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Abstract—This paper presents a middleware for providing
a mobile ad hoc network with tamperproof provenance-aware
storage, even when some fraction of devices can be Byzantine.
Important considerations include fast propagation of updates,
data consistency, and low power consumption. Leveraging en-
tanglement techniques from blockchain protocols but carefully
avoiding high power consumption and reliance on continuous
network connectivity, we design new distributed data struc-
tures that can support useful distributed applications such as
emergency response and IoT networks. Using both trace-based
simulations and experiments with an Android-based prototype,
we demonstrate the practicality of such a middleware.

I. INTRODUCTION

Recently, there is renewed interest in mobile ad hoc
networks, given new applications that cannot rely on con-
tinuous internet availability. Such application areas include
emergence response, self-driving cars (Vehicular Autonomous
Networks), distributed robotic applications, digital farming,
and the Internet-of-Things (IoT). Such applications require
a convenient and secure communication and storage infras-
tructure. It is also often desirable that such systems support
accountability, so that events can be traced the causes of
actions can be attributed [34].

Blockchains are attracting considerable research attention as
a distributed computing model with the potential to revolution-
ize finance, transport, and supply chain management [3]–[5],
[7], [20], [22], [29], [32]. Blockchains are desired for their
decentralization, consistency, and tamperproof properties and
seem at the face of it ideal to address the concerns raised
above. However, existing blockchain protocols heavily use
power and networking resources by design. The heavy use of
power prevents deployment on IoT devices while the heavy use
of networking prevents deployment in partitionable networks.

This paper introduces a new blockchain design called
Wayfinder designed specifically for mobile ad hoc networks.
The blockchain’s integrity is based on a combination of
Conflict-free Replicated Data Types (CRDTs) [28] and a
guaranteed “happens-before” order on transactions that operate
on one or more CRDTs. CRDTs allows continuous availability
despite network partitions. Moreover, Wayfinder guarantees
that transactions are tamperproof—once a correct device has
acted on transaction it can no longer be lost.

Wayfinder is not suitable to supporting cryptocurrencies:
it can detect but not prevent double-spending. However, we
believe that for many applications the CRDT consistency
properties combined with tamperproofness is sufficient. While
Wayfinder only provides a partial “happens-before” ordering

on operations, Wayfinder can be used to hold devices and their
users accountable because blocks are tamperproof. Through
accountability, Wayfinder incentivizes users to behave well.
Also, the properties of CRDTs prevent inconsistencies in the
data structures used by applications.

The contributions of this paper include the following:
• Design of a middleware for providing manet devices in

low-power and partitionable network environments with
tamperproof provenance-aware storage, even when some
fraction of devices can be Byzantine.

• Analysis of the system design that allows Wayfinder
to operate in low-power and network partition-tolerant
environments on many different hardware configurations.

• Experiments evaluating performance differences between
a mining-based protocol and Wayfinder in low-power and
network partitionable environments.

• Discrete event time simulations using realistic traces that
evaluate the scalability of Wayfinder.

The remainder of the paper is organized as follows. In
Section III, we describe the design of Wayfinder, especially
its tamperproof provenance-aware storage that can tolerate a
fraction of Byzantine devices. We describe Wayfinder’s imple-
mentation in Section IV and applications built and deployed
using Wayfinder. In Section V, we evaluate the scalability of
Wayfinder and compare its performance to a mining based
approach. We discuss related work in Section VI and conclude
in Section VII.

II. MOTIVATION

Today’s blockchain protocols are resource-hungry and
manet devices generally are resource-constrained. So-called
permissionless blockchains use much energy. Individual par-
ticipants (“miners”) have to continuously work to attempt
to solve so-called cryptopuzzles. Bitcoin currently consumes
66.7 TeraWatt-Hours in aggregate per year, about the rate of
consumption of the Czech Republic, a modern country with
over 10 million citizens. 60-80% of revenue from Bitcoin goes
back to paying the electricity that it consumes and is pure
waste, not to mention the greenhouse gases produced. Even
if manet devices had access to a cheap source of continuous
energy (say wind or solar) and could compete with the ASIC
devices that Bitcoin miners deploy, their participation in a
permissionless blockchain would further explode the amount
of energy waste and possibly pollution.

Both permissionless and permissioned blockchains require
significant networking resources. Typically every transaction
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has to be stored by at least half of the participants before
it can become finalized and actionable. But this knowledge
dissemination requires a quadratic communication load, as
each participant has to learn if most of the other participants
has stored the information. This is slow and scales terribly.
Permissionless blockchains typically use a gossip network
for this, while permissioned blockchains, based on Byzantine
consensus or voting protocols, will have to use some kind
of dissemination tree to be able to scale to more than a few
hundred participants. But even so, the protocols would likely
not scale to more than a few thousand participants, well shy
of the potential number of manet devices.

Blockchains do not only consume a lot of network band-
width and require that the network is available continuously.
In the case of permissionless blockchains, network partitions
could lead to so-called “forks” in which the blockchain splits
into multiple separate chains and inconsistencies would arise
that are difficult to reconcile. Also, such forks could drastically
reduce the rate of transactions, as in each partition there would
be fewer participants to solve the cryptopuzzles while the
difficulty of those puzzles take significant time to adjust. In
the case of permissioned blockchains, a network partition that
isolates more than a third of participants would bring the
blockchain to a halt.

Unfortunately, manet devices are often deployed in chal-
lenging conditions and may even be mobile, and their con-
nectivity may be intermittent. In a blockchain, the rate of
transactions is generally independent of the number of par-
ticipants in the blockchain. In Bitcoin, if you double the
number of miners, the transaction rate remains constant but
the difficulty of the cryptopuzzles increases. So even if that
doubles the amount of energy waste and quadruples the load
on the network, the rate of storage growth remains the same.
However, each manet device may generate data, and all this
data can be tremendously useful. If you double the number
of manet devices, you double the rate of data generated.
Ideally all this data should be stored for longitudinal studies.
Moreover, the data may be needed long-term for chain of
custody.

This paper demonstrates a design, implementation, and
initial evaluation of a blockchain specifically for the low-
connectivity, low-power, high data rate manet setting. The
blockchain techology should be tamperproof, but it should
also tolerate network partitions well and use a low-power
consensus mechanism. Instead of resolving forks, it will need
to permit them, resulting in a Directed Acyclic Graph (DAG)
structure of the blockchain rather than a linear one. There
are other blockchain designs that have embraced a DAG
structure. However, they do so to increase the transaction rate,
not to tolerate partitions. The cost of this partition tolerance
is that the types of applications that can be implemented
with the blockchain are limited to ones that only require a
partial ordering of logged events. To this end, we will explore
applications based on Conflict-free Replicated Data Types
(CRDT) that can work with partial orders.

III. SYSTEM DESIGN

In Wayfinder, devices store state and communicate through
a shared storage layer. Because the network is partitionable
but consistency is still desired, Wayfinder embraces Conflict-
free Replicated Data Types (CRDTs) [28]. A CRDT has the
property that two states of a CRDT can be merged into a new
CRDT with intuitive semantics. A good example of a CRDT
is an append-only set. Elements can be added concurrently in
partitions of a network, and upon reconciliation the sets can be
merged by taking the union of the sets. There is an extensive
variety of CRDTs defined in the literature.

Wayfinder maintains a partial ordering between operations
and can define CRDTs that exploit this partial ordering.
A Wayfinder CRDT (WCRDT) is an object whose state is
uniquely determined by a partially ordered set of operations.
Wayfinder maintains a block DAG, that is, a Directed Acyclic
Graph of blocks. Each block contains a transaction, which
is a sequence of operations on possibly multiple WCRDTs.
The order of operations within a block and the directed
edges between blocks encode the partial order between all
operations. More precisely, an operation o1 on a WCRDT is
before another operation o2 if and only if:

• o1 and o2 are part of the same transaction (and therefore
in the same block) and o1 comes before o2 in the
transaction; or

• o1 and o2 are in different transactions and there is a path
of the block containing o2 to the block containing o1.

Therefore, the Wayfinder block DAG (WBD) exactly deter-
mines the state of each WCRDT stored in it.

The WBD is maintained by a collection of devices, but
not all of them are expected to behave correctly—they may
crash or even deviate from prescribed protocols arbitrarily (i.e.,
Byzantine behavior). Maintaining the integrity of the WBD is
therefore a major challenge. Devices can try to create cycles
in the block DAG or add new blocks relentlessly and create
a block DAG that wildly branches instead of approximating
a linear blockchain. Another complexity is how to ensure
tamperproofness: blocks should never get dropped from the
WBD.

To manage the complexity of Wayfinder, it has three tiers
of abstraction. From top to bottom, these tiers are:

1) The Application Tier provides an interface for applica-
tions to create and use smart contracts (Section III-A2).
This layer contains a CRDT library including a new
variant of 2P sets (Section III-A1).

2) The Block DAG Tier maintains the WBD with byzan-
tine fault tolerance.

3) The Reconciliation Tier gives an efficient reconciliation
algorithm among devices.

A. Application Tier

CRDTs enable devices to independently update their states
without any remote synchronization and guarantee consistency
as long as their concurrent operations commute.
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1) 2P+ Sets: A simple example of a CRDT is a 2P-Set [28].
It is implemented by two append-only sets: an ADD set and
a REMOVE set. The set difference between these two sets
determines the current state of the CRDT state machine. Note
that in a 2P-set, once an element is removed, it can never be
added again.

Leveraging causal relationships between operations, we
refine the notion of a 2P set and introduce a new CRDT, a
2P+ set. When an add and delete on the same element are
executed concurrently in normal 2P sets, then delete wins.
However, if an add happens causally after a delete of the same
element, the element is added back to the set, unlike a regular
2P set. This can be formalized as follows: with each +x (add
x) and −x (remove x) operation in the causal graph of 2P+
operations (where each operation may depend on a set of other
operations), we associate an add set and a delete set. They are
defined as follows:

+x.add = ∪
t∈+x.deps

t.add ∪ {x}

+x.delete = ∪
t∈+x.deps

t.delete\{x}

−x.add = ∪
t∈−x.deps

t.add\{x}

−x.delete = ∪
t∈−x.deps

t.delete ∪ {x}

The first of these specifies that the add set after some
particular add(x) operation is the union of the add sets of its
ancestors and x itself. The others are defined similarly. The
application-visible content of the 2P+ set after an operation is
then the difference between its add set and its delete set.

The 2P+ can be further generalized in various ways. For
example, it is trivial to define a 2P− set in which addition wins
instead of delete to resolve concurrent conflicting operations.
Going further, we can define nP+ and nP− sets for values
of n ≥ 2. One can think of these as prioritized sets, with n
priorities. The priority of elements can be changed simply by
moving them. We have found these very useful for building
applications (Section IV).

We envision doing similar generalizations for a variety of
other existing CRDT objects.

2) Smart Contracts: One defining feature of blockchains is
the smart contract. Wayfinder can also support a smart contract
mechanism. Wayfinder smart contracts are programs that act
upon WCRDTs and are themselves stored in WCRDTs in the
WBD. Each smart contract tracks the state of certain other
WCRDTs maintained by the WBD and takes actions such as
accessing a local database on the device or operating physical
actuators. A challenge is how to implement such secure
interactions between the WBD and the physical environment in
which it is deployed. To solve this, we plan to leverage Trusted
Execution Environments (TEE). A TEE running on an manet
device can provide secure sensor readings, including possibly
GPS location and time. We show two toy applications built on
top of Wayfinder smart contracts in Section IV.

B. Block Tier

In this section we describe the defenses built into the WBD
design to keep it manageable and to encourage good behavior
by devices.

1) Ensuring an Acyclic WBD: The WBD is maintained by
a collection of devices, each identified by a public key. Each
block in the WBD is created and signed by a device and
is uniquely identified by a cryptographic hash. Each block
contains the hashes of its ancestor blocks, exactly forming
the edges in the DAG. The properties of cryptographic hashes
prevent cycles in the WBD. A correct device will only accept
(i.e., store) a block if it has all the ancestor blocks. One or
more blocks do not have ancestor blocks—it is up to each
device to decide which of those blocks it will accept. Typically
a device is configured with one such block, called the genesis
block, and thus there is a path from each block on the device
to the configured genesis block.

2) Permissioned Growth: The WBD contains an authoriza-
tion mechanism. Each WCRDT defines an Access Control
Matrix (ACM) that itself must be a WCRDT. Its state is
uniquely determined by the partially ordered set of operations
on the ACM contained in the WBD. In its simplest form, an
ACM is a 2P+ set that determines which devices are allowed
to operate on the WCRDT and its ACM. A device is authorized
to delegate rights that it has to other devices, rather than create
new rights.

There are special WCRDTs called “registries” that describes
a set of WCRDTs maintained by the WBD. A registry defines
operations to add and remove WCRDTs from that set and
also contains an ACM specifying the devices that may execute
those operations. A registry is always created in a genesis
block.

In regards to WCRDT operations, an operation is permis-
sible in a block if the author has a valid standing within the
ACM and the operation is in the set of allowable operations. A
block with a disallowed operation is considered invalid. Since
an operation is signed by its owner, this is considered a Proof-
of-Misbehavior (PoM) of that owner.

Note that while it may appear that the WBD is a permis-
sioned block DAG, any device can create a new self-signed
genesis block and participate. Two disconnected WBDs can be
connected by creating transactions that depend on blocks in
both WBDs. However, each individual WCRDT is protected
through the relevant ACMs.

3) Limiting Branching: Ideally, the WBD would be strictly
linear like a conventional blockchain, providing a total order
on all operations. Given the partitionable nature of the environ-
ment, this goal is not achievable while allowing progress at all
times. However, we impose various constraints to encourage
the WBD to conform to a shape which is “long and thin”.
In particular, for any two blocks of a correct device, there
is always a path from one of the blocks to the other. In
other words, a correct device does not generate concurrent
transactions.
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Fig. 1: Three valid WBDs. Each block displays a 4 digit unique hash identifier and the owner device in the lower right corner.
(a) and (b) are two snapshots that show that device z is misbehaving because it has created two blocks (3503 and 3273) that
do not depend on one another. As a result, the WCRDTs in the WBDs may have diverged. In order to merge the WBDs, both
x and y have to add a PoM for z before they can create blocks that depend on both blocks from z. (c) shows a merged WBD
with additional blocks from x and y added. Neither x nor y has concurrent blocks. z is no longer able to add blocks to the
end.

On the other hand, a Byzantine device might create con-
current transactions. Concurrent blocks are another form of
PoM. The evidence of this misbehavior is traceable back to
the signature the device used to sign these blocks. A PoM can
be used as an operation to remove a device from all ACMs in
the WBD. See Figure 1 for an illustration.

We impose the following additional constraints on the
WBD to force devices to recognize PoMs and prevent further
operations from the delinquent devices:

• each device is only allowed to add one PoM operation
for any other device;

• a block can only have concurrent ancestor blocks of some
device if the path to each such block contains a PoM
operation for that device.

A PoM creates a chain of events within the system. First, the
access rights to any WCRDT that the device had are revoked.
This includes any CRDTs that the device created. Additionally,
the PoM revokes all delegated rights the device has granted to
other devices. PoMs incentivize correct behavior by devices
and their effect cannot be circumvented by devices delegating
their rights to other, possibly colluding, devices. Devices may,
however, have received the same rights from other devices and
those rights will remain intact.

We rejected an alternative design in which blocks from
misbehaving devices are automatically removed from the
WBD. The reason for our choice is that correct devices may
already have acted upon operations from those devices, and
those actions may be difficult or even impossible to undo.

4) Tamperproving: Each device maintains an instance of
a WBD and opportunistically gossips with other devices to

disseminate blocks. A device will not try to reconcile with
another device if it has a PoM for the other device. A correct
device never drops blocks, but Byzantine devices may drop
blocks from their WBDs. Also, even devices that do not drop
blocks may crash or break in some unrecoverable fashion.
This poses a problem, as applications may rely on blocks
on the Wayfinder block graph to be tamperproof. Digital
signatures prevent blocks from being modified, but not from
being dropped. A block is tamperproof only if it is stored on
a correct device. Note that because correct devices only store
blocks if it stores all its ancestors blocks, a tamperproof block
implies that its ancestors are tamperproof as well.

The system WBD is defined to be the collection of tam-
perproof blocks. It is a strictly growing, but virtual WBD.
Applications typically will take actions only on the basis of
what they know about the state of the system WBD, not the
WBD instances in the devices themselves. But an application
cannot know exactly which devices are correct, and thus
cannot directly determine which blocks belong to the system
WBD.

To this end, Wayfinder defines a set of so-called Survivor
Sets [14], which are subsets of devices that are assumed to
have at least one correct device. An additional assumption is
that at least one survivor set consist of only correct devices.
For example, if there is a fixed set of devices and there is an
assumption that at most t devices are faulty and the majority of
devices is correct (i.e., there are at least 2t+ 1 devices total),
then the survivor sets could be exactly those sets that have
more than t devices. However, we do not require that survivor
sets intersect. Such a requirement would be unnecessary and
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make it harder to make progress when network partitions
occur. The collection of survivor sets can either be a globally
configured entity or maintained by a WCRDT in the WBD
itself.

A “witness” is a cryptographic hash of a block signed by a
device, certifying that that device stores a copy of that block
and all its ancestor blocks. A witness therefore acts not only on
the identified block but also on all its ancestor blocks. A “Proof
of Witness” (PoWi) for a block is a set of witnesses for the
block, one from each device in a survivor set. (Note that PoMs
for any of those devices do not invalidate the PoWi because at
least one device in the survivor set is correct by assumption.)
A PoWi guarantees, by the assumptions on survivor sets, that
the block and its ancestors are tamperproof and therefore
in the system WBD. Also, by the assumption that at least
one survivor set consists of only correct devices and further
assuming that blocks and witnesses eventually disseminate to
all correct devices (Section III-C), it is always possible to
construct a PoWi for a tamperproof block.

Each correct device maintains a monotonically growing set
of witnesses for its blocks. Note that a device needs to maintain
only one witness for each other correct device as there are no
concurrent blocks for correct devices. There can be multiple
“concurrent witnesses” for blocks from the same Byzantine
device. A correct device only stores witnesses for blocks that it
stores. When two devices communicate they reconcile not only
their local WBDs but also their witness sets (Section III-C).
Note that both the WBD and the witness set of a correct device
grow monotonically.

5) Checkpointing: So far we have assumed that all devices
have unlimited storage. Besides the problem that this might be
an unrealistic assumption, it also leads to potentially excessive
amounts of communication needed to reconcile WBDs.

To solve this problem, a WCRDT can support checkpoint
operations that summarizes its state in a way that still allows
partitionable operation. In particular, checkpointing preserves
the ability to compute a unique state from the partially ordered
operations on the WCRDT. Most WCRDTs already natively
support this as they do not need to maintain the history of
operations in order to compute the state. For example, in 2P+
sets, it is only necessary to store the add set and the remove
set—not their histories. The problem is how to ensure that a
Byzantine device does not create invalid checkpoints.

PoWis can also solve this problem. A correct device can
verify checkpoint operations locally and will not accept a
block that contains an invalid checkpoint operation (although
such blocks can be used as PoM). So a block containing a
checkpoint operation with a PoWi can be trusted. This allows
devices to potentially garbage collect blocks to reduce storage
and communication. In particular, blocks that are no longer
needed to compute the state of any WCRDT can be safely
dropped.

6) Rate Limiting: A Byzantine device can try to create
WCRDTs and/or operations on those WCRDTs at an unlimited
rate. Even if we limited the rate at which a device can add
operations to the WBD, it could authorize a never ending

stream of new devices to add more operations (aka a Sybil
attack).

Taking advantage of the fact that applications usually create
transactions at a known maximum rate, we employ the follow-
ing solution currently: each WCRDT specifies at what rate
each device is allowed to add operations to the WBD. When
a device authorizes another device, it must split its rate with
the new device. Therefore, the two devices together cannot
increase the rate at which the WBD grows.

To support this, we assume that devices have clocks that
are loosely synchronized with real time. Each block has a
timestamp. If b1 is an ancestor block of b2, then the timestamp
on b1 must be before that of b2. Also, correct devices only
consider blocks that have timestamps before the time on their
clocks. Each device can compute the rate at which other
devices are adding operations to a WCRDT and can use this
to detect devices exceeding their rates. Such detections can
be used as PoMs as well because they can be verified by any
device.

7) Summary: Byzantine devices can try to mount three
types of attacks: equivocation by submitting concurrent opera-
tions, Denial-of-Service by overwhelming the system with new
blocks, and removing blocks that correct devices have already
accepted by acting as witnesses but then dropping the blocks.
Conventional blockchains prevent these either by making
blockchains permissioned—controlling who can participate—
or using incentive-based mechanisms such as Proof-of-Work
and Proof-of-Stake.

Wayfinder is a permissionless blockchain and allows any
device to join, although it places restrictions on who can do
certain operations and at which rates on certain WCRDTs.
Wayfinder cannot prevent Byzantine devices from equivocat-
ing by creating concurrent blocks because of our requirement
to maintain availability in partitioned networks. However, such
concurrent updates from the same device are detectable and
result in such devices losing their access rights, providing
incentive not to mount such attacks. Sybil attacks by delegat-
ing rights to other existing devices or even fake devices can
prevent detection. However, WCRDTs remain consistent even
in the presence of concurrent operations. Also, taken together,
a Byzantine device and its Sybils cannot exceed the rate of
block creation assigned to that device. Proofs-of-Witness and
the properties of Survivor Sets prevent Byzantine devices from
deleting blocks that correct devices have already accepted.

C. Reconciliation Tier

Wayfinder’s Reconciliation Tier is responsible for reconcil-
ing block DAGs and witness sets between devices. In a mobile
ad hoc network, reconciliation is initiated every time two
devices are within each other’s communication radius. This
is different from a static network infrastructure where devices
gossip, or periodically synchronize updates, with one another.
As the period when two devices are within communication
range may be limited, reconciliation must be fast. In the
following section, we discuss approaches we took to address
this challenge.
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1) Reconciling WBDs: One approach to reconcile the
WBDs of two devices is to exchange all blocks. This Send
All Blocks Protocol (SABP) can be improved by devices also
exchanging acknowledgments to prevent sending blocks that
have already been acknowledged. While simple and reliable,
it is inefficient as devices are generally expected to have many
of the same blocks already and thus the protocol may end up
sending blocks that the peer device already stores.

Wayfinder could use an existing set reconciliation proto-
col [21] to reconcile blocks. However, there are two reasons
why we have rejected this for WBD reconciliation. First, set
reconciliation protocols do not exploit existing structure in
WBDs that can simplify and optimize reconciliation. Second,
we exchange blocks in oldest-first order to ensure that the
communicating nodes can make progress. Otherwise, some
transferred blocks would not be able to be applied to a device’s
WBD upon receipt and would incur delays as devices waited
until all of the block’s ancestors have been received as well.
The second issue could easily be exploited by Byzantine
devices to waste precious communication bandwidth.

One approach that exploits the structure of WBDs is what
we call the Frontier Set Reconciliation Protocol (FSRP). In
this protocol, the devices start out with sending only the source
blocks in their WBDs, that is, those blocks that no other blocks
depend on. On receipt of such a block b, there are three cases:

1) the device has b in its WBD. In this case, it sends to the
peer device all blocks that depend on b.

2) the device does not have b but it has all the blocks that b
depends on. In this case, the device adds b to its WBD.

3) the device is missing blocks that b depends on. In this
case it buffers b and requests from the peer the missing
blocks.

The FSRP protocol avoids most of the duplication that
occurs with the SABP protocol. The protocol can be further
optimized by, in the first round, only sending the cryptographic
hashes of the source blocks, thus completely eliminating
sending blocks to a device that already stores them.

A problem with FSRP is that missing blocks are sent
in most-recent-first order. On receipt those blocks generally
cannot be accepted until a block for which the device already
stores the ancestors. At that point all blocks can be added to
the WBD. But should the communication link break before
then, the buffered blocks are useless and communication
was potentially wasted. While perhaps unlikely in practice,
this effect can be exploited by Byzantine devices to send
endless strings of useless blocks to a device. We solve this
by exchanging block manifests that only contain their hash
and dependencies. On receipt of a block manifest for which
the device stores the dependent blocks, the device requests the
content of the block from its peer.

FSRP is slow because it goes through phases rather than
streaming blocks one after another. The final protocol that
we will describe is the Hashed Vector Timestamp Protocol
(HVTP). In this protocol, we exploit that correct devices do
not generate concurrent blocks, and therefore blocks from
a correct device can be identified by a simple counter. In

particular, if there were no Byzantine devices, devices could
simply exchange Vector Timestamps consisting of one such
counter per device. On receipt, a device can easily determine
which blocks its peer is missing and send it the missing blocks
in oldest-first order, allowing the peer to accept each block on
arrival without the need for buffering.

With Byzantine behavior we have two problems to deal
with. One is that if two correct devices have identical Vector
Timestamps, this does not imply that they have the same
WBD. The second problem is that, upon receipt of a block, it
is no longer guaranteed that the device stores the ancestors of
the block.

The first problem is resolved by enhancing a vector times-
tamp with a cryptographic hash in each entry. The hash for a
device is computed by collecting the most recent blocks for
that device (there may be multiple if the device is Byzantine),
sorting the blocks into a list, and computing a hash over the list
of blocks where both the list and hash can be computed and
maintained incrementally. Now, if two correct devices have the
same Hashed Vector Timestamps they are guaranteed to have
the same WBD.

If devices detect that they do not have the same WBD
either because they have different Hashed Vector Timestamps
or because receiving a block for which they have no ancestor,
they could revert to one of the other protocols. The current
implementation of Wayfinder uses Hashed Vector Timestamp
but reverts to FSRP if the protocol fails to reconcile on its
own.

2) Reconciling Witness Sets: If a device maintained all
witnesses, witness sets could be efficiently reconciled with
existing set reconciliation protocols. However, a witness for
a block also counts as a witness for all ancestor blocks,
greatly reducing the storage that is needed for witnesses
and making set reconciliation protocols redundant. Today,
we simply exchange the witness sets. This means that some
devices may end up storing witnesses for blocks that they do
not store. If space is tight, the device can drop such witnesses.
Correct devices never send witnesses for blocks they do not
store.

IV. WAYFINDER PROTOTYPE

In order to implement Wayfinder into a framework that
could be installed on manet devices as well as on servers, we
chose Java for our code base. One goal was to demonstrate
that two concurrently running applications could rely on the
same underlying WBD. So, we developed two applications for
emergency first response: a Task List for command and control
and an Annotative Map (see Figure 2). The Task List app
allows users to post and complete prioritized jobs on a shared
list. The Annotative Map app allows users to place prioritized
annotations on a shared map. Both applications use 2P+ sets
(Section III-A1) and run with or without network infrastructure
in a completely disconnected environment. These applications
run on smartphones, servers, desktops, and potentially on IoT
sensor devices.
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(a) Task List (b) Annotative Map

Fig. 2: Screenshots of sample applications.

In the remainder of the section, we discuss the layered
framework that supports these applications while also mini-
mizing power consumption. First, we will describe the inter-
faces applications depend on in Section IV-A, followed by the
summary of the Publish-Subscribe layer that separates the Ap-
plication and Block layers in Section IV-B. Next, we present
the Block layer and conclude with Wayfinder’s network layer
in Section IV-D which introduces the techniques used to
communicate information in disconnected, intermittent, and
low-bandwidth environments.

APP APP APP

C H A N N E L

1 2 3

5

0

6 7

4

Application
Sec.	III.A	&	IV.A

Pub/Sub
Sec.	IV.B

Block	DAG
Sec.	III.B	&

IV.C

Network
Sec.	IV.D

Reconciliation
Sec.	III.C

Fig. 3: Layer Structure for Wayfinder System

A. Application Layer

To interact with Wayfinder, we expose four methods:

• registerApplicationDelegator: enrolls an ap-
plication into a subscription service. The function takes
an application context object containing channel (Sec-
tion IV-B) information and a subscription handler to be
called for appropriate transactions.

• addTransaction: loads a transaction into the sub-
scription service. The method takes an application con-
text, the set of concerned channels, the transaction pay-
load in bytes, and dependent transactions within the
application scope. Next, the information is translated into
a Wayfinder transaction. Lastly, the method serializes and
sends the transaction to the underlying block layer.

• getWitnessesForTransaction: given a transac-
tion identifier, returns the set of device identifiers that
are known to have a copy of the transaction.

A developer connects the application to the Publish-
Subscribe layer. To begin the process, a developer invokes
the registerApplicationDelegator() to enroll a
handler for transaction notifications based on subscription
channels of interest. Similar to basic publish-subscribe models,
clients are notified when channel-specific transactions arrive.

To publish transactions to other applications, clients use
addTransaction(). The transaction is sent to the ap-
propriate channels with a list of dependent transactions. The
function also triggers an arrived event callback within the
subscription service. This optimization reduces client-side
transaction latency and improves the user experience.

Applications vary in security and safety requirements
for distributed environments. Therefore, we expose a
method that allows a client to know which witnesses
have verified a particular transaction by calling
getWitnessForTransaction(). With this method, a
developer can leverage the notion of Survivor Sets to devise
what witnesses are required before a transaction can be acted
upon. Moreover, this method can also help determine how far
sensitive information has traveled within a particular network.

Additionally, the application layer has the responsibility of
correctly interpreting the data contained within transactions.
Therefore, a CRDT library was created for client use. The
library presents a set of data structures and the allowable
operations upon them. Entries contained therein have a guar-
anteed consistency after reconciliation and a correct causal
relationship between local transactions.

B. Pub-Sub Layer

The Publish-Subscribe, or Pub-Sub, layer is a multiplexing
layer between the application layer and the underlying block
layer. One advantage of having this layer is that multiple
applications now can cohabitate on a device while using the
same WBD. The application and Pub-Sub layer communicate
via channels and transactions. A channel is similar to a read &
write queue, where application can publish (write) new trans-
actions to and subscribe (read) incoming transactions from that
channel. The mapping from applications to channels is many-
to-many. An application can subscribe multiple channels.

7

XW

XW: We haven't mentioned channel yet.



PayloadTimestampDependenciesTransaction
IDChannel

Fig. 4: Structure of a Transaction Message

A Transaction Message is a data structure defined using
Google’s Protocol Buffers [12], which allows applications
to be written in other languages outside of Java. Wayfinder
defines transactions to contain 5 fields: Channel, Transaction
ID, Dependencies, Timestamp, and Payload. All application-
specific information is placed in the Payload section of the
transaction message as shown in Figure 4. Encryption, if
needed, can be performed by the application prior to the
data being placed in the payload. The dependencies among
transactions must be visible to the Pub-Sub layer. This is nec-
essary in order to eliminate invalid, dangling transactions. Pub-
Sub is responsible for ensuring only transactions with fulfilled
dependencies are published on their associated channels.

We have implemented Pub-Sub as an event loop. Whenever
a new block arrives, the following actions are taken:

1. All transactions are extracted from the block.
2. Transactions are validated by confirming the satisfaction

of its dependence set.
3. Valid transactions are hashed and placed in a mapping

from transaction hash to block hash.
4. Subscribed applications are notified of the presence of

new transactions.

C. Block Layer
A Wayfinder block contains three segments:
• The header, which includes the owner (currently the

public key of the device that created the block), the
timestamp, the height of the block (this is the number
of blocks that the owner device created thus far), and the
hash of each of the parent blocks.

• The list of WCRDT operations.
• The cryptographic signature of the block header and

operations generated using the private key of the owner.
A device stores each block in a hash map using the hash of

the block as key. Additionally, each device maintains, for each
other peer device, a chain object. A chain object for a device
is a doubly linked list of blocks generated by that device. To
enable efficient search of witnesses, a device also keeps the
set of last Hashed Vector Timestamps for all devices.

D. Network Layer
In order to increase code portability and to enhance system

modularity, we use Google’s Protocol Buffers [12] as our
serialization framework. Currently, Wayfinder has two options
for network communication: a regular TCP-based solution and
Google Nearby [11]. When a WiFi connection to the Internet is
available, devices use randomized gossip with known devices
over TCP. In the absence of a Wi-Fi base station, Google
Nearby leverages Bluetooth and WiFi Direct to establish an ad-
hoc network and allow opportunistic peer-to-peer connections
among devices.
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Fig. 5: Power consumed over time for Wayfinder and
Nakamoto mining.

Using Google Nearby, a device can be in one of two modes:
advertiser or discoverer. An advertiser makes its presence
known by broadcasting connection that discoverers can use
to send connection requests. While in theory a device can
be in both modes at the same time, in practice this does
not work well, and it is better to have a device toggle
between one or the other. However, discoverers cannot find
other discoverers while advertisers cannot similarly find other
advertisers. To solve this issue, a device switches modes
if they have not communicated with another device after a
randomized timeout.

V. EVALUATION

Through experimentation and trace-based simulations, we
seek to answer two basic questions regarding Wayfinder:
• What is the power consumption of Wayfinder compared

to mining-based blockchain protocols?
• Does Wayfinder scale to hundreds of devices in realistic

settings?
In the first section we address the first question. For the

second question, we use a simulation based on traces obtained
from a taxi company. However, to calibrate the simulation,
we also made measurements using a prototype of Wayfinder
deployed in a much smaller setting.

The Wayfinder prototype devices used for experiments were
six Samsung SM-T510 Galaxy Tab A (Android 9) devices with
Li-Ion 6150 mAh batteries. These devices have eight cores,
2GB RAM, and 128GB of internal storage and are equipped
with VHT80 antennae that can operate on 802.11 a/b/g/n/ac
2.4G+5GHz. The devices were not connected to a Wi-Fi base
station during any of the experiments.

A. Power Consumption

In this section, we evaluate the power efficiency of
Wayfinder’s in comparison to the Nakamoto consensus proto-
col based on Proof-of-Work. To measure and compare power

8

XW

XW: Apparently, we mean transactions...



Idle Nakamoto Wayfinder Wayfinder Reconcile
0.0

0.5

1.0

1.5

2.0

2.5

Po
we

r N
or

m
al

ize
d 

to
 ID

LE
 (f

or
eg

ro
un

d)
foreground
background

Fig. 6: Average power consumed and standard deviation
by Wayfinder and Nakamoto normalized by an idle device
running in the foreground.

consumption, we ran each protocol on the Samsung devices
for an hour and measured power consumed at regular intervals.

For all power experiments, we measured the power con-
sumed of the Wayfinder protocol both with and without
reconciliation (i.e., with and without networking), and the
Nakamoto protocol without networking to isolate the cost of
solving cryptopuzzles only. We set the cryptopuzzle difficulty
to produce a block every two minutes on average (i.e., 30
blocks an hour). We configured Wayfinder experiments to
produce a block each second (i.e., 3600 blocks an hour).
We also measured the performance of running experiments in
the foreground (screen on) and background (screen off) since
Android devices curb application performance running in the
background [10].

Figure 5 shows the power consumed over time when exper-
iments run in the foreground. The figure shows that, at the end
of the hour, Wayfinder consumed 424.3 mAh without recon-
ciliation and 457.5 mAh with reconciliation. Respectively, this
represents 7.6% and 16.0% more power than an idle device
that consumes 394.3 mAh. On the other hand, Nakamoto
mining consumed 1,027.5 mAh, 160.6% more power than an
idle device. Wayfinder uses 0.008 mAh to produce a block,
while Nakamoto uses 21.3 mAh.

Figure 6 shows the power consumed while running the pro-
tocols for both the foreground and background configurations,
normalized to the power consumed by an idle device running
in the foreground (i.e., with the screen on), averaged over 10
runs. The blue bars on the left show the same data as Figure 5
at the end of the hour. The orange bars on the right show the
amount of power consumed while running the protocols in
the background. For Nakamoto, the block creation rate was
reduced from 30 blocks an hour to 4 going from foreground
to background, whereas the block rate for Wayfinder remained
the same, 3600 per hour. Wayfinder running in the background
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Fig. 7: Maximum, median, and mean bandwidth with stan-
dard deviation experienced by two Android devices running
Wayfinder reconciliation as a function of distance.

consumed nearly an order of magnitude less power than in the
foreground: 60 mAh without reconciliation and 90 mAh with.

B. Network Measurements

In order to calibrate our simulation experiments, we per-
formed network measurements using our prototype and de-
vices. The experiments used Google Nearby for peer-to-peer
communication.

We measured out distances of 5, 10, 20, and 40 me-
ters. In the experiments we ran the Wayfinder reconciliation
protocol between devices, which transferred 32 MB. The
effective bandwidth at each distance was measured 5 times
with different pairs of devices. Figure 7 shows the average
maximum bandwidth, the overall average bandwidth, and the
overall median bandwidth that we measured at various dis-
tances. Bandwidth decreases as distance increases because the
strength of the signal decreases logarithmically with distance.
Measured bandwidth had a significant variance, particularly
at small distances. The individual maximum and minimum
bandwidths recorded in the experiments were 42.37 Mb/s and
0.01 Mb/s at 5 meters, respectively. We only measured the
bandwidth between two devices because, in both prototype
and simulation, devices running Wayfinder only talk with one
peer at a time.

C. Scalability

Performing experiments in emergency scenarios is infeasi-
ble, and we do not have communication traces at our disposal.
Instead, we used a full month of taxicab location traces in the
city of San Francisco [24] to run discrete-time event simulation
experiments. The dataset is comprised of 490 cabs dispersed
throughout the city. The simulation goal is to measure amount
of time for a newly generated block to propagate through
the peer-to-peer network and confirm the ability of an manet
device to make progress in a partitioned network. The speed
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at which blocks spread between devices has implications for
the tamperproofness of blocks.

The data transfer rates between nearby cabs is determined
by linear regression functions deduced from our real-world
bandwidth experiments. Specifically, we sampled an appro-
priate bandwidth from a Gaussian distribution built from the
mean and standard deviation functions for the bandwidth data
in Figure 7. As a result, the functions, where X is the distance
in meters, are defined as:

mean-bandwidth(MB) = −0.39 ∗X + 16.24

standard-deviation(MB) = −0.29 ∗X + 13.13

As a baseline, we used an ideal scenario where every block
exchange between nearby devices occurs instantaneously and
successfully. We denote these in the results as Oracle.

When two devices are within a sufficiently small range
of one another they are able to communicate. While larger
blocks lead to better communication efficiency in general,
with mobile devices the exchange of a block is more likely
to fail with block size because devices may move out of
range during the communication. Thus, large blocks could
lead to bandwidth being wasted. Using the taxicab traces, we
determined the reconciliation success ratios for various block
sizes averaged over 20 experiments (Figure 8).
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100%

Fig. 8: Average reconciliation success ratios for various block
sizes.

Next, we measured the duration for a single block (gen-
erated by a random cab) to reach all cabs in the system
using the HVTP protocol. As shown in Figure 9, the baseline
(Oracle) delivers a block to 90% of nodes within 1 hour. For
the smallest block size (256KB), Wayfinder delivers similar
infection rates as the baseline. For the largest block size
(64MB), it takes 2.5 hours to propagate a block to 90% of
devices.

Finally, with each taxicab generating a single block at the
onset of simulation, we measured the duration for each block
to reach all other taxicabs. Note that the number of blocks
that a taxicab can disseminate increases over time. Figure 10
captures the average spread of 490 blocks circulating in the
system. Notably, a 64MB block reaches 90% of nodes within
3 hours.
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Fig. 9: CDF of block spread for various block sizes.
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Fig. 10: CDF of the dissemination duration from a random
block’s generation to its ultimate receipt at the most remote
participants in the system.

VI. RELATED WORK

Gossip protocols originated in the field of distributed
databases [9] and has seen a resurgence coinciding with the
proliferation of cloud computing [2], [13], [19], [33] and more
recently within the blockchain community [4], [15], [20], [31].
Gossip protocols assume full network connectivity and can
therefore not be directly applied in manet environments.

While Wayfinder uses gossip if internet connectivity is avail-
able, Wayfinder relies only on opportunistic communication
between devices when not. Such protocols have been shown
to work well for reliable multicast in unreliable networks [6].
Bayou [23] is a peer-to-peer storage and communication sys-
tem based on opportunistic communication. Unlike Wayfinder,
Bayou does not have provisions to deal with Byzantine be-
havior. Also, it does not use CRDTs but relies instead on
ad-hoc application-dependent merging protocols that requires
applications to actively detect and resolve conflicts.

CRDTs [28] provide theoretical consistency guarantees.
These data structures include versions of registers, counters,
sets, graphs, and maps [16], [27], and can be combined and
composed to create more sophisticated data structures such
as key-value stores [26]. Applications include collaborative
editing [18] and distributed databases [8].

COPS [17] is a causally consistent storage system intended
for wide-area networks with high latencies. Like Bayou, it uses
application-dependent merging strategies and has no defenses
to Byzantine behavior.
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To deal with Byzantine behavior, blockchains were first
introduced in 2008 as part of the Bitcoin cryptocurrency sys-
tem [22]. Since then, the blockchain field has seen explosive
growth with many variants. However, most blockchain designs
have a linear structure and rely on a proof-of-work consensus
mechanism that requires solving a computationally expensive
crypto puzzle. These characteristics make them poorly suited
to manet environment where computational power is limited
and continuous network connectivity is not guaranteed.

Some blockchain variants use a DAG structure similar to
Wayfinder. The GHOST protocol is a modification to the
Bitcoin blockchain that uses a DAG structure to improve
security [30]. The intuition behind this modification is to
enable a more robust method for decision making in fork
selection. By keeping track of all forks, a node can choose a
fork based on the heaviest-subtree-wins rule (the subtree with
the largest number of blocks) as opposed to the longest-chain-
wins rule, wasting less work and thus eliminating certain forms
of attacks. While this approach reduces the computational
requirements, it is still much too high for manet devices. Also,
the approach still requires continuous network connectivity.

The recently proposed SPECTRE [29] and MeshCash [5]
blockchains also use a DAG structure along with a protocol to
reach consensus in the case of conflicts. Both blockchains use
Proof-of-Work and require continuous network connectivity,
which eliminates them from consideration for our use cases.

Several blockchains have proposed using DAGs and en-
tanglement to reduce the reliance on Proof-of-Work. Like
Wayfinder, IOTA [1], [3] is a cryptocurrency established to
operate within the IoT space. In order to create a new transac-
tion, devices are required to verify a certain number of prior
transactions. Consequently, IOTA uses witnesses to determine
when a transaction is valid within a system. IOTA uses Markov
Chain Monte Carlo sampling to verify unapproved transac-
tions [25]. Additionally, double spends are resolved through
a consensus algorithm that determines which transactions to
keep based on the number of descendant transactions. In order
to accomplish this, IOTA requires continuous strong network
connectivity. IOTA also uses a weak form of Proof-of-Work
to reduce Sybil attacks.

Other DAG-based protocols such as HashGraph [4] Byte-
ball [7], and Avalanche [35] do not rely on Proof-of-Work.
The DAG structure in the aforementioned blockchains is not
designed to provide partition tolerance like our case, but rather
to exploit available parallelism for increased throughput of
transactions by only ordering transactions that are dependent.
As such, these blockchains expect strong network connectivity
and are therefore unsuitable in our use cases.

VII. CONCLUSION

In this paper, we present Wayfinder, a middleware for a
Byzantine mobile ad hoc network (manet). We designed a new
distributed tamperproof data structure, the Wayfinder DAG,
with opportunistic update propagation. The data structure
leverages entanglement techniques from blockchains com-
bined with keeping track of witnesses to make blocks tam-

perproof. Wayfinder uses provable detection of misbehavior
to incentivize good behavior. Use of CRDTs combined with
happens-before ordering allows applications concurrent and
continuous access to consistent data structures. Wayfinder
supports applications running under intermittent network con-
nectivity with low power consumption and scales to at least
hundreds of devices.
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