2.1 indexer view of FORTH indexer

The FORTH indexer was contacted 281 times during our period of study. It had no SearchBoolean
transaction lines or Search Collection lines with errors, and there were no unmatched Search Collection
lines, so we have statistics for all 281 indexer uses. Results are shown in Table 23 and Table 24.

Table 23 - Indexer processing time for FORTH indexer

calling QR no. obs max min mean median mode std dev
alexandra.di.uoa.gr 60 4 0 0.7 0 0 0.9
dienst.csi.forth.gr:10001 158 8 0 0.6 0 0 1.0
dienst.csi.forth.gr:10002 40 1 0 0.4 0 0 0.5
dienst.csi.forth.gr:10003 13 2 0 0.6 0 0 0.8
dienst.csi.forth.gr:10004 5 1 0 0.4 0 0 0.5
dienst.csi.forth.gr:10005 1 1 1 1.0 1
dienst.csi.forth.gr:10006 1 2 2 2.0 2
www.sztaki.hu:2000 3 2 1 1.7 2 2 0.6
allQRs 281 8 0 0.6 0 0 0.9

Table 24 - Number of observations for all calling QRs for Table 23

secs no. obs.
0 160
1 91
2 20
3 6
4 3
5 0
6 0
7 0
8 1

According to Table 23, the FORTH indexer processed 160 out of 281 observations, or 57%, in less than
one second. 251 out of 281 observations, or 89%, were processed in less than two seconds. There were
only ten observations taking three or more seconds. The data is consistent across calling QRs: all but three
of the calling QRs had both a median and mode of zero seconds, and there were only five total observations
for the three remaining calling QRs. There is similar consistency of the mean indexer processing time, with
two means at 0.4 seconds, two means at 0.6 seconds, one at 0.7 seconds, and the remaining means for
individual calling QRs 1.0 seconds or higher, but again, these are the three calling QRs that have only five
data points among them.

6.2.2 QR views of forth indexer compared with indexer view

We’ re not sure which of the calling QRs listed in Table 23 correspond exactly to the FORTH QRs in our
study, so we cannot make any inferences about the difference between the FORTH view of itself as an
indexer and the FORTH QR view of the FORTH indexer.

28

6.3 BERKELEY indexer

6.3.1 indexer view of BERKELEY indexer

The BERKELEY QR was the only Dienst server to call BERKELEY as an indexer during the two-month
period of our study. We surmised in section 5.1.3 that the NCSTRL maintenance team excluded the
BERKELEY indexer from the BERKELEY publisher mappings due to poor performance. According to
the SearchBoolean messages in the logs, BERKELEY called itself as an indexer 227 times. There were
five Search Collection statistics messages with errors, leaving 222 observations for us to analyze. Results
are shown in Table 25 and Table 26.

Table 25 - Indexer processing time for BERKELEY indexer

calling QR no. obs max min mean median mode std dev
www-ucpress.Berkeley.EDU 222 11 0 0.7 0 0 1.6
allQRs 222 11 0 0.7 0 0 1.6

Table 26 - Number of observations for all calling QRs for Table 25

secs no. obs.
0 138
1 60
2 11
3 3
4 2
5 1
6 1
7 1
8 3
9 1

10 0
11 1

Table 25 shows the mean processing time for the BERKELEY indexer was 1.9 seconds, and Table 26
indicates that 198 out of 222 observations, or 89%, occur in less than two seconds.

6.3.2 QR views of BERKELEY indexer compared with indexer view

Table 27 - QR and indexer view of mean times for BERKELEY indexer

calling QR indexer view QR view
berkeley 0.7 7.7

In Table 27, we see that the BERKELEY QR shows mean response time of 7.7 seconds for the
BERKELEY indexer, compared with the 0.7 second mean for the indexer view. The seven second
discrepancy between the QR view and the indexer view includes indexer overhead not included in the
Search Collection messages (see Appendix C) and connection time for the BERKELEY indexer to
communicate via the http protocol with the BERKELEY QR. Seven seconds is a long time for these tasks,
but recall from Table 10 in section 5.1.3 that only 16 out of 228 calls to the BERKELEY indexer responded
to the BERKELEY QR before the search timeout. Clearly there was some sort of difficulty with the
BERKELEY indexer during the period of our study.

29

7 Query complexity

This is an ancillary topic that doesn’ t bear directly on the other work in this paper, but we include it for its
potential relevance to subsequent predictive work.

We analyzed search criteria in the search statistics log messages for all QRs in our study. In order to
quantify query complexity, we examined the split of non-fielded (i.e.; those that don’ t specify a
bibliographic category) vs. fielded (e.g.; author equals “Hopcroft”) queries for each QR, how many search
terms were used in non-fielded queries and the number of fields used in fielded queries. For details on the
log analysis, see Appendix D.

7.1 Fielded vs. non-fielded queries

Table 28 shows the total number of queries answered by each QR broken down into fielded and non-fielded
queries. See Appendix D for details.

Table 28 - Fielded vs. non-fielded queries

QR total fielded non-fielded % fielded % non-fielded
cs-tr 17238 7331 9907 43 57
ncstrl 12743 5457 7286 43 57
berkeley 7084 2499 4585 35 65
lite 796 576 220 72 28
forth 203 169 34 83 17
all QRs 38064 16032 22032 42 58

There are more non-fielded than fielded queries overall: 58% non-fielded vs. 42% fielded queries. The
QRs with the bulk of the data, CS-TR and NCSTRL, both have 57% non-fielded queries. The
BERKELEY QR has a higher percentage of non-fielded queries, 65%, while the QRs with the least data,
LITE and FORTH, have more fielded than non-fielded queries.

7.2 Non-fielded queries – number of terms

In order to quantify complexity of non-fielded queries, we examined how many terms were in each non-
fielded query -- how many words were joined by boolean operators “ and” or “ or.” Results are shown in
Table 29 and Table 30. Appendix D has further details on this analysis.

12,485 out of 22,032, or 57%, of non-fielded queries had only one search term. Since there were 38,064
total queries, 33% of the total queries were non-fielded queries of one term. From a user’ s perspective, a
one term non-fielded query is the simplest non-null query possible: a third of the queries in our study were
this simple.

For all QRs, there were only seven non-fielded queries with ten or more terms, and all of the QRs had
similar distributions of number of terms, with median and mode of one term for all except the LITE QR
with a median of two terms.

Table 29 - Number of terms in non-fielded queries

QR no. obs. max min mean median mode
cs-tr 9907 23 1 1.7 1 1
ncstrl 7286 11 1 1.6 1 1
berkeley 4585 44 1 1.7 1 1
lite 220 6 1 1.7 2 1
forth 34 3 1 1.2 1 1
all QRs 22032 44 1 1.7 1 1

30

Table 30 - Number of observations for Table 29

terms cs-tr ncstrl berkeley lite forth all QRs
1 5602 4093 2659 104 27 12485
2 2900 2220 1275 86 6 6487
3 924 695 434 22 1 2076
4 224 165 119 3 511
5 157 52 50 4 263
6 47 31 17 1 96
7 26 20 13 59
8 11 8 6 25
9 8 0 1 9

10 4 1 9 14
11 2 1 0 3
12 0 1 1
13 1 0 1
… … … …
23 1 0 1
… … …
44 1 1

7.3 Fielded queries – number of fields

In order to quantify complexity of fielded queries, we counted how many of the fields author, title, abstract
and name in the query had non-null values. Note that it is possible (but rare) for NCSTRL queries to have
values in other fields, hence the four fielded queries listed with zero fields. Results are shown in Table 31
and Table 32. See Appendix D for further details on how the logs were analyzed for this data.

Table 31 - Number of fields in fielded queries

QR no. obs. max min mean median mode
cs-tr 7331 4 0 1.2 1 1
ncstrl 5457 4 0 1.2 1 1
berkeley 2499 4 0 1.2 1 1
lite 576 3 0 1.1 1 1
forth 169 2 1 1.4 1 1
allQRs 16032 4 0 1.2 1 1

Table 32 - Number of observations for Table 31

fields cs-tr ncstrl berkeley lite forth all QRs
0 1 1 1 1 0 4
1 6196 4654 2126 494 107 13577
2 1037 727 330 78 62 2234
3 95 71 41 3 210
4 2 4 1 7

Of the 16,032 fielded queries, 13,577, or 85%, had search terms in only one field. This corresponds to 36%
of the total number of queries in our study, 38,064. The simplicity of the fielded searches also depends on
the number of search terms in each field, but we did not break down the query data to get this information.
However, since we know that a non-fielded query searches the author, title, and abstract inverted index
files, it is possible that fielded queries of one or even two fields are actually “ simpler” for the NCSTRL
indexers to process than non-fielded queries.

31

Not surprisingly, the median and mode for all QRs was one field for all fielded queries. The mean number
of fields ranged only from 1.1 to 1.4, with an overall mean of 1.2 fields for all fielded queries, indicating
the similarity of the distributions of number of terms in the queries across different QRs.

8 Conclusions and future work

We have shown that the QR view of an indexer is a useful one: there is a significant difference between the
performance of an indexer from the perspective of a QR and the indexer’ s performance from the
perspective of the indexer itself. Moreover, different QRs perceive the performance of the same indexers
differently. Lastly, the time a QR spends waiting for indexers to respond is significant, implying that the
overall system performance can be improved if this waiting time can be reduced. We are currently looking
at techniques to reduce the QR waiting time.

Dienst QRs do not have the best response records from the “ local” indexer on the same machine, and
network proximity and server speed alone are unable to explain response time differences between
indexers. We surmise that there is a temporal nature to the data, related perhaps to when exactly the QR
contacted the indexer and the snapshot states of the network, the QR server and the index server.

We believe it is possible for the QR to reduce its wait time for indexers with an adaptive algorithm that
uses past performance data to predict performance. The algorithm needs to take advantage of data gathered
at the QR and of redundancy in available indexers, and needs to be both flexible and fault tolerant. We
intend to explore the following methods of analyzing past performance data for indexers in order to make
predictions about indexer responses and response times: averages, low pass filters, and timed low pass
filters.

We also learned that many NCSTRL queries are simple, giving validity to the notion of simulating load in
NCSTRL with a simple query, as might be done in a future predictive performance study.

Acknowledgments

This work was supported by DARPA grant MDA 972-96-1-006 with the Corporation for National
Research Initiatives, DARPA contract N66001-97-C-8542, and NSF grant CDA-9529253. This paper does
not necessarily represent the views of CNRI, NSF, or DARPA. The authors are grateful to David Fielding
for his contributions.

Appendix A – details of log analysis for significance of QR wait time for indexers

Recall from Figure 5 that there are two Dienst log messages pertaining to QR processing, the User Interface
Query transaction message and the search statistics message. A Query log message (” A” in Figure 5)
indicates that a query was received at the UI. A search statistics log message (” D” in Figure 5) indicates
that the QR finished processing a query, whether or not each indexer polled responded, and the number of
seconds the QR waited for each indexer. As with all Dienst log messages, there is a timestamp indicating
when these messages were written to the log. Unfortunately, the logs do not provide any explicit matching
of these two log messages; however, the match can be inferred in most cases with a three step process.

First we analyzed all 38,069 search statistics lines in the logs for all five QR in our study, less the three
lines we were unable to parse properly. We determined the minimum number of seconds the QR waited for
all indexers to respond by examining the response times of all indexers in the search statistics log message.
If no indexer was repeated, and if there were more indexers than authorities indicated in the search, then the
wait time was set to the maximum of all the known indexer response times for this search statistics line. If
an indexer was repeated, or if there were more authorities than indexers, then we knew we had a two phase
search and used a different algorithm to come up with minimum wait time. Since the known two phase

32

searches were dropped later, we won’ t address that algorithm here. Appendix B goes into more detail on
interpreting indexer results from search statistics log messages.

We can only deduce a minimum amount of time the QR waited for indexers because we can’ t definitively
determine whether each search statistics message represents a one phase or a two phase search. In the case
of two phase searches, the QR waits until the phase one timeout, then determines which indexers to contact
for phase two, and then waits for results from all the phase two indexers or for the phase two timeout. We
do not know how long the phase one or the phase two timeout is, nor can we always tell which indexers
were polled in phase two. At this time it is only important to note that the wait time we infer from the logs
is a minimum.

The second step in the process to match Query and search statistics messages was to determine which
Query messages occurred prior to the inferred QR wait time for indexers. We looked through the daily
Dienst log containing the relevant search statistics message and culled out all Query messages occurring
prior to the inferred beginning of the QR wait time for indexers.

The third and last step in the matching process was to do a crude matching of a query argument string (or a
piece of one) against the Query messages occurring at an eligible time. If there was a single Query
transaction message occurring at an eligible time that matched the string, then we knew we had an exact
match and we kept the observation. There were 32,690 such cases. There were 5,247 cases with multiple
Query messages at an eligible time and that matched the string. We dropped all of these because we had no
way to determine which Query message should match which search statistics message. We also dropped
the 128 search statistics messages that didn’ t pass our crude string match, and the one observation that had
no Query lines in the log occurring at the right time, probably due to some logging error.

Exact matching of Query messages to search statistics messages is important for two reasons. First, we
subtract the search statistics timestamp from the Query timestamp to get the total QR processing time for a
query. Clearly if we are not confident of the match, then our data for total QR processing time would not be
reliable either. We do note that there is some QR processing occurring before the Query message is written
to the logs and after the search statistics message is written to the logs, but we treat this unknown
processing time as a) unobtainable and b) insignificant compared to the known QR processing time. The
second reason exact matching of Query messages to search statistics messages is important is because we
want to examine how much of the total QR time is spent waiting for indexers. For each observation with
an exact match, we computed this by dividing the time the QR waited for indexer responses by the total QR
time.

We noticed that in twelve instances, the logs indicated that a QR had waited more than two minutes for an
indexer to respond. We also had 25 instances of QR processing time (QR total time – QR wait time for
indexers) greater than two minutes. This small number of observations with large times would have
skewed our results, so we ignored these search statistics lines for the purposes of determining the
significance of network costs to the QR.

We also dropped 321 exact matches that were known two phase searches and ended up with 32,352 search
statistics lines for which we could not deduce two phases in the search, which matched exactly one Query
message, and which did not have a wait time or a QR processing time greater than two minutes.

We were surprised to discover that in some cases the logs had timestamps out of order. This is most likely
caused by one Dienst process locking the log file while another is waiting to write to it. In most cases,
these timestamps were only a second or two off, but in the case of the FORTH log for April 04, 1997, there
were so many timestamps vastly out of order, we decided to drop the entire FORTH log for that day from
our analysis.

33

Appendix B – details of log analysis for QR view of indexer performance

Indexer performance from the QR view is determined from search statistics log messages (see “ D” in
Figure 5). In this log message indexer results are separated from the query arguments. If we were unable
to separate the query arguments from the indexer results, as happened in three instances out of 38,069, we
ignored the search statistics message.

Indexer results have four parts in most cases: a hostname, a port number, the number of hits, and the
response time in seconds (as a floor value). Sometimes there is a fifth part, which is an error message of
some kind. Here are some examples:

host port 5 7
host port 0 5 The+search+keyword+”li”+matched+too+many+words,+try+a+longer+string
host port –1 1 Invalid+response+from+server:+-500+
host port –1 Server+Timed+Out
host port –1 6 Could+not+connect+to+its+server

We counted the first three instances in the above examples as responses (successful transactions) because
the QR got a responsefrom the indexer. In the last two cases above, the QR received no communication
from the indexer (unsuccessful transactions), so we counted these as non-responses.

We tracked responses and non-responses for each indexer for each QR. In the case of responses, we also
tracked the response times. As with the log analysis of the significance of QR wait time for indexers, we
drop indexer response times greater than two minutes. However, we do not drop ALL indexer observations
from the search statistics lines with these large response times: only the particular indexer observation is
dropped. This means that the individual indexer performance data may have more observations represented
in this context than the collective indexer performance data represented in the context spelled out in
Appendix A.

We make no distinction between one phase and two phase searches here, so again, we are looking at more
data than was ultimately studied via the methods in Appendix A. It is true that the search timeout affects
response rate, as waiting longer may allow more indexers to respond before the timeout. But since we have
no way to infer the search timeouts accurately from the logs, and since the timeout values could have
changed during the two month period of our study without our knowledge, we do not concern ourselves
with the issue of whether phase two search timeouts are different than phase one search timeouts. This is
the only possibly relevant issue from the standpoint of individual indexer performance from the QR view.

The response times indicated in the logs represent the time between when the QR received a response from
an indexer and when the Dienst QR started listening for responses from indexers (as soon as it has finished
sending SearchBoolean messages to all indexers for a query).

Note that we ignored a QR’ s demotion and promotion of indexers (see section 2) because we examined
response rates only when the QR was attempting to contact an indexer – the QR had already chosen the
indexer for query processing.

Appendix C – details of log analysis for indexer performance

Indexer processing time is determined from Search Collection log messages (see “ C” in Figure 5). These
messages are only present in Dienst logs generated by Dienst code version 4-1-0 and above, which
excluded the LITE logs. At first we had hoped to match Search Collection log messages with
SearchBoolean log messages (see “ B” in Figure 5), but since there is no way to be sure of correct
matching, we ultimately abandoned this idea.

34

We dropped 629 Search Collection messages with errors from the CS-TR logs and 5 Search Collection
messages with errors from the BERKELEY logs. We were unable to detect a prior SearchBoolean
message to match with a Search Collection message in one instance for the CS-TR logs – we left in this
vestigial logic from our first approach to this analysis. All other Search Collection messages were
analyzed – we noted the calling QR and the number of seconds indicated to process the SearchBoolean
Dienst request.

The times in the Search Collection messages do not fully capture the indexer processing time, as they don’ t
reflect a) the time to accept the socket connection to receive the http protocol request, b) the time to fork a
Dienst process to handle the indexer request, c) the time to prepare the arguments for processing, or d) the
time to return the results to the calling QR via a socket connection. Search Collection message times
basically reflect the time to actually search inverted indexes at the Dienst server.

Appendix D – details of log analysis for characterization of queries

In order to examine query complexity in NCSTRL, we examined all queries answered by the five QRs in
our study -- we analyzed search criteria in search statistics log messages (see “ D” in Figure 5). Of the
38,069 search statistics lines in the logs, we analyzed queries for 38,064 of them – five lines were rejected
because we could not separate search criteria from the indexer data or because the search criteria was
corrupted.

After separating the query strings from the indexer statistics, we broke the search criteria into name-value
pairs. Non-fielded NCSTRL queries in search statistics messages are distinguished by having the same
value for “ title,” ” author” and “ abstract” fields. When we identified a non-fielded query, we counted how
many words were joined by boolean operators “ and” or “ or” or another representation of these boolean
operators, such as “ &” .

The queries that did not have the same value for “ title,” “ author” and “ abstract” fields were non-fielded
queries. We counted the number of fields in fielded queries with field names “ author,” “ title,” “ abstract,”
or “ name.” It is possible for valid NCSTRL queries to have values in other fields as well, but the vast
majority only uses these four field names.

References

[1] “ Information Retrieval (Z39.50): Application Service Definition and Protocol Specification,”
ANSI/NISO 1995.

[2] C.-C. Chang and H. Garcia-Molina, “ Evaluating the Cost of Boolean Query Mapping,” presented
at Second ACM International Conference on Digital Libraries, 1997.

[3] W. Chu, “ Optimal File Allocation in Multiple Computer Systems,” IEEE Transactions on
Computers, October , 1969.

[4] J. Davis and C. Lagoze, “ Dienst protocol version 5.0,” 1997;
http://www.cs.cornell.edu/lagoze/dienst/protocol5.htm.

[5] L. Gravano, C.-C. Chang, H. Garcia-Molina, and A. Paepcke, “ STARTS: Sanford Proposal for
Internet Meta-Searching,” presented at ACM SIGMOD International Conference on Management
of Data, 1997.

[6] L. Gravano, H. Garcia-Molina, and A. Tomasic, “ The Effectiveness of GlOSS for the Text-
Database Discovery Problem,” presented at ACM SIGMOD International Conference on The
Management of Data, 1994.

35

[7] C. Lagoze, “ From Static to Dynamic Surrogates: Resource Discovery in the Digital Age,” in D-
Lib Magazine, 1997.

[8] C. Lagoze and D. Fielding, “ Defining Collections in Distributed Digital Libraries,” D-Lib
Magazine, November 1998.

[9] C. Lagoze, D. Fielding, and S. Payette, “ Making Global Digital Libraries Work: Collection
Service, Connectivity Regions, and Collection Views,” presented at ACM Digital Libraries '98,
Pittsburgh, 1998.

[10] C. Lagoze, E. Shaw, J. R. Davis, and D. B. Krafft, “ Dienst Implementation Reference Manual,”
Cornell University Computer Science, Technical Report TR95-1514, May 1995.

[11] R. Lasher and D. Cohen, “ A Format for Bibliographic Records,” Internet Engineering Task Force,
RFC 1807, June 1995.

[12] B. M. Leiner, “ The NCSTRL Approach to Open Architecture for the Confederated Digital
Library,” D-Lib Magazine, December 1998.

[13] D. D. E. Long, J. L. Carroll, and C. J. Park, “ A Study of the Reliability of Internet Sites,”
presented at Proceedings of the Tenth Symposium on Reliable Distributed Systems, 1991.

[14] C. L. Viles and J. C. French, “ Availability and Latency of World Wide Web Information Servers,”
Computing Systems, 8 (1), pp. 61-91, 1995.

