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Su1vlMARY 

The main purpose of this pape:t is to use the Theil residual:::: for 

detecting a monotonic: relation bet1·1een mean and variance by mean<: of the 

peak test applied to linear regression through the origin. A numerical 

illustration is provided. 

l. INTRODUCTION 

Cunsider the s irrlple linear model y = xr:, + E Hherc y represents e..n 

n- dimensional random vector, X is an n- dit'lensional column vector with knovm 

coefficients consisting of qonstochast ic elements, or eler;tents 11hich arc 

distributed independently of the error terms, C:\ is an unknmm scalar, and E 

is an n-dimensional random vector having rnultivarie.te norrrtal distributions 

Vlith 

EE = c, EEE 1 (l) 

t.lhere a2 > 0 is an unknovm pe.rer.ceter and I is ;J.Scd tc denote the n / r. 
n 

identity matrix. 
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The least square (LS) estimates B of B and E of € are 

B = 
n n . I 2 'Z x.y. L: x. 

. 1 1 1 . 1 1 1= 1= 

A A n n 
€ = Y-XB = Y-X ( L: X. y. I L: X~\ = PY 

'l=l ). J. i=l J.) 

n 
P = I ( 11 L: x~lXX' n . 1 1.,.1 

1= 

Under the above assumptions 

E E = PXB == 0(3 == 0 

AA 

EE€1 = PEYY'P = PEEE'P' = a2 P 

We see that even if assumption (1) is true, the LS estimates of residuals 

are neither independent nor do they have constant variance, since P ± I 
n 

Theil [1965] has presented an estimator of € which has all the 

ordinary properties of E except that the covariance of the Theil estimator 

is a 2I 1 under ass~ption (1). The dLnension of the Theil estimator of 
n-

E is n-1 due to the fact that the residual has n-1 degrees of freedom. 

~fuile Theil [1965] has given the general procedure for deriving uncorrelated 

residuals with constant variance under the homoscedasticity assumption in 

multiple linear regression, Koerts [1967] has derived the explicit form of 

the Theil estimator for the simple linear model through the origin. The 



latter llill be used here in our diagnostic checking of residuals to detect 

a monotonic relation between mean and variance by means of the peak test 

introduced by Goldfeld and Quandt [1965]. 

2. THEIL ESTIMATOR OF RESIDUALS 

We denote this estimator by E·:< and for a. simple linear model 

through the origin it can be represented simply as 

1'-lhere 

and 

i( 
y.-b X. 
~ ~ 

i=l,2, ••• ,l~:-l, k+l, .•• ,n 

n n 
2:x.y. / Lx~ 

i=l ~ ~ i=l 1 

i±k i±k 

k can take any value from l to n and the choice is largely a r'latter of 

pov1er with respect to a specific alternative hypothesis. Properties of 

Theil residuals are: 

(l) * . E. ~s a linear function of y , 
~ 

(2) i=l,2, ••• ,k-l, k+l, ••• ,n , 

(3) 
i,j = 1,2, ••• ,k-l, k+l, .•• ,n, 

= cr 2 if i = j 
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(4) have the minimum expected swn of squares in the class of 

estimators with properties 1, 2, and 3, 

n v n . 
E E-,: 2 = E ~ 2 

i-1 ~ i=l i 
(5) 

i:l:k 

Properties (3) and (5) make Theil residuals very interesting indeed. Theil 

residuals have been derived based on the first four properties. Koerts 

[ 1967] has sho;,m that Theil res.iduals also· have the fifth property. 

3. APPLICATION OF THEIL RESIDUALS 

Consider the case where x's have been ordered such that 

x. < x. if i < j • And suppose 1ve are interested in testing the following 
l J 

hypothesis: 

H : EE~ = (J2· for all i 
0 ~ 

versus 

Hl: EE~ = (J~ < EE~ = (J~ for i< j 
l ~ J J 

Note that e.lternative hypothesis says that as x increases the variance of 

E or y increases. also. VJe are considering the case 1·1here we have only a 

single observation for each level of x, as is the case in rrtost experiments. 

TvlO alternative tests for testing H against H, are suggested by 
0 .L 

Goldfeld and Quandt [1965]. 
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(1) :F t.C::t 

The obvious choice for L is t.hen the ctiddle otscrve.t.icm, so that 

c:me can conpute the ratio of the sur.t of squares of the first (n-1)/ 2 

estimated residuals to that of the last (n-1)/2, which is F distributed. 

I<Jhen n-1 is not even, one can use either (n-2)/2 first and n/2 last 

observations 0r n/2 first and the (n-2)/2 last observations, and for this 

choice see 1'heil [1965]. 

(2) Peak Test 

~·Jhile the F test is a general test, the peak test has been 

constructed specifically for testing H0 against the particular H1 under 

consideration and therefore one expects to obtain greater sensitivity from 

this test than the F test. Especiall:r when the number of observations is 

small the greater sensitivity of. the peak test becor1es ir:tportant. 

The idea of this test \vas originally given by Goldfeld and Quandt 

[1965]. For residuals ordered by the ordering of xi' xi< xi+l' they 
A A 

define a. peak at x. to be an instance uhere IE 1 > 1 E I for j = 1, 2, ••• , i-l • 
1 : i j· 

Hedayat and Robson [ 1966] have demonstrated the failure of the Goldfeld and 

.uandt peak test applied to the LS residuals E, but application to E is 

valid and appropriate because 

(a) 

(b) 

··-
under H 1 E:' s are uncorrelated and therefore under the nor­o 1 

mality assumption i·lill be independent, 

under H1, var /*' ( =Ee:.: 2 ) < var _ E·l::- ( =E/. 2 ) and hence one expects 
1 1 1+ . 1 

1+ 

~~ .. 2 4:• 2 
E. < E 

1 i+l 

I -~<-I I E.;'; or equivalently ,E 1_, < 
i+l 

Proof of part (b) stems fror1 the follm1ing theore~l, a proof of Hhich is 

given in the appendix. 
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Theore~: If EE.E. 
). J 

= 0, .i.. ± j and Ee~ 
l 

{{- -l~ 

=a~< EE 2 = a2 , then var E.< var E. 
1 i+l i+l ). J 

for i < j 

4. A NUlYIERICAL ILLUSTRATION 

He apply the peak test using Theil residuals to the example (see 

table 1) given on page 180 of Steel and Torrie [1960]. As Steel and Torrie 

[1960] have pointed out, in this instance regression of y on x should pass 

through the origin. Therefore, 

13 13 . 
f3 = L: x.y. I L: x~ = 3.67 

i=l 1 ). i=l ). 

and hence the regression line is given by y = 3.67x The reduction in 

sum of squares attributable to regression is 

13 2 13 
( E X. y _"'\) I L: X~ = 351,819 

i=l ). ). i=l ). 

And the residual sum of squares is 356,259 - 351,819 = 4. ,440 The 

individual least square residuals are: 

A A 

€1 = + 2.088 E8 = + u.887 
A A 

E2 - - 3.013 E9 = + 17.527 
A A 

€3 - - 5.437 \o = + 29.756 
A "' 
E4 - - 4.952 n = + 19.716 
,... A 

€5 - - 16.888 l..2 = - 44.688 
A A 

€6 - - 16.o66 1.3 = + 6. 541 
A 

€7 - - 8.167 
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TABLE ~ 

Induced Revc:r:::;ions to Independence per 107 Sw·viv:..nf; CelL:' y 

per Dose (ergs/Bacte:r:i.ur,) l0- 5x af Stroptot'lycin Dependent 

Escherichia Coli Subjected t':) Monochrot~latic Ultraviolet 

Radiation of 2,967 Angstroms lvave1ength. 

X y 

13.6 :, ~) .... ~ 

13.9 48 

21.1 72 

25.6 89 
26.4 .30 

39.8 1')(1 
.) ., 

40.1 l39 
43.9 17::· 
51.9 208 
r: ') ,"-. 
).J•C:. 22~, 

65.2 259 

66.4 199 
57.7 255 

13 13 
!: X. !:::: 528.8 !: 'f ::: 1,929 

.; ' i=l 1 i=1 .l. 

13 l ~ 
-5 

I: x2 ::: 26,062.10 I: y2 356,259 i=1 1. -i=1 i 
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First :A· all, examination of these residuals suggests, that there is 

a pattern for the distribution of plus and ninus signs anong the E.'s 
. l. 

Second, one gets the impression that the absolute value of E. increases 
~ 

as i increases. Now suppose ,.,e suspect the assumption EE~ = cr 2 for all 
l. 

i and in particular we suspect that the variance may increase with the 

'tean; i.e., that the variance of y increases as x increases. To test 

against thif: alternative hypothesis w·e first find the Theil residuals 

Thus, 

and 

') ··:; 
.L'-

L: E··.Cc: = 

i=l l. 

.. ;~ 
€. = 

l. 

~~· 
€. 

l 

.. ~ 
€1 = 

~:.. 

€2 = 

* €3 -
-~ ~· 

€4 = 

~~ 

€5 = 
~!o 

E6 =: 

>'· 

y.-b"x. 
l. ~ 

} i=l,2, •.• ,12 (k=l3) 

"' (l-a)s12 + ay13 /x13 = 3. 7014 

y.-3.70l4x. = i=l,2, ••. ,12 
l 1 

+ 1.66096 
~f 

€7 =: - 9.42614 

j.44946 ·'~· 10. 5c854 - €8 = + 

6.09954 
~:~· 

15.89734 - E9 = + 
~· 

5. 75584 
.r 

28.08552 - €10 = + 
.. 

- 17.71696 Ell = + 17.66872 

17.31572 
-~~ 

46.77296 - €12 = -
No. 

~;'+39.4133 where the slight departure from 4,440 is due to 

rounding error in cornput ing b~< 

of peaks ' = 



-9-

>,~ 

The € 's are independent a.nd.identically distributed under the 
i 

homoscedasticity and normality as.sumption of the €.' s 
l. 

compute the probability of obtaining.five or more peaks in a sequence of 

12 independent and identically distributed random variables using table 2 

from Goldfeld and Quandt [1965]. 

By interpolation from this table we see that the probability is 

about .036 that a sequence of 12 independent and identically distributed 

random variables produces five or more peaks. If we can accept a risk of 

3.6 percent and if our s~spicion about homoscedasticity has biological 

support, then we should fit a weighted regression rather than the un-

"YTeighted one for o.btai~ipg _aq efficient estimat.e of 13 and hence the re-

gression line. 

.· 
5. DISCUSSION 

If vle neglect checking the textbook assumptions related to the 

linear model, this means either that 11e are willing to accept these 

assumptions or simply that we are not a'·Tare of their importance. In 

practice, hov1ever, there is rarely good reason for supposing that 

conventional assumptions are satisfied, and methods are therefore needed 

for detecting and measuring any sort of departure from these ideal conditions. 

As Anscombe and Tukey [1960] have put it, "If \le are to improve our 

analysis of data to which the conventional technique can be applied, it is 

not likely that we shall do this by improving the techniques themselves. 

Rather we must learn either to go further, beyond the place where the 

conventional techniques stop, or we must learn to use the technique better. 

Either path demands the analysis of residuals, '\vhere 

(residual) ; (observed value) - (fitted value) 

-



TABLE 2 

CUHULATIVE PROBABILITIES FOR THE DISTRIBUTION OF PEAKS 

P (number af peaLs .. ~ x) 

nl x "" 0 X = 1 X = 2 :t:: = 3 X = 4 X = ) / 

X = 7 X = b X = G X = 9 X = 10 

51 .2000 .6167 .9o83 -9917 1.0000 

lO .1000 .3829 .7061 ·9055 ·!J797 ·9971 ·9997 1.0000 

1:1 .o667 .2834 • 5833 .8211 .9433 .g866 ·9976 ·9997 1.0000 

I 20 .0500 .2274 • ')022 ·7530 -9056 -9720 ·9935 ·9988 ·9998 1.0000 
0 
,-J ·""ir.:: .o4oo .1910 .4441 .6979 .8705 ·9559 ·9379 ·9973 ·9995 ·9999 1.0000 I c-) 

30 .0333 .1654 .4001 .6525 .8386 ·9395 .g815 -9953 -9990 ·9998 LOOOo 

35 .0286 .1462 • 36')1~ .6144 .8098 -9234 -9745 ·9929 ·9984 ·9997 ·9999 

40 .0250 .1313 .3373 . 5818 • 7837 -9078 .9674 ·9903 ·9975 . 999~' ·9999 

45 .0222 .1194 -3138 -5536 .7600 .8930 .9601 -9874 ·9966 ·9992 ·9998 

50 .0200 .1096 .2g40 .5288 • 7383 .8783 ·9530 .9844 ·9956 ·9989 ·9998 

55 .0182 .1014 .2769 .5068 . 7184 .8653 ·9456 .9813 ·9944 ·9986 ·9997 

60 .0167 .og44 .2620 .4871 .7001 .8524 -9384 ·9780 -9932 ·9982 ·9996 
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In the first path we analyze residuals to learn what they can tell us oi' 

direct interest. In the second path '.Je ;"lust analyze the residuals froN a 

first application of conventi::mal :·'lethods to learn hm: c. second application 

might be better made." 

Least square residuals, even ·under idee.l conditions, are in general 

correlated and have different variances. Perhaps for graphical examination 

of residuals in certain cases lie can neglect both the covariance and 

heterogeneity of variances Hhich exists anong the least squares residuals, 

but certainly for constructing tests or for any .rigorous exahinat'ion of 

residuals, we prefer to work >-lith a ne\·1 type of residuals >·lhich are free 

from the above criticism. 

As data analysis becomes more· sophistic.ated, couputation 'tvill 

surely get more extensive rather than simpler, and if sophisticated data 
. . 

analysts are to gain in depth and povter, they must have both the tiNe and 

stimulation to try out ne'"' procedures of analysis. \le take advantage here 

to quote Tukey' s [1962] vTOrds of Hisdom, "The future of data analysis 

can involve great progress, the overcoming of real difficulties, and the 

provision of a great service to all fields of science and technology. 1r.Jill 

it? 'l'hat renains to us, to our vrillingness to take U!J the rock~' road of 

real problems in preference to the smooth road of unree.l assUr.-tptions, 

arbitrary criteria, and abstract results >vithout real attachments. Hho 

is for the chal~enge?" 
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APPENDIX 

if EE. €. 
l J 

= '.J, i ± j and EE~ 
l 

then var E. < var E 
l i+l 

Under these assumptions and b:' the definition 

.;~ 

of E. -vre have 
l 

. 
Ve.r E. 

l 

;: 2 (EE0.~) 2 = EE. -
l l 

* = EE. 2 
1 

lY· 
A 

= E X, r.: 
'- l i'-'n-1 

ax. ( ;. - yn -)~2 
1 n-l x J n . 

= xfe + a~ + F-> 2 (xf(l:- ·a) 2 + x~a2 + 2c.(l .- .a)xtj 

n-l 
(l-a) 2x~ .E x~cr~ 

l . l 1 l 
1.= 

+ -------n--~1~~-- + 

l: X~ 
i=l l 

-2x.(l­
l 

x.a~ 
a)(x.i32 + llJ.) -

J. n-
l: 

i=l 

= ·3 2 \ x~ + x~(l - a) 2 + x~a 2 + 2a(l 
- l 1 l 

n-1 

a)x~ 
l 

(l-a)2x~ .E x~a~ 2 2 
i=l 1 1 ax. cr 1. 

+ cr·: + ------..,~--- + ---2:.....E -
1. n-l 

L X~ 
i=l 1 

2x~(l - a) 
l 

2x. (l - a) 
l 

., ' 
2x7o. \ 

l .J 
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where 

where 

l-a A = n-1 
.E x2 

. l 1. 1.= 

' 

n-l 
.E x~cr~ + 

j=l J J 
.)}:i, i+l 

"'( 2 •- 2 r• 2 __ 2 2 •- 2 =a~ Ax. + 1)'~ + CA x~ + A--x-:x. 1a': 1 + Bx. 
~ 1 1 l l+ ~+- 1 

n-~ 

c - .,r; x~a~ 
j=l J J 

j}:i, i+l 

For x . 1 > x. 1-1e heve 
l.+~ l 
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.,.112(.,,;:;..· - x·2. ). > ::, "'nc~ T).(x'~. 

J:! - "' .l !.) 1' +l·· . ._,, "i+J. 1 ::;) > .-.. 
~~ -:.<-

l'l')1·l J~r1 ot·c.J~r t.:.) s.l·1o.1~ that var e. , > val'' e.. ':e have ·iJc: :-;ho ... .- the .. t 
J..+...... l 

Tha.t i~-;, 

•Y( 2) "'!> "::) •") ( ") • . ) - cJ":" l + 2Ax. + A "x:"x':- a':" ·· cr..: > 0 1 . 1 1 1+1 l i+l 

Since x. < x. 1 , then the left side o:..~ the R'bove i'1.nal express:Lon ,.;ill be . 
l 1+..... -

grea.ter than 

2 2 .? 2 2 2 __ ~·? 2 ( + ')A.··::_ ) ' cr. 1Ax~. 1 - cr.A-x. ":'",+a.+, l c,J ••. 1 1+ 1 1+ l l l+l 1 - 1+ 

Q.E.D. 


