A Case Study of
Number-Theoretic Computation:
Searching for Primes im Arithmetic Progression

Paul Pritchard

TR 82-504
July 1982

Department of Computer Science
Cornell University
Ithaca, New York 14853

1. Imtroductionm

The area of number-theoretic computation, by which we mean the design and
use of programs that compute interesting properties of the integers, presents
special challenges to the programmer. In a realm where computations typically
involve hundreds of hours of machine time, and the only requirement is to pro-
duce "interesting" results, the relationship between correctness and effi-
ciency is rather less dominated by the former than is usually (and wisely)
expected to be the case. Yet there is a dearth of published methodological
material that the interested novice might consult for guidance, or even for
enjoyment, in this area. There are plenty of results to be found, for instance
in Maths. of Comp., but thorough presentations of the methods whereby those

results were obtained are lackingl.

This paper addresses this gap in the literature. We report on our
experiences in the design of a suite of programs that tackle a "typical®™ (if
that is possible) problem in computational number theory. Mostly, only very

elementary number theoretic facts are exploited in our algorithms.

2. Backgrouamd

In one of a famous series of papers, Hardy and Littlewood [8] generalized
the well-known conjecture that there are infinitely many "twin primes", i.e.,
pairs of prime numbers whose difference is 2. Their conjectures rest on "pro-
babilistic" arguments, and supply asymptotic formulae for the number of n-
tuples of primes (of any type) with no member larger than x. The Hardy-

Littlewood conjectures imply that for any n>l there are infinitely many

1Perhaps the reason is that this area has been more the province
of mathematicians than of computer scientists.

..3-
sequences of primes in arithmetic progression (PAPs) of length n.

However, very little has actually been established about such progres-
sions. Roughly speaking, the present state of knowledge is that n can be
3 1/2. More precisely, Chowla [2] showed that there are infinitely many PAPs
of length 3, and recently Grosswald [6] has established the validity of the
Hardy-Littlewood formula in this case, and Heath-Brown [10] has shown that
there are infinitely many arithmetic progressions (APs) comsisting of 3 primes

and an "almost prime" (a number with at most 2 prime factors).

With the aid of computers, PAPs have been discovered that are substan-
tially longer than those guaranteed to exist by the best available theorems.
As of writing, a PAP of length n (but which cannot be extended to have length
n+l) is known for 2<n<17 (see [16], [7, p.11]). The single known PAP of length

17 was found by Weintraub [17].

It is now possible to state our chosen problem. Put rather crudely, it is
to break or at least equal Weintraub's record. That is, we want to find PAPs
of length 17 or greater. In this paper we design algorithms to tackle the

problem; we will report elsewhere on our computational experience.

3. HNathematical Prelimimaries
Before proceeding, we introduce our

Notation: Lower case variables, e.g. X,y,a,b, range over the integers, and
are non-negative unless otherwise stated. In sums and products, p
ranges over the primes.
x|ly : x divides y (exactly).

x mod y : the least m20 such that y|(x-m).

-4 -

x = a (mod m) : m|x-a -- congruence notation (see [12]).

xly : not (x|y)

(%,y) : the greatest common divisor of x and y (x,y21).

"x and y are coprime" : (x,y) = 1.

n(n) : the number of primes < n.

O (n) : the product of the primes < n.

R(n) : {x | 1<x<n amd (x,n) = 1} -- a reduced residue class of n

(see [12]).

k
{£(k)} E : the sequence f(k,), f(k,+1),...,£(k,) (the upper index
k-kl 1 1 2

is sometimes unspecified).
(3!x:...) : there is a unique x such that ...
iff : if and only if.
Algorithms are written in guarded command notation [4,5] extended
by a "for all" iterator:

"forall x: predicate(x) do statement-list od".

We start by investigating the properties of PAPs. The following theorem

turns out to be of crucial importance.

Theorem 1 [9, Theorem 57]

1f (j,m) = d, then the congruence
jex = ¢ (mod m)
is soluble iff dlc, and it then has just d solutions (mod m). [

We are looking for a PAP {a+k-b}§;3. n>2, so we must have a>l, b>l and
(a,b) = 1. Now let p be a prime such that p/b. Then (p,b) = 1. So, by

Theorem 1, the congruence

p'x = a (mod b)

has just one solution (mod b). This implies that
(d!k: 0sk<p amd platke«b)

Pick the k with this property, and suppose psn. Then either a+k<b is nonprime
or atkeb = p. In the latter case, either a<n and a+a‘b is nonprime, or a=p=n.
So {a+k-b}£_:_(]5 contains a nonprime number unless a=p=n, in which case a+n<b is

nonprime. We have proved
Theorem 2 (Waring/Mathieu, ca. 1860; see [3, p.425])

In order to have a PAP of length n > 2, the difference, b, between the
primes must be divisible by I (n-1). Furthermore, if n is prime, n|b unless

the first term in the series is n. [

Theorem 2 implies that a PAP of length n > 2 must either be a sub-AP (a
subsequence that is also an AP) of an AP {e+k.II(n) }kZO for some e e R(II(n)),
or be a sub-AP with first term n of the AP {n+k~11(n—1)}k20. In order to be
systematic, and to take advantage of the greater demsity of the primes among
the smaller numbers, let us search for all PAPs of length 2 n having no term
greater than a given bound. It is convenient to let the bound be (N+1).I(m).
To avoid unnecessary recalculations, we consider each AP mentioned above,

determine the primality of each of its members, and then test all possible

sub-APs.

Algorithm 1:
{n>2 and N>1}
forall e: eeR(II(n)) do
S:= {e+kon(n)}g=0;
mark all nonprime numbers in S:
sift(S,e,n,N);
search S {for a sub-AP of unmarked elements with length 2 n}
od;
if prime(n) + S:= {n+k-]1(n-1)}ll":(;(ml)-n/n(n-l)'l;
sift(S,n,n-1,Lln.(N+1)-n/M(n-1)1);
search S for a sub-AP of ummarked elements with first term n
and length 2 n
-] mot prime(n) + skip
£i
{the set of accepted APs is that of all PAPs of length 2 n
with no term > (N+1).II(n)}

The members of R(II(n)) can be found by adapting the "wheel sieve" of [13,14].

To sift S = {e+k.I(n) }§=0 = {Sk}zzo. it suffices to consider each prime

ps n<p S \| e+tN.I(n), and mark each nonprime member of S with divisor p. (If e
= 1, it too must be marked as nonprime.) By theorem 1, we need only find the

unique solution of

kelI(n) =-e (mod p) amd 0sk<p (3.1)
and then mark the elements Sk+i-p’ i=041525...5 with the exception of Sk if
S, = p. By theorem 1 again, there is a number inverse(II(n),p) such that

k

O(n).inverse(N(n),p) =1 (mod p)

(Given x,y such that (x,y)=l, inverse(x,y) can be computed by adapting

Euclid's greatest common divisor algorithm so that it computes a,b such that

a*x + bey = ged(x,y) =1,

-7 -

whence inverse(x,y) may be taken as a -- see [1l, p.274].) So the k of (3.1)

is given by
k = -e.inverse(II(n),p) mod p

Sift is given below. The required primes can be calculated (just once) by

the methods of [15].

procedure sift(S,e,n,N):

if e=1 + mark S, [e*#l - skip £i;

forall p: prime(p) amd n<ps\| (N+1) .1 (n) do
set k such that (3.1):

k:= -e.inverse(II(n), p) mod p;

if Sk=p +> k:=k+p [Skzp + skip £1i;
do k<N + mark Sk; k:= k+p od

od

"gearch S" involves a linear scan of the AP {e+(h+k-f)-11(n)}k>_0. for

each f,h such that lsfSLl—EIJ and 0sh<f, to see if n or more consecutive terms

are ummarked (and hence prime). This amounts to checking S, and every f'th

element thereafter.

search S:
forall f: 1<f<|N/(n-1)] do
forall h: 0sh<f do
i, count:= h, 0;
do isN -+ if mot marked(Si) -+ count:= count+l

1] marked(si) + if count2n + accept(i-count+f,i-f,f)
0 count<n + skip
£i;
count:= 0
£i;
is= i+f

od;
if count2n + accept(i-count-f, i-f, f)
0 count<n -+ skip
£i
od
od

procedure accept(i,j,f):
{global: e,n}
note that there is a PAP with first term e + i.II(n),

last term e + joN(n), and common difference f.I(n)

The special search in the case that n is prime is similar to and simpler
than the above, and is left to the reader. It is of much less importance than
procedure search, which for all but very small values of n is expected to dis-

cover almost all the PAPs found by the algorithm.

Algorithm 1 is evidently correct in the sense that if there is a PAP of
length n, then for some N>1 algorithm 1 will find that progression, and con-
versely. In its broad outline it is essentially the algorithm presented by
Weintraub [16], which was (presumably) responsible for finding the PAP of
length 17 reported in [17]. A great amount of computation is involved when

looking for long PAPs. Weintraub [16] reports on a search with N = 16680 and

- 9 -

n = 16, so that I(n) = 30030. The number of values of e to try -- the size

of R(II(n)) -- is 5760. He observes that

The sieve itself proceeds quite rapidly on the computer while

the search is more time-consuming.

4. A Rough Complexity Analysis

We might decide on the strength of Weintraub's observation to concentrate
our efforts on speeding up the statement "search S"™. This section undertakes
a simplified complexity analysis to get a more precise feel for the costs of

the various components of algorithm 1.

The complexity of algorithm 1 is dominated by the forall loop, whose
body has just 3 high-level statements. The cost of the assignment to § is
6(N) bit operations. Consider "sift(S,e,n,N)". For each prime p in the
specified range, this involves a determination of k and then 6(N/p) markings.
Since m(n) ~ x/log x -- the prime number theorem [9, Theorem 6] -- it can be
shown that the cost of determining all the k-values = 0(\rﬁjifz;§) multiplica-

tions. The cost of the marking

= 2 N/p -6(1) additions
n<ps\| e+N.T(n)

6(N.loglog\| NeZI(n)) additions

since 3 1/p ~ loglog x -- [9, Theorem 427].
pPsx

The cost of "search S™ amounts to that of 6(N/n) complete passes over S,

-10-
which is e(NZ/n) additions.

The relative contribution of these high-level statements to the complex-
ity of algorithm 1 depends on the relationship between N and I(n). In the
practical context of seeking progressions of length at least 17, the relation-
ship should be determined by seeking to maximize the (minute) number of PAPs
found per second under the constraints of the available computational
resources. We have something to say about such matters in §7. For the
present, let us note that even if II(n) =‘N2. and it is unlikely to be this
large (consider Weintraub's figures given above), "search S" costs ﬂ(\rﬁllogN)

times as many operations as does "sift S", because log I(n) = 2 log p ~ n
psn

-- [9, Theorems 413 and 434].

In view of these facts, we decide to concentrate exclusively on speeding
up the statement "search S"™. 1In our practical context, we expect that any
gain in speed would accrue to the entire algorithm, because of the dominant

cost of this statement.

S. A Basis for Improvemenat

Meanwhile, back at M™search S"™ ... consider the typical subsearch -- a
search for n or more consecutive terms of the following progression that are

in S (and hence prime):

sT°P = feth m(n)+ke£- W0}y = 9, dyag (5.1)

We see that theorem 1 provides pertinent information. For let p be a prime

such that p>n and p/ f. Then, by theorem 1, the congruence

pex = e+th.I(n) (mod f£.I(n))

- 11 -
has just 1 solution (mod f.II(n)). This implies

(d!m: O0sm<p amd (Vi:0si:)) (5.2)

plym-l'i,-p

Now let P;» i>0, be the i'th smallest prime p such that p>n and p/ £, and
let m; be the m asserted by (5.2) to exist for p = p.. It is clear that the

i
£40 ipat are in S need only take

search for n or more successive terms of S
place in the intervals between successive terms removed from S by P Furth-
ermore, if 2n>p1, then in every such interval I (with the possible exception
of ‘t:he first and last, which may be truncated) there is a critical sub-
interval Ic of size 2n-p1+1 such that if I contains a progression of n primes
then every term in Ic is in S. This means that a search in I can advanta-

geously start in Ic' The following theorem gives a necessary and sufficient

condition for these critical regions to always exist.

Iheorem 3

(Vesrsesliol: 2nop (£)) iff N < (@) B p

n<p<2n
Proof: N < (n-1). @I p iff L'{i;.l < o »p
n<p<2n n n<p<2n

iff (szlsst-{‘TJ:f< o p) iff (Vf:1sf<L-§TJ: 205p, (£)). O
n n<p<2n o

This condition (on the r.h.s. of theorem 3) is very likely to attain in a
practical context -- for n=17 it amounts to N < 1619.23.29.31 = 6285808.

Henceforth we assume that the condition holds.

Before writing the search, we must address the possibility that the first

...12.-

and last intervals are exceptional. They can actually be exceptional in two
ways. The first, already mentioned, is that they might be truncated normal
intervals; this can be handled in a straightforward manner with the help of

sentinels, The second possibility is more awkward. It is that the first

m,+p,-1
interval is potentially {y, } { 1 » because p,ly is consistent with
k k=0 1 m,
Py T Yy * Given our desire for extreme efficiency, this presents a problem.

b |

It is therefore prudent to investigate more deeply, and we obtain

Theorem 4: Ifn>2andpl=ym thenm1=0.
1

Proof: Suppose n > 2 and P, i A but that m, #0.
1
We have p; = e+h-II(n)+m1-f-11(n) 2 1+f.I(n). Let p be the greatest prime
< pys 80 that psn or plf. Now Py S N(p)-1 since n>2 implies p1>3
implies p>2. Therefore psn is a contradiction, so plf. This means that
p121+p-11(n)>2p since n>2. But this contradicts Bertrand's Postulate [9,

Theorem 418], that for each prime p there is a bigger prime < 2p. So m;

=0. 0O

Theorem 4 shows that the only case requiring special consideration is
that of the first interval when m = 0 and Yo = P- If the search within each
interval starts with a backwards search through the critical regiom, it will
discover a progression of more than n primes starting at Yo+ Let us therefore
decide on this. The special case now reduces to that of a PAP of length
exactly n starting at Yo (with the greatest term in the critical region being

nonprime) .

If P =Y = eth.fl(n), it would appear that h must be very small. Sup-

pose h2l. Then p1>ﬂ(n)22n for n>4 -- this can be easily shown using

13

Bertrand's Postulate. But this is a contradiction if N<(n-1). I p, by
n<p<2n

Theorem 3. Thus h = 0, and we have established the following

Corollary: If n>4 and N<(n-1)s @I p and P; = Yp » then P = e. 0
1

n<p<2n

We now know that special consideration is only necessary when h = 0 (and

p1=e) -- provided that n>4 and N<(n-1)¢ I p. Our theorems can easily be
n<p<2n

seen to guarantee the correctness of

Algorithm 2:

{n>4 amnd 1<N<(n-1). T p}
n<p<2n

[As for algorithm 1 but with "search S" replaced by "ssearch sn2]

The refinement of "ssearch S"™ uses m, , which is the size of the first

(possibly empty) interval. From (5.2), we have
0<m, <p, amd p1|e+h-DKn)+m-f-ﬂKn) (5.3)

Also, we use the notation S[i] to mean Si is unmarked; this suggests the obvi-

ous implementation: a Boolean array.

2For "Smarter Search".

- 14 -

ssearch S:
add sentinels:
forall 1i: ISE;‘F'I‘J do mark S-i; mark SN+i od;
forall f: IstLn-IJ do
set p, = min{p | p prime amd p>n amd p/ £f};
forall h: 0 <h<min{f-1, N-(n-1)-:f} do
set my = min{m | m20 amd plle+h-n(n)+m-f-ﬂ(n)};
if m 20 * lastc:= h+m1~f+n-f-p1-f
Om <n + lastc:= him -f+n.f
£i;

{imvariamt: with the possible exception of a PAP of length n

starting at Yo when h=0, the PAPs of length 2 n from S

have been accepted except for those containing a term 2 S

{s }lastc f,h

k k=1astc-(2n-p1)-f
do lastc S N -

check interval:

and ns

firstc:= lastc - (2n—p1)-f;
i:= lastc;
do S[i] + i:= i-f od;
if i2firstc - skip {nonprime in critical region}
0 i<firstc =+ firsti, is= i+f, lastc+f;
do S[i] + i:=i+f od;

is a critical region}

if (i-firsti)2 nf -+ accept(firsti, i-f, f)

0 (i-firsti)<n-f -+ skip
£i
£i;
get next interval:
lastc:= 1astc+p1-f
od
od;
if P, = e -+
check the AP e,e+f,...,e+(n-1) f:
i:= f3
do S[i] + i:=i+f od;
if i=nef + accept(0, (n-1)£f, £) 0O i#n-f + skip f£f1i
Py # e -+ skip

e OO

£
od

15

This search is faster than the original by a factor of almost P» because
it is probable that the first "look™ in a critical region is unsuccessful.

Some of the searching can be avoided as follows. Let

P; = {p | p prime amd n<p amd plf}

Then if
(3p: PeP, and ple+h.II(n))

then agll members of Sf’h are nonprime, so that value of h can be skipped. How-
ever, very little computation is saved unless n is near 2. The ideas of
searching in intervals and searching first in the critical region are reminis-
cent of the idea underlying the fast pattern-matching algorithm of Boyer and

Moore [1].

6. A Further Improvemeat

Our search is now confined to the intervals of Sf'h between successive
multiples of Py» and advantageously concentrates on the critical regions of
these intervals. But it is apparent that many of these critical regions will
contain a nonprime multiple of Py and their intervals can therefore be ruled
out of consideration; and of the remaining intervals, many will contain a

nonprime multiple of P3 in their critical regions; et cetera. Now the pattern

of (y-indices of) members of Sf’h that are multiples of at least one of
r

PysPys « « « 5P, repeats modulo 0T P;- This pattern in turn determines the
i=1

pattern of those intervals that (only) need be searched because their critical

regions do not contain a multiple of PysPgseccesP e This latter pattern

r
repeats modulo I P;- So precomputation of this pattern will save work if
i=2

-16—

the number of intervals to be searched substantially exceeds the period of

repetition, provided this information can be efficiently exploited.

But there is a much more compelling reason to do the precomputation. It
is that many values of f will share the same values of PysPyseeesPrs and hence
the same pattern of potentially good intervals! For example, consider the case

- _ 18 22 28 _
n = 17, and put r = 3. Then 19 ° 23 * 29 ° 100 = 87.5%2 of the values of f
have <pj sPysP3> = <19,23,29>. Further, the proportion of potentially good

critical regions (i.e., those that do not contain a multiple of pz.....pr) is

S S 1 VU
e Py 23°29 © 12.1

So fewer than one twelfth of the intervals need be examined, representing a
substantial saving for these values of f. If in addition we precompute for

the cases

<P1 0P20P3> € {<19.23I31>!<19'29’31>9<23|29!31>}O

over 99% of the values of f are catered for. (The respective proportions for

1 1 1 . .
these 3 classes T 110 * 6.3 and 3.5.) Note especially that these considera-

tions are independent of e, so that the cost of the precomputing is negligi-

ble.

We would like to start our search of Sf'h in a potentially good interval,
and proceed directly (i.e. in 0(1l) operations) to the next potentially good
interval, and so on. Therefore we introduce, for each r-tuple <p1.p2.....pr>
that is considered,

r r

var nextpgi : array [0..-1+1I pi] of 1l..-1+T p,
i=2 i=2

-17-

such that

r
(Vi:osi< It p;: the first interval between multiples of p; that occurs
i=2

after the j'th interval j-pl..(j+1)-p1 and has no multiple of p,s....P,

in its critical region is the (j+nextpgilj])'th interval) (6.1)
r
Then if the current interval is the t'th modulo II P;» We can proceed directly
i=2

to the next potentially good interval, and update t, by means of the following

ref inement:

get next interval:
r

t,lastc:= (t+nextpgilt]) mod I p., lastc+nextpgi[t]-p1-f
i=2

We now determine the interval number of the first potentially good inter-

val in which to search, i.e., the initial value of t. Let to be the interval

number of the first (possibly incomplete) interval of Sf'h. If mIZn. the

first potentially good interval to be considered has the interval number
to-l+nextpg1[t0-1].
Otherwise, it has the interval number
t0+nextpg1[t0].
Now t, is determined by the quantities d;, for 2<i<r, where from (5.2) we have
Osm.<p; amd pi|e+h-ﬂ(n)+mi-f~ﬂ(n). 1<i<r, (6.2)
and the di are defined by

d, = (mi—ml) mod p., 2<isr. (6.3)

- 18 -

In order to compute ty quickly, we employ an array dp that maps the (r-1)-
tuple <d2. ""dr> to the associated interval number. In view of (6.2) and
(6.3), we define the d; for the j'th interval j-pl..(j+1)-p1 to be the differ-

ence between the least multiple of p; 2 (j+1)-p1 and (j+1)-p1. We thus have

(Vd,...d :(Vi:2sisr: 0sd;<p;):

(Vi:2<isr: Pil(dp[dzs e o o sdr]+1)'P1+di)) (6.4)

We now present a procedure that establishes properties (6.1) and (6.4) of
arrays nextpgi and dp. It operates on parameters N,n,r,p,dp and nextpgi. N

and n are as for algorithm 2. Array p and integer r > 1 must satisfy
(F:1sstle (Vislsise: plil=p,(£))) (6.5)
The algorithm employs an array d and interval number t such that

(Vi:2<isr: 0<d[il<p; amd pilt'p1+d[i]) (6.6)

-19-

procedure setpgi(N,n,r,p,dp,nextpgi):

g:= 03
establish (6.6):
= 13

it=2; doe i < r » d[il, i:= p[il-p[1], i+l od;
{imvariamt: the nearest potentially good interval before the t'th is the g'th
and (6.6) amd [(6.1) with t as the upper bound for i] amd
dp satisfies (6.4) when the range of dp is restricted to 0..t-2}
do g #]Ii pLi] »
i=2
is= 23
{imvariamt: (3Jj:2<j<i: d[j]l < p[1]-n exr d[j]l > n)}
do i # r+l camd (d[il<p[l]-n oxr d[il>n) + i=i+l od;
if i = r+l + {the t'th interval is potentially good}
i:= g3
do i<t -+ nextpgil[il:= t-i; i:= i+l od;
g:= t
0 i<z~ skip
£i;
dpld[2]s..esdlr]]:= t-1;
t:= t+l;
re-establish (6.6):
i= 2;
do i <r -+ d[il, i:= (d[i]-p[i]) med p[il, i+l od
od
r
Note that this procedure works correctly even if r = 1 (taking I p[i] to
i=2

be 1 and dp[dz. .« o e ’dr] to be dpl0]).

Before presenting the new algorithm, we must address the possibility that
a PAP of length 2 n is missed. This can happen in two ways. The first was
treated in algorithm 2 -- we must search for a PAP of length exactly n when
e =p; and h = 0, for such a PAP would not otherwise be accepted. The second
way is new. It is that a PAP is missed because p; occurs in a critical region,

for some i, 2 £ i £ r. We would then have

- 20 -
pi = e+h.ﬁ(n)+mi-f-ﬁ(n)

Under the preconditions of algorithm 2, the proof of the corollary to theorem
4 shows that p1<DKn). If we further require pr<DKn). this case can occur
only when e = P; and h = 0. Also, e must be the first member of a critical

region, so that the PAP must have length exactly n.

The two cases are considered conjointly in the new algorithm. Note that

for n = 17, the requirement that pr<II(17) is hardly a restriction at all.

Algorithm 3:

{n>4 amd 1<N<(n-1). I »p}
n<p<2n

[As for algorithm 2 but with "ssearch S™ replaced by "sssearch sn3]

3For "Still Smarter Search".

- 21 -

sssearch S:
add sentinels:
forall i:lsistJLj do mark S .; mark S_. . od;
_u_n-l -1 N+i
forall f: 1sfsl” 7] do

r:= r(£f);

forall i: lsisr do set p; = min{p | p prime amd p>n and p/ £f} od;
r

P:= II p.;
i=2 *

if p_ < I(n) + setpgi(N,n,r,p,dp,nextpgi) £i;
forall h: Oshsmin{f-1, N-(n-1)-f} deo
nin{m | m20 amd pile+h-]I(n)+m-f-]I(n)} od;
forall i: 2<i<r do set di = (mi-ml) mod P; od;
t:= dpldy, . . . »d_1;
if m, 2n -+

if t#0 -+ lastc, t:= h*ml¢f+n-f~pl-f+(nextpgi[t-l]-l)-pl-f.

(t-l+nextpgil[t-1]) mod P
0 t=0 + lastc:= him; -f+n-f-p;-f
£fi

0 m <o

forall i: 1<i<r do set m;

lastc, t:= h#ml-f+n-f—p1-f+nextpgi[t]-pl-f.(t+nextpgi[t]) mod P
£i;
do lastc < N -+
check interval; {see ssearch}
get next interval:
lastc, t:= 1astc+nextpgi[t]-p1-f.(t+nextpgi[t]) mod P
od
od;
if e e{piIISiSr} + check the AP e,etf,...,et(n-1)+f {see ssearch}
0 e#{p,;llsisr} + skip
£i
od

7. Practical Comsideratioas

Rather a lot has happened since the complexity analysis of §4. It is
time to take stock. Let us fix n = 17. The argument at the start of §6 sug-

gests that it is reasonable to precompute dp and nextpgi arrays for the four

22

3-tuples <§1.p2.p3> given there. This means that r = 3 for over 99%Z of the
f-values. (Choosing r=4 would lead to unacceptably large space requirements.)
We might then expect that sssearch be 2 orders of magnitude faster than the
search in algorithm 1. And experimentation indeed shows that the number of
lookups of S[i] is reduced by a factor of 96. This would appear to be good
enough to outweigh the extra work involved in the statement "get next inter-

val® of sssearch.

However, a substantial overhead has been introduced: for each value of f
in 1..L;§IJ. and for each h in 0..f-1, a non-trivial amount of computation --
say c>>1 operations -- is done (including the as yet unspecified calculation

of the r mi). This overhead amounts to

_N

~ co
(n-l)2

operations, and thus overwhelms the time actually spent in examining S! The
trouble is that as f approaches its maximum value the number of intervals
between multiples of P, approaches 1, and it becomes increasingly likely that
none of these intervals are potentially good. It is literally a waste of time

to do the c operations needed to discover this.

Yet all is not lost. For recall Weintraub's observation that searching
took far more time than sifting. This suggests a way to escape from our
dilemma -- we will substantially increase N while keeping the maximum value of
f fixed. The effect is that although more time is spent sifting, the overhead
is unchanged and the speedup in sssearch takes effect. We can experiment to
find the point at which the number of looks at S per second is maximized. Pro-
vided the cost of sifting does not become too large, we might expect to set

fmax, the maximum value of f, so that the number of intervals between

_23-

multiples of P which = N/fmax, is roughly equal to the inverse of the
expected proportion of potentially good intervals. Our experiments confirm

this expectation.

Now that N has been increased, a space-efficient implementation of S is a

necessity. Recalling that sentinels are needed at both ends of S, we use
var S: array [0..l(N+2-fmax)/ss]] of set of 0..ss-1
so that S[i] (i.e., the truth-value of "S:.L is not marked") becomes
i+fmax mod ss € S[l(i+fmax)/ss]]

On machines whose wordlength is equal to (or just exceeds) a power of 2, mark-
ing and testing Si can be done very efficiently using arithmetic shifts and

logical masking operations.

Knowing now that it is the loop over all values of h that dominates the
computation time of sssearch, we try to make the body of that loop as effi-
cient as possible. Consider first the computation of the m., for 1<i<r. From

the defining relation (6.2) we have
e+h-11(n)+mi-foﬂ(n) = 0 (mod pi)
After appealing twice to theorem 1 to guarantee the required inverses, we have

m, = -(h+e.inverse(fi(n), pi))-inverse(f. pi) mod p, (7.1)

Since the set of all P; used in sssearch can be determined in advance, and is

quite small, we precompute a table

inversepi[x] = inverse(x, p;)» xe€l..p;-1

-24..
and a value

invPInp = inverse(lI(n), pi)

for each possible P;- Then the computation of m. reduces to
m, := (-(h+e<invPIn[i])+invfp[i]) meod P; (7.2)
where

invfp[i]=inversep [f mod pi]
i

and
invPIn[i] = invPIn
P
are set in the loop over the f-values. The di can then be directly computed

from definition (6.3).

A substantial speedup of the above method can be had by thoroughly
exploiting recurrence relations. Suppose each new value of h is obtained by
incrementing the previous value h'. Then writing m, and mi' for the

corresponding values of m., we have from (7.1)

m, = (mi' - 1nverse(f.pi)) mod p, (7.3)

It follows that we need only use (7.2) to compute m; for h = 0 (or -1), and
then adapt (7.3) to update m, after each increment of h. But the values actu-
ally needed in sssearch are just m; and di' 25isr. By reapplying the above
technique to the defining equations (6.3) and (7.3), we are finally lead to

the code given below.

-25_

ml-invfp[ll;

20 » forall i: 2<i<r do
di:= di-dinclfi];
if d <0+ d;:= d;+p; 0 d;20 ~ skip fi

od

0 m1<0 + forall i: 2<i<r do

di:= di-dinc2[i]3
if di<0 > di:= d;+p; 0 d.20 ~ skip £
m,:= m1+pl

m, 3=
if m,

fude

od
£i

where arrays dincl and dinc2 are set in the f-loop so that

dincl[i] = (finvp[i]l-finvp[1l]) mod P;s 2<is<r,

dinc2[i] = (dincl[i]+p1) mod P;» 2<i<r.

The h-loop can be improved further by delaying the update of t until it is

needed.

Now that a significant amount of time is spent in sifting, it is
worthwhile to pay equally careful attention to procedure sift. We do not
expect that there is a substantial algorithmic improvement on sift (unlike the
case for procedure search). So we concentrate for the present on an efficient
implementation. First note that the same inverses are calculated over and
over again for each value of e. We avoid this by precomputing these inverses

and reading them in as required.

There is another matter to be addressed. It is that two of the calcula-
tions may lead to arithmetic overflow -- the product e-inverse(II(n), p) and

the term Sk' The former is dealt with by the following refinement:

set k such that (2.1):
k:= prodmod(-e,inverse(II(n),p),p)

26

Function prodmod(a,b,p) computes a*b med p. It is presented in the appendix.

To handle the latter, first note that

S, =P etk.fI(n) = p

L(p-e)/N(n)] =k amd (p-e) mod II(n) =0

Both the quotient and remainder on division of (p-e) by II(n) can be effi-
ciently maintained by taking the p-values in increasing order and using
recurrence relations. However we do not use this method in our program for
n=17, instead favouring a crude but effective test -- we have N<II(n), so that
psII(n) and the test S, =P becomes p = e. This enables the test to be removed
altogether, provided only that the loop is followed by the statement

if e is prime - ummark S, [e is not prime + skip od

0

Having thus optimized procedure sift, the only way to spend less time
sifting is to actually do less sifting. Aha! Since PAPs of length at least 17
are extremely rare, so also must be psuedo-PAPs of length at least 17, where a
psuedo-PAP is an AP of numbers which have only "large" prime factors. So we
decide to initially sift only up to a certain fraction A, O<A<l, of the max-
imum prime otherwise required, and to sift further if necessary when a
psuedo-PAP is "accepted". The value of A is to be determined by experimenta-
tion -- it should be reduced until the time saved in sifting after a further

reduction is offset by the extra time spent in searching.

The program can be given a final fine-tuning by removing constant expres-
sions from inner loops, and by hand-coding the innermost loops (which are
quite small) in assembly language. Our program , with n=17, N=300000 and
fmax=1000, processes each value of e in a little over 2 minutes on a VAX

11/780 running under Berkeley Unmix.

- 27 -

As a final point, we note that of the 7 PAPs of length 16 reported in
[16], all have a common differemce divisible by M (17) (rather than just
M(16)), and that the sole known PAP of length 17 has a common difference
divisible by M(19). We know of no explanation for this fascinating
phenomenon (but hope to throw some light on it by experiments with the program
outlined herein). However, it does suggest that our program be generalized so
that while II(n) is used for the sieve, the search is made for a PAP of length
m, mSn. It is not difficult to generalize our argument so that it handles
this situation. We have done this, and our program is parameterized with
respect to m as well as n, However, there are several practical reasons for
choosing m=n=17 rather than, say, m=17 and n=19, in addition to the fact that
the latter search is not systematic. In the latter case much more time is
needed to sift, and the factor of reduction in the number of looks at S, at

49, is rather less than the factor of 96 in the former case. Still ...

_28..

References

(11
[2]
[3]
[4]
[Sl
[6]
(7]

[8l

(9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]

Boyer, R.S. and J.S. Moore. A fast string searching algorithm. Comm.
ACM 20, 10 (October 1977), 762-772.

Chowla, S. There exist an infinity of 3-combinations of primes in A.P.

Proc. Lahore Philos. Soc. 6, 2 (1944), 15,16.

Dickson, L.E. History of the Theory of Numbers, vol.l. Chelsea Publish-
ing Co., New York, 1971.

Dijkstra, E.W. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, New Jersey, 1976.

Gries, D. The Science of Programming. Springer-Verlag, Berlin Heidel-
berg and New York, 1981.

Grosswald, E. Arithmetic progressions that consist only of primes. J.

Number Theory 14, (1982), 9-31.

Guy, R.K. Unsolved Problems in Number Theory. Springer-Verlag, New York
Heidelberg and Berlin, 1981. '

Hardy, G.H. and J.E. Littlewood. Some problems of "partitio numerorum"
III: on the expression of a number as a sum of primes. Acta Mathematica
44 (1923), 1-70.

Hardy, G.H. and E.M. Wright. An Introduction to the Theory of Numbers.
5th Ed., Oxford University Press, Oxford, England, 1979.

Heath-Brown, D.R. Three primes and an almost prime in arithmetic pro-
gression. J. London Math. Soc. (2nd series) 23, 3 (June 1981), 396-414.

Knuth, D.E. The Art of Computer Programming, vol. 2: Semipumerical
Algorithms. 2nd Ed., Addison-Wesley, Reading, Massachusetts, 198l.

Le Veque, W.J. Elementary Theory of Numbers. Addison-Wesley, Reading,
Massachusetts, 1965.

Pritchard, P. A sublinear additive sieve for finding prime numbers.
Comm. ACM 24, 1 (January 1981), 18-23.

Pritchard, P. Explaining the wheel sieve. To appear in Acta Informa-
tica.

Pritchard, P. Fast compact prime-number sieves (among others). Tech.
Report 81-473, Dept. of Computer Science, Cormell University, October
1981.

Weintraub, S. Primes in arithmetic progression. B.I.I. 17 (1977), 239-
243,

..29_

[17] Weintraub, S. Seventeen primes in arithmetic progression. Maths. of
Comp. 31, 140 (October 1977), 1030.

- 30 -
Appendix

The function

prodmod(a,b,p) = (a<b) mod p

can be derived from the following two facts:

prodmod(2a',b,p) prodmod(a',2b mod p,p)

(prodmod(2a',b,p)+b) mod p

prodmod(2a'+1,b,p)

A recursive formulation is immediate, but the facts also readily suggest an

invariant assertion for an iterative version.

fumction prodmod(a,b,p):
{im: a=a and b=b0 and p>0}
{returas ag+b, mod p}

a,b,c:= a mod p,b mod p,0;
{imvariant: (a<b+c) mod p = ag+by mod p and 0<a,b,c<p}
do a#0 amd even(a) + a,b:= a/2, 2*b mod p
0 odd(a) + a,c:= a-1, (b+c) mod p
od;
return(c)

Note that if p S lmaxint/2]+l, where maxint is the greatest representable
integer, then overflow cannot occur in prodmod. It is possible, but messy, to

remove this requirement by weakening it to p < maxint, by exploiting the fact

that

x mod p = -(p-x mod p) mod p
In our application, we did not need and therefore did not choose to do this;

we instead exploited the same fact to minimize a. Two further modifications

were made to increase efficiency. First, the multiplicative mod operations

-31...

in the loop were replaced by additive ones; the restriction on a,b and c in
the invariant makes this possible. Second, the loop is terminated as soon as

it is possible to complete the calculation without the possibility of overflow

occurring. The final form of the algorithm is given below.

fumction prodmod(a,b,p):
{im: a=a and b=b0 and p>0}
{returas a;-b, mod p}
a,b,c:= a med p,b mod p,0;
if p-a<a + a, neg:= p-a, True [p-a2a + neg:= False fi;
if p-b<b + b, neg:= p-b, mot neg [p-b2b + skip £i;
if b<a + a, b:=b,a [l b2a + skip f£1i;
{imvariamt: (a:b+c) mod p = a;*b) med p and 0<a,b,c<p}
do a2|lmaxint/(p-1)] amd even(a) + a,b:= a/2, 2*b;
if b>p > b:=b-p [bsp + skip £i
0 odd(a) + a,c:= a-1, b+c;
if c>p > c:= c-p [csp + skip £fi
od;
c:= (a<b+c) mod p;
if neg amd c#0 -+ return(p-c) [(mot neg) or c=0 -+ return(c) fi

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif

