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The hedgehog (HH) signaling pathway plays critical roles in the Drosophila 

ovary.  Previous studies have provided basic information on the pattern of 

expression of genes within the HH signaling pathway in the mouse ovary and on 

potential effects of HH signaling on cultured ovarian cells.  An in vivo approach 

with transgenic mice is necessary to determine the function of HH signaling.  The 

studies in this dissertation used the Amhr2cre/+SmoM2 transgenic mouse line to 

investigate phenotypes associated with over-activation of hedgehog signaling in the 

ovary.  Results of these studies determined that HH signaling can influence ovarian 

follicle development.  

Female Amhr2cre/+SmoM2 mice are infertile.  Although mutant mice had 

developmental defects in the Mullerian duct, the primary cause of infertility was the 

failure of ovulation based on the fact that oocytes were trapped in the follicles of 

superovulated mice.  No difference in HH signaling activity was detected between 

controls and mutants around the time of ovulation.  Cumulus expansion was 

suboptimal but could not explain the complete loss of fertility in the mutants.  

Luteinization occurred and generated normal levels of progesterone in plasma, 

although there was a delay in corpus luteum (CL) formation.  The major phenotype 

in the ovaries of mutant mice was reduced mRNA levels of genes typical of smooth 

muscle in the thecal-interstitial compartment and reduced expression of smooth 

muscle actin (SMA) associated with blood vessels in the theca, indicating that the 

thecal vasculature failed to mature.  Failure of vascular maturation was most likely 

the leading cause of anovulation in Amhr2cre/+SmoM2 mutant mice.  

 Vascular maturation failed to occur in the ovaries of mutant mice beginning at the 

primary stage of follicle development.  The SmoM2-yellow fluorescent protein (YFP) 

fusion gene was expressed in the neonatal ovaries of mutant mice and HH signaling 



activity was elevated in mutants compared to controls around the time of birth.  The 

vascular network in the cortex of ovaries on days 2 and 4 was of higher density in 

mutant mice compared to controls.  Microarray analyses identified elevated mRNA 

levels of genes involved in vascular development, particularly genes involved in the 

formation of vascular networks and in the interaction between endothelial and 

vascular mesenchymal cells.  HH signaling was over-active around the time of birth 

and may have altered development of the thecal vasculature, possibly leading to the 

lack of vascular maturation in follicles throughout life. 

 Around the time of birth, levels of mRNA for genes involved in steroid 

production were elevated in the ovaries of mutant mice compared to controls.  Some 

of these genes are normally expressed in the fetal adrenal gland, such as Cyp17a, 

Cyp21a, Cyp11b and Shh.  Immunohistochemistry of CYP17A, CYP21A and SHH 

confirmed the expression of these genes in the ovaries of mutant mice but not controls, 

indicating the presence of adrenal-like cells in the ovaries of mutant mice around the 

time of birth.  This is possibly a result of interrupted cell migration/sorting in the 

adrenogonadal primordium or differentiation of ovarian cells into adrenal-type cells. 

A higher rate of oocyte degeneration and abnormal development of the first wave 

of follicles occurred in mutant mice.  Fewer primordial follicles were present in the 

ovaries of mutants compared to controls by 24 days of age.  

Virgin female Amhr2cre/+SmoM2 mutant mice developed ovarian pathology with 

high frequency.  The pathological changes started between 60 to 120 days of age and 

progressed over time.  Clusters of steroidogenic-like cells persisted from 120 days to 

1.5 years of age and may contribute to the pathological changes in the ovaries of 

mutant mice.   

In summary, this dissertation provides strong evidence that HH signaling 

regulates development of the thecal vasculature and its maturation.  Over-activation 

of HH signaling in the embryonic and neonatal ovary led to failure of the thecal 

vasculature to mature properly, and this was associated with anovulation throughout 

life.  Furthermore, HH may be involved in cell migration/sorting or differentiation of 



steroidogenic cells in the embryonic and neonatal ovary.   Over-activation of HH 

signaling activity early in life leads to development of ovarian pathology in aged 

mice.  
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CHAPTER ONE: 

REVIEW OF LITERATURE AND INTRODUCTION TO CURRENT RESEARCH 
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The hedgehog signaling pathway 

Components of the hedgehog (HH) signaling pathway were first discovered in 

Drosophila by Nusslein-Volhard and Wieschaus using mutagenesis screens 

(Nusslein-Volhard & Wieschaus, 1980).  The name hedgehog was given based on the 

spiky appearance of disorganized denticles during Drosophila embryonic development.  

The hedgehog signaling pathway is highly conserved from flies to vertebrates (Ruel & 

Therond, 2009).  In all species examined to date, secreted HH ligand binds to 

transmembrane receptor PATCHED (PTC in Drosophila melanogaster, PTCH in 

vertebrates).  This binding of HH ligand to PATCHED releases the inhibition of 

signaling transducer Smoothened (SMO) by PATCHED, and cellular response to HH 

signaling occurs through changes in expression of HH target genes, such as Bmp4 

(Astorga & Carlsson, 2007), Vegfa (Pola et al., 2001), and N-Myc (Oliver et al., 2003). 

Despite conserved mechanisms described above, divergences in pathway 

components and in signaling transduction exist between Drosophila and mammals 

(Hooper & Scott, 2005).  Instead of a single HH ligand as occurs in Drosophila, there 

are three ligands in mammals, Indian (IHH), Sonic (SHH) and Desert (DHH) HH.  

While there is only one effector at the transcriptional level in Drosophila named Cubitus 

interruptus (Ci), there are three GLI-Kruppel family members in vertebrates, GLI1, GLI2 

and GLI3, which function as transcription factors mediating HH signaling activity (Ruiz i 

Altaba et al., 2007).  Recently, a group of novel, vertebrate-specific HH ligand 

co-receptors were identified, including BOC, CDO and GAS1, adding a new layer of 

complexity in the spatial and temporal regulation of HH signaling activity (Allen et al., 

2011; Izzi et al., 2011).  Moreover, accumulating evidence supports a model in which 
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the primary cilium is the HH sensoring and regulation center in vertebrates, while this 

structure is not present in Drosophila (Goetz & Anderson, 2010).  In vertebrates, key 

components of the HH pathway are enriched in the primary cilium and their trafficking in 

the cilium occurs in a HH signaling-dependent manner.  Interruption of HH signaling by 

disturbing intraflagellar transport causes phenotypes similar to those caused by deletion 

of components of the HH signaling pathway.   

One feature of the HH signaling pathway is that its signaling activity is strictly 

regulated spatially and temporally by a feedback loop (Chuang & McMahon, 1999; 

Ribes & Briscoe, 2009; Ruiz i Altaba et al., 2007).  In the absence of HH ligand, Gli1 is 

transcriptionally silent and only Gli2 and Gli3 are expressed at considerable levels.  The 

majority of GLI2 is degraded and GLI3 is proteolytically cleaved into a transcription 

repressor of HH-targeted genes.  When HH ligand activates signaling, expression of 

Gli1 is elevated.  GLI2 and an uncleaved form of GLI3 can function as transcriptional 

activators and they may contribute to the increased transcription of Gli1.  GLI1 

functions as a potent transcriptional activator, and together with the activator forms of 

GLI2 and GLI3, induces expression of HH-target genes including several components of 

the HH pathway itself, such as Ptch, hedgehog interacting protein (Hhip) and Gli1.  In 

addition to its function as a receptor for HH ligands, PTCH1 can bind HH ligands on the 

cell membrane and facilitate degradation of ligands by endocytosis (Incardona et al., 

2002).  HHIP is anchored in the cell membrane and binds to all three HH ligands, 

functioning as an inhibitor of HH signaling (Chuang et al., 2003).  PTCH and HHIP 

bind and sequester HH ligands to restrict signaling activity in space and time, thus 

forming a negative feedback loop (Chuang & McMahon, 1999).  Changes in levels of 



 4 

mRNA for Ptch, Hhip and Gli1 are frequently used as measures of changes in HH 

signaling activity (Ahn & Joyner, 2004; Lee et al., 1997). 

 

HH signaling in development, adult homeostasis and disease 

The HH signaling pathway is deployed widely during development, adult homeostasis 

and disease.  Examples of other families of signaling pathways with such wide range of 

functions include the Wnt (combination of ‘wingless’ and ‘INT’), Notch, bone 

morphogenic proteins/transforming growth factor β (BMP/TGFβ), fibroblast growth 

factor (FGF) and epidermal growth factor (EGF) pathways.  There is significant 

interaction among these pathways in a variety of developmental and pathological 

processes but this review focuses on the regulatory role of HH signaling in mammals. 

During embryonic development, the HH signaling pathway is a critical regulator of 

morphogenesis and patterning of multiple organs and tissues, such as the neural tube, 

limb bud, and the gastrointestinal tract.  In the ventral region of the spinal cord, SHH 

functions as a morphogen and directs the differentiation of the ventral neural progenitor 

cells into five neuronal subtypes (Dessaud et al., 2008; Marti & Bovolenta, 2002; Patten 

& Placzek, 2000).  At the posterior margin of the limb bud, SHH secreted from the zone 

of polarizing activity specifies the digits along the anterior-posterior axis (Francis-West 

& Hill, 2008; Tickle et al., 1975).  SHH and IHH expressed in gut endoderm target the 

mesenchyme and regulate smooth muscle differentiation and left-right axis formation 

during embryonic gut development (Ramalho-Santos et al., 2000; van den Brink, 2007).  

HH signaling also regulates vascular development during embryonic life, and this is 

reviewed in Chapter 3.  
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During adult homeostasis, HH signaling plays important roles in processes such as 

cyclic development of the hair follicle (Fuchs et al., 2001), regenerative repair of the 

bladder in response to infection (Shin et al., 2011), repair of lung epithelium (Birney et 

al., 2009), and hematopoiesis (Bhardwaj et al., 2001).  In humans and mice, mutations 

that lead to abnormal activation of HH signaling are detected in many types of tumors, 

such as those of brain, skin, liver, colon, prostate, and the lung (Beachy et al., 2004; 

Rubin & de Sauvage, 2006; Taipale & Beachy, 2001).  Interestingly, these tissues or 

organs in which abnormal HH signaling activity is associated with cancer are within the 

same tissues and organs where HH signaling regulates development.  It has been 

hypothesized that HH signaling regulates self-renewal of stem cells or progenitor cells in 

multiple tissues and this may explain how it contributes to embryonic development, adult 

homeostasis and pathological process (Beachy et al., 2004).  Based on this hypothesis, 

abnormally activated HH signaling would induce inappropriate expansion of stem cells 

or progenitor cells and thereby initiate/promote tumorigenesis.  Multiple lines of 

evidence exist in support of this hypothesis.  Antagonizing HH signaling using the 

SMO inhibitor cyclopamine lead to the loss of neuronal stem cells and inhibited tumor 

growth (Berman et al., 2002).   HH signaling was found to maintain tumor stem cell 

populations in multiple myeloma (Peacock et al., 2007).  In cerebellar tumors, mutation 

of Gli1 leads to persistent proliferation of granule-cell precursors (Clement et al., 2007).  

As for melanomas, committed melanocyte precursors in the hair-follicle matrix 

over-proliferated in response to sustained HH signaling (Stecca et al., 2007).  In 

addition, HH was shown to regulate genes critical in stem cell renewal, such as nestin 

and Bmi1 poly comb ring finger oncogene (Bmi-1) (Dave et al., 2011; Michael et al., 
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2008).  

 

The hedgehog signaling pathway in the ovary 

The HH signaling pathway plays critical roles in the Drosophia ovary.  It maintains 

the germline stem cell population (King et al., 2001; Narbonne-Reveau et al., 2006), 

regulates proliferation and differentiation of ovarian somatic stem cells and their progeny 

(Forbes et al., 1996; Zhang & Kalderon, 2001), and induces mesenchymal precursor cells 

to differentiate into polar and stalk cells (Tworoger et al., 1999).      

In the mammalian ovary, there is evidence for active HH signaling during follicle 

growth and ovulation, but the role of HH signaling has not yet been determined (Ren et 

al., 2009; Russell et al., 2007; Spicer et al., 2009; Wijgerde et al., 2005).  Beginning at 

the primary stage of follicle growth, HH ligands, namely Ihh and Dhh, are expressed in 

granulosa cells, while targets of HH signaling Ptch1, Gli1 and Hhip are mainly expressed 

in the surrounding mesenchymal compartment.  This pattern suggests that the 

mesenchymal compartment may be the primary target of HH ligands during follicle 

growth.  Shortly after hCG stimulation, mRNA of Ihh and Dhh is reduced to basal 

levels and remains low until the time of ovulation; simultaneously, mRNA of Ptch1 and 

Gli1 decreases in the theca-interstitial compartment (Ren et al., 2009 2009; Wijgerde et 

al., 2005).  In vitro studies showed that treatment with SHH promoted proliferation of 

granulosa cells and the growth of preantral follicles (Russell et al., 2007).  In addition, 

treatment of cultured bovine theca-interstitial tissue with SHH stimulated cell 

proliferation and androgen production (Spicer et al., 2009).  

In summary, previous studies have provided basic information about the pattern of 
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expression for genes within the HH signaling pathway in the mouse ovary, and on the 

potential effects of HH signaling in cultured ovarian cells.  An in vivo approach with 

transgenic mice is necessary to determine the function of HH signaling in the mouse 

ovary.   

 

Introduction to current research 

 In vivo approaches with transgenic mice have been used in the Quirk laboratory to 

determine the function of HH signaling in the mouse ovary.  Two transgenic mouse 

lines were created, the Amhr2cre/+Smonull/fox and the Amhr2cre/+SmoM2 mouse lines.  In 

the Amhr2cre/+Smonull/fox mouse line, the HH signal transducer Smo is conditionally 

deleted in the somatic cells of the ovary and the mesenchyme of the Mullerian duct; the 

female mice are subfertile primarily due to deferred timing of implantation, which leads 

to embryonic loss (Harman, et al., 2011).  In addition, subtle aberrant features of 

ovarian function have been noted (unpublished).  The focus of this dissertation is the 

ovarian phenotypes in the Amhr2cre/+SmoM2 mouse line in which HH signaling is 

abnormally activated in the ovary and the Mullerian duct.   

 Female Amhr2cre/+SmoM2 mice are infertile.  The first aim of the studies reported in 

this dissertation was to determine the phenotype of Amhr2cre/+SmoM2 mice.  This 

included determining the cause of their infertility (Chapter 2).  Although mutant mice 

had developmental defects in the Mullerian duct, we showed that the primary cause of 

infertility was the failure of ovulation, based on the fact that oocytes were rarely 

recovered from the oviducts and remained trapped in the follicles of superovulated mice.  

No apparent morphological abnormality was observed during follicle growth and the 
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preovulatory period in the ovaries of mutant mice.  After stimulation with equine 

chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG), cumulus 

expansion was suboptimal and luteinization was relatively normal.  Microarray analyses 

indicated that mRNA levels of genes typical of smooth muscle were reduced in the 

mutant mice and real-time RT-PCR and immunohistochemistry of SMA showed that this 

reduction occurred in the theca-interstitial compartment of the ovary.  

Immunohistochemistry of platelet endothelial cell adhesion molecule (PECAM-1) and 

SMA revealed that the reduced expression of SMA was associated with the thecal 

vasculature, indicating that vessels in theca fail to mature by acquiring the normal 

complement of vascular smooth muscle cells.  We concluded that a mature vasculature 

in each follicle is necessary for successful ovulation and that defective maturation of the 

vasculature in growing and preovulatory follicles was likely the major cause of the 

anovulation phenotype in mutant mice.  

 The second aim of the dissertation research was to investigate the developmental 

processes that were altered by dominant activation of HH signaling that could lead to 

defective maturation of the vasculature in follicles of mutant mice (Chapter 3).  

Confocal imaging of ovaries on day 2 showed expression of the SMOM2-YFP fusion 

protein throughout the ovary.  HH signaling activity was compared between control and 

mutant mice at a series of time points during the first several weeks of life by measuring 

mRNA levels of Gli1, Ptch1 and Hhip using real-time RT-PCR.  Data showed that HH 

signaling was elevated in ovaries of mutant mice compared to controls during the first 

few days of life and then became similar in mutant and control mice.  Vascular smooth 

muscle normally becomes associated with the theca beginning between the primary to 
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secondary stage of follicle growth.  In mutant mice, this maturation fails to occur in all 

follicles throughout life.  Because HH signaling appeared to be elevated in the ovaries 

of mutant mice compared to controls during the first few days of life and not in growing 

follicles, the findings suggest that failed maturation of the vasculature in follicles of 

mutant mice throughout life is caused by change induced during neonatal ovary 

development.  Developmental processes altered in the ovaries of mutant mice were 

examined by microarray analyses of mRNA extracted from whole ovaries of mice on day 

2.  Cluster analyses using the DAVID program revealed that the most significantly 

altered developmental process in the mutants compared to controls was vascular 

development, and included genes involved in the formation of vascular networks and in 

the interaction between endothelial and vascular mesenchymal cells.  

Immunohistochemistry of PECAM-1 showed that a vascular network of higher density 

formed in the cortex of ovaries from mutant mice.  The studies determined that HH 

signaling was over-activated around the time of birth and that this was associated with 

altered development of the ovarian vasculature, possibly leading to the lack of vascular 

maturation in the theca of follicles throughout life. 

 Cluster analyses of data obtained from microarray analyses also revealed elevated 

mRNA levels for genes involved in steroid production in the ovaries of mutants 

compared to controls.  Some of these genes are normally expressed in the fetal adrenal, 

such as Cyp17a, Cyp21a, Cyp11b and Shh.  Immunohistochemistry showed that the 

majority of cells positive for CYP17A were also positive for CYP21A, and that 

SHH-positive cells were within close proximity of CYP17A/CYP21A-positive cells.  

These results indicated the presence of adrenal-like cells in the ovaries of mutant mice 
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around the time of birth.  

 The third aim was to examine changes in ovarian phenotype in aged 

Amhr2cre/+SmoM2 mutant mice (Chapter 4).  By 1.5 years of age, virgin female 

Amhr2cre/+SmoM2 mutant mice developed ovarian pathology with high frequency.  

Histological examination and immunohistochemistry of CYP17A suggested that the 

pathology of aged female Amhr2cre/+SmoM2 mutant mice was associated with 

steroidogenic-like cells that persisted from 120 days to 1.5 years of age.  
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Summary 

The role of the hedgehog (HH) signaling pathway in ovarian function was examined 

in transgenic mice in which expression of a dominant active allele of the signal 

transducer smoothened (SmoM2) was directed to the ovary and Müllerian duct by 

cre-mediated recombination (Amhr2cre/+SmoM2).  Mutant mice were infertile and had 

ovarian and reproductive tract defects.  Ovaries contained follicles of all sizes and 

corpora lutea (CL), but oocytes were rarely recovered from the oviducts of superovulated 

mice and remained trapped in preovulatory follicles.  Measures of luteinization did not 

differ.  Cumulus expansion appeared disorganized, and in vitro analyses confirmed a 

reduced expansion index.  Microarray analysis indicated that expression levels of genes 

typical of smooth muscle were reduced in mutant mice and RT-PCR showed that levels 

of expression of muscle genes were reduced in the non-granulosa, theca-interstitial 

cell-enriched fraction.  While a layer of cells in the outer theca was positively stained 

for smooth muscle actin in control ovaries, this staining was reduced or absent in mutant 

ovaries.  Expression of a number of genes in granulosa cells that are known to be 

important for ovulation did not differ in mutants and controls.  Expression of 

components of the HH pathway was observed in both granulosa cells and in the 

non-granulosa, residual ovarian tissue and changed in response to treatment with 

eCG/hCG.  The results show that appropriate signaling through the HH pathway is 

required for development of muscle cells within the theca and that impaired muscle 

development is associated with failure to release the oocyte at ovulation. 
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Introduction 

The hedgehog (HH) signaling pathway plays a critical role in the development of 

multiple organs in the embryo and in remodeling processes in adult tissues (King et 

al., 2008; McMahon et al., 2003).  In addition, aberrant HH signaling is associated 

with the development of cancer (Rubin & de Sauvage, 2006).  Processes regulated 

by HH signaling include cell fate determination, proliferation, and differentiation.  

HH signaling is critical for ovarian function in Drosophila (McMahon et al., 2003) 

but its role in the mammalian ovary is not known.  Expression of components of the 

HH signaling pathway have been reported in the mouse ovary, and granulosa and 

theca cells have been identified as potential targets (Russell et al., 2007; Wijgerde et 

al., 2005). 

In mammals, components of the HH pathway include three secreted protein 

ligands, sonic, Indian and desert hedgehog (SHH, IHH, DHH), which are 

differentially expressed in various tissues.  There are two transmembrane receptors, 

patched (PTCH) 1 and 2, which are thought to function similarly, and a 

transmembrane protein smoothened (SMO) which transduces the signal.  In the 

absence of HH ligand, PTCH inhibits signaling through SMO.  Binding of ligand to 

PTCH relieves inhibition of SMO and signaling occurs.  Signaling through SMO is 

conveyed by modulation of the activity of a family of transcription factors, GLI1, 

GLI2 and GLI3 (Huangfu & Anderson, 2006).  Gli1 is a transcriptional target of HH 

signaling and has been used as indicator of activated HH signaling (Ahn & Joyner, 

2004; Ikram et al., 2004; Lee et al., 1997; Marigo et al., 1996).  While deletion of 
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Gli1 in the mouse is compatible with normal development (Bai et al., 2002), deletion 

of Gli2 and Gli3 generate phenotypes that mimic deletion of Shh, indicating that they 

are essential for mediating its effects on development (Mo et al., 1997).  GLI2 and 

GLI3 proteins may act as transcriptional activators or may undergo proteolytic 

processing to shortened forms that function as transcriptional repressors (Pan et al., 

2006; Wang et al., 2000).  

Gene targeting to alter HH signaling in mice has generally resulted in embryonic 

lethality, indicating that conditional transgenic approaches are necessary to determine 

function in adult tissues.  The current study analyzed the effect of conditional 

expression of a dominantly active allele of SMO, known as SmoM2, in the ovary.  

SMOM2 contains a point mutation that prevents inhibition of its activity by PTCH, 

thus leading to constitutive activation of HH signaling (Xie et al., 1998).  The 

phenotype observed in mice expressing dominant active SmoM2 indicates that HH 

signaling is required for proper development of a layer of smooth muscle cells around 

follicles and for the release of oocytes from follicles at the time of ovulation.  

 

Materials and Methods 

Mouse strains and treatments  

Amhr2cre/+  mice, provided by Dr. Richard Behringer (17) and 

GT(ROSA)26Sortm1(smo/YFP)Amc/J mice (16), purchased from The Jackson Laboratory 

(Bar Harbor ME), were mated to obtain Amhr2cre/+SmoM2 mice (mutants) and 

Amhr2+/+SmoM2 mice (controls).  Mice were genotyped from tail DNA using 
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protocols provided by The Jackson Laboratory.  CD-1 mice were purchased from 

Charles River Laboratories, (Wilmington MA).  All animals were maintained in 

accordance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals.  Studies were approved by the Cornell University Institutional 

Animal Care and Use Committee. 

Vaginal smears were obtained daily from mice (45–49 days old) for 3 complete 

estrus cycles or 20 days, whichever came first.  Fertility of mutant females was 

tested by caging with CD-1 males of proven fertility.   In some experiments, tissues 

were collected from immature mice (21-23 days old) 48 h following ip injection of 5 

IU eCG, or from mice treated with eCG followed 48 h later by ip injection of 5 IU 

hCG, or from mice made pseudopregnant by mating with a vasectomized CD-1 male.  

In some experiments, granulosa cells were collected from preovulatory follicles at 

various times after eCG/hCG treatment by puncture with a 27-gauge needle.  

Subsequently, granulosa cells from smaller follicles were expressed by additional 

puncture and discarded while the remaining tissue, enriched for theca and stroma, was 

collected (referred to as “residual tissue”).  In other experiments, preovulatory 

follicles were isolated 24 h after eCG and granulosa cells and theca were obtained by 

dissection using watchmaker’s forceps.  To assess ovulation rate, immature 

eCG/hCG-primed mice were sacrificed 20 h after hCG and oocytes within the 

ampulla of the oviduct were flushed and counted.  At the time of sacrifice, blood 

was collected by cardiac puncture.  Serum was stored at -20 C until assayed for 

progesterone using a commercial RIA kit (Siemens Medical Solutions, Los Angeles, 
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CA). 

 

Assessment of Cre-mediated recombination 

Single cell suspensions of uteri, oviducts, and whole ovaries from young mutant 

and control mice were obtained by digestion with 0.08% trypsin plus 10 µg/ml 

deoxyribonuclease I in DMEM Ham’s F-12 (F12) at 37 C for up to 3 h, with periodic 

triteration using a pasture pipet.  Theca was obtained from preovulatory follicles of 

immature mice 24 h after injection of eCG by dissection and granulosa cells were 

obtained by needle puncture.  Cell suspensions were fixed in 80% ethanol, and 

within 24 h of storage at 4 C cells were centrifuged, reconstituted in PBS, and 

analyzed for YFP using a FACScan flow cytometer (BD Biosciences, San Jose CA).  

Excitation was at 488 nm and emission detected by FL1 at 530±30 nm.  Single cells 

were selected based on a plot of side scatter vs forward scatter.  Plots of side scatter 

vs FL1A were produced, and an area gate was constructed using matching tissues 

from control animals which do not express YFP such that approximately 95% of the 

cells were within the area.  This gate was applied to plots from mutant animals, and 

the proportion of cells with higher FL1A fluorescence, which represents those cells 

expressing YFP, was determined. 

 

Histology and immunohistochemistry 

Tissues were fixed in Bouins for histology or 2% paraformaldehyde for 

immunohistochemistry, embedded in paraffin and 5 μm sections processed for 
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staining with hematoxylin and eosin or for immunohistochemistry.  For SCC, 

sections were deparaffinized, rehydrated, and treated for antigen retrieval by boiling 

in 10 mM citrate buffer for 10 min.  Endogenous peroxidase activity was quenched 

with 0.3% hydrogen peroxide in PBS.  Non-specific binding was blocked with 2% 

normal goat serum.  Sections were incubated with rabbit anti-rat SCC antibody 

(AB1244, Chemicon, Temecula CA), or normal rabbit serum, diluted 1:2000 in 

PBS-1% BSA at 37 C for 1 h, washed with PBS and then incubated with 0.4 µg/ml 

goat anti-rabbit IgG conjugated to horseradish peroxidase (Jackson Immunoresearch, 

West Grove PA) in PBS-1% BSA for 1 h at 37 C.  Slides were exposed to Nova Red 

substrate (Vector Laboratories, Burlingame CA) and counter-stained with Gills 

hematoxylin.  For staining for SCC, sections were deparaffinized, rehydrated and 

blocked with 2% normal goat serum. Sections were incubated with rabbit anti-human 

smooth muscle actin (ab15267, prediluted, Abcam Inc., Cambridge MA) or with 1 

µg/ml rabbit IgG for 20 min at room temperature, followed by incubation with 0.5 

µg/ml Alexa 555 goat anti-rabbit IgG for 30 min at room temperature.  Cell nuclei 

were counterstained with 5 µg/ml Hoechst 33342 dye. For dual staining for SMA and 

VWB, deparaffinized sections were hydrated, treated with pepsin, and blocked with a 

Mouse-on-Mouse reagent (Vector Laboratories) followed by 10% NGS. Sections 

were incubated with mouse anti-human α-SMA (M0851, clone IA4, Dako, 

Carpinteria CA) diluted 1:20 and rabbit anti-VWB (A0082, Dako) diluted 1:50 at 

room temp for 25 min, followed by Alexa 488-conjugated goat anti-rabbit IgG and 

Alexa 595 goat anti-mouse IgG for 40 min.  Cell nuclei were counterstained with 10 
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µg/ml DAPI. 

 

Progesterone production by granulosa cells expressing SmoM2 

Granulosa cells from eCG-treated homozygous SmoM2 mice were plated in 

96-well plates (5x104 cells/well) in DMEM-F12 supplemented with 100 U/ml 

penicillin, 100 μg/ml streptomycin, 0.25 μg/ml fungizone, 1 mM pyruvate, 2 mM 

glutamine and containing 10% FBS (all Invitrogen).  At the time of plating, cells 

were infected with recombinant adenovirus expressing Cre (Adcre, Microbix 

Biosystems, Toronto, Canada) or a control adenovirus expressing βgalactosidase 

(Adβgal; provided by Dr. Wafik El-Deiry) at a dose of 1x106 pfu/well (total volume 

50 µl).  Four h after infection, additional media containing testosterone (final 

concentration 1 µM) was added.  One day after plating, media was collected and 0 

or 10 ng/ml ovine LH (NIDDK-oLH-26; from Dr. A.F. Parlow, Harbor-UCLA 

Medical Center) was added in serum-free media [DMEM-F12 with additives as above 

plus 100 ng/ml insulin (Sigma-Aldrich), 5 µg/ml transferrin (Invitrogen), 20 nM 

sodium selenite (Invitrogen), 0.1% BSA, and 1µM testosterone].  Media was 

collected on the second and third day after plating and stored at -20 C until assayed 

for progesterone.  In order to determine the efficiency of Adcre-mediated 

recombination, Adcre- or Adβgal-infected cells were harvested on day 3, and used for 

flow cytometry to detect YFP. 

 

Microarray analysis 
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RNA from whole ovaries of untreated, 48 h eCG-treated and 4 h hCG-treated 

control and mutant mice was prepared using a RNeasy Mini Kit (Qiagen, Valencia 

CA).  RNA was tested prior to pooling equal amounts of RNA from 3 mice of each 

genotype for microarray analysis; expression of Lhcgr mRNA was confirmed to 

increase after eCG and Ptgs2 was shown to increase after hCG as expected.  

Microarray analyses were performed by the Microarray Core Facility of the Cornell 

University Life Sciences Core Laboratories Center.  Labeled cRNA samples were 

hybridized on mouse genome 430 2.0 GeneChips and scanned by a GeneChip 

Scanner 3000 according to standard protocol provided by the manufacturer 

(Affymetrix , Santa Clara, CA).  The raw array data was processed by Affymetrix 

GCOS software to obtain signal values, which were scaled to the default target of 500 

and summarized in a pivot table. The signals were log2-transformed after being offset 

by 64, and log ratios were calculated as the difference between mutant and control 

samples at each of the 3 time points.  Gene filtering was applied to include only 

30588 probe sets having at least 1 Present call. Gene ontogeny analysis of log2 

differences between transcript levels in mutants and controls was performed using 

ErmineJ software (Lee et al., 2005). 

 

Analysis of gene expression 

RNA was prepared from granulosa cells, theca, residual ovarian tissue, and whole 

ovaries using a RNeasy Mini Kit.  Reverse transcription was performed using a 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City 
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CA).  Real time RT-PCR was performed on an ABI Prism 7000 using the 

mouse-specific assays shown in Table 2.1.  A standard curve, used in each assay, 

was constructed from cDNA prepared from RNA of pooled granulosa cells or, for 

smooth muscle and extracellular matrix genes, from RNA of pooled whole ovaries.  

Results were standardized by dividing by 18s rRNA concentration and multiplying by 

100.  Samples from each tissue type were analyzed on the same plate.  For each 

gene, a between plate coefficient of variation was determined by including two 

common samples on each plate. The between plate coefficients of variation ranged 

from 1% to 16%; the mean was 10.6±1.4%. 

 

In vitro cumulus expansion assays 

Immature Amhr2cre/+SmoM2 mutant and Amhr2+/+SmoM2 control mice were 

primed with eCG and COC were isolated at 48 h by needle puncture of large antral 

follicles.  COC were distributed to 24-well plates (approximately 20/well) 

containing DMEMα (Invitrogen) plus antibiotics and 5% FBS and treated with 0 or 

100 ng/ml ovine FSH (NIDDK oFSH-20, from Dr. A.F. Parlow).  After 18 h of 

treatment, COC were scored for the degree of expansion as described previously 

(Downs, 1989) using a scale of 0 indicating no expansion to a score of 4 indicating 

full expansion.   

 In order to test the effect of acute induction of SmoM2 expression on cumulus 

expansion, COC were collected from homozygous SmoM2 mice and infected with 

1x107 pfu/ml of Adcre or Adβgal.  Cultures were rocked gently for 12 h to prevent 
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Table 2.1.  Quantitative real-time RT-PCR assays 
 
Gene 
Symbol       Gene name      Assay IDa    Exonsb   
Smo smoothened homolog Mm01162710_m1 8-9 
Ihh  Indian hedgehog Mm00439613_m1 2-3 
Ptch1  patched homolog 1 Mm00436026_m1 17-18 
Gli1  GLI-Kruppel family member GLI1 Mm00494645_m1 2-3 
Gli3  GLI-Kruppel family member GLI3 Mm00492333_m1 1-2 
Hhip  hedgehog-interacting protein Mm00469580_m1 12-13 
Spp  secreted phosphoprotein 1 Mm00436767_m1 2-3 
Ptgs2 prostaglandin-endoperoxidase 

synthase 2 
Mm00478374_m1 5-6 

Pgr progesterone receptor  Mm00435625_m1 4-5 
Star steroidogenic acute regulatory 

protein 
Mm00441558_m1 6-7 

Lhcgr luteinizing hormone/ 
choriogonadotropin receptor 

Mm00442931_m1 6-7 

Actg2 actin, gamma 2, smooth muscle, 
enteric 

Mm00656102_m1 7-8 

Cnn1 calponin 1 Mm00487032_m1 1-2 
Des desmin Mm00802455_m1 1-2 
Tagln transgelin Mm00441660_m1 1-2 
Tnc tenascin C Mm00495662_m1 5-6 
Edn2 endothelin 2 Mm00432983_m1 3-4 
18s rRNA  4319413E  
a Taqman® Gene Expression Assays (Applied Biosystems) 
b Exons in which forward and reverse primers anneal. 
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attachment of COC to the plate during infection.  Cultures were then treated with 0 

or 100 ng/ml FSH and scored for cumulus expansion 18 h later.  COC were 

examined by fluorescence microscopy for expression of YFP.   

 

Cell cycle analysis 

Granulosa cells isolated at different times after eCG/hCG treatment of immature 

mice were analyzed for DNA content by flow cytometry as described previously 

(Quirk et al., 2006).  

 

Statistical analysis 

Serum progesterone concentrations, tissue mRNA concentrations, and cell cycle data 

were analyzed by randomized (simple) two-way ANOVA.  Serum progesterone and 

tissue mRNA concentrations were log transformed to normalize standard error.  

Progesterone production by cultured granulosa cells and in vitro cumulus expansion 

experiments were analyzed by randomized complete block ANOVA, with 

experimental replicates as blocks; progesterone data were log-transformed.  

Student-Newman-Keuls test was used to compare individual means if overall 

significance was indicated (Ott, 2001).  All other data were analyzed by unpaired 

t-test. 

 

Results 

Generation of mice with conditional expression of dominant active Smo 
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 Mice in which a dominant active allele of Smo, known as SmoM2, is 

conditionally expressed in the ovary were created using a cre/loxP strategy.  A 

previously engineered transgenic mouse line was used in which expression of an 

inserted SmoM2-yellow fluorescent protein (Yfp) fusion gene is blocked by a 

loxP-flanked stop signal (SmoM2 mice; (Jeong et al., 2004)).  Homozygous SmoM2 

mice were crossed to Amhr2cre/+ mice in which Cre recombinase sequence was 

inserted into the Amhr2 gene (Jamin et al., 2002).  The Amhr2cre/+ allele was 

originally shown to direct expression of Cre to the gonads and mesenchyme of the 

Müllerian duct beginning at embryonic day 12.5 (Jamin et al., 2002).  Subsequent 

studies demonstrated Amhr2cre/+-mediated recombination in the adult ovary in 

granulosa cells as well as theca cells (Jorgez et al., 2004) and in the developing and 

adult reproductive tract (Arango et al., 2005; Deutcher & Yao, 2007).  In the current 

study, sites of Cre-mediated recombination in Amhr2cre/+SmoM2 mice were 

determined by examining expression of the Yfp fusion gene.  Cell suspensions for 

use in flow cytometry to detect YFP were prepared from whole ovary, oviduct and 

uterus of newborn mice and from theca and granulosa cells of preovulatory follicles 

from equine chorionic gonadotropin (eCG)/human chorionic gonadotropin (hCG)- 

treated immature mice.  Cells from genotype-matched control mice lacking Cre 

sequence (Amhr2+/+SmoM2) and from liver were analyzed as negative controls.  In 

cells from Amhr2cre/+SmoM2 mice, approximately half of the cells expressed 

detectable levels of YFP while cells from control mice and liver cells from mice of 

both genotypes showed background fluorescence (Fig. 2.1).   
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Fertility, ovulation and luteinization 

 In order to test fertility, Amhr2cre/+SmoM2 mutant mice and Amhr2+/+SmoM2 

control mice were caged continuously with CD-1 males of proven fertility.  Vaginal 

plugs were observed in both mutant and control mice.  Control mice had one or two 

litters within a 2 month period, averaging 9.6±1.0 pups/litter, while mutant mice 

produced no litters (n=5).  In mutant females, mating caused a severe inflammatory 

response in the reproductive tract (described below).  For this reason, subsequent 

studies on ovarian function were performed using virgin mice in order to eliminate 

the confounding effect of uterine pathology associated with breeding.  Daily vaginal 

smears showed that estrous cycle length was longer in mutant mice (6.8±0.3 days) 

than control mice (5.0±0.4 days, P<0.05).  The percent of days spent in diestrus was 

greater in mutants than controls (60±3% vs 31±9%) and the percent of days in 

proestrus was less (12±2% vs 27±4%) (Fig. 2.2). 

Response to superovulation was tested by collection of oocytes from the ampulla of 

eCG-primed prepubertal (21-23 days old) and adult mice (50-60 days old) 20 h after 

treatment with hCG.  Oocytes were readily recovered from immature and adult 

Amhr2+/+SmoM2 control mice (42.7±5.8 and 24.0±1.0 oocytes/mouse, respectively), 

while only occasional oocytes were recovered from immature and adult 

Amhr2cre/+SmoM2 mutant mice (0.3±0.3 and 0.3±0.3 oocytes/mouse, respectively). 
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Fig. 2.1. Assessment of the efficiency of CRE-mediated recombination in 

Amhr2cre/+SmoM2 mice.   Dispersed cells from tissues of mutant and control 

mice were analyzed by flow cytometry to measure fluorescence associated with 

expression of the SmoM2/Yfp reporter gene.  A) Percent of cells from 

reproductive tissues expressing YFP.  Signal obtained from tissues of control mice 

and from liver of mice of both genotypes represent background fluorescence.  Data 

are mean ± SEM of (n) replicates.  *, P < 0.05 vs cells of the same type from 

Amhr2+/+SmoM2 mice.  B) Representative plots of FL1 fluorescence vs side scatter 

in granulosa cells.  The shaded area is the area representing background 

fluorescence; cells with fluorescence associated with YFP expression are above the 

shaded area. 
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Fig. 2.2.  Amhr2cre/+SmoM2 mice have prolonged estrous cycles, characterized 

by extended periods of diestrus.  Vaginal smears were evaluated for the stage of 

the estrous cycle in four Amhr2+/+SmoM2 mice and four Amhr2cre/+SmoM2 mice for 3 

complete cycles or 20 days.  The left panel shows cycle length, and the right panel 

shows the percent of days mice exhibited smears characteristic of each stage of the 

cycle.  Data are mean ± SEM.  *, P < 0.05 vs Amhr2+/+SmoM2 mice. 
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Histological analysis of ovaries isolated 48 h after eCG suggested that preovulatory 

follicles develop similarly in mutant and control mice (Fig. 2.3A, panels a,b).  By 8 

h after hCG, cumulus expansion had occurred in control mice but appeared 

disorganized in mutant mice (Fig. 2.3A, panels c,d).  Oocytes within follicles of 

mutant and control mice resumed meiosis as evidenced by the presence of metaphase 

chromosomes (Fig. 2.3A, panels c,d).  At 20 h after hCG, ovaries of control mice 

contained newly formed CL, while ovaries of mutant mice lacked new CL and had 

preovulatory-type follicles containing trapped oocytes (Fig. 2.3A, panels e,f).  No 

sign that follicle rupture had occurred was observed in histological sections from 

mutant mice.  At 44 h after hCG, luteinization had further progressed in control mice, 

while in mutant mice follicles appeared to be luteinizing but contained blood-filled 

cavities with trapped oocytes (Fig. 2.3A, panels g,h).  CL containing trapped oocytes 

were observed in adult mutant mice but not in controls (data not shown).  These 

results indicate that ovulation in Amhr2cre/+SmoM2 mice is severely reduced and that 

the process of luteinization may be delayed or prolonged.  In order to assess the 

differentiation of granulosa cells into luteal cells after the LH surge, sections of 

ovaries were stained for the enzyme cytochrome P450, family 11, subfamily a, 

polypeptide 1 (CYP11a1), also known as side chain cleavage (SCC), which is 

essential for progesterone production.  At 20 h after hCG, only occasional CL of 

control and mutant mice stained positively for SCC (Fig. 2.3B, panels i,j).  At 44 h, 

SCC was expressed in CL of control mice and also in CL of mutant mice which 

sometimes contained blood-filled cavities (Fig. 2.3B, panels k,l). 
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Fig. 2.3.  Response to superovulation in immature Amhr2+/+SmoM2 and 

Amhr2cre/+SmoM2 mice.  A) Ovaries from Amhr2+/+SmoM2 and Amhr2cre/+SmoM2 

mice stained with hematoxylin and eosin (a-h).  Immature (21-23 days old) mice 

were injected with eCG followed 48 h later by hCG (0 h).  Preovulatory follicle 

formation appears similar in mutant and control mice at 0 h after hCG (a,b), but at 8h 

expansion of the cumulus in mutant mice appears disorganized compared to control 

mice (c,d).  At 20 h, ovaries of control mice contain newly formed CL while ovaries 

of mutant mice contain unruptured preovulatory-like follicles with trapped oocytes 

(e,f).  At 44h, CL development had further progressed in control mice while 

luteinizing follicles of mutant mice have blood-filled cavities with entrapped oocytes 

(g,h).  B) Immunohistochemical detection of SCC (reddish brown) in ovaries from 

mutant and control mice counterstained with hematoxylin (blue).  At 20 h after hCG 

(i,j), occasional CL stained positively for SCC, but most did not.  At 44 h (k,l) and in 

mice on day 3 of pseudopregnancy (m,n), CL of  both mutant and control mice 

showed distinct staining of SCC.  Non-specific staining, in which non-immune IgG 

was added in place of the SCC antibody, is shown (o,p). 
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  On day 3 of pseudopregnancy, CL of mutant and control mice appeared grossly 

similar; both stained positively for SCC and lacked a central cavity (Fig. 2.3B, panels 

m,n).  Serum concentrations of progesterone following treatment with eCG/hCG and 

on day 3 of pseudopregnancy were similar in mutant and control mice (Fig. 2.4A). 

In Amhr2cre/+SmoM2 mice, follicle cells may express SmoM2 for a prolonged 

period of time since recombination through Amhr2cre/+   begins during embryonic 

development.  Therefore, effects of acutely inducing expression of SmoM2 in 

granulosa cells in vitro were determined.  Granulosa cells were isolated from 

preovulatory follicles of eCG-primed homozygous SmoM2 mice and infected in vitro 

with a recombinant adenovirus expressing Cre (Adcre) or with a control adenovirus 

expressing β-galactosidase (Adβgal) as a control.  The concentration of progesterone 

in culture medium increased over 3 days and was not altered by infection with 

adenoviruses (Fig. 2.4B).  Treatment of parallel cultures with LH after the first day 

of culture increased the magnitude of progesterone secretion but infection with 

adenoviruses had no effect (Fig. 2.4C).  Activated expression of the SmoM2-Yfp 

fusion gene by Adcre was confirmed by flow cytometry of granulosa cells analyzed 

16 h after infection.  While the majority of cells infected with Adcre were positive 

for YFP (71±2%), only background fluorescence was observed in cells infected with 

Adβgal (5±1%).  As indicated above, within a month after caging with males, 

Amhr2cre/+SmoM2 female mice showed signs of distress and bleeding from the vagina.  

Histological analysis of the reproductive tract showed changes consistent with an  
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Fig. 2.4.  Effects of dominant active SmoM2 on progesterone production.  

A) Serum progesterone concentrations do not differ in Amhr2cre/+SmoM2 and 

control mice.  Immature (21-23 days old) mice were injected with eCG followed 

48 h later by hCG (0 h).  n = 4 mice/timepoint.  Untr, no hormone treatments; 

PP, day 3 of pseudopregnancy.  B) Activation of SmoM2 expression in cultured 

granulosa cells does not alter progesterone production.  Granulosa cells from 

SmoM2 mice were infected with Adcre at the time of plating to induce expression 

of the SmoM2/Yfp fusion gene or with no adenovirus or Adβgal as controls.  

ANOVA indicated no overall difference.  C) Granulosa cells from SmoM2 mice 

were treated as described for panel B, except that 10 ng/ml oLH was added after 

1 and 2 days of culture.  For data shown in panels B and C, n = 3 separate 

granulosa cell preparations tested, each receiving all treatments.  Data are mean 

± SEM.  Bars without common superscripts are significantly different (P< 

0.05). 
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extensive inflammatory response within the uterine lumen (Migone, et al..., 2011).  

Aspects of reproductive tract development are altered in mutant mice, a finding 

consistent with Cre-mediated recombination occurring in the developing Müllerian 

duct, and will be reported in detail elsewhere. 

 

Microarray analysis 

Microarray analysis was performed to obtain insight into the cause of ovulatory 

failure in Amhr2cre/+SmoM2 mice.  Single arrays were run using whole ovarian RNA 

prepared from three groups of immature mutant and control mice; untreated, 48 h 

after eCG and 4h after hCG in eCG-primed mice.  The data were sorted to identify 

transcripts in which expression differed between mutants and controls for all 

treatment groups.  Six out of the fifteen transcripts that were most prominently down 

regulated in mutants represent proteins that play a role in muscle function (Table 1, 

genes shown in bold).  Two down regulated transcripts are for extracellular matrix 

proteins, periostin and tenascin C (TNC).  The Amhr2 transcript is reduced in mutant 

mice, consistent with the presence of a single functional Amhr2 allele.  Gene 

ontogeny analysis of microarray data using the ErmineJ program indicated that the 

three biological processes most significantly different between mutant and control 

mice were muscle system processes, smooth muscle contraction and muscle 

development (p< 1 x 10-12).  Subsequent quantitative RT-PCR analyses of five 

selected genes confirmed differences between mutants and controls (Table 2.1).
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In order to determine the predominant cell type in which changes in muscle gene 

expression occurred, granulosa cells and residual ovarian tissue were isolated and 

assayed for smooth muscle marker genes, Cnn1, Des, Actg2 and Tagln.  Expression 

of muscle genes was low in granulosa cells, did not differ in mutant and control mice, 

and did change over time after eCG/hCG treatment.  Levels of expression of smooth 

muscle genes were much higher in residual tissue than in granulosa cells and were 

substantially reduced in mutant mice compared to controls (Fig. 2.5).  Minor 

fluctuations in levels of muscle gene expression were observed after eCG/hCG 

treatments.   Tnc expression increased after hCG in both granulosa cells and 

residual tissue; levels in residual tissue, but not in granulosa cells, were reduced in 

mutants compared to controls (Fig. 2.5).  Expression of endothelin 2 (Edn2), an 

agonist capable of inducing contraction of follicular muscle cells (Ko et al., 2006; 

Palanisamy et al., 2006), increased dramatically between 8 and 12 h after hCG in 

both mutant and control mice and was expressed primarily Table 2.2 in granulosa 

cells (Fig. 2.5). 

 

Immunohistochemistry of smooth muscle 

In order to determine the location of cells with the characteristics of smooth 

muscle cells, ovarian sections from immature mice were stained for smooth muscle 

actin α (SMA), which is considered to be a marker for smooth muscle cells, and 

4,6-diamidino-2-phenylindole (DAPI), which marks nuclei.  In control mice that 

were untreated or assessed at 48 h after eCG, a SMA-positive layer of cells were  
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present in the outer theca, consistent with previous studies (Amsterdam et al., 1977; 

Ko et al., 2006)  (Fig. 2.6A and 6B).  Co-staining for von Willebrand’s factor 

(VWB), which marks endothelial cells, showed that prominent staining for SMA did 

not coincide with endothelial cells within the theca layer (Fig. 2.7).  Large blood 

vessels in the stroma stained positively for SMA in the outer layer and positively for 

VWB in the inner endothelial cell layer (Fig. 2.7).  In untreated and eCG-treated 

mutant mice, SMA staining was absent or dramatically reduced in the theca of the 

majority of follicles while staining in large blood vessels and low-intensity staining in 

the vicinity of theca endothelial cells appeared similar to controls (Fig. 2.6A and 6B 

and Fig. 2.7).  In ovaries from eCG-primed immature mutant and control mice that 

were isolated 12 h after hCG, the pattern of SMA staining was similar to that observed 

in untreated mice and eCG-treated mice (data not shown).  When SMA staining was 

examined in younger mice, it was found to be undetectable in ovaries of 8 day old 

control and mutant mice in which primordial and primary follicles predominated (Fig. 

2.6C).   

 On days 12 and 16 of age, SMA was detectable in ovaries of control mice in the 

outer theca layer of follicles with greater than two layers of granulosa cells (tertiary 

follicles) and was substantially reduced to non-detectable in follicles of mutant mice 

(Fig. 2.6C).  Expression of components of the HH signaling pathway 

Expression of components of the HH pathway was detectable in both granulosa cells 

and residual ovarian tissue, and levels of expression changed in response to 

treatments with eCG/hCG (Fig. 2.8). 
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Fig. 2.5.  Expression of genes associated with smooth muscle (Cnn1, Des, Actg2, 

Tagln) or extracellular matrix (Tnc) and expression of Edn2 in granulosa cells 

and residual ovarian tissue from Amhr2+/+SmoM2 and Amhr2cre/+SmoM2 mice.  

Tissues were obtained from untreated mice (UT) or from eCG-primed mice before (0 

h) or after injection of hCG.  Total RNA was assayed by quantitative real-time 

RT-PCR.  Data are mean ± SEM.  n = 3 granulosa cell and residual tissue 

preparations.  Bars without common superscripts are significantly different (P < 

0.05). 
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Fig. 2.6.  Staining for the smooth muscle marker, SMA, in ovaries of 

Amhr2+/+SmoM2 and Amhr2cre/+SmoM2 mice at different ages and in immature 

mice 48 h after injection of eCG.  Sections were counterstained for nuclei with 

Hoechst 33342 (blue).  Results were confirmed in at least 3 mice of each genotype 

and age. 
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Fig. 2.7. Staining for the smooth muscle marker, SMA, and the endothelial cell 

marker, VWB, in ovaries of Amhr2+/+SmoM2 (top panels) and Amhr2cre/+SmoM2 

mice (bottom panels).  Sections were co-stained for SMA (red) and VWB (green) 

and for nuclei (DAPI; blue) and individual and merged images are shown.  Sections 

are from ovaries isolated 48 h after injection of eCG to immature mice. 
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 Smo was consistently elevated in granulosa cells of mutant mice relative to controls.  

Smo levels were lower in residual tissue than in granulosa cells and were slightly 

elevated in mutants relative to controls at several time points.  Ihh was expressed at 

substantially higher levels in granulosa cells than in residual tissue; expression in 

granulosa cells declined between 0 and 4 h after hCG and remained at basal levels 

thereafter.  Levels of Ptch1, Gli3 and Hhip were within the same general range in 

granulosa cells and residual tissue and in mutant and control mice.  However, the 

pattern of changes in gene expression in response to eCG/hCG differed in the two 

fractions of cells.  Levels of Gli1 were substantially higher in residual tissue 

compared to granulosa cells and did not differ between mutants and controls.  Gli1 

in residual tissue decreased in response to eCG/hCG. 

In order to more precisely examine localization of gene expression, theca and 

granulosa cells were isolated from preovulatory follicles of immature mice 24 h after 

injection of eCG.  Smo mRNA was elevated in granulosa cells and theca of mutant 

mice compared to controls (Fig. 2.9).  This result is consistent with 

Amhr2cre-mediated expression of the SmoM2-Yfp fusion gene in both granulosa and 

theca, as shown in Fig. 2.1.  Levels of mRNA for genes typically expressed in 

muscle cells, Cnn1 and Actg2, were expressed predominantly in theca and were 

reduced in mutants compared to controls (Fig. 2.9). 

 

Expression of genes associated with differentiation of granulosa cells 
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Fig. 2.8.  Expression of genes in the HH signaling pathway in granulosa cells 

and residual ovarian tissue from Amhr2+/+SmoM2 and Amhr2cre/+SmoM2 mice.  

Tissues were obtained from untreated mice (UT) or from eCG-primed mice before (0 

h) or after injection of hCG.  Total RNA was assayed by quantitative real-time 

RT-PCR.  Data are mean ± SEM.  n = 3 granulosa cell and residual tissue 

preparations.  Bars without common superscripts are significantly different (P < 

0.05). 
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Changes in the pattern of expression of genes known to be involved in ovulation and 

differentiation were similar in granulosa cells of mutants and controls after injection 

of hCG including: Lhcgr, required for effects of LH on follicle differentiation and 

ovulation; Star, a rate-limiting enzyme required for progesterone production; Pgr, 

known to be required in granulosa cells for ovulation; Ptgs2 (also known as Cox-2), 

required for cumulus expansion and ovulation; and Spp1 (also known as osteopontin), 

a gene known to increase after the LH surge (McRae et al., 2005) and reported to be a 

target of HH signaling (Yoon et al., 2002) but with unknown function in the follicle 

(Fig. 2. 10).  

 

Cumulus Expansion 

Based on the disorganized appearance of cumulus expansion in histological 

sections of mutant ovaries, a potential impairment of cumulus expansion was tested in 

isolated cumulus-oocyte complexes (COC) in vitro.  Treatment with FSH induced 

expansion of COC from control mice as expected, while the magnitude of expansion 

was reduced in complexes from mutant mice (Fig. 2. 11A).  Fluorescent images of 

representative COC from mutant mice showed bright YFP signal for cells in the plane 

of focus (Fig. 2.11C).  To determine the effect of acute induction of SmoM2 

expression on cumulus expansion in vitro, COC were isolated from preovulatory 

follicles of eCG-primed mice homozygous for the SmoM2 allele and cultured with 

Adcre or Adβgal as control.  Analysis of YFP reporter expression in COC by 

fluorescence microscopy confirmed that Cre-mediated activation of SmoM2 
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expression occurred in most cells.  Treatment with FSH increased the expansion 

index in complexes infected with Adβgal while the response to FSH was prevented in 

complexes infected with Adcre (Fig. 2.11B).  Taken together, the results show that 

Cre-mediated activation of SmoM2 expression in vivo (in Amhr2cre/+SmoM2 mice) 

and in vitro (in Adcre-infected COC from SmoM2 mice) results in a suboptimal 

cumulus expansion reaction.  

 

Progression of granulosa cells through the cell cycle 

Granulosa cells are reported to exit the cell cycle following exposure to the LH 

surge, and this is associated with their differentiation into luteal cells (Robker & 

Richards, 1998).  Cell cycle distribution was similar in mutant and control mice with 

cells present in each stage of the cycle (G0/G1, S and G2/M) at each of the time 

points examined after treatment with eCG/hCG (Fig. 2.12).  Between 8 and 12 h 

after hCG, the percent cells in S phase decreased and the percent cells in G2/M tended 

to increase in mutants and controls.  Thus, exit from the cell cycle was not complete 

by 12 h after hCG but movement of a wave of cells from S phase to G2/M appeared 

to occur between 8 and 12 h. 

 

Discussion 

Constitutive expression of dominant active SmoM2 in the ovary prevented ovulation.  

The major phenotypic difference identified between mutant and control mice that 

may contribute to ovulatory failure is the dramatic reduction in the layer of muscle 
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cells that surround developing follicles.  The presence of muscle cells or 

myofibroblastic-type cells in the theca layer of the follicle has been demonstrated in 

many mammalian species and an extensive literature exists to suggest a potential role 

of contractile cells in the process of ovulation (Amsterdam et al., 1977; Espey, 1978).  

However, a general lack of direct evidence for a requirement for muscle contraction 

in ovulation, as well as contradictory evidence obtained from different studies, 

apparently led to decreased effort in this field.  Recently, treatment with 

endothelin-2 (END2) was shown to increase tension development in strips of rat 

ovarian tissue (Ko et al., 2006).  End2, expressed by granulosa cells, increases 

immediately prior to ovulation in the rat (Ko et al., 2006) and mouse (Palanisamy et 

al., 2006) and receptors for END2 are present within the SMA-positive muscle layer 

as well as in other cell types within follicles (Ko et al., 2006; Palanisamy et al., 2006).  

Importantly, injection of an END2 antagonist into the rat ovary decreased the rate of 

ovulation in vivo and reduced contraction of follicular smooth muscle was postulated 

to be responsible (Ko et al., 2006).  Furthermore, systemic injection of an END2 

antagonist to mice decreased ovulation rate (Palanisamy et al., 2006).  A number of 

genetically altered mice have been created in which ovulation is impaired and these 

studies have revealed important information about the signaling pathways involved in 

ovulation.  However, the end-points affected which directly prevent ovulation have 

often remained undetermined.  The mice generated in the current study provide a 

unique model to directly test the effects of impaired follicular muscle development on 

ovulation.
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Fig. 2.9. Expression of genes in isolated granulosa and theca cells of preovulatory 

follicles from Amhr2+/+SmoM2 and Amhr2cre/+SmoM2 mice.  Cells were isolated 

from preovulatory follicles of immature mice 24 h after injection of eCG.  Total 

RNA was assayed by quantitative real-time RT-PCR.  Data are mean ± SEM.  n = 3 

granulosa cell and theca preparations.  Bars without common superscripts are 

significantly different (P < 0.05).
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Fig. 2.10.  Expression of genes associated with ovulation and luteinization in 

granulosa cells from eCG-primed Amhr2+/+SmoM2 and Amhr2cre/+SmoM2 mice 

obtained after injection of hCG.  Total RNA was assayed by quantitative real-time 

RT-PCR.  Data are mean ± SEM.  n = 3 granulosa cell preparations.  Bars without 

common superscripts are significantly different (P < 0.05). 
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Fig. 2.11. Cumulus expansion is reduced in COC expressing SmoM2.  A) COC 

were obtained from Amhr2+/+SmoM2 and Amhr2cre/+SmoM2 mice 48 h after injection 

with eCG and incubated with 0 or 100 ng/ml oFSH.  Cumulus expansion was scored 

on a scale of 0 (no expansion) to 4 (full expansion) 20-24 h later.  For each treatment, 

a total of 60–79 COC from three separate COC preparations were scored.  B) COC 

were obtained from SmoM2 mice 48 h after injection with eCG and incubated for 6 h 

with Adβgal or Adcre.  At 6 h, 0 or 100 ng/ml oFSH was added, and cumulus 

expansion examined at 24 h.  For each treatment, a total of 20-34 COC from three 

separate COC preparations were scored.  Data are mean ± SEM.  Bars without 

common superscripts are significantly different (P < 0.05).  C)  Phase contrast and 

fluorescent images of representative COC from Amhr2+/+SmoM2 mice (significant 

expansion, no fluorescent signal observed) and Amhr2cre/+SmoM2 mice (minimal 

expansion, positive YFP signal observed; note cells in the plane of focus show bright 

signal for YFP). 
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Fig. 2.12. Granulosa cells from preovulatory follicles of eCG-primed 

Amhr2+/+SmoM2 and Amhr2cre/+SmoM2 mice begin to exit the cell cycle in a 

similar manner after injection of hCG.  Cell cycle stage was determined by flow 

cytometric analysis of propidium iodide binding to cellular DNA.  Data are mean ± 

SEM.  n = 3-8 granulosa cell preparations from individual animals.  Within each 

cell cycle stage, bars without common superscripts are significantly different (P < 

0.05). 
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HH signaling regulates smooth muscle differentiation in a number of organ systems.  

In the developing gut, ureter and bladder, SHH directs radial patterning of mesoderm 

by stimulating the proliferation of mesenchymal cell precursors and preventing their 

differentiation into smooth muscle cells (Shiroyanagi et al., 2007; Sukegawa et al., 

2000; Yu et al., 2002).  In each of these systems, mesenchymal cells located most 

distant from the source of SHH in the epithelium differentiate into muscle cells, while 

cells closer to the epithelium adopt non-muscle cell fates.  These findings are 

consistent with a well-documented aspect of HH effects on tissue patterning; a 

concentration gradient of HH ligand is established and differentiation of target cells is 

dependent on their position within the gradient (King et al., 2008).  Further direct 

evidence that expression of dominant active SmoM2 can inhibit differentiation of 

smooth muscle was provided by experiments in which expression of SmoM2 in 

Xenopus embryos increased proliferation of midgut mesenchymal cells and attenuated 

expression of the differentiation marker smooth muscle actin (Zhang & Kalderon, 

2001). 

The theca is presumed to be derived from mesenchymal cells present in the 

newborn ovary at the time that fragmentation of ovigerous cords to form primordial 

follicles occurs (Mazaud et al., 2005), although theca progenitor cell(s) have not been 

definitively identified and studied (Hirshfield, 1991a; Magoffin, 2005).  Primordial 

follicles are composed of a quiescent oocyte surrounded by a flattened layer of 

pregranulosa cells and enclosed by a basement membrane.  Although the theca cell 

layer that will form outside the basement membrane is not yet discernable, 
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mesenchymal cells in close association with primordial follicles include theca cell 

precursors (Hirshfield, 1991b).  Factors determining the fate of cells within the theca 

as fibroblastic, steroidogenic or myoid have not been determined.  In growing 

primary follicles, a layer of dividing mesenchymal cells surrounding the basement 

membrane was detected in rats infused with tritiated thymidine, suggesting that an 

early layer of theca precursors is intimately associated with the follicle at this stage 

(Hirshfield, 1991b).  Components of the HH signaling pathway are detectable by 

real time RT-PCR in newborn mouse ovaries(Russell et al., 2007).  During the first 

days of life, the ovigerous cords break down and formation of primordial follicles is 

complete within 4 days.  In situ hybridization showed that expression of Dhh and 

Ihh is first detectable in granulosa cells of primary follicles and Ptch1 and Gli1 are 

expressed in the theca (Wijgerde et al., 2005).  Therefore, at least as early as the 

primary stage, and possibly earlier, HH signaling might regulate the differentiation of 

mesenchymal cells and thereby influence thecal development.  Results of the current 

study show that theca muscle cells are detectable in control mice by 

immunohistochemistry for SMA as early as day 12 of age while staining is 

substantially reduced in mutant mice.  Appropriate temporal and spatial signaling 

through the HH signaling pathway appears to be critical for cell fate determination 

and/or differentiation of smooth muscle cells within the theca layer of the follicle.  

Furthermore, development of this cell layer is likely to be essential for ovulation. 

Quantitative gene expression analyses showed that levels of Smo mRNA in 

granulosa cells of Amhr2cre/+SmoM2 mice were elevated at all time points examined 
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after eCG/hCG-treatment compared to control mice, confirming constitutive 

expression of SmoM2.  In contrast, Smo levels in residual tissue were substantially 

lower than in granulosa cells and were only slightly elevated in mutants compared to 

controls at several time points (Fig. 2.8).  SmoM2 was clearly expressed in the theca 

of mutant mice since the YFP reporter protein was detected in theca of preovulatory 

follicles by flow cytometry (Fig. 2.1) and expression of Smo mRNA was elevated in 

isolated theca of mutants compared to controls (Fig. 2.9).  Failure to observe 

increased expression of Smo in residual tissue of mutant mice may reflect dilution of 

theca within the residual tissue with other cell types. 

Components of the HH signaling pathway were expressed in the granulosa cells 

as well as the theca, in agreement with a previous report (Russell et al., 2007).  The 

LH surge appears to trigger changes in HH signaling; Ihh decreased within 4 h after 

hCG and Hhip and Gli3 simultaneously increased.  HHIP binds HH ligands and is 

thought to function as an antagonist (Chuang & McMahon, 1999), and GLI3 often 

acts as a transcriptional repressor.   While in a number of contexts HH signaling 

reduces expression of Gli3 mRNA (Bastida et al., 2004; Marigo et al., 1996; Ohba et 

al., 2008), a primary means of regulation is by processing of GLI3 protein.   The 

regulation of GLI3 processing by HH signaling is a critical determinant of many 

aspects of development (Koziel et al., 2005; Litingtung et al., 2002; Wang et al., 2000; 

Wang et al., 2007).   In the absence of HH signaling, full-length GLI3 is processed 

to form a truncated repressor (GLI3R) by phosphorylation at multiple sites mediated 

by cAMP-dependent protein kinase A (PKA), CKI and GSK3 (Tempe et al., 2006; 
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Wang et al., 2000; Wang & Li, 2006).  In this regard, it is interesting that ovarian 

PKA activity increases in response to the LH surge (Gonzalez-Robayna et al., 1999; 

Richards, 1994).  Gli1 and Patch1 are reported to be transcriptional targets of HH 

signaling (Ahn & Joyner, 2004; Ikram et al., 2004; Lee et al., 1997; Marigo et al., 

1996).  While levels of Gli1 were much higher in residual tissue than in granulosa 

cells, levels of Ptch1 were within the same range in the two cell fractions.  The 

relationship between levels of Ptch1 mRNA and HH signaling is complex; Ptch1 is a 

transcriptional target of HH signaling, while PTCH protein inhibits signaling through 

SMO, generating a negative feedback loop in which HH attenuates its own activity 

(Chen & Struhl, 1996; Jeong & McMahon, 2005).  The significance of potential 

changes in HH signaling in both the granulosa and residual tissue after the LH surge 

remains to be determined.  

The disorganized appearance of cumulus expansion in Amhr2cre/+SmoM2 mice 

detected by histology was confirmed by in vitro assays.  The fact that elevated HH 

signaling interfered with normal cumulus expansion is consistent with a report that 

expression of Ihh and Dhh decrease in COC of mice after hCG (Hernandez-Gonzalez 

et al., 2006).  A number of genetically altered mice in which ovulation is impaired 

were also reported to have reduced cumulus expansion, including mice null for Ptgs2 

(Davis et al., 1999), Rip140 (Tullet et al., 2005), Adamts1 (Mittaz et al., 2004) and 

petraxin 3 (Varani et al., 2002) and mice with defective EGFR signaling (Hsieh et al., 

2007), but the basis for this association has not been defined.  While impaired 

cumulus expansion may contribute to ovulatory failure in Amhr2cre/+SmoM2 mice, it 
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is likely that failed development of the theca muscle cells is primarily responsible.  

Microarray and RT-PCR analyses showed that expression of Tnc, which encodes a 

protein that can contribute to hyaluronan cross-linking in the extracellular matrix, was 

reduced in mutant mice in the residual tissue but not in mural granulosa cells.  TNC 

was previously identified at high levels in theca externa of rats (Yasuda et al., 2005).   

This is of potential relevance to ovulation since in a number of tissues TNC is 

associated with tissue remodeling and wound healing (Schellings et al., 2004).  TNC 

was also localized to the cumulus matrix of mice and women suggesting that it may 

play a role in cumulus expansion (Familiari et al., 1996; Hernandez-Gonzalez et al., 

2006; Relucenti et al., 2005).  The transcript for periostin (Postn), which encodes an 

extracellular matrix protein that belongs to the same family as TNC, was also reduced 

in mutant mice (Table 2).  The possibility that extracellular matrix components of 

the follicle are regulated by HH signaling requires further investigation. 

In Amhr2cre/+SmoM2 mice, expression of a number of genes changed similarly 

after hCG to that observed in controls, including Ptgs2 and Pgr, which are essential 

for ovulation (Jefferson et al., 2006; Lim et al., 1997; Lydon et al., 1995), Lhcgr, 

which is required for differentiation (Richards, 1994) and End2, which is thought to 

be involved in stimulating muscle contraction and follicle rupture (Ko et al., 2006).  

Microarray data revealed no difference between mutant and control mice in 

expression of Cyp17a1, encoding cytochrome P450 17α-hydroxylase/17, 20-lyase, the 

enzyme required for androgen synthesis in the theca.  Furthermore, oocyte 

maturation appeared to be initiated normally and cell cycle analysis revealed no 
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differences in granulosa cell proliferation.  Measurements of Star mRNA, SCC and 

serum progesterone indicated no alteration in luteinization in mutant mice.  

Furthermore, in vitro induction of SmoM2 expression by granulosa cells had no effect 

on progesterone production.  These findings, as well as ovarian histology, suggest 

that many aspects of follicle development to the preovulatory stage occurred fairly 

normally in mutant mice, and that some of the early events in response to the LH 

surge were not altered.  It is not yet determined why estrous cycle length is 

prolonged in mutant mice.  Careful morphometric analysis of follicle development 

in mutant and control ovaries will be necessary to address this question. 

The fact that blood-filled cavities were prominent in follicles of eCG/hCG treated 

mutant mice suggested that development of the vasculature might be abnormal, 

leading to increased leakage of blood cells into the antral cavity.  However, the 

concentration of serum progesterone did not differ in mutant and control mice, 

indicating that vascular development was adequate to promote the normal release of 

progesterone into the circulation.  This reasoning is supported by the findings that 

impaired vascular development of CL in various strains of transgenic mice and in 

sheep is associated with decreased levels of progesterone in the circulation (Hsieh et 

al., 2005).  In addition, immunostaining for endothelial cells indicated no obvious 

differences in preovulatory follicles of mutant and control mice. 

In summary, dominant activation of HH signaling in developing follicles likely 

blocks the differentiation of precursor cells into muscle cells that normally reside in 

the outer theca layer of the follicle.  This possibility is consistent with known effects 
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of HH signaling on smooth muscle differentiation in other developmental systems.  

Although follicles develop to the preovulatory stage and undergo many changes in 

response to eCG/hCG normally, they fail to release the oocyte.  These findings lend 

support to the theory that muscle cells within the theca layer are required for release 

of the oocyte at the time of ovulation. 
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CHAPTER THREE: OVER-ACTIVATION OF HEDGEHOG SIGNALING 

AFFECTS DEVELOPMENT OF OVARIAN VASCULATURE AND LEADS TO 

THE PRESENCE OF ADRENAL-LIKE CELLS IN THE OVARY 
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Summary 

To understand the role of HH signaling in the mammalian ovary, we previously 

created mice expressing a dominant active allele of the signal transducer, Smoothened 

(Smo), named SmoM2, in the ovary and the reproductive tract by driving its 

expression with the anti-Mullerian hormone receptor type II (Amhr2) promoter.  

Mutant mice fail to ovulate.  This phenotype is associated with reduced expression 

of smooth muscle genes and smooth muscle actin within the thecal layer of growing 

follicles.  The deficiency in thecal smooth muscle is evident beginning at the 

secondary stage of follicle development and continues as follicles develop to 

preovulatory status, suggesting that developmental defects occur during early life in 

mutant mice.  Along these lines, no difference was detected in expression of the HH 

target genes Gli1, Ptch1 and Hhip in preovulatory follicles, suggesting that 

over-activation of HH signaling that leads to the phenotype in mutant mice may be 

restricted to early ovarian development.  The present study aimed to determine 

whether HH signaling activity was altered before the onset of follicle growth, and to 

address the nature of the developmental defects in the ovaries of mutant mice.  The 

results showed that HH signaling is abnormally activated in the ovaries of mutant 

mice compared to controls around the time of birth.  Microarray analyses revealed 

that levels of mRNA for genes involved in vascular network formation and 

endothelial-mesenchymal interaction are elevated in mutants compared to their levels 

in controls in ovaries from mice at 2 days of age.  Consistent with this finding, a 

capillary network of higher density was formed in the cortex of the neonatal ovary in 
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mutant mice.  Reduced expression of smooth muscle actin in the theca of mutant 

mice represented vascular smooth muscle, indicating aberrant maturation of thecal 

vasculature.  Interestingly, adrenal-like cells were present in neonatal ovaries of 

mutant mice as indicated by their expression of genes normally expressed in the 

adrenal gland, such as Cyp11b1, Cyp21 and Shh.  An increased rate of oocyte 

degeneration occurred in mutant mice compared to controls during follicle assembly, 

resulting in a reduced primordial follicle pool at 24 days of age.  The first wave of 

follicular development was abnormal in mutant mice, with increased incidence of 

atresia, multiple-oocyte-follicles and abnormal morphology of follicles grown to the 

secondary stage.  These results indicate that over-activation of HH signaling around 

the time of birth may alter vascular development, and this may contribute to defects 

in the thecal vasculature throughout life that are associated with anovulation.  In 

addition, the data suggest that HH signaling may be a mediator of cell migration 

or/and sorting in the adrenogonadal primordium, or alternatively, that it can induce 

differentiation of cells within the ovary to a fate typical of adrenal cells.  

 

Introduction 

In an attempt to understand the function of HH signaling in the ovary, we 

previously created mice expressing a dominantly active allele of the signal transducer 

Smo, named SmoM2, in the Mullarian duct and the ovary by driving its expression 

with the anti-Mullerian hormone receptor type II (Amhr2) promoter (Ren et al., 2009).  

The resultant Amhr2cre/+SmoM2 mutant mice are infertile and fail to ovulate.  The 
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failure of ovulation in mutant mice is accompanied by reduced expression of smooth 

muscle genes in the thecal layer of growing follicles in the mutants compared to 

controls.  This abnormality begins in follicles from the secondary stage, when theca 

begins to acquire an extensive vasculature.  In addition, no difference in the levels of 

mRNA for components of HH pathway was detected in preovulatory follicles around 

the time of ovulation.  These observations indicate that the failure of ovulation in 

Amhr2cre/+SmoM2 mutant mice is due to altered HH signaling activity during 

development rather than around the time of ovulation.  The purpose of the current 

study was to determine whether HH signaling activity is altered in mutant mice and 

whether this alteration contributes to the failure of ovulation in later life.   

HH signaling has potent pro-angiogenic effects and regulates multiple aspects of 

vascular development.  In the murine yolk sac, HH signaling is necessary for the 

differentiation of embryoid bodies into blood islands (Byrd et al., 2002).  In avain 

and murine embryos, HH signaling is required for the formation of endothelial tubes 

during initial vasculogenesis and for subsequent angiogenesis (Nagase et al., 2006; 

Vokes et al., 2004).  HH signaling promotes formation of vascular networks in a 

great number of tissues during development, adult homeostasis and tumorigenesis.  

In the hindbrain choroid plexus, SHH induces vascular outgrowth that is critical for 

the function of the choroid plexus (Nielsen & Dymecki, 2010).  During development 

of the lung, HH signaling in coordination with FGF9 regulates the growth and 

patterning of the pulmonary capillary network (White et al., 2007), which is critical 

for tubular branching morphogenesis (van Tuyl et al., 2007).  HH signaling also 
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controls vascularization of the cartilage (Joeng & Long, 2009).  In murine melanoma, 

SHH promotes proliferation of endothelial cells in vivo and in vitro (Geng et 

al.,2007).  Recently, Chen et al. (Chen et al., 2011) showed that HH signaling 

promotes tumorigenesis by enhancing tumor angiogenesis.  Finally, HH signaling 

can induce the specification of endothelial cells to become arterial, rather than venous 

cells (Williams et al., 2010). 

One mechanism through which HH signaling exerts its compound effects on 

vascular development is by promoting the differentiation, migration and proliferation 

of endothelial precursor cells (Asai et al., 2006; Byrd & Grabel, 2004).  

Accumulating evidence indicates that effects of HH signaling on vascular 

development are not through direct effects on endothelial cells but are often achieved, 

at least in part, through direct action on vascular mural cells or the 

mesenchymal-interstitial cells surrounding the vasculature.  During the formation of 

the pulmonary capillary network, SHH and FGF9 signal to the lung mesenchyme to 

regulate the growth and patterning of the distal capillary network (White et al., 2007).  

In an in vitro model of ischemia, SHH promotes neovascularization through inducing 

expression of vascular endothelial growth factor (VEGF), angiopoietin-1 (ANGPT-1), 

and angiopoietin-2 (ANGPT-2) in the interstitial mesenchymal cells (Pola et al., 

2001).  In human vascular smooth muscle cell (VSMC), SHH induces expression of 

beta-type platelet-derived growth factor (PDGFRβ) and the wrapping of VSMC 

around newly formed vessels (Frontini et al., 2011).  Expression of mRNA for Shh 

and hypoxia-induced factor 1 (Hif1) is induced by hypoxia in human pulmonary 
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arterial smooth muscle cells, and mediates proliferation of these cells through GLI1 

(Wang et al., 2010).  In a tumor xenograft model, HH ligand produced by tumor 

cells targets stromal perivascular cells and increases tumor vascular density (Chen et 

al., 2011).  Furthermore, HH interacting protein 1 (Hhip1), which binds to HH 

ligands and limits the spatial distribution of the ligands, is expressed mainly in 

endothelial cells but not in other cell types in adult animals, and this is proposed to 

prevent HH signaling to the endothelial cells (Olsen et al., 2004).  In summary, HH 

signaling controls vascular development by regulating both endothelial cells and 

vascular mesenchymal cells directly or indirectly, and it is an attractive candidate for 

tumor therapy and regenerative treatment. 

The ovary is a unique organ compared to other adult tissues.  Intensive cyclic 

vascular remodeling occurs in the ovary throughout an animal’s reproductive life span, 

and the vascular system seems to be an active regulator of development and function 

of the ovary.  Vasculature-associated factors such as platelet-derived growth factor 

(PDGF) and vascular endothelial growth factor (VEGF), are postulated to modulate 

follicle activation (Fortune et al, 2011; Kezele et al, 2005; Nilsson et al).  As soon as 

follicles grow beyond the primary stage and start to acquire a second layer of 

granulosa cells, a capillary network forms within the theca-interstitial layer and is 

involved in further growth to the antral stage and in follicle selection (Acosta et al., 

2004; Robinson et al., 2009; Zimmermann et al., 2003).  In preparation for 

ovulation, multiple changes occur to the ovarian vasculature, such as changes in 

blood flow mediated by vasodilation and vasoconstriction, which modulate the 
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formation of the follicle rupture site (Dahm-Kahler et al., 2006; Koos et al., 1995; 

Macchiarelli et al., 2006; Zackrisson et al., 2000).  Finally, the newly formed and 

steroidogenicaly active corpus luteum (CL) is one of the most highly vascularized 

structures in the body.  Numerous studies indicate that vasculature is highly involved 

in, or perhaps regulates, the formation, function and degradation of the CL (Furukawa 

et al., 2007; Meidan & Levy, 2007; Wulff et al., 2001).  It is not surprising that 

alterations in the vasculature are also involved in ovarian pathology, such as 

polycystic ovary syndrome and ovarian carcinoma (Delgado-Rosas et al., 2009; 

Schiffenbauer et al., 1997).  Taken together, as the vascular system plays such 

important roles in the ovary, abnormality in the ovarian vasculature at any stage of 

follicular development could possibly affect fertility and induce pathogenesis.  

Therefore, new understanding of the potential role of HH signaling in development of 

the ovarian vasculature is of significant interest and importance.  

 

Materials and Methods 

Mouse strains and management 

Procedures were performed as described in Chapter 2.  

 

YFP expression 

YFP expressed from the SmoM2-Yfp allele was examined using a Zeiss LSM 510 

confocal microscope (Carl Zeiss Microimaging, Thornwood, NY).  Ovaries were 

fixed in 4% paraformaldehyde for 1h, rinsed in PBS, counterstained with 1 μg/ml 
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Hoechst 33258 overnight, then mounted in aqueous mounting media and examined 

within 24h.  YFP was excited at 514 nm and viewed using a 520-550 nm bandpass 

filter. 

 

Real-time RT-PCR analysis of gene expression 

 RNA was prepared from whole ovaries using a RNeasy Micro Kit (QIAGEN, 

Valencia, CA).  Reverse transcription was performed using a High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Foster City, CA).  Real-time 

RT-PCR was performed on an ABI Prism 7000 using the mouse-specific assays listed 

in Table 3.1.  A standard curve used in each assay was constructed by serial dilution 

of cDNA prepared from a RNA pool of immature (21-23 day old) mouse ovaries.  

The highest standard was assigned an arbitrary value of 20.  In assays for each gene, 

values for standards and samples were standardized by dividing by that of the 

corresponding 18S rRNA and multiplying by 100.  For assays of whole ovaries, 

samples from mice at each day of age were analyzed on the same assay plate. 

 

In situ hybridization 

        Ovaries were collect on the day of birth, dissected in cold PBS on ice, and 

immediately fixed in 4 % paraformaldehyde in PBS at 4 ℃ for two hours.  After 

fixation, ovaries were washed in PBS-0.1% Tween20, dehydrated, and then stored in 

100% methanol at -20 ℃ until use.  Whole-mount in situ hybridization was 
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Table 3.1.  Quantitative real-time RT-PCR assays 
 
Gene 
Symbol       Gene name                  Assay IDa          Exonsb   
Dhh desert hedgehog Mm00432820_m1 2-3 
Ihh  Indian hedgehog Mm00439613_m1 2-3 
Shh sonic hedgehog Mm00436527_m1 1-2 
Ptch1  patched homolog 1 Mm00436026_m1 17-18 
Hhip  hedgehog-interacting protein Mm00469580_m1 12-13 
Gli1  GLI-Kruppel family member GLI1 Mm00494645_m1 2-3 
Gli2 GLI-Kruppel family member GLI2 Mm01293117_m1 8-9 
Gli3  GLI-Kruppel family member GLI3 Mm00492333_m1 1-2 
Smo smoothened homolog Mm01162710_m1 8-9 
Star steroidogenic acute regulatory protein Mm00441558_m1 3-4 
18s rRNA  4319413E  
a Taqman® Gene Expression Assays (Applied Biosystems) 
b Exons in which forward and reverse primers anneal 
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performed using digoxigenin-labeled riboprobes and detected using BM purple 

substrate (Roche Bioscience, Palo Alto, CA) .  Whole-mount stained ovaries were 

imaged using the differential interference contrast setting on a Nikon Eclipse E600 

microscope.  To better assess the location of mRNA, tissues were embedded in 

agarose blocks and cut into sections of 15 μm thickness using a vibratome.  Ovaries 

from control and mutant mice were handled equally and were exposed for the same 

amount of time for each riboprobe.  In addition, ovaries with no probe were used as 

negative controls and embryonic limb buds were used as positive controls. 

 

Microarray analysis 

RNA was prepared from ovaries from 2 day-old Amhr2+/+SmoM2 control and 

Amhr2cre/+SmoM2 mutant mice using a RNeasy Mini Kit (Qiagen, Valencia, CA).  

Each sample consisted of RNA from 16 ovaries from 8 mice.  RNA quality was 

assessed by measurement of ribosomal RNA on an Agilent 2100 Bioanalyzer 

(Agilent Technologies, Santa Clara, CA).  Microarray analyses were performed by 

the Microarray Core Facility of the Cornell University Life Sciences Core 

Laboratories Center using Affymetrix GeneChip Mouse Genome 430_2 chips 

(Affymetrix, Santa Clara, CA).  Raw array data was processed by Affymetrix GCOS 

software to obtain signal values.  The signals were log2-transformed after being 

offset by 64, and fold differences were calculated as the difference between mutant 

and control samples.  Only probe sets having at least one Present call were included 

in the analysis.  DAVID cluster analysis (Dahm-Kahler et al., 2006) of Biological 



 80 

Process terms from the Gene Ontology Consortium (Ashburner et al., 2000) was used 

to identify related groups of Biological Process terms that were over-represented 

(enriched) among the genes that were 2-fold higher in mutants compared to controls.  

For data presentation, Biological Process terms with extensive similarity were 

condensed by the authors into fewer categories (Table 3.2).     

 

Histology and immunohistochemistry 

Ovaries were fixed in Bouins and stained with hematoxylin and eosin (H&E) 

for histology or 2% paraformaldehyde for immunohistochemistry, and stored in 

ethanol at 4°C until use.  Tissues were embedded in paraffin and 5 μm sections were 

prepared.  For CYP17A and CYP21A immunohistochemistry, antigen retrieval was 

performed in citric acid buffer (pH=5.0) and sections were blocked with 2% normal 

goat serum (NGS).  Sections were incubated overnight at 4°C with rabbit anti-mouse 

CYP17A (obtained from Dr. Alan J. Conley, University of California at Davis) or 

NRS diluted 1:200 in PBS-1% BSA.  Sections were washed and incubated with 0.5 

μg/ml Alexa 488 goat anti-rabbit IgG (Jackson ImmunoResearch, West Grove, PA) in 

PBS-1% BSA for 4 hours at room temperature and then counterstained with 1 μg/ml 

Hoechst 33258.  Fluorescence was viewed using a Nikon Diaphot 300 microscope 

(Nikon Instruments, Melville, NY), and images were obtained using a Spot II Digital 

Camera (Diagnostic Instruments, Sterling Heights, MI). 

For whole mount staining of platelet endothelial adhesion molecule 

(PECAM-1), ovaries were fixed and stored as above, rehydrated into PBS, 
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permeabilized in PBS-1% Triton X-100 (PBS-TX) and blocked in 5% NGS in 

PBS-0.1% Triton X-100 (PBS-TX).  Ovaries were incubated overnight at 4°C with 

rat anti-mouse PECAM-1 (anti-mouse CD31,clone MEC 13.3, BD Pharmingen, San 

Jose, CA), diluted 1:25 in PBS-TX-1% BSA, followed by overnight incubation at 4°C 

with 1 μg/ml Alexa 488-conjugated goat anti-rat IgG (Molecular Probes) plus 1 μg/ml 

Hoechst 33258 in PBS-TX-1% BSA.  Ovaries were mounted in aqueous mounting 

media between coverslips using 0.15 μm spacers to preserve depth and examined 

using a Zeiss LSM-510 confocal microscope with a 40x objective.  In order to 

visualize the vascular system in areas of the cortex where follicle formation is 

occurring, a stack of 1 μm-thick images at intervals of 0.5 μm were obtained from the 

surface of the ovary through the cortex.  For each ovary, 15 consecutive images, 

obtained from 6 to 20 μm inside the surface of the ovary, were flattened using a 

z-stack projection (ImageJ software, NIH).  Three control and 3 mutant ovaries were 

examined on days 0, 2 and 4; ovaries were stained and images obtained in 3 runs, 

each run containing one of each day and type of ovary.  Flattened images were 

processed and analyzed using Photoshop.  Contrast and brightness were adjusted 

using the same settings for all ovaries stained in each run.  Green fluorescence 

(PECAM-1) was selected using a set color definition, and the area in pixels of 

PECAM staining was measured and divided by the total area in pixels to determine 

percent PECAM staining. 

 Co-staining of PECAM and smooth muscle actin (SMA) was performed on 

frozen sections of ovaries from control and mutant mice after 48 hour of eCG 
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stimulation.  Slides were removed from the freezer, dried in a vacuum oven, fixed in 

acetone at 0 ℃ for 2 minutes, and immediately transferred to PBS.  Slides were 

blocked in 5% NGS in PBS, incubated overnight at room temperature with rat 

anti-mouse PECAM (anti-mouse CD31,clone MEC 13.3, BD Pharmingen, San Jose, 

CA) diluted 1:30 in PBS-TX-1% BSA, and rabbit anti-human SMA (ab15267, 

prediluted, Abcam Inc, Cambridge, MA), and followed by 2 hr incubation at room 

temperature with 1 μg/ml Alexa 488-conjugated goat anti-rat IgG, and Alexa 

555-conjugated goat anti-rabbit IgG (Molecular Probes) plus 1 μg/ml Hoechst 33258 

in PBS-TX-1% BSA. 

For whole mount co-staining of SHH and CYP17A, ovaries were fixed, stored, 

rehydrated and permeabilized as above for whole mount staining of PECAM-1.  

Ovaries were blocked in PBS-TX-1% BSA and incubated overnight at 4°C with 

rabbit anti-mouse CYP17A and goat anti-rabbit SHH (sc-1194, Santa Cruz 

Biotechnology, Santa Cruz, CA), used at 1:200 dilution and 8 μg/ml, respectively.  

Alexa goat anti-rabbit 549 and Alexa donkey anti-goat 488 were used as second 

antibodies, and Hoechst 33258 was used for counter-staining.  CYP17A and SHH 

expression in ovaries were examined using a Zeiss LSM-510 confocal microscope.  

Multiple staining solution was used on a section adjacent to the section used for 

CYP17A staining according to the manufacturer’s instructions (Polysciences, 

Warrington, PA).  

 

Assessment of oocyte degeneration and the number of primordial follicles 
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Total oocytes and degenerating oocytes were counted in images of H&E-stained 

sections.  Four slides containing 8 tissue sections/slide were prepared from ovaries 

of 3 control and 3 mutant mice at 17.5 dpc, and at 0, 2, 4 and 8 days of age.  Digital 

images at 100x magnification were obtained of regions of the cortex in every 5th 

section to obtain a total of 6 regions for each ovary.  The morphological criteria used 

for assessing oocyte degeneration were described previously in detail (Beaumont & 

Mandl, 1961).  Briefly, an oocyte was classified as degenerating if it had one or 

more features including condensed nuclei, pinkish eosinophilic cytoplasm, or if it was 

surrounded by red blood cells. 

To determine the number of primordial follicles in ovaries of 24 day-old mice, 

serial H&E-stained sections were prepared from ovaries of 3 control and 3 mutant 

mice and analyzed using the method described here.  Primordial follicles with a 

visible oocyte nucleus were counted in every 4th section under 100x magnification.  

The formula used to calculate the total number of primordial follicles in an ovary was:  

Total number of primordial follicles counted x (number of sections from an ovary that 

were counted/number of sections spanned by an oocyte).  The number of sections 

spanned by an oocyte was determined by dividing the average diameter of the oocyte 

nucleus in a primordial follicle (12 μm, based on measurement of 12 primordial 

follicles) by the thickness of the section (5 μm).  

 

Quantitative assessment of growing follicles 

 The percentage of growing follicles that contained more than one oocyte 
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(multiple oocyte follicles, MOF) and the percentage of growing follicles that were 

atretic were determined in ovaries of 3 control and 3 mutant mice at 16 days of age.  

Four H&E-stained slides containing 8 sections/slide were prepared from one ovary of 

each mouse.  Images at 20x magnification were obtained of every growing follicle in 

each section (primary follicle or later stage of development) in which the oocyte 

nucleus was visible.  Follicles were classified as atretic or healthy using a weighted 

scoring system as described previously (Boyer et al., 2010).  Primary characteristics 

were: 1) presence of pycnotic granulosa cells; 2) loss of attachment of granulosa cells 

to the oocyte or loss of the cumulus cells; 3) presence of leukocytes; 4) presence of a 

misshaped, segmented or discolored oocyte or an oocyte with a condensed nucleus.  

Secondary characteristics were: 1) presence of vacuolated granulosa cells; 2) sparse 

granulosa cells; 3) presence of gaps in the basement membrane.  Between 100 to 

200 follicles from each ovary were scored. 

 

Statistical analysis 

 Concentrations of mRNA in whole ovaries, density of theca capillary network, 

and oocyte degeneration data were analyzed by randomized (simple) two-way 

ANOVA.  Concentrations of mRNA were log transformed prior to ANOVA.  

Student-Newman-Keuls test was used to compare individual means if ANOVA 

indicated overall significance.  All other data were analyzed by unpaired t-test. 
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Results 

Expression of SMOM2-YFP fusion protein 

CRE-mediated recombination in ovaries of Amhr2cre/+SmoM2 mutant mice was 

assessed by detection of the SMOM2-YFP fusion protein by confocal microscopy of 

whole mount tissue.  YFP was detected throughout the ovaries of mutant mice on 

day 2 of age.  Signal was not detectable in Amhr2+/+ SmoM2 control mice (Fig. 3.1).  

These findings are in agreement with previous results using flow cytometry, in which 

38% of cells from ovaries of newborn mutant mice were positive for YFP (Ren et al., 

2009). 

 

Levels of mRNA for genes within the HH signaling pathway  

The levels of mRNA for genes within the HH pathway were determined during the 

first several weeks of age in the ovaries of control and mutant mice using real-time 

RT-PCR (Fig. 3.2).  In Amhr2+/+SmoM2 control mice, expression of two of the HH 

ligands, Dhh and Ihh, increased soon after birth (day 0).  Expression of Dhh 

increased between 17.5 dpc and day 0, continued to increase over time and remained 

elevated at day 16 of age.  The pattern of expression of Ihh was similar except that 

expression increased slightly later, by day 2.  The pattern of expression of Shh 

differed from that of Dhh and Ihh in that it decreased between 17.5 dpc and day 2 and 

remained at basal levels until day 8.  Notably, mRNA of Shh was not detected until a 

great number of cycles of signal amplification (37~38 cycles in control mice), 

suggesting Shh mRNA may be present at a minimal level in the ovaries of control 
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mice.  Genes for which transcription is known to be increased in response to HH 

signaling include Gli1, Ptch1 and Hhip (Ingham & McMahon, 2001).  Gli1 and 

Ptch1 increased by day 2 and Hhip increased by day 4 of age.  Expression of Gli2, 

which is a major effector of HH signaling, increased by day 2 and remained elevated.  

Expression of Gli3 and Smo remained relatively constant from 17.5 dpc through day 

16. 

In ovaries of Amhr2cre/+SmoM2 mutant mice, there were no major differences in 

expression of Dhh and Ihh compared to controls.  In contrast, levels of Shh mRNA 

were dramatically elevated in ovaries of mutant mice compared to controls from 17.5 

dpc through day 12.  Levels of mRNA for genes that are transcriptional targets of 

HH signaling were increased in ovaries of mutant mice compared to controls between 

17.5 dpc and day 0 (Gli1) or between 17.5 dpc and day 4 (Ptch1 and Hhip).  Thus, 

expression of these HH target genes, which increased in ovaries of control mice 

between day 0 and day 4 of age, was prematurely elevated in ovaries of mutant mice.  

Expression of Gli2 was also elevated in ovaries of mutant mice during the neonatal 

time period and this was significant on day 0.  Expression of Gli3 and Smo did not 

differ in mutants and controls at each time point examined; however, the overall 

group mean for Smo mRNA levels in ovaries of mutant mice was significantly 

elevated compared to controls across all time points examined (<0.05).   

 

Localization of cells expressing mRNA of Gli1, Ptch1 and Hhip 

In situ hybridization showed the location of cells expressing mRNA of Gli1, 
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Fig.3.1. Expression of the SmoM2-YFP fusion gene in the ovaries of Amhr2+/+ 

SmoM2 control and Amhr2cre/+SmoM2 mutant mice.  Ovaries were collected from 

mice at 2 days of age and examined using confocal microscopy.  Scale bar 

represents 200μm.  Images are representative of ovaries from two controls and two 

mutants. 
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Fig.3.2. Expression of genes in the HH signaling pathway in whole ovaries of 

Amhr2+/+ SmoM2 control and Amhr2cre/+SmoM2 mutant mice.  Ovaries were 

collected from mice at 17.5 dpc, and at days 0, 2, 4, 8, 12, and 16 of age.  At each 

age ovaries from multiple mice were pooled to obtain sufficient quantities of RNA (3 

mice at 17.5 dpc and at days 0, 2 and 4 of age; 2 mice at days 8, 12 and 16 of age).  

Total RNA was assayed by quantitative real-time RT-PCR.  Data are mean ± SEM of 

assays performed on three RNA preparations.  Within each panel, bars without 

common superscripts are significantly different (P<0.05). 

 

 



 89 

Ptch1 and Hhip on the day of birth (Fig. 3.3).  For Gli1, while low level of mRNA 

was present in the medullary region and the border region between the cortex and 

medulla of ovaries from control mice, mRNA appeared to be expressed at higher 

levels in these regions of the ovaries from mutant mice.  For Ptch1, while low levels 

of mRNA were present in the cortex and little in the medulla of the ovaries from 

control mice, mRNA appeared to be expressed at higher levels in the cortex and 

medulla region of the ovaries from mutant mice.  Hhip mRNA levels were minimal 

in the ovaries from control mice at this age but were considerable in the medullary 

region of ovaries from mutant mice (Fig. 3.2).   

 

Microarray analysis 

Microarray analysis of gene expression was performed on RNA prepared from 

ovaries of Amhr2cre/+SmoM2 mutant and control mice on day 2 of age in order to 

obtain insight into pathways altered by dominant activation of HH signaling.  416 

transcripts representing 345 genes were expressed at least 2-fold higher in mutants 

compared to controls and 189 transcripts representing 180 genes were expressed at 

least 2-fold lower in mutants compared to controls.  DAVID cluster analysis 

(Dahm-Kahler et al, 2006) of Biological Process terms from the Gene Ontology 

Consortium (Ashburner et al, 2000) was used to identify related groups of Biological 

Process terms that were over-represented (enriched) among the genes that were 2-fold 

higher in mutants compared to controls.  Five highly enriched clusters of terms, with 

enrichment scores > 3.0, were identified and are shown in Table 3.2.  The five  
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Fig.3.3. In situ hybridization for Gli1, Ptch1 and Hhip in ovaries from  

Amhr2+/+ SmoM2 control and Amhr2cre/+SmoM2 mutant mice on day 0.  All 

images are oriented with the medulla at the bottom.  Images are representative of 

ovaries from at least two control and two mutants. 
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clusters were termed by the authors as hormone regulation, tube development, 

respiratory tube development, steroid production and vascular development. 

Examination of the genes that were expressed 2-fold higher in mutants and whose 

annotations included the Biological Process terms within each cluster showed that 

hormone regulation and steroid production were closely related; 10 of the 14 genes 

associated with hormone regulation were also associated with steroid production. The 

28 genes associated with these two clusters are shown in Table 3.3.  Similarly, the 

remaining 3 clusters were also closely related.  All of the 21 genes associated with 

respiratory tube development were also associated with tube development, while 10 

of the 16 genes associated with vascular development were also associated with tube 

development.  The 38 genes that were associated with tube and vascular development 

and that were elevated at least 2-fold in mutants compared to controls are shown in 

Table 3.4.  Among genes associated with vascular/tube development that were 

>2-fold higher in the mutants, some are involved in the formation of vascular 

network, and some are involved in interaction between endothelial cells and their 

surrounding mesenchymal cells (Table 3.5). When DAVID analysis was applied to 

genes whose mRNA levels were decreased 2-fold or more in mutants, only a single 

cluster of terms had an enrichment score > 3.0; this cluster was termed gamete 

development by the authors.  Biological Process terms associated with this gamete 

development cluster are shown in Table 3.6, and genes with these terms in their 

annotations that were expressed 2-fold lower in mutants compared to controls are 

shown in Table 3.7.   
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Table 3.2.  Results of DAVID analysis showing clusters of Biological Process 
terms associated with genes that were expressed at higher levels in ovaries of 
Amhr2cre/+SmoM2 mutant mice compared to Amhr2+/+SmoM2 control micea 
 

Gene Ontology Biological Process Termb         
Significance (p) 

Annotation Cluster 1 : Hormone regulation; enrichment score 6.73 
hormone metabolic process  5.7x10-8 
cellular hormone metabolic process  2.7x10-7 
regulation of hormone levels  4.1x10-7 

Annotation Cluster 2 : Tube development ; enrichment 
score 4.59  

tube development  4.6x10-8 
epithelium development  3.4x10-7 
morphogenesis of an epithelium  4.2x10-7 
tube morphogenesis  2.0x10-6 
morphogenesis of a branching structure  2.1x10-6 
branching morphogenesis of a tube  5.5x10-6 
tissue morphogenesis  2.2x10-5 
epithelial tube morphogenesis  2.7x10-5 
gland morphogenesis  7.0x10-4 
gland development  7.6x10-4 
urogenital system development  4.4x10-3 
regulation of cell proliferation  3.5x10-1 

Annotation Cluster 3 : Respiratory tube development ; 
enrichment score 4.24   

tube development  4.6x10-8 
respiratory system development  3.5x10-4 
lung development  7.8x10-4 
respiratory tube development  8.8x10-4 

Annotation Cluster 4 : Steroid production; enrichment 
score 3.92   

steroid biosynthetic process  3.6x10-9 
steroid metabolic process  1.6x10-7 
lipid biosynthetic process  1.3x10-5 
sterol metabolic process  4.1x10-4 
cholesterol metabolic process  1.5x10-3 
isoprenoid metabolic process  1.7x10-3 
sterol biosynthetic process  1.8x10-3 
cholesterol biosynthetic process  7.4x10-3 
isoprenoid biosynthetic process  5.7x10-2 
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Annotation Cluster 5 :  Vascular development; 
enrichment score 3.25  

blood vessel development  2.9x10-5 
vasculature development  3.9x10-5 
blood vessel morphogenesis  2.8x10-3 
angiogenesis  3.1x10-2 

a Genes expressed at least 2-fold higher in mutant ovaries compared to controls, as 
determined by microarray, were analyzed by DAVID analysis.  Only clusters with 
an enrichment score > 3.0 are shown. 
b Biological Process terms are from the Gene Ontology Consortium database. 
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Table 3.3.  Genes associated with hormone regulation and steroid production 
that were expressed at higher levels in ovaries of Amhr2cre/+SmoM2 mutant mice 
compared to Amhr2+/+SmoM2 control micea 
 
Gene Name Foldb Clusterc 

Cyp17a1 cytochrome P450, family 17, subfamily a, polypeptide 1 73.89 H,S 
Cyp11a1 cytochrome P450, family 11, subfamily a, polypeptide 1 61.58 H,S 
Adh1 alcohol dehydrogenase 1 (class I) 39.56 H,S 
Star steroidogenic acute regulatory protein 13.20 H,S 
Shh sonic hedgehog 9.25 H,S 
Ren1 /// 
Ren2 renin 1 structural /// renin 2 tandem duplication of Ren1 7.75 H 

Scarb1 scavenger receptor class B, member 1 4.89 H,S 
Hsd3b1 
 

hydroxy-delta-5-steroid dehydrogenase, 3 beta- and 
steroid delta-isomerase 1 

3.97 
 

S 

Sult1e1 sulfotransferase family 1E, member 1 3.90 H,S 
Ddo D-aspartate oxidase 3.89 H 
Fabp3 fatty acid binding protein 3, muscle and heart 3.66 S 
Cyp11b1 cytochrome P450, family 11, subfamily b, polypeptide 1 3.59 H,S 
Idi1 isopentenyl-diphosphate delta isomerase 3.55 S 
Scd1 stearoyl-Coenzyme A desaturase 1 3.52 S 
Fads2 fatty acid desaturase 2 3.45 S 
Sc4mol sterol-C4-methyl oxidase-like 3.11 S 
Cyp51 cytochrome P450, family 51 3.05 S 
Agt ensinogen (serpin peptidase inhibitor, clade A, member 8) 2.75 H 
Aldh1a3 aldehyde dehydrogenase family 1, subfamily A3 2.75 H,S 
Cyp26b1 cytochrome P450, family 26, subfamily b, polypeptide 1 2.61 H,S 
Cyp21a1 cytochrome P450, family 21, subfamily a, polypeptide 1 2.40 S 
Fads1 fatty acid desaturase 1 2.35 S 
Elovl6 
 

ELOVL family member 6, elongation of long chain fatty 
acids (yeast) 

2.32 
 

S 

Tbx3 T-box 3 2.32 H 
Hmgcr 3-hydroxy-3-methylglutaryl-Coenzyme A reductase 2.31 S 
Lss lanosterol synthase 2.26 S 
Ldlr low density lipoprotein receptor 2.17 S 
Hmgcs1  
 

roxy-3-methylglutaryl-Coenzyme A synthase 1 /// similar 
to Hmgcs1 protein 

2.03 
 

S 

a Levels of mRNA expression were determined by microarray analysis.  Biological 
Process terms associated with hormone regulation and steroid production are shown 
in Table 3.2; genes listed here have at least one of those terms included in their 
annotation. 
b Fold increase in level of expression in mutants compared to controls. 
c Cluster designation indicates: H, hormone regulation; S, steroid production.  
Designation with these letters indicates that the gene’s annotation includes at least 
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one of the Biological Process terms associated with the respective cluster.  Clusters 
are shown in Table 3.2.
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Table 3.4.  Genes associated with tube development and vascular development 
that were expressed at higher levels in ovaries of Amhr2cre/+SmoM2 mutant mice 
compared to Amhr2+/+SmoM2 control micea 
 
Gene Name Foldb Clusterc 

Hhip Hedgehog-interacting protein 50.38 T 
Shh sonic hedgehog 9.25 T,V 
Ren1 /// Ren2 renin 1 structural /// renin 2 tandem duplication of 

Ren1 
7.75 T 

Foxf1a forkhead box F1a 6.02 T,V 
Hk2 hexokinase 2 5.30 T 
Enpep glutamyl aminopeptidase 4.93 V 
Prlr prolactin receptor 4.57 T 
Crispld2 cysteine-rich secretory protein LCCL domain 

containing 2 
4.03 T 

Tbx18 T-box18 3.70 T 
Figf C-fos induced growth factor 3.58 T,V 
Ntrk2 neurotrophic tyrosine kinase, receptor, type 2 3.08 V 
Angpt2 angiopoietin 2 2.97 V 
Ptch1 patched homolog 1 2.84 T 
Agt 
 

angiotensinogen (serpin peptidase inhibitor, clade A, 
member 8) 

2.75 
 

T,V 

Aldh1a3 aldehyde dehydrogenase family 1, subfamily A3 2.75 T 
Nrp1 neuropilin 1 2.68 T,V 
Ntn1 similar to Netrin-1 precursor /// netrin 1 2.49 T 
Osr2 odd-skipped related 2 (Drosophila) 2.48 T 
Ccl11 chemokine (C-C motif) ligand 11 2.48 T 
Cxcr4 chemokine (C-X-C motif) receptor 4 2.47 T,V 
Mef2c myocyte enhancer factor 2C 2.47 V 
Lox lysyl oxidase 2.44 T,V 
Adm adrenomedullin 2.39 T 
Gdnf glial cell line derived neurotrophic factor 2.34 T 
Ppap2b phosphatidic acid phosphatase type 2B 2.33 V 
Tbx3 T-box 3 2.32 T,V 
Fzd2 frizzled homolog 2 (Drosophila) 2.30 T 
Gja1 gap junction protein, alpha 1 2.27 T,V 
Zeb2 zinc finger E-box binding homeobox 2 2.24 T 
Igf1 insulin-like growth factor 1 2.23 T 
Pdgfra platelet derived growth factor receptor, alpha 

polypeptide 
2.19 T 

Sfrp1 secreted frizzled-related protein 1 2.17 T 
Ctgf connective tissue growth factor 2.15 T,V 
Lipa lysosomal acid lipase A 2.15 T 
Wnt5a wingless-related MMTV integration site 5A 2.14 T 
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Gpc3 glypican 3 2.09 T 
Col1a1 collagen, type I, alpha 1 2.08 V 
Hoxa9 homeo box A9 2.02 T 

a Levels of mRNA expression were determined by microarray analysis.  Biological 
Process terms associated with tube development and vascular development are shown 
in Table 3.2; genes listed here have at least one of those terms included in their 
annotation. 
b Fold increase in level of expression in mutants compared to controls. 
c Cluster designation indicates: T, tube development; V, vascular development.  
Designation with these letters indicates that the gene’s annotation includes at least one 
of the Biological Process terms associated with the respective cluster.  Clusters are 
shown in Table 3.2. 
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Table 3.5. Categories of genes involved in vascular development based on their 
major function in the development of blood vesselsa 

 
Formation of vascular networks References  
          Figf Marconcini et al., 1999; Girling et al., 

2010 
 

          Cxcr4 Salcedo et al., 1999; Mirshahi et al., 
2000; Salvucci et al., 2002  

 

          Nrp1 Gu et al., 2003; Gerhardt et al., 2004; 
Pan et al., 2007 

 

          Ctgf Markiewicz et al., 2011; Shimo et al., 
2001 

 

   
Endothelial-mesenchymal cell 
interaction 

  

         Foxf1a Kalinichenko et al., 2001; Astorga and 
Carlsson 2007 

 

         Angpt2 Thomas and Augustin, 2009  
         Mef2c Lin et al., 1998; Bi et al., 1999   
         Ntrk2 Donovan et al., 2000  
a Genes involved in vascular development were identified by cluster analysis of 
genes >2-fold higher in the ovaries of mutant mice compared to controls. 
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Table 3.6.  Results of DAVID analysis showing the cluster of Biological Process 
terms associated with genes that were expressed at lower levels in ovaries of 
Amhr2cre/+SmoM2 mutant mice compared to Amhr2+/+SmoM2 control micea 
 
Gene Ontology Biological Process Termb   Significance (p) 
Annotation Cluster 1: Gamete development; Enrichment Score: 
3.06    

reproductive developmental process 6.40x10-5 
multicellular organism reproduction  1.40x10-4 
reproductive process in a multicellular organism  1.40x10-4 
germ cell development  1.80x10-4 
sexual reproduction  3.40x10-4 
gamete generation  4.00x10-4 
reproductive cellular process  5.70x10-4 
male gamete generation  1.20x10-3 
spermatogenesis  1.20x10-03 
spermatid development  8.50x10-02 
spermatid differentiation  9.50x10-02 

a Genes expressed at least 2-fold lower in mutant ovaries compared to controls, as 
determined by microarray, were analyzed by DAVID analysis.  Only clusters with 
an enrichment score > 3.0 are shown. 
b Biological Process terms are from the Gene Ontology Consortium database. 
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 Table 3.7.  Genes associated with gamete development that were expressed at 
lower levels in ovaries of Amhr2cre/+SmoM2 mutant mice compared to 
Amhr2+/+SmoM2 control micea 
 
Gene Name Foldb 
Dazl deleted in azoospermia-like -2.67 
Bbs4 Bardet-Biedl syndrome 4 (human) -2.58 
Taf7l 
 

TAF7-like RNA polymerase II, TATA box binding protein 
(TBP)-associated factor 

-2.52 
 

Amhr2 anti-Mullerian hormone type 2 receptor -2.44 
Tdrd1 tudor domain containing 1 -2.37 
Sohlh1 spermatogenesis and oogenesis specific basic helix-loop-helix 1 -2.19 
Ube3a ubiquitin protein ligase E3A -2.19 
Txnrd3 thioredoxin reductase 3 -2.16 
Mov10l1 Moloney leukemia virus 10-like 1 -2.14 
Asz1 ankyrin repeat, SAM and basic leucine zipper domain containing 1 -2.10 
Med1 mediator complex subunit 1 -2.09 
Ccnb1ip1 cyclin B1 interacting protein 1 -2.06 

a Levels of mRNA expression were determined by microarray analysis.  Biological 
process terms associated with gamete development are shown in Table 3.6.  Genes 
listed here have at least one of those terms included in their annotation. 
b Fold decrease in level of expression in mutants compared to controls.
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Increased density of the capillary network in the ovarian cortex of mutant mice 

To further investigate the finding that a class of genes enriched among those that 

are expressed at increased levels in ovaries of mutant mice compared to controls 

function in vascular development/tube formation, staining for the endothelial cell 

marker PECAM was performed on whole mounts of ovaries and examined by 

confocal microscopy.  The appearance of the capillary network in stacks of confocal 

images was denser in the cortex region of ovaries of mutants compared to controls 

(Fig. 3.4A).  The area of the cortex occupied by cells positive for PECAM staining 

was significantly elevated in mutants compared to controls on days 2 and 4 (Fig. 

3.4B).  

 

Reduced smooth muscle actin (SMA) is associated with theca vasculature in the 

ovaries of Amhr2cre/+SmoM2 mutant mice 

In a previous study, mRNA levels of genes expressed in smooth muscle cells 

were reduced in the ovaries of mutant mice, and immunohistochemistry of SMA 

showed that reduced SMA expression is in the thecal layer (Ren et al, 2009).  At 48 

hours after eCG stimulation, co-staining of PECAM-1 and SMA on ovarian sections 

showed intermingled localization of PECAM-1 and SMA in the theca layer in control 

mice but the SMA staining is significantly reduced in mutant mice (Fig. 3.5), 

indicating that reduced SMA is associated with thecal vasculature in ovaries of 

mutant mice. 
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Fig.3.4. Capillary density in the ovarian cortex of Amhr2+/+ SmoM2 control and 

Amhr2cre/+SmoM2 mutant mice.  A) Representative whole mount 

immunofluorescence for PECAM-1 at 2 days of age.  Scale bar represent 50 μm.  

Immunohistochemistry was repeated using three mice of each genotype.  B) 

Quantitative comparison of density of capillaries in the ovarian cortex of  

Amhr2+/+ SmoM2 control and Amhr2cre/+SmoM2 mutant mice.  Data are  

mean ± SEM for three mice.  Bars without common superscripts are significantly 

different (P<0.05). 
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Fig.3.5. Whole-mount co-staining of PECAM-1 and SMA in the ovaries of 

Amhr2+/+ SmoM2 control and Amhr2cre/+SmoM2 mutant mice at 48 hours after 

eCG stimulation.  Mice were at 21 days of age when treated with eCG.  Asterisks 

mark granulosa cells.  Arrows point to the thecal layer.  Scale bar represents 50 μm.  

Sections were counterstained for nuclei with Hoechst 33342 (blue).  

Immunofluorescence was repeated using two mice of each genotype. 
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mRNA and protein of Star, Cyp17A, Cyp21A and Shh in the ovaries of 

Amhr2cre/+SmoM2 mutant mice  

According to the results of microarray analyses, mRNA levels for a number of 

genes for steroidogenic enzymes were elevated in ovaries of mutant mice compared 

to controls (Table 3) and are highlighted in a diagram of steroidogenic pathways in 

the adrenal gland and the gonad (Fig. 3.6).  Among them, mRNA or protein of Star, 

Cyp17a, Cyp21a and Shh were analyzed in more detail.  Real-time RT-PCR assays 

showed that in ovaries of control mice, levels of mRNA for Star were relatively low 

from 17.5 dpc through day 4, increased on day 8 and continued to rise between days 

12 and 16 (Fig. 3.7A).  In ovaries of mutant mice, mRNA levels of Star were 

significantly elevated from 17.5 dpc through day 8 and then became similar to levels 

in control ovaries on days 12 and 16.     

CYP17A was not detectable by immunohistochemistry in ovaries of control mice 

between 17.5 dpc and day 16.  In contrast, CYP17A-positive cells were present in 

ovaries from mutant mice and were most prominent on days 0 and 2 (Fig. 3.7B).  On 

day 0, CYP17A-positive cells mostly localized in the medullary region while on day 

2, CYP17A-positive cells were distributed in the border region between the medulla 

and the cortex.  An enlarged image of CYP17A-postive cells shows the prominent 

cytoplasm typical of steroidogenic cells.  Immunohistochemistry of CYP21A and 

CYP17A on adjacent sections indicated that the majority of CYP17A-positive cells 

also were positive for CYP21A.  Whole-mount co-staining of CYP17A and SHH 

showed that while there were no cells expressing SHH in the ovaries of control mice, 
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there were a small number of cells in ovaries of mutant mice that expressed SHH 

primarily in the medullary region . SHH-positive cells in the ovaries of mutant mice 

were within close proximity to CYP17A-positive cells (Fig. 3.7C). 

 

Early follicle development is altered in mutant mice 

The breakdown of ovigerous cord and follicle formation are associated with a 

high frequency of oocyte death (Beaumont & Mandl, 1961; Pepling, 2006).  

Consistent with this, the percentages of oocytes that were clearly condensed and 

undergoing degeneration were substantial from 17.5 dpc through day 4 in 

Amhr2+/+SmoM2 control mice (Fig. 3.8A).  The percent degenerating oocytes was 

higher in ovaries of control mice than in mutant mice at 17.5 dpc, and lower on day 0 

(Fig. 3.8B).  Counts of primordial follicles in serial sections of 24 day old mice 

indicated that there were 25% fewer primordial follicles in ovaries of mutant mice 

compared to controls (Fig. 3.8C).   

During the first wave of follicle development, secondary and tertiary follicles 

with two or more layers of granulosa cells were observed in the ovaries of control 

mice as shown in ovaries of mice on 12 and 16 days of age (Fig. 3.9A).  In ovaries 

of mutant mice, a large proportion of follicles with two layers of granulosa cells had 

an abnormal gap between cell layers (Fig. 3.9A), and there was a higher percentage of 

atretic follicles than in control mice (Fig. 3.9B).  Abnormal follicles containing more 

than one oocyte (MOF) were present at a higher frequency in ovaries of mutant mice 

compared to controls (Fig. 3.9A and B).  By 24 days of age, there were no obvious 
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Fig. 3.6. Genes encoding key enzymes in the steroidogenic pathways in the gonad 

and adrenal gland.  Levels of mRNA for genes highlighted in red are elevated in 

whole ovaries of mutant mice compared to controls based on the results of microarray 

analyses.  The fold differences were indicated in parentheses. 
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Fig. 3.7. Expression of Star, CYP17A, CYP21A and SHH in Amhr2+/+ SmoM2 

control and Amhr2cre/+SmoM2 mutant mice.  A) Expression of Star in whole 

ovaries.  Ovaries were collected from mice at 17.5 dpc, and at days 0, 2, 4, 8, 12, 

and 16 of age.  At each age ovaries from multiple mice were pooled to obtain 

sufficient quantities of RNA (3 mice at 17.5 dpc and at days 0, 2 and 4 of age; 2 mice 

at days 8, 12 and 16 of age).  Total RNA was assayed by quantitative real-time 

RT-PCR.  Data are mean ± SEM of assays performed on three RNA preparations.  

Within each panel, bars without common superscripts are significantly different 

(P<0.05).  B) Immunofluorescence for CYP17A in ovaries of Amhr2+/+ SmoM2 

control and Amhr2cre/+SmoM2 mutant mice at 0 and 2 days of age.  The framed area 

is enlarged as the image on the right.  Co-staining of CYP17A and multiple staining 

solution was performed on adjacent sections to show the localization of 

CYP17A-positive cells in the ovaries of mutant mice.  All images are oriented with 

the medulla at the bottom.  Scale bar represents 6 μm for the enlarged image and 100 

μm for all the other images.  Sections were counterstained for nuclei with Hoechst 

33342 (blue).  Immunofluorescence was repeated using more than four mice of each 

genotype and age and representative images are shown.  C) Immunofluorescence for 

CYP21A, CYP17A and SHH.  CYP21A and CYP17A staining were performed on 

adjacent sections of the same ovary on day 0.  Co-staining of SHH and CYP17A 

was performed on ovaries from mice at 2 days of age.  Sections were counterstained 

for nuclei with Hoechst 33342 (blue).  Scale bar represents 50 μm for CYP21A and 

CYP17A, and 15 μm for co-staining of SHH and CYP17A. 
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differences in the histological appearance of follicles in mutant and control mice (Fig. 

3.9A). 

 

Discussion 

The HH signaling pathway plays essential roles in the Drosophila ovary but its 

function in the mammalian ovary is undefined.  One of the well-known and 

extensively studied functions of HH signaling is in regulating vascular development 

in multiple organs and tissues, during normal development and tumorigenesis.  

Multiple lines of investigation indicate that HH may exert its effect by promoting 

vascular outgrowth, patterning and remodeling through direct targeting of the 

vascular mesenchymal cells that surround the endothelial tubes.  Consistent with this 

model, results of the present study show that levels of mRNA for genes involved in 

interaction between endothelial and surrounding mesenchymal cells are elevated in 

the ovaries of Amhr2cre/+SmoM2 mutant mice compared to controls on day 2, and this 

alteration may contribute to defective maturation of thecal vasculature throughout life.  

Additionally, we identified a population of adrenal-like cells in ovaries of 

Amhr2cre/+SmoM2 mutant mice, providing evidence that HH signaling may be a 

mediator of cell sorting/migration in the adrenogonadal primordium, or alternatively, 

regulates differentiation of steroidogenic cells in the gonad. 
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Fig.3.8. Increased degeneration of oocytes and reduced number of primordial 

follicles in Amhr2cre/+SmoM2 mutant mice compared to Amhr2+/+ SmoM2 controls.  

A) H&E staining of representative fields of ovaries from control and mutant mice on 

17.5 dpc and day 0.  Arrows point to examples of degenerating oocytes.  Scale bar 

represents 20μm.  B) Quantification of the percentage of degenerating oocytes in the 

cortex.  C) Numbers of primordial follicles counted in serial sections of ovaries of 

mice at 24 days of age.  Data in B and C represent the mean ± SEM for 3 mice.  

Bars without common superscripts are significantly different (P<0.05). 
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Fig.3.9. Abnormal follicle morphology during the first wave of follicle 

development in Amhr2cre/+SmoM2 mutant mice.  A) Representative H&E staining 

of ovaries from control and mutant mice.  Arrows point to examples of follicles with 

two or more layers of granulosa cells.  In mutant mice, these follicles have an 

abnormal gap between layers of granulosa cells.  Arrowheads point to examples of 

MOF in Amhr2cre/+SmoM2 mutant mice.  B) Quantification of atretic follicles and 

MOF as a percentage of growing follicles on day 16 of age.  Data are mean ± SEM 

of 3 mice.  Bars without common superscripts are significantly different (P<0.05). 
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Over-activation of HH signaling in Amhr2cre/+SmoM2 mutant mice  

Amhr2cre/+SmoM2 mutant mice fail to ovulate and express reduced levels of 

genes typically expressed in vascular smooth muscle (Ren et al., 2009).  In that 

study, we did not detect differences in HH signaling activity around the time of 

ovulation.  Here, we have shown that in the Amhr2cre/+SmoM2 mutant mice, HH 

signaling is over-activated around the time of birth.  Mutant mice have elevated 

levels of mRNA for HH transcriptional targets Gli1, Ptch1 and Hhip measured using 

quantitative real-time PCR (Fig. 3.2), or by in situ hybridization (Fig. 3.3).  In 

wild-type mice, components of the HH pathway are expressed in growing follicles 

and changes in HH signaling activity occur around the time of ovulation (Ren et al., 

2009; Russell et al., 2007; Wijgerde et al., 2005).  The function of HH signaling 

activity during follicle growth and the effect of changes in HH signaling activity 

around the time of ovulation remain to be defined.  Results of the present study 

showed that in the neonatal ovary before the completion of follicle assembly, levels of 

mRNA for Gli1, Ptch1 and Hhip gradually increased in whole ovaries of 

Amhr2+/+SmoM2 control mice, indicating a gradual increase in HH signaling activity.  

This signaling activity is likely due to HH ligands being produced in a small number 

of follicles that have transitioned to the primary stage and begun to grow in the border 

region between the cortex and medulla.  In situ hybridization showed higher levels 

of mRNA for Gli1, Ptch1 and Hhip in the medullary region and the border region 

between the cortex and medulla in the ovaries of mutant mice compared to controls, 

indicating a broad range of somatic cells with over-activated HH signaling activity in 
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the mutant mice.  In summary, HH signaling is over-active in ovaries of 

Amhr2cre/+SmoM2 mutant mice compared to controls at around the time of birth.  

 

Over-activation of HH signaling activity alters ovarian vascular development  

HH ligands are potent pro-angiogenic factors during normal development and 

tumorigenesis (Byrd & Grabel, 2004; Nagase et al., 2008).  Effects of HH signaling 

on vascular development can be achieved through targeting both endothelial cells and 

the vascular mesenchymal cells (vascular mural cells and the surrounding interstitum).  

In the present study, microarray analyses revealed that in ovaries of 2-day-old mutant 

mice, mRNA levels of genes recognized as critical factors promoting formation of 

capillary networks were elevated (Table 3.5).  These genes included Figf, Cxcr4, 

Nrp1, and Ctgf (Gerhardt et al., 2004; Girling et al., 2010; Gu et al., 2003; 

Marconcini et al., 1999; Markiewicz et al., 2011 2001; Mirshahi et al., 2000; Pan et 

al., 2007; Salcedo et al., 1999; Salvucci et al., 2002).  In addition, levels of mRNA 

for genes known to participate in endothelial-mesenchymal interaction were elevated.  

These gene included Foxf1a, Angpt2, Mef2c, and Ntrk2 (Astorga & Carlsson, 2007; 

Bi et al., 1999; Donovan et al., 2000; Kalinichenko et al., 2001; Lin et al., 1998; 

Thomas & Augustin, 2009), in the mutants compared to controls.  Moreover, 

PECAM-1 staining of neonatal ovaries demonstrated a capillary network of higher 

density in the ovarian cortex of mutants compared to controls.  Co-staining of 

ovaries for PECAM-1 and SMA showed that in preovulatory follicles, reduced SMA 
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is associated with the thecal vasculature, indicating defects in vascular maturation in 

the ovaries of mutant mice.  Based on these results, HH may promote the formation 

of vascular networks through targeting both endothelial cells and vascular 

mesenchymal cells, directly or indirectly.  The results from the present study do not 

favor either endothelial cells or vascular mesenchymal cells as the direct target of 

altered HH signaling activity.  However, based on the fact that expression of 

vascular smooth muscle genes are reduced in growing follicles of Amhr2cre/+SmoM2 

mutant mice (Ren et al., 2009), we postulate that over-activation of HH signaling 

around the time of birth directly targets and affects the programming of cells destined 

to become vascular mesenchymal cells.  Vascular mesenchymal cells are active 

regulators of vascular growth and remodeling (Armulik et al., 2005; Jain, et al., 2003); 

thus, through targeting and regulating functions of these cells, the HH signaling 

pathway may participate in the remodeling of ovarian vasculature during normal 

ovarian function and pathology.  

Interestingly, major ovarian blood vessels that are not directly associated with 

growing follicles appear to have a normal complement of vascular mural cells.  In 

addition, neonatal ovaries treated with cyclopamine in culture or mice with 

genetically reduced HH signaling activity showed a decreased number of 

mesenchymal cells (Quirk laboratory).  Although it has not been directly tested, 

these mesenchymal cells may be vascular cells.   These findings lead to two 

speculations: first, the source of VSMCs for each growing follicle is highly unlikely 

to be derived from the circulation but rather is likely to be generated de novo, such as 
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in the form of mesenchymal precursor cells within the ovarian interstitum (Chambers 

et al., 2003; Elenbaas & Weinberg, 2001; Hungerford & Little, 1999; Sartore et al., 

2001; Tomasek et al., 2002).  Second, the hypothetical mesenchymal precursor cells 

of VSMC in the ovary probably have self-renewal ability in order to sustain each new 

wave of follicle growth during the entire reproductive lifespan.   In summary, our 

findings suggest that HH signaling may regulate the maintenance or differentiation of 

VSMC precursors needed for the maturation of the thecal vasculature around each 

growing follicles.  

 

Over-activation of HH signaling induces the presence of adrenal-like cells in the 

ovary of Amhr2cre/+SmoM2 mutant mice 

Microarray analyses revealed elevated mRNA levels for genes within the 

steroidogenic pathways in whole ovaries of mutants compared to controls on day 2, 

such as Star, Cyp11a1, Cyp17a, Cyp21a, Cyp11b1 and Hsd3b1 (Fig. 3.6).  Real-time 

RT-PCR analysis of the gene Star confirmed the results of microarray analyses (Fig. 

3.7A).  Immunohistochemistry indicated the presence of CYP17A/CYP21A-positive 

cells in the ovaries of mutant mice (Fig. 3.6B).  Moreover, Shh mRNA and SHH 

protein are expressed at a significant level in the ovaries of mutant mice in a small 

number of cells within close proximity to the CYP17A/CYP21A-positive cells in the 

medullary region (Fig. 3.6C).  While there is no evidence for the expression of Shh 

in the fetal or neonatal mouse ovary, Shh is known to be expressed in the fetal and 
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adult adrenal and is proposed to regulate expansion of adrenal cortical progenitor 

cells that are in the adrenal capsule (Ching & Vilain, 2009; Guasti et al., 2010; Huang 

et al, 2010; King et al, 2009).  As Shh and Cyp21 are normally expressed in the 

adrenal gland but not the ovary, our results indicate that adrenal-like cells are present 

in ovaries of the Amhr2cre/+SmoM2 mutant mice around the time of birth.  

The presence of adrenal-like cells in the fetal ovary was observed in Wnt4 

knockout mice and in β-catenin conditional knockout mice created using 

steroidogenic factor 1/Cre (SF1/Cre) (Heikkila et al., 2002; Liu et al., 2009).  The 

authors of these two papers provided evidence that the WNT4/β-catenin pathway may 

regulate migration and/or sorting of adrenal and gonadal cells.  The adrenal gland 

and gonad share the same origin: the adrenogonadal primordium (Huang et al., 2010).  

Shortly after the expression of SF1 is switched on at 9.5 dpc (Ikeda et al, 1994), an 

unknown mechanism induces specification of SF1-positive cells as adrenal or gonadal 

cells, and the fetal adrenal and fetal gonad diverge from the adrenogonadal 

primordium around 11- 12 dpc (Hatano et al., 1996).  Expression of Gli1 and Gli2 

was detected in the gonad/mesonephros complex from 11.5-13.5 dpc (Pazin & 

Albrecht, 2009), and the investigators hypothesized that HH signaling may be active 

in the diverging adrenogonadal primordium.  The presence of adrenal-like cells in 

the ovary of Amhr2cre/+SmoM2 mutant mice supports this hypothesis and suggests that 

HH signaling may be involved in migration or/and sorting of cells in the 

adrenogonadal primordium. 



 119 

An alternative explanation for the presence of adrenal-like cells in the ovary of 

mutant mice is that expression of dominant active SMOM2 induced differentiation of 

ovarian cells into adrenal type cells.  Steroidogenic cells of the adrenal cortex and 

the gonad share common precursors, the SF1-positive cells in the adrenogonadal 

primordium.  While the fetal ovary remains quiescent for steroidogenesis, DHH 

secreted from Sertoli cells induces steroidogenic differentiation of Leydig cells in the 

fetal testis (Bitgood et al., 1996).  In the fetal adrenal gland, SHH secreted from the 

adrenal cortex induces expression of Gli1 and Ptch1 in the capsule cells surrounding 

the gland (Ching & Vilain, 2001; Guasti et al., 2010; Huang et al., 2010; King et al., 

2009).  These cells then proliferate, migrate centripetally into the adrenal cortex, and 

further differentiate into steroidogenic cells as well as give rise to new 

SHH-producing cells.  Accordingly, expression of SmoM2 in the ovary may induce 

expression of Gli1 and Ptch1 as well as differentiation of ovarian cells into 

adrenal-like cells in a cell-autonomous manner.  In turn, cells expressing Gli1 and 

Ptch1 might proliferate and differentiate into steroidogenic cells, and give rise to a 

small number of SHH-positive cells.  This model is based on the assumption that 

there is a progenitor cell population in the fetal ovary that has the potential to 

differentiate into adrenal type steroidogenic cells upon certain stimulation, such as 

HH signaling.  The same population of progenitor cells in the fetal ovary may also 

contain the precursor for steroidogenic theca cells.  However, further studies are 

needed to test this hypothesis.  
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One previous study concluded that abnormal activation of HH signaling in the 

embryonic ovary induces differentiation of Leydig cells (Barsoum et al., 2009).  In 

mice expressing the YFP-SmoM2 fusion gene under the regulation of the SF-1 

promoter in the ovary, expression of Gli1, Cyp17, Insl3 and Hsd3b were detected in 

the fetal ovary, and the mice had partial female-to-male sex reversal as indicated by 

the presence of Wolffian duct derivatives and descent of the gonads into the 

abdominal cavity.  In the study by Barsoum et al., expression of Gli1, Cyp17a, and 

Hsd3b do not validate the presence of Leydig cells since these genes are also 

expressed in the fetal adrenal (Heikkila et al., 2002).  In the same study, it is not 

reported whether CYP17A-positive cells also expressed adrenal markers such as 

CYP21A or CYP11B1.  In the current study, adrenal-like cells are present in the 

ovaries of Amhr2cre/+SmoM2 mutant mice and there are no apparent signs of 

masculinization of the reproductive tract in mutant mice.  The SF1 promoter is 

active in the adrenogonadal primordium but not the mesonephros beginning between 

9.5 to 10.5 dpc and continuing until 13.5 to 16.5 dpc (Ikeda et al., 1994), while the 

Amhr2 promoter is active in the somatic cells of the gonads and the mesenchymal 

cells of the Mullerian duct beginning at about 11.5 dpc (Jamin et al.,2002).  Thus, 

differences in the timing and location of CRE activity may contribute to the different 

effects of SmoM2 expression.  In the current study, because levels of mRNA for 

Hsd3b1 and Cyp17A, and levels of mRNA for genes of enzymes needed for the 

production of corticosterone and cortisol are elevated, assays directly measuring 

steroid levels in serum or ovarian tissue are needed to conclude whether the levels of 
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testosterone, estradiol, corticosterone and cortisol are elevated in the mutant mice 

compared to controls.  On balance, more detailed characterization is needed to 

explain the similarities and differences in phenotypes observed in these two studies.  

The increased rate of oocyte degeneration and the abnormal first wave of 

follicular development in the mutant mice compared to controls might be the result of 

the abnormal vascular development, the presence of ectopic SHH-positive cells, or 

potentially abnormal levels of steroids produced by the CYP17A/CYP21A-positive 

cells in the ovaries of mutant mice.  The abnormal development of the first wave of 

follicles may be associated with altered vascular development in the ovaries of mutant 

mice; alternatively it may be a secondary effect of excessive oocyte death in the 

ovaries of mutant mice.  

In summary, the present study uncovered a potential regulatory role of HH 

signaling in the development of the ovarian vasculature, in particular the maturation 

of thecal vasculature.  We also identified adrenal-like cells in the ovaries of mice 

with dominantly active HH signaling, suggesting that HH signaling may be involved 

in cell migration or/and sorting in the adrenogonadal primordium, or alternatively, 

that HH signaling is involved in the differentiation of steroidogenic cells in the gonad.  
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OVARIAN PATHOLOGY IN AGED MICE WITH DOMINANT ACTIVATION OF THE 

HEDGEHOG SIGNALING PATHWAY IN THE OVARY 
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Summary 

Virgin female Amhr2+/+ SmoM2 control mice and Amhr2cre/+SmoM2 mutant mice 

were caged together and maintained until advanced age in order to test for the 

occurrence of ovarian cancer.  By 1.5 years of age, Amhr2cre/+SmoM2 mutant mice 

had ovaries containing an abnormal complement of stromal-like cells, but they did 

not develop epithelial-derived cancer.  The present study determined the timeline of 

the pathological development and provided insight into the cause of this phenotype 

based on histological and immunohistochemical characteristics.  Histological 

examination at a series of time points showed that pathological changes in the ovary 

of mutant mice started between 60 and 120 days of age and progressed over time, 

with the major phenotype being abnormal clusters of cells within the ovarian stroma 

that histologically resemble steroidogenic cells.  These clusters of cells were still 

present at 1.5 years of age.  At one year of age, cells positive for CYP17A were 

present sporadically in the ovarian stroma of mutant mice but not controls.  At 1.5 

years of age, ovarian and oviductal tissue merged and multiple cystic structures were 

present.  Taken together, these results indicate that the pathology in the ovary of 

mutant mice is associated with the abnormal presence of steroidogenic-like cells but 

not with the development of epithelial-derived ovarian cancer.   

 

Introduction 

 Female reproductive aging has many manifestations, including that it is 

associated with increased incidences of tumorigenesis within the ovary (Broekmans et 
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al., 2007).  In female primates, a relatively sharp decline in fertility occurs in middle 

age, followed by a complete loss of fertility, termed menopause.  In comparison, 

female rodents do not have a distinct physiological transition equivalent to 

menopause, and remain fertile until late in life.  This difference presents limitations 

in using rodents as models to study human female reproductive aging; hence, our 

current knowledge of reproductive aging is gained primarily from clinical data of 

human samples and experimental data from primates.  Before sterility associated 

with aging is reached, changes at all levels of the hypothalamic-pituitary-gonad (HPG) 

axis occur in a comparable manner in primates and rodents, such as elevated levels of 

circulating follicle-stimulating hormone (FSH) and anti-Mullerain hormone (AMH) 

(Broekmans et al., 2007), and increasingly compromised quality of the remaining 

oocytes.   Moreover, the exact processes and conditions associated with 

reproductive aging are strongly influenced by intrinsic and extrinsic factors, such as 

genetics, maternal-fetal interaction in utero, diabetes, smoking and alcohol intake, etc 

(Ottinger, 2010).  Therefore, as a powerful tool for genetic, environmental and 

pharmaceutical manipulations, the mouse model is capable of providing insights into 

the molecular basis of reproductive aging and associated pathological changes in 

humans.  

Aberrant HH signaling activity is associated with numerous types of cancer 

(Merchant & Matsui, 2010; Rubin & de Sauvage, 2006; Taipale & Beachy, 2001), 

including several types of ovarian cancer (Bhattacharya et al., 2008; Chen et al., 2007; 

Liao et al., 2009), such as ovarian dermoids and fibromas (Cretnik et al., 2007; 
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Levanat et al., 2004), granulosa cell tumors (Papanastasopoulos et al., 2008), and 

ovarian surface epithelial (OSE) cell-derived tumors (Schmid et al., 2011).  

Evidence indicates that Amhr2cre/+ is expressed in the OSE cells , thus dominant 

activation of HH signaling may occur in OSE cells in Amhr2cre/+SmoM2 mutant mice 

(Fan et al., 2009; Mullany et al., 2011).  Accordingly, we hypothesized that 

Amhr2cre/+SmoM2 mutant mice might develop OSE cell-derived epithelial ovarian 

tumors at advanced age.  Based on this hypothesis, virgin female Amhr2+/+ SmoM2 

control mice and Amhr2cre/+SmoM2 mutant mice were caged together to test for the 

occurrence of ovarian cancer.  No evidence of OSE-derived ovarian cancer was 

detected by 1.5 years of age; nonetheless, virgin female Amhr2cre/+SmoM2 mutant 

mice developed ovarian pathology associated with the abnormal presence of 

steroidogenic-like cells with high penetrance.  This chapter describes the timeline of 

the pathological development, and histological and immunohistochemical 

characteristics of the ovaries from aged Amhr2cre/+SmoM2 mutant mice.     

 

Materials and Methods 

Mouse Strains and Management 

Procedures were performed as described in Chapter 2. 

 

Histology and Immunohistochemistry 

Ovarian histology and immunohistochemistry of CYP17A were performed as 

described in Chapter 3.  
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Results 

Ovarian pathology of aged Amhr2cre/+SmoM2 mutant mice  

Virgin female Amhr2+/+ SmoM2 control mice and Amhr2cre/+SmoM2 mutant mice 

were caged together until they were 1.5 years of age.  Four out of four 

Amhr2cre/+SmoM2 mutant mice developed pathological changes in their ovaries (Fig. 

4.1A).  Histological assessment revealed that while ovaries in controls  

appeared normal, ovaries of mutant mice became cystic and deformed (Fig 4.1B and 

C; asterisk indicates cyst, arrow points to follicle).  Minimal solid ovarian tissue 

remained and seemed to be stretched due to the presence of multiple cysts.  In an 

ovary from a different mutant mouse, ovarian and oviductal tissue merged (Fig. 4.1D; 

arrowhead points to oviductal lumen); regions with clusters of cells resembling 

steroidogenic cells and tissue infiltrated with a pool of blood cells were present (Fig. 

4.1D, framed regions; 4.1E is the enlarged image of clusters of cells resembling 

steroidogenic cells; 4.1F is the enlarged image of a pool of blood cells).  

  

Development of ovarian pathology in the ovary of Amhr2cre/+SmoM2 mutant mice 

during aging 

 Histology of ovaries from Amhr2+/+ SmoM2 control mice and Amhr2cre/+SmoM2 

mutant mice of various ages were examined and compared (Fig. 4.2).  At 60 days of 

age, no apparent difference was observed between ovaries of controls and mutants 

(Fig.4.2 A and B).  Nonetheless, at 120 days of age, excessive stromal tissue was  



 134 

 

 

 



 135 

 

 

 

 

 

Fig.4.1. Gross morphology and histology of ovaries from Amhr2+/+ SmoM2 

control and Amhr2cre/+SmoM2 mutant mice at 1.5 years of age.  A) Gross 

morphology of ovaries from Amhr2+/+ SmoM2 control and Amhr2cre/+SmoM2 mutant 

mice at 1.5 years of age.  B, C, D) Histology of ovaries from Amhr2+/+ SmoM2 

control and Amhr2cre/+SmoM2 mutant mice at 1.5 years of age.  Inserts are enlarged 

images of framed fields.  C and D represent images from the ovaries of two different 

mutant mice.  Arrowhead, lumen of oviduct; arrow, follicle; asterisk, cystic structure.  

Scale bar represents 125 μm in enlarged panels and 500 μm in all other panels. 
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readily seen in ovaries of mutant mice compared to those of controls.  A closer 

examination showed that the excessive stromal tissue in the mutants was primarily 

composed of clusters of cells with abundant cytoplasm and outlined by 

spindle-shaped mesenchymal cells (Fig. 4.2C and D; enlarged image shown in the 

insert).  These cells with abundant cytoplasm resemble steroidogenic cells 

morphologically and will be termed steroidogenic-like cells in the following 

discussion.  At one year of age, steroidogenic-like cells became more prominent 

compared to 120 days of age (Fig. 4.2E and F; enlarged image of the framed region in 

F is shown as Fig. 4.3B).  In addition, numerous regions in the ovary of mutant mice 

seemed to be infiltrated by pools of blood (Fig. 4.2E and F; arrows).  

 

Abnormal steroidogenic activity and infiltration of blood cells in the ovary of aged 

Amhr2cre/+SmoM2 mutant mice 

 Regions of steroidogenic-like cells in the ovaries of mutant mice were further 

examined at one year of age (Fig. 4.3).  Images at higher magnification showed that 

these cells had abundant cytoplasm characteristic of steroidogenic cells and were 

frequently in close proximity with tissues infiltrated with blood cells (Fig. 4.3 B, D 

and E; E is enlarged image of steroidogenic-like cells in B; D is enlarged image of 

infiltrated blood cells in B).  Immunohistochemistry of CYP17A showed that only 

theca cells were positive for CYP17A in ovaries of controls (Fig. 4.3C), but 

CYP17A-positive cells not associated with follicles were sporadically present in 

small clusters in ovaries of mutant mice (Fig. 4.3G).  
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Fig.4.2. Histology of ovaries from Amhr2+/+ SmoM2 control and 

Amhr2cre/+SmoM2 mutant mice at 60, 120 days, and one year of age.  In panel D, 

the insert is an enlarged image of the framed region.  The framed area in panel F is 

enlarged in Fig. 3B.  Arrows point to regions of tissue infiltrated by pools of red 

blood cells.  Scale bar represents 60 μm for the enlarged insert and 500 μm in all 

other panels.  Framed region in F is enlarged as Fig.4.3B. 
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Discussion 

 By 1.5 years of age, virgin female Amhr2cre/+SmoM2 mutant mice developed 

severe ovarian pathology.  Histological examination at a series of time points 

showed that pathological changes in the ovary of mutant mice started between 60 and 

120 days of age and progressed over time.  The major phenotype in ovaries of 

mutant mice that persisted from 120 days to 1.5 years of age was the presence of 

clusters of steroidogenic-like cells in the ovarian stroma, some of which were positive 

for CYP17A.  From one to 1.5 years of age, regions close to clusters of 

steroidogenic-like cells in the ovaries of mutant mice were frequently infiltrated by 

pools of red blood cells.  Because steroidogenic-like cells were present before 

infiltration of red blood cells, the latter might be a secondary effect.  Overall, data 

from the present study indicate that the pathology in the ovary of aged mutant mice is 

associated with abnormal steroidogenic-like cells.  

Tumors in the ovary can be very difficult to classify based on morphological 

features and immunohistochemical markers, which may vary not only in different 

types of tumors but also at different stages of pathological progression (Scully, 1978).  

This is especially true for ovarian steroid cell tumors, in which tumor cells very often 

resemble adrenal cortical cells, and multiple terms have been given to the tumors 

including lipoid cell tumor, adrenal rest tumor, adrenal-like tumor, hypernephroid 

tumor, luteoma and masculinovoblastoma (Lin et al., 2000).  In the present study, 

excessive stromal tissue containing clusters of cells with abundant cytoplasm typical 

of steroidogenic cells was observed in the ovaries of aged mutants but not controls  
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Fig.4.3. Histology and immunohistochemistry for CYP17A of ovaries from 

Amhr2+/+ SmoM2 control and Amhr2cre/+SmoM2 mutant mice at one year of age.  

A and B) Histology of ovaries from Amhr2+/+ SmoM2 control and Amhr2cre/+SmoM2 

mutant mice at one year of age.  D and E) Enlarged images of framed regions in 

panel B.  C, F and G) Immunohistochemistry for CYP17A (green) of ovaries from 

Amhr2+/+ SmoM2 control and Amhr2cre/+SmoM2 mutant mice.    Scale bar 

represents 50 μm in A, B, C, F, and G; 20 μm in D and E. 
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between 120 days and 1.5 years of age.  At one year of age, those clusters of stromal 

cells in the ovaries of mutant mice expressed CYP17A, consistent with their 

histological feature as steroidogenic cells.  A pathologist, Dr. Alexander Nikitin, 

College of Veterinary Medicine, Cornell University, examined ovarian histology of 

mutant mice at one year of age and concluded that the excessive stromal tissue 

represented a luteoma.  Although the clusters of stromal cells with steroidogenic 

features are morphologically similar to adrenal rest tumors of the ovary (Adashi et al., 

1979) and adrenalcortical neoplasia (Bielinska et al., 2006), adrenal-specific markers 

such as Cyp11b and Cyp21a are needed to test whether the cells have characteristics 

of adrenal cells. 

Adrenal rest tumors in the ovary seem to be rare and much less frequent than in 

the testis (Adashi et al., 1979; Stikkelbroeck et al., 2004).  In the testis, the tumor is 

frequently found in patients with congenital adrenal hyperplasia, a condition 

characterized by a chronic high level of adrenocorticotrophic hormone (ACTH) 

(Clark et al., 1990; Srikanth et al., 1992).  It was hypothesized that adrenal rest 

tumors of the gonad originate from a pluripotential cell population that can respond to 

ACTH stimulation and differentiate into adrenal-like cells (Srikanth et al., 1992).  

This hypothesis was supported by a study showing that cells expressing the adrenal 

markers Cyp21a and Cyp11b are rare but present in the interstitium of fetal and adult 

mouse testes, and treatment with ACTH or hCG can induce the presence of more cells 

positive for these two adrenal markers (Val et al., 2006).  The normal ovary seems to 

lack a similar population of ACTH-responsive cells (Val et al., 2006).  A study of 
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ovarian adrenal rest tumor showed that tumor tissue expressed mRNA of Mc2r 

(melanocortin 2 receptor), Cyp21a and Cyp11b, providing strong evidence that the 

tumor might be of adrenal origin (Lin et al., 2000).  Interestingly, adrenal-like cells 

are present in the neonatal ovaries of Amhr2cre/+SmoM2 mutant mice and these cells 

gradually disappear by 16 days of age.  If the steroidogenic-like cells expressing 

CYP17A in the ovaries of aged mutant mice also express adrenal-specific marker 

genes, such as CYP21A, it would suggest a potential connection between abnormal 

differentiation/migration of adrenal-like cells in the embryonic and neonatal ovary 

and pathology in aged mice resembling adrenal rest tumors. 

As we have not determined whether the steroidogenic-like cells in ovaries of 

aged mutant mice express adrenal markers, it is possible that these cells resemble or 

represent cells in stromal-leydig cell tumors (Kohn et al., 1995).  The presence of 

the Reinke crystals, which are naturally only seen in leydig cells, can be used to 

distinguish this possibility from the current hypothesis that they are of adrenal origin 

(Yoon et al., 2010; Zhang et al., 1982).  Worth noting, loss of heterozygosity in the 

Ptch gene increases the occurrence of ovarian fibromas and dermoids (Cretnik et al., 

2007; Levanat et al., 2004; Tsuji et al., 2005), such as in the case of Basal Nevus 

(Gorlin) Syndrome (Ball et al., 2011).  Expression of the dominantly active SmoM2 

allele may have a similar effect in the ovary as heterozygosity in the Ptch gene, and 

could possibly induce the development of fibromas and dermoids.  Further 

examination is needed to access this possibility.  Limitations of the current study are 

the small sample size and the need to examine multiple biological markers.   
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An interesting comparison can be made between the ovarian phenotypes in 

Amhr2cre/+SmoM2 mutant mice that develops after breeding and what occurs during 

aging of virgin mice.  Upon breeding, an abnormal inflammatory reaction of the 

uterine horn occurred in the mutant mice (Migone, et al., 2011).  As early as three to 

four days after breeding with intact males, the ovarian bursa of mutant mice became 

thickened and filled with transparent or yellowish fluid.  Infiltration of neutrophils 

and necrosis in the oviduct and the ovarian tissue were observed.  It is likely that 

ovarian pathology upon breeding originates from the abnormal inflammatory reaction 

in the uterine horn and the oviduct.  Compared to the pathological changes after 

breeding, the ovarian abnormality in aged Amhr2cre/+SmoM2 mutant mice does not 

seem to originate from the reproductive tracts, because until one year of age, the 

oviduct and the ovary were still clearly separated, and the reproductive tract appeared 

to be normal morphologically.  However, in aged Amhr2cre/+SmoM2 mutant mice, 

merging of the ovary and the oviduct also occurred.  The fact that in both cases 

pathological development involved the ovary and the oviduct supports the idea that 

coordination between internal organs is tightly regulated during development and 

pathological changes, such as in the case of the ovary and the oviduct (Winnard et al., 

2006). 

In conclusion, the results of the current study described in this chapter show that 

pathology in ovaries of aged Amhr2cre/+SmoM2 virgin females is associated with the 

presence of abnormal steroidogenic-like cells in the stromal tissue.  The present 

study is preliminary and further examination is needed to more accurately define the 



 145 

pathology associated with aging in the ovary of mutant mice.  
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When this project was initiated, a significant amount was known about the 

critical roles of HH signaling in the Drosophila ovary, but there was no information 

about whether HH signaling played a role in the mammalian ovary.  My results 

suggest that HH signaling is also important for the development of the mammalian 

ovary.  I found that HH signaling may regulate the development of the thecal 

vasculature in the mouse ovary.  In addition, HH signaling may control 

steroidogenic activity in the ovary, through its regulation of cell migration or/and 

sorting in the adrenogonadal primordium, or alternatively, by its effect on 

differentiation of steroidogenic cells in the ovary.    

 With the presence of key components within the HH signaling pathway identified 

in the mouse ovary, we set out to examine the in vivo function of HH signaling.  We 

took advantage of the Amhr2cre/+ transgenic mouse line created in Dr. Richard 

Behringer’s laboratory.  Two transgenic mouse lines were created around the same 

time in the Quirk laboratory, namely Amhr2cre/+Smonull/flox and Amhr2cre/+SmoM2 

mouse lines.  In Amhr2cre/+Smonull/flox mouse line, the HH signal transducer Smo is 

conditionally deleted in the somatic cells of the ovary and in the mesenchyme of the 

Mullerian duct .  Deferred implantation (Harman et al., 2011), reduced follicular 

vascular formation, as well as increased atresia of primary and secondary follicles in 

the ovary are observed in the mutant mice with reduced HH signaling activity 

(ongoing project conducted by other members in the Quirk laboratory).  The focus 

of this dissertation is Amhr2cre/+SmoM2 mice in which HH signaling is abnormally 

activated in the ovary and the reproductive tract.  In addition to the complete loss of 

fertility and failure of ovulation, development of the reproductive tract is altered in 

Amhr2cre/+SmoM2 mutant mice, as described in Migone et al., 2011.  This 

dissertation focuses on the ovarian phenotypes of Amhr2cre/+SmoM2 mutant mice.  
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 The Amhr2cre/+ transgenic mouse line is a powerful tool to conditionally express 

or delete genes of interest in the ovary and the reproductive tract, and it has been 

utilized in multiple studies (Deutscher & Hung-Chang Yao, 2007; Jeyasuria et al., 

2004; Jorgez et al., 2004; Lei et al., 2010; Mullany et al., 2011; Pangas et al., 2004).  

The current project utilized this mouse line to express a fusion gene of YFP and the 

dominantly active allele of Smo, named SmoM2, in the ovary and the Mullerian duct.  

Data from the present study demonstrate that the SmoM2-Yfp fusion gene is expressed 

in somatic cells of neonatal ovary, and in theca and granulosa cells of preovulatory 

follicles (Chapter 3).  In addition, although we did not obtain direct evidence that the 

SmoM2-Yfp fusion gene is also expressed in the ovary during embryonic development, 

the fact that HH signaling activity is already elevated in mutant mice at 17.5 dpc 

indicates that the SmoM2-Yfp fusion gene is expressed during embryonic 

development.  This pattern of CRE-mediated recombination, as manifested by the 

expression of the SmoM2/Yfp fusion gene, is consistent with several other studies.  

Jamin et al. (2002) showed that Amhr2 is expressed as early as 11.5 dpc in somatic 

cells of the gonads and in the mesenchymal cells of the Mullerian duct.  Expression 

of Amhr2 during early embryonic life was further demonstrated by data from several 

other studies (di Clemente et al., 1994; Jeyasuria et al., 2004; Pastorelli et al., 2009).  

Results of the present study also indicate that Amhr2cre/+ is expressed in granulosa and 

theca cells of preovulatory follicles (Chapter 2).  Activity of Amhr2cre/+ in granulosa 

and theca cells is consistent with results of other studies (Daikoku et al., 2011; Jorgez 

et al., 2004).  Furthermore, Amhr2cre/+ is active in CL (Daikoku et al., 2011).  

Interestingly, in a double-mutant mouse model using Amhr2cre/+ to delete the Pten 

gene and to express a stable form of Kras, ovarian surface epithelial (OSE) tumors 

occurred with 100% penetrance, suggesting Amhr2cre/+ is also expressed in the OSE 
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cells (Fan et al., 2009; Mullany et al., 2011).  In summary, based on information 

obtained to date, Amhr2cre/+ is expressed in somatic cells of embryonic gonad starting 

from 11.5 dpc; postnatally, Amhr2cre/+ is expressed in granulosa and theca cells of 

preovulatory follicles, in OSE cells, and CL.  This temporal and spatial pattern of 

expression is important when interpreting ovarian phenotypes in transgenic mouse 

lines with Amhr2cre/+ -mediated recombination.  For instance, potential defects that 

may have occurred during embryonic and neonatal development should not be 

ignored when analyzing phenotypes observed during adult life, as exemplified in the 

present study. 

 Because cellular response to HH signaling activity is temporally and spatially 

restricted, cells expressing SmoM2-Yfp do not necessary have elevated HH signaling 

activity.  In the neonatal ovaries of Amhr2cre/+SmoM2 mutant mice, although the 

majority of somatic cells express SmoM2-Yfp and no distinct pattern of spatial 

distribution of YFP-positive cells is observed, the cells with elevated HH signaling 

activity as indicated by elevated levels of mRNA for Gli1, Ptch1 or Hhip, are only a 

portion of somatic cells in the medullary region or between ovigerous cords (Chapter 

3).  In the preovulatory follicles of Amhr2cre/+SmoM2 mutant mice, although both 

granulosa cells and theca cells express SmoM2-Yfp, neither of these two cell types has 

over-activated HH signaling.  The difference between expression of the dominantly 

active SMOM2 and over-activation of HH signaling is also exemplified by data from 

other tissues.  In the reproductive tracts of sexually mature female mice, CRE 

expression driven by the promoter of the progesterone receptor gene (Pgr) occurs in 

the luminal and glandular epithelial cells, as well as in the subepithelial stroma and 

myometrium (Soyal et al., 2005); yet expression of SMOM2 only induced elevated 

HH signaling activity in the stroma and myometrium, not the luminal and glandular 
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epithelial cells (Franco et al., 2010).  Pancreatic ductal epithelial cells are incapable 

of transducing HH signaling and expression of SMOM2 in these cells did not induce 

expression of Ptch-LacZ; instead, an elevated level of mRNA for Gli1 was detected in 

the SMA-positive cells within the stroma in close proximity to the ductal epithelium, 

indicating responsiveness to HH signaling activity is restricted to the stromal 

compartment in the pancreas (Artac et al., 2009).  To date, although a number of 

studies suggest an autocrine effect of HH signaling activity in development and 

tumorigenesis, such as acting as a survival factor for tumor cells and as a regulator of 

the self-renewal of cancer stem cells (Dierks et al., 2008; Handrigan & Richman, 

2010; Tzelepi et al., 2011; Zhao et al., 2009), results from the majority of related 

studies argue that HH signaling function in a paracrine manner (Bailey et al., 2009; 

Nolan-Stevaux et al., 2010; Singh et al., 2011; Theunissen & de Sauvage, 2009).  As 

in the ovary, uterus and pancreas discussed above, most often the mesenchymal 

compartment is the direct target and is responsive to changes in HH signaling activity 

from the nearby epithelium.  The same logic may explain the absence of 

OSE-derived tumor in aged Amhr2cre/+SmoM2 mutant mice (Chapter 4).  Although it 

is highly likely that SMOM2 is expressed in OSE cells, whether these cells are 

responsive to HH signaling is questionable and can be tested by examining levels of 

mRNA for Gli1 and Ptch1 using methods such as RT-PCR and in situ hybridization.  

Furthermore, crossing the Amhr2cre/+SmoM2 mouse line with mice carrying Ptch-lacZ 

allele may provide an effective way of identifying cells that are responsive to 

expression of dominantly active SmoM2, thus facilitating the accurate detection of 

cells types affected in the Amhr2cre/+SmoM2 mutant mice.      

In chapter 2, we reported that Amhr2cre/+SmoM2 mutant mice fail to ovulate and 

this anovulation phenotype is highly likely due to the fact that the vasculature in 
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growing and preovulatory follicles of mutant mice fails to mature.  This finding is 

novel in that the importance of a mature vasculature in the process of ovulation has 

not been recognized.  Based on morphological characteristics and the expression of 

smooth muscle cell markers in the theca-interstitial layer, it was postulated that there 

is a layer of smooth muscle cells that contracts at the time of ovulation to release the 

oocyte-cumulus complex (Ko et al., 2006; Okamura et al., 1972; Talbot et al., 1987).  

In the current study, we did not observe the presence of a layer of smooth muscle 

cells independent of the thecal vasculature, and data presented in Chapter 3 showed 

that in Amhr2cre/+SmoM2 mutant mice, reduced smooth muscle around growing 

follicles likely represents vascular smooth muscle in the theca layer.  In fact, in 

multiple studies markers for smooth muscle cells have been used in the ovary as 

markers for the vascular mural cells (Inzunza et al., 2007; Redmer et al., 2001; 

Vorontchikhina et al., 2005).  Hence, the results of the current study support a role 

of the vascular mural cells in successful ovulation.  Multiple changes occur to the 

ovarian vasculature in preparation for ovulation, such as changes in blood flow 

mediated by vasodilation and vasoconstriction, which modulate the formation of the 

follicle rupture site (Dahm-Kahler et al., 2006; Koos; Macchiarelli et al., 2006; 

Zackrisson et al., 2000).  Therefore, one potential mechanism through which 

vascular mural cells may participate in the process of ovulation is through their 

regulation of vasodilation and vasoconstriction before ovulation.  

Results of the current study provide strong evidence that HH signaling regulates 

vascular development in the mouse ovary.  HH signaling is over-activated in 

neonatal ovaries of the Amhr2cre/+SmoM2 mutant mice compared to controls.  Levels 

of mRNA for genes involved in vascular network formation are elevated in whole 

ovaries of mutant mice compared to controls.  A capillary network of higher density 
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forms in the cortex of newborn ovaries from mutant mice compared to controls.  

With reduced HH signaling activity in the Amhr2cre/+Smonull/flox mutant mice, a lower 

density of capillary network forms (data from Quirk Laboratory).  Thus, HH 

signaling is critical for vascular network formation in the neonatal ovary.  

Accumulating evidence suggests that the effect of HH ligands on promoting 

vasculogenesis and angiogenesis is often not through direct targeting to the 

endothelial cells, but to the mesenchymal cells surrounding the endothelial tube 

(Chen et al., 2011; Frontini et al., 2011; Pola et al., 2001; Wang et al., 2010; White et 

al.,2007).  In the present study, levels of mRNA for genes involved in the interaction 

between endothelial and mesenchymal cells are elevated in whole ovaries of mutant 

mice compared to controls, such as Foxf1a, Angpt-2, Mef2c and Ntrk2 (Chapter 3).  

During development, adult homeostasis and tumorigenesis, HH signaling plays 

important roles in the maintenance of progenitor cell populations in various tissues 

and organs (Beachy et al., 2004).  It is likely that HH regulates maintenance and/or 

differentiation of precursor cells for vascular mural cells, thereby participating in 

formation of vascular networks in the neonatal ovaries and in the maturation of thecal 

vasculature later in life.   

Notably, dynamic changes in HH signaling activity seem to occur in the ovary in 

a temporally and spatially regulated manner (Ren et al., 2009; Wijgerde et al., 2005).  

Briefly, while levels of mRNA for Ihh and transcriptional targets Ptch1 and Gli1 

decreased in the theca-interstitial tissue shortly after hCG treatment, the level of 

mRNA for Gli3 sharply increased in granulosa cells at around 4 hr after hCG 

treatment, and the level of mRNA for Hhip increased in the granulosa cells from 4 to 

12 hr after hCG treatment.  HHIP binds to HH ligands and restricts their spatial 

distribution, functioning as an inhibitor of HH signaling (Ribes & Briscoe, 2009); 
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GLI3 is proteolytically cleaved and functions as a transcriptional repressor in the 

presence of decreasing HH signaling activity (Dessaud et al., 2007).  Thus, the 

decrease in mRNA levels of Ihh and increase in mRNA levels of Hhip and Gli3 

suggests an inhibition of HH signaling activity before ovulation occurs.  This 

potential change in HH signaling activity may be important for successful ovulation 

to occur.  As phenotypes in the Amhr2cre/+SmoM2 mutant mice are the result of 

long-term developmental defects, additional approaches are needed to more directly 

test this hypothesis.   

 Detection of adrenal-like cells in the ovaries of mutant mice around the time of 

birth suggests that HH signaling may play a role in the process of cell migration 

or/and sorting in the adrenogonadal primordium, or alternatively, elevated HH 

signaling activity may lead to steroidogenic differentiation of cells in the fetal and 

neonatal ovary into adrenal-like cells.  A potential role of HH signaling in the cell 

migration or/and sorting of the adrenogonadal primordium can be tested in future 

studies and the first step would be to determine whether components of the HH 

signaling pathway are present in the adrenogonadal primordium within the time 

window (9.5 to 12 dpc) of cell migration/sorting.  The alternative hypothesis, that 

elevated HH signaling activity may lead to steroidogenic differentiation of cells in the 

fetal and neonatal ovary into adrenal-like cells, is equally interesting.  In the fetal 

adrenal gland, SHH regulates the steroidogenic differentiation of adrenal cortical cells, 

mainly through inducing expression of Gli1 and Ptch1 in the capsule cells 

surrounding the gland, which proliferate and differentiate into steroidogenic cells of 

the adrenal cortex (Ching & Vilain, 2009; Guasti et al., 2010; Huang et al., 2010; 

King et al., 2009).  If abnormally elevated HH signaling activity in the embryonic 

and neonatal ovary induced differentiation of ovarian cells into adrenal-like cells, it 
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would suggest that there is a population of precursor cells in the fetal and neonatal 

ovary that can respond to HH signaling and differentiate into adrenal-like cells.  

Whether this population of precursor cells also contains the precursors for theca cells 

will be an interesting subject for future studies.  Interestingly, cells expressing Gli1 

and Ptch1 in response to the expression of SMOM2 in Amhr2cre/+SmoM2 mutant mice 

may likely represent an excessive population of steroidogenic precursor cells, and 

these cells may contribute to the ovarian pathology in aged mice that is associated 

with steroidogenic-like cells (Chapter 4).  

 Overall, the current project establishes that HH signaling activity is an important 

regulator of vascular development in the mouse ovary.  The results from this project 

also point to a potential role of HH signaling in cell migration or/and sorting within 

the adrenogonadal primordium, or alternatively, in the differentiation of steroidogenic 

cells in the ovary.  
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