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SUMMARY

The mein purpose of this paper is to use the Thell residuals for
detecting a monotonic relation between mean and variance by means of the

peak test applied to linear regression through the origin. A numerical

illustration is provided.

1. TINTRODUCTION

Consider the simple linear model Y = Xf + € vherc Y represents an
n-dimensional random veétor, X is an n-dimensional coluan Vector with known
coefficients cénsisting of nonstochastic elements, or elements which are
distributed independently of the error terms, 8 is an unknown scalar, 2nd €

is an n-dimensional random vector having multivariate normal distributions

with

Ee = C, Fee' = Gdlq (1)

where 02 > O is an unknown parameter and In is uscd tc denote the n « n

identity matrix.
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The least square (LS) estimates B of B and € of € are

A n
— o5 2
B = Zxy, / = X7
i=1 i=
and
N ~ n n 3
€ = Y-XB = Y-X C%Z-xiyi / z xé) = PY
= =1
where

o
I
H
=
1
N
&
™M B

Under the above assumptions

Ee = PXp = 0B = 0

AN

Ece' = PEYY'P = PEee'P' = o2P .

We see that even if assumption (1) is true, the LS estimates of residuals

are neither independent nor dolthey have constant variance, since P % In

Theil [1965] has presented an estimator of € which has all the
ordinary properties of 2 except that the covariance of the Theil estimator
is GZIn-l under assumption (1). The dimension of the Theil estimator of
€ is n-1 due to the fact that the residual has n-1 degrees of freedom.

While Theil [1965] has given the general procedure for deriving uncorrelated
residuals with constant variance under the homoscedesticity assumption in

multiple linear regression, Koerts [1967] has derived the explicit form of

the Theil estimator for the simple linear model through the origin. The



-3-
latter will be used here in our diagnostic checking of residuals to detect
a monotonic relation between mean and variance by means of the peak test

introduced by Goldfeld and Quandt [1965].

2. THEIL ESTIMATOR OF RESIDUALS

We denote this estimator by ¢ and for & simple linear model

through the origin it can be represented simply as

61 = yi"b Xi . i=l,‘2,.n',k.-l, k+].,n-0,n
where
b =(l—a> Bn-l + ayk/xk
and
n _*
a= x|/ <12 x2Y) and B = Zx.y./ =x% .
k =1 Loyl i=1 *

k can take any value from 1 to n and the choice is largely a matter of
power with respect to a specific alternative hypothesis. Properties of

Theill residuals are:
* . .
(1) €, is a linear function of y ,
(2) E;; =0, 1=1,2,400,k-1, k+l,...,n ,

Oif i&j

[}

% I*
(3) Cov(ei, ej)
. i’j = l,z)ﬁtt)k"l) k+l,"o,n )

02 if i = j
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(4)  have the minimum expected sum of squares in the class of

estimators with properties 1, 2, and 3,

n n .

(5 £e?2=3x%2 .
jo1 1t i=1 *
ixk

Properties (3) and (5) meke Theil residuals very interesting indeed. Theil
residuals have been derived based on the first four properties. Koerts

[1967] has shown that Theil residuals also have the fifth property.

3. APPLICATION OF THEIL RESIDUALS

Consider the case where x's have been ordered such that
X, < Xj if 1 <« J . And suppose we are interested in testing the following

hypothesis:

H : Eez = g2. for all i
versus

H,: Ee® = cf < Ee? = c§ for i< j .

Note that alternative hypothesis says that as x increases the variance of
€ or y increases also. We are considering the case where we have only a

single observation for each level of z, as is the case in most experiments.

Two alternative tests for testing Ho against H, are suggested by

Goldfeld and Quandt [1965].



(1) F rest
The obvious choice for & ig then the middle obscrvation, so that
one can coﬁpute the ratio of fhe.sum of squares of the Tirst (n-1)/2
estimated residuals to that of the last (n-1)/2, which is F distributed.
When n-1 is not even, one can use either (n-2)/2 first and n/2 last

observations or n/2 first and the (n-2)/2 last observations, and for this

choice see Theil [1965].

(2) Peak Test

While the F test is a general test, the peak test has been
constructed specifically for testing Ho against the particular Hl under
consideration and therefore one expects to obtain greater sensitivity from
this test than the F test. Especially wheé the number of observations is

small the greater sensitivity of the peak test becomes important.

The idea of this test was originally given by Goldfeld and Quandt

they

[1965]. For residuals ordered by the ordering of X:s Xi < xi+l’

~ ) ~

define a peak at x, to be an instance where !ei‘ > ‘ej‘ for j = 1,2,.0.,i-1

Hedayat and Robson [1966] have demenstrated the failure of the Goldfeld and

uandt peak test applied to the LS residuals €, but application to € is
valid and appropriate because
(2) under HO, e;’s are uncorrelated and therefcre under the nor-

mality assumption will be independent,

M
o

(=Ee 2) and hence one expects

2% i
(b) under H,, var €. (=Ee.?) < var_e¢
1 1 i i+1% 7
i+l
3¢ LR e 3
eia < € 2 or equivalently !ei§ <le” b .
i+l i+l

Proof of part (b) stems from the following theorem, a proof of which is

given ir the appendix.
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. . i > £ 3t
Theorem: If Beje, = 0, i+ J and Ee? = c? < Ee® = 0%, then var € < ver e
~heoren s

i+l i+l

for i < j

4. A NUMERICAL ILLUSTRATION

e apply the peak test using Theil residuals to the example (see
table 1) given on page 180 of Steel and Torrie [1960]. As Steel and Torrie
[1960] nave pointed out, in this instance regression of y on x should pass
through the origin. Therefore,

13 13 e

5= IXx.7y, / T xZ = 3.67
i=1 -t i=1

V]
il

o]

and hence the regression line is given by y = 3.67x . The reduction in

sum of squares attributable to regression is

13 2 13
< 5 xin / = x2=351,819 .
i=1 i=1
And the residual sum of squares is 356,259 - 351,819 = L,Lk0 . The

individual least square residuals are:

€ =+ 2.088 €g = + 11.887
€ = - 3.013 69 =+ 17.527
€, = - 5.437 €=+ 29,756
G = - k952 %1 -+ 19.716
iS = - 16.888 ‘§2 = - 44,688
€6 = - 16,066 i3= + 6‘5)4,}_
€, = - 8.167



Induced Reversion: to Independence per LO(

per Dose (ergs/Bacterius) 10 “x

TABLE 1

p)

£
ox

-

Surviving Cells

Stroptomycin Dependent

Escherichia Coli Subjected to Monochromatic Ultraviolet

Radiation of 2,967 Angstroms Wavelength.

X ¥
13.6 530
13.9 48
21.1 72
25.6 89
26k 30
39.8 130
L0.1 139
43.G 173
51.C 208
53.2 225
55,2 259
66.4 199
Y O 255
13 ) 13
.= 528.9 Ly, = 1,929
i=1 i=1 *
13 3 13
fil < = 26,062.10 f;lyi - 356,259

N
v
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First of all, examination of these residuals suggests, that there is
~N
a pattern for the distribution of plus and rninus signs anong the ei's .
. ~
Second, one gets the impression that the absolute value of €5 increases
as 1 increases. Now suppose we suspect the assumption Eef = ¢% for all
i and in particular we suspect that the variance may increase with the

wean; i.e., that the variance of y increases as x increases. To test

against this alternative hypothesis we first find the Theil residuals

e? = yi—b)x1 , i=1,2,.4.,12 (k=13)
vhere
€9=(L®gm4-%13hi3=3jmﬁ .
Thus,
ei = yi-B.TOlhxib , 1=1,2,..0,12 .
and
ei = + 1.66096 e; = - 9.L261k
EZ = - 3.hhgig eg = + 10,5085k
eg = - £.09954% e; =+ 15.89734
6 = - 5.755% . eio = + 28,08552
ez = - 17.7169€ ezl = + 17.66872
GZ = - 17.31572 612 = - 46.77296 No. of peaks =
12

T € % =4,439.4133 where the slight departure from k,bh0 is due to

.:L
rounding error in computing b .
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The e?'s are independent and identically distributed under the
homoscedasticity and normality assumption of the ei's . Now we can
compute the probability of obtaining five or more peaks in a sequence of
12 independent and identically distributed random variables using table 2

from Goldfeld and Quandt [1965].

By interpolation from this table we see that the probability is
about .036 that a sequence of 12 independent and identically distributed
random variables produces five or more peaks. If we can accept a risk of
3.6 percent and if our sﬁspicion about homoscedasticity has biological
support, then we should fit a weighted regression rather than the un-
weighted one for obtaining an efficient estimate of 8 and hence the re-

gression line,

5. DISCUSSION

If we neglect checking the textbook assumptions related to the
linear model, this means either that we are willing to accept these
assumptions or simply that we are not aware of their importance. 1In
practice, however, there is rarely good reason for supposing that
conventional assumptions are satisfied, and methods are therefore needed

for detecting and measuring any sort of departure from these ideal conditions.

As Anscombe end Tukey [1960] have put it, "If ve are to improve our
analysis of data to which the conventional technique can be applied, it is
not likely that we shall do this by improving the techniques themselves.
Rather we must learn either to go further, beyond the place where the
conventional techniques stop, or we must learn to use the technique better.
Either path demands the analysis of residuals, where

(residual) = (observed value) - (fitted value) .



TABLE 2

CUMULATIVE PROBABILITIES FOR THE DISTRIBUTION OF PEAKS

P (number of peaks g x)

~10-

PN

x=0 x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=6 x=9 x=10
5] 2000 .6167 .9083 .9917 1.0000

0] .1000 .3829 .7061 .9055 .9797 .9971 .9997 1.0000
151 .0667 .283% .5833 .8211 .9433 .9866 .9976  .9997 1.0000
20| 0500 .227% .5022 .7530 .9056 .9720 .9935 .9988  .999G 1.0000
251 L0k0O  .1910 WUkl L6979 .8705 .9559 .9879  .9973  .9995  .9999 1.0000
30| .0333 .1654 k001 .6525  .8386 .9395 .9015  .9953  .9990 9998 1.0000
35| 0286 L1462 L3554k .51k .8098 .923%  .97h5 9929  .998k  .9997  .9999
40| .0250 .1313 .3373 .5318 .7837 .9078 .967H  .9903  .99T5  .9995  .9999
45| 0222 L1194 .3138 .5536  .7600 .8930 .9601  .987H  .9966  .9992  .999%6
50| .0200 .1096 .29%0 .5288 .7383 .8783 .9530 .o844k  .9956  .9989  .9998
551 .0182 .1014% .2769 .5068 (7184 .8G53 .9456  .9813 L0k L9986 L9997
60| .0167 .ookk 2620 k871 .7001 .8524 .938%  .9780  .9932 .9982  .9996
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In the first path we analyze residuals to learn what they cean tell us ol
direct interest. In the second path uve must analyze the residuals from a
first application of conventional methods to learn hov & second application

might be better made."

Least square residuals, even under ideal conditions, are in general
correlated end have different variances. Perhaps for graphical examination
of residuals in certain cases we can neglect both the covariance and
heterogeneity of vériances which exists among the least squares residuals,
but certainly for constructing tests or for any.rigorots exahination of
residuals, we prefer to work with a new type of residuals which are free

from the above criticism.

As data analysis becomes more -sophisticated, conputation will
surely get more extensive rather than simpler, and if sophisticated data
analysts are to gain in depth and bowér, they must have both the time and
stinulation to try out new procedures of analysis. ile take advantage here
to quote Tukey's [1962] words of wisdori, "The futﬁre of data analysis
can involve great progress, the overcoming of real difficulties, and the
provision of a great service to all fields of science and'technology. Will
it? fThat remains to us, to our willingness to take un the rocky road of
real problems in preference to the smooth road of unrecl assumptions,
arbitrary criteria, and abstract results without real attachments. Whoe

is for the challenge?”
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APPENDIX

=
1

e S - . . > e . D o
/e now prove that if Ee.e. =0, 1« j and Ee® = 0; < E e" = ¢%
J i+l i+l

te
st

-

then var e; < var € . Under these assumptions and by the definition

i+l
3t
of ei we have
i * o it o
Ver €, = Ee, = - (Ee.)
i i
= Ee.2
— E ‘— :\ v.:’}{ g :,-n i _\2
REL i"n-1 = 1 “n-1  x )J
n
2 2l 2077 \2 2.2, - 2]
= x5 + 0% + 87| x5(1' - a)® + x%a® + 2e(1 - a)x:J
1 1 1 o 1
. n-1
2 = 2 2 o
-a) x5 X507 o
(1-a) i .Z i1 x2ag®
i=1 i n
+ +
n-1 X2
2
z Xi n
i=1
xici
- 2x.(1 - a)(x,3% + - 2:%8a
1( ) ( i n-1 ) o8
z
i=1

o~ 0 ) o - . -
= 3% ) xZ + x3(1 -~ 2)% + x%a® + 2a(1 - 2)x® - 2x;(1 - a) - 2x;a1

Tt i i i
n-1
2 2 2 2 . .
(a5 iflxioi exZo?
+ 07 + + - 2x (1 - 8)
i n-1 %2 i
> xf n

i=

p)



where

where

Novw

For x. >
i+l

[

Var

X, we
1

S1h-
n-1 A
o2 + A%® = x%2 + Bx®? - 2Ax%0°
. i i i'i
i=1
2 2
o<(1l-a
1-a B n(v )
n-1 ’ n-1
T x2 % x2
. i . i
i=1 i=
n-1
o2(AxZ + 1)% + x3a% = x%0? + x2A%2% 0% _ + Bx?
i i i . i i+l i+l i
9=l
jEL, i+l

2( o2 2 2 2 _z z
Gi(Axi + 1)“ + CA2xi + A2X§Xi+lai+l + Bx]

n-1 _
2 x%62 .
jop 43
JFL, i+l
* v ¥ 42 (hx2 1)2 20axS + 1)2 + oAZ(xE
41 - Ver ey =on (g, o+ 1)7 - ot(Axy 4 1)+ CAT(xT
i+l
2.2 2 2 _ 2 L2 2
+ A, (0F = 0f,) F BB, - X)) -
have

2
xi)
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p B 2y ~ ' o f 2 2 -
SAT(S - xT) > 3 end B(xT . - x]7) > .
( i+3 1) ( i+l 1)
. . 3 3% ] o
Mo>w in order to show that var €,+1 > var ei ve have o show that
) s = = 3] 2. 2.2 o o —
2 (AxF o+ 1)% - o%(axT + 1) + A%xZ® (07 - of >0,
01+1( i+l L) 1( i ) 1A1+L( i 1+l)
That is,
- =y ) ] o0 .-
0% A2 xT - oBAFKSE + 0F (1 + 2AxE
i+17 Ti+lTi+l it i i l( : +l)
2 - 3.2 2 2 L
- o (1 + ZAxT) + ATxIx! oY ~ 0of >0 .
:L( ) i 1+l( i 1+l)
Zince 2y < Ry then the left side ol the above final expression will be
-

greater than

2 2, 2.2
¢ _ATXEXS
i+l i i+1
24 o =
szt loT o
i 1+L( i 1+l)

02(1 + 28x%) + A%x
iy i

; 2y _ <24 L2 -
l(L + 2Axi+l) ai(_ + 2AAi) >0,
Q.E.D.



