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This thesis presents the nonlinear propagation dynamics in isotropic media.  The influence of 

initial conditions on the propagation dynamics is considered.  Three different instances are 

considered.  We experimentally and numerically study the influence the temporal profile of a 

laser pulse has on the propagation and collapse dynamics when propagating in different group 

velocity dispersion regimes.  We are interested in the spatio-temporal collapse dynamics of 

super-Gaussian pulses in this regime.  We find that with a super-Gaussian pulse, we see pulse-

splitting in this regime.  We numerically study how the transverse beam profile effects the 

propagation in waveguide structures, both step-index fibers and hollow metallic waveguides.  

We are interested in modes that are necklace beams, with the possibility of application for high-

power fiber lasers and amplifiers.  We find that there is a benefit in the power threshold for 

collapse, but that is depends strongly on exciting the desired mode.  Finally, we experimentally 

study the propagation of high power beams, which interact due to the Kerr nonlinearity. The 

main interest is in the propagation under conditions in which they exhibit spiral motion.  We see 

large rotation of about 40 degrees when the collapsing beams are interacting. 
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CHAPTER 1 

INTRODUCTION 

 

With the invention of the laser [1], the electric field strengths needed to observe the nonlinear 

response of materials became available to researchers.  The response is nonlinear in the sense 

that the field strength changes how a material responds.  The first optical nonlinearity discovered 

was second-harmonic generation, where there is a response at double the frequency of the 

driving laser [2].   

Other optical nonlinearities were discovered and studied such as the intensity-dependent 

refractive index, often referred to as the optical Kerr effect [3].  This effect is described as the 

presence of a strong electric field that causes a change in the local refractive index of the 

material.  A result of the intensity-dependent refractive index is that high power laser beams can 

create a gradient index profile, which acts as a lens.  This effect is termed self-focusing, since the 

presence of the beam will cause a change in the refractive index and this causes the beam to 

focus.  In addition there was found to be a critical power, above which there will be collapse of 

the self-focusing beam [4].  This power was determined to be the power contained in the Townes 

profile, which is a solution to the nonlinear Schrödinger equation.  The study of laser beam 

propagation with powers near and above the critical power continues to be an active research 

area to this day. 

 The most fundamental equations for working with classical electrodynamics are 

Maxwell’s equations.  This set of four coupled differential equations governs the propagation of 

electromagnetic fields, which includes lasers.  Maxwell’s equations are: 
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, (1.1) 

where E is the electric field, B is the magnetic induction, D is the electric displacement field, and 

H is the magnetic intensity.  J and ρ are the current density and free charge density respectively.  

The speed of light is c.  The relationship between the pairs of electric and magnetic vectors are 

the constitutive relations, which are: 

 4 4π π= + = −D E P H B M , (1.2) 

where P is the polarization and M is the magnetization.  Again, these are vector quantities and 

they are dependent on the material, such as an optical glass, through which the electromagnetic 

field is propagating.  

The origin of the material nonlinearity is contained in Maxwell’s equations but hidden in 

the constitutive relations.  The origin of the intensity-dependent refractive index can be explained 

using perturbative nonlinear optics.  This framework is valid when the electric field is large 

enough to result in a nonlinear material response, but not large enough to significantly alter the 

electric potential of the material the beam is propagating through.  For this regime, the 

polarization can be expanded in a power series of the electric field, 

 
(1) (2) 2 (3) 3 ...P E E Eχ χ χ= + + + , (1.3) 

 

where E is the electric field, χ
(1)

 is the linear susceptibility and responsible for the linear 

refractive index, n0.  χ
(2)

 is the second-order nonlinear susceptibility and is responsible for effects 

such as second-harmonic generation, sum-frequency generation, and difference-frequency 

generation [3].  χ
(3)

 is the third-order nonlinear susceptibility and is responsible for effects such 

as self-phase modulation, third-harmonic generation, and four-wave mixing among others [3].  In 
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writing the material polarization in the form of equation 1.3, we have neglected the vector nature 

of the polarization and electric fields and the tensor nature of the susceptibilities. 

 Here, we are interested in the self-focusing of high-power laser beams and pulses due to 

the intensity-dependent index, which is a result of the third-order optical nonlinearity.  The 

reason we can neglect the second-order nonlinearity is that for centrosymmetric (defined as 

having inversion symmetry) materials, such as glass, water, and gases, this term in the expansion 

must disappear due to symmetry arguments.  This leaves the third-order nonlinearity as the 

lowest order term in the expansion of the polarization for centrosymmetric materials. 

 For third-order nonlinearities, such as four-wave mixing and third-harmonic generation, a 

phase-matching condition is required for an efficient nonlinear process.  Since the intensity-

dependent refractive index is not converting the frequency of the light, phase-matching is not 

required.  The third order susceptibility is related to the intensity-dependent refractive index by 

the expression 

 
(3)

2 2

0 0

3

4
n

n c
χ

ε
= , (1.4) 

where n0 is the linear refractive index, c is the speed of light and ε0 is the permittivity of free 

space.  Considering this nonlinearity, the refractive index profile of a material due to an intense 

laser beam can be written as 

 ( ) ( )0 2n r n n I r= + , (1.5) 

where I(r) is the radial intensity profile of the beam.  This expression describes a gradient index 

caused by the presence of the high-intensity beam.  The majority of materials have a positive 

value of n2 at the optical wavelengths. 
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 As an example of the result of the intensity dependent index, we can look at a common 

optical glass, BK7, with values of n0=1.51 and n2=3.2x10
-16 

cm
2
/W.  For a beam that has a spot 

size of 100 µm and power of 2 MW we can calculate the intensity profile and the refractive index 

profile that results from the intensity-dependent refractive index.  These are shown in Figure 1.1. 

 

Figure 1.1 The intensity profile, I(r), of a 2 MW beam with a spot size of 100 µm and the 

resulting refractive index profile, n(r), from the intensity-dependent refractive index. 

 

As can be seen in Figure 1.1, the change in the refractive index by high-intensity beams 

between the peak of the beam and the edge of the beam is approximately 5×10
-6

.  This is a small 

amount and would not appear to have a large overall effect.  However, this is only an 

instantaneous view of the beam intensity and the refractive index profile along propagation.  The 

gradient index causes the material to act as a lens and focus the light.  As the light focuses, the 

intensity will be grow larger, so there will be a slightly larger change in the refractive index and 

the gradient will result in a slightly stronger lens.  The change in the beam profile and the 

corresponding change in the intensity profile that occurs with propagation must be taken into 

account.  
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 In order to model the propagation of the beam and the changing intensity-dependent 

refractive index profile, we must use the nonlinear Schrödinger equation (NLSE).  The 

derivation starts from Maxwell’s equations, equations 1.1, and the constitutive relations, 

equations 1.2.  The nonlinear polarization is assumed to be of the form of equation 1.3.  The 

derivation of the NLSE is contained in standard nonlinear optics textbooks [3].  There are five 

assumptions made to get from Maxwell’s equations to the NLSE: (1) there are no free charges, 

(2) the material is non-magnetic, (3) we neglect any vector and tensor effects, (4) the 

susceptibilities are nonresonant, and (5) the beam profile is a slowly varying envelope in space.  

After these assumptions, the electric field is written as E(x,y)=A0ψ(η, ξ) with ψ being the 

normalized field.  The Nonlinear Schrödinger equation is found to be 

 
22

4

DF

NL

Li
i

L

ψ
ψ ψ ψ

ζ ⊥

∂
= ∇ +

∂
, (1.6) 

where w0 is the spot size, LDF=k w0
2
/2 is the diffraction length, LNL=(n2n0ω|A0|

2
/2π)

-1
 is the 

nonlinear length, |A0| is the magnitude of the input laser field, η=x/ w0 and ξ=y/ w0 are the 

normalized coordinates, ζ=z/LDF is the normalized propagation length.  The left hand side of the 

equation is the propagation term.  The first term, with the transverse laplacian on the right hand 

side of the equation accounts for diffraction and the second term with the ratio of LDF to LNL 

accounts for the self-focusing due to the intensity-dependent refractive index.  This is the 

simplest form of the NLSE, neglecting temporal effects and taking into account only spatial 

effects.  When electric field is larger, or the pulse very short, other terms must be added such as 

dispersion, self-steepening, ionization, and plasma defocusing terms [5].  When such effects are 

included, the study of self-focusing dovetails with the studies of filamentation of ultrashort laser 

pulses.  A filament is the name given to the long distance propagation of a laser pulse due to the 

balance of diffraction, self-focusing, and plasma defocusing. 
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Figure 1.2 Comparison of the Townes profile, the solution to the spatial NLSE, to a Gaussian 

radial profile.  The two profiles have the same 1/e radius. 

 

 A solution to the NLSE has been found as written in equation 1.6.  It is found by looking 

for a waveguide solution, where the dependence on the propagation coordinate is just a phase 

factor.  With this assumption, the left hand side of the equation 1.6 becomes zero and it is no 

longer a partial differential equation, but an ordinary differential equation in the radial 

coordinate.  It still must be solved numerically though and the solution is the Townes profile [4].  

The numerically calculated Townes profile is shown in Figure 1.2 along with a Gaussian profile.  

The beams are scaled such that they have the same 1/e radius.  The two profiles look similar, but 

the Townes profile has more energy in the wings.  The power of the Townes profile is the critical 

power for collapse, PCR, and is the lower bound for which collapse will occur.  The expression 

for the critical power is given by, 

 

2

0 24
CRP

n n

αλ
π

= , (1.7) 

where λ is the wavelength, n0 is the linear refractive index, and n2 is the nonlinear refractive 

index.  The critical power is dependent on material properties like n0 and n2 and is on the order of 
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megawatts for optical glasses and gigawatts for gases at standard temperature and pressure.  If 

the beam shape is changed, but remains radially symmetric, the threshold for collapse will be 

slightly higher and is taken into account in equation 1.7 by the shape dependent factor, α.  For 

the Townes, profile, the value of α is 1.86225 [6].  For the case of the optical glass BK7 stated 

before, the critical power for collapse at 800 nm is 1.96 MW.  So even though the change in 

refractive index is approximately 5×10
-6

 for the beam parameters stated, this small change can 

result in large effect when the change of the beam profile with propagation is included.  For a 

beam with such parameters propagating through a nonlinear media, it will undergo self-focusing 

upon propagation and evolve from a Gaussian beam profile to the Townes profile. 

 The initial conditions, such as beam shape and power, can have an affect on the collapse 

dynamics.  Since it is experimentally easy to generate beams with powers much greater than the 

critical power, it is valid to consider what happens for beams of such power levels.  For example, 

a Gaussian beam that contains multiple critical power will certainly collapse.  The way it 

collapses is the interesting part.  It collapses such that the number of filaments is quantized and 

roughly equal to the number of critical powers contained in the beam [7].  The location of the 

collapse is seeded by the noise that is present in the initial beam profile.   This sort of noise-

seeded collapse can be altered though, with appropriate choice of the initial beam shape, for 

example, an elliptical beam.  Changing the beam profile to an elliptical profile has a few 

interesting effects.  Elliptical beams show an increase in the collapse threshold, with an increase 

in the ellipticity of the beam, but it is relatively weak.  For example, an elliptical beam with and 

ellipticity of 5, is predicted to have a collapse threshold of approximately 2.6 PCR [8, 9].  In 

addition to this increase in the collapse threshold for the elliptical beam, there is also a difference 

when the power is the in the multiple filamentation regime.  For beams with much more than a 
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critical power, the elliptical beam will collapse into multiple filaments, but the filaments will be 

in a line along the major axis of the beam, as opposed to being distributed over the entire beam 

profile seeded by noise [10-12].  So a change in beam shape from a radially symmetric Gaussian 

to a highly elliptical beam changes not only the power threshold for collapse, but also the 

multiple filamentation pattern. 

 In addition to highly elliptical beams, there have been studies into other beam profiles 

and types that can affect the propagation dynamics.  As stated before and shown numerically, 

many beam shapes have collapse thresholds near PCR [6].  When the beam shape starts to diverge 

from a Gaussian, then the collapse dynamics can change dramatically, whether it is an increase 

in the collapse threshold or the beam profile to which it collapses.  High-power super-Gaussian 

have been shown, both theoretically and experimentally, to undergo collapse and evolve through 

a ring solution, before collapsing to Townes profiles at the radius of the ring profile [13-15]. The 

number of Townes profiles depends on the number of critical powers that are contained in the 

initial beam.  Another beam profile that has been studied both theoretically and experimentally in 

bulk is the necklace beam [16-18].  A necklace beam is a beam profile that has off-axis beads at 

an off-axis radius.  The neighbors for anyone bead are π out-of-phase with the neighbors.  

Necklace beams showed a collapse threshold that was approximately equal to the number of 

beads in the profile.  There has also been work on beams that have some sort of vorticity to them, 

whether they are optical vortices [19] or polarization vortices [20].    The optical vortices look 

like a ring profile, but have a helical phase.  The polarization vortices also look like a ring 

profile, but polarization direction of the electric field changes depending on the position in the 

beam profile.  Both of these profiles show a higher collapse threshold as well as collapsing to 

Townes profiles at the radius of the ring.  As can be seen from the previous theoretical and 
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experimental work, beam shape can have a definite effect on the propagation dynamics and the 

collapse threshold. 

 In addition to altering the beam shape, altering the phase across the beam also changes 

the self-focusing dynamics, but not necessarily the collapse threshold.  The simplest case is a 

collimated beam propagating through the Kerr media.  The self-focusing distance is well known.  

If the beam profile has a varying phase, for example, from passing through a single lens, then the 

self-focusing distance can be altered [3].  There have been experiments that have shown how an 

altering the phase across a beam can have such affect.   The use of a simple two-lens setup can 

change the collapse distance as well as the filament length [21].  Such simple things as changing 

the phase on a beam profile can certainly affect the self-focusing dynamics and filament 

formation.  

Changing the initial conditions of beam before nonlinear propagation can certainly have 

affects on the propagation of the laser through a nonlinear medium.  We explore how changing 

the initial pulse shape effects the propagation.  In addition we look at how higher-order modes 

propagating in fibers behave differently for high powers.  Finally, we look at the propagation of 

interacting beams, with slightly different propagation directions, in water. 

1.1 Super-Gaussian pulses in the anomalous GVD regime  

When looking at the propagation of ultrashort pulses in a nonlinear medium, the simple NLSE 

will not be sufficient to describe the propagation dynamics.  In this case, group-velocity 

dispersion (GVD) must be included.  The value and sign of the GVD will affect the propagation 

dynamics.  For much of the work looking at the spatio-temporal propagation, the input pulse was 

either a Gaussian or sech-squared pulse.  This is due to the fact that altering the pulse shape is 

more complicated experimentally then changing the spatial profile of a beam.  Of interest was 
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how the initial pulse-shape, coupled with the sign of the GVD would change the propagation 

dynamics. 

Figure 1.3 Schematic of the pulse-splitting experiment.  The high-power pulses propagate though 

a Kerr medium in the anomalous group-velocity dispersion regime and undergo spatio-temporal 

collapse.  The temporal profile of the collapsing beam depends on the input pulse shape.  For a 

Gaussian input spatio-temporal collapse is expected.  For the super-Gaussian input, we see pulse-

splitting which was not previous seen. 

 Based on work done looking at the collapse of super-Gaussian beams [15], there was 

interest in how a super-Gaussian pulse would collapse, specifically when propagating in the 

anomalous GVD regime. 

 We find that in this regime, the super-Gaussian undergoes pulse-splitting as it collapses.  

This is in contrast to the Gaussian beam in the anomalous GVD regime, which undergoes spatio-

temporal collapse.  This opens up the possibility of using the pulse-shape to control collapse 

dynamics. 
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1.2 Higher-order modes in step-index waveguides 

 
Figure 1.4 Propagation of the fundamental LP01 mode in a step index waveguide.  A. The output 

mode for the propagation of high-power mode with 0.95 PCR.  B. Is the peak intensity for that 

input power.  C. The collapsed output for propagation of high-power mode with 1.05 PCR. D. Is 

the peak intensity for that input power.  For the propagation of a beam with power less than PCR, 

self-focusing does occur, but it results in oscillations of the peak intensity, but no collapse.  For 

the case of a beam propagating with more than one PCR, we see the collapse that is expected. 

Much like the studies of the propagation of lasers in bulk materials, there has been work looking 

into the high-power propagation in designed waveguides.  A large amount of this work has been 

focused on the design and development of large mode-area fiber for use in fiber lasers [22] or 

fiber amplifiers [23].  These higher-order modes had been radially symmetric, with a high field 

in the center and then oscillations as the radial coordinate increases.  A separate study looked at 

how a fiber with a low index region in the center of the core would change the high-power 

propagation dynamics [24].  In addition to cylindrically symmetric fibers, there has also been 

work on looking into rectangular core waveguides to explore high power propagation [25, 26].  

All of these studies have involved the design of a waveguide structure, which can be involved, 

especially the effort that goes into producing the waveguide.   
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Figure 1.5 Propagation of the Higher-order LP21 mode in a step index waveguide. A. The output 

mode for the propagation of high-power mode with 3.75 PCR.  B. Is the peak intensity for that 

input power.  C. The collapsed output for propagation of high-power mode with 3.95 PCR. D. Is 

the peak intensity for that input power. We see increased resistance to collapse when the input 

mode has a beaded structure.  The fiber can transmit more than PCR. 

 We numerically investigate the propagation of a specific class of higher-order modes, 

which are not radially symmetric, in standard step-index fiber and hollow metallic waveguides.  

We are interested in the LPv1 modes, which are very similar to the necklace beams studied 

experimentally in the bulk [18].  The expectation is that there would be some benefit from the 

propagation of these necklace beams in the standard waveguides, without the need to design and 

produce a custom waveguide structure. 

 We find that, for the distances studied, we observe an increase of the collapse threshold 

and the propagation distance for both the step-index and hollow metallic waveguide.  Figure 1.4 

shows the propagation of the fundamental mode of a step-index fiber.  We see that collapse 

occurs at the same value as in bulk, than PCR.  Compare this to the propagation of the LP21 mode 

shown in figure 1.5, where a beam with 3.75 PCR propagates without collapsing, while the mode 

with 3.95 PCR does collapse.  We also look at the importance of the mode shape being 

unperturbed and find it is quite important in order to obtain this benefit. 

 

1.3 Spiral motion of collapsing beams in water 

Another interesting case where the initial condition can change the propagation dynamics of the 

high-power laser beam is when there are two beams propagating in the roughly the same 
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direction.  Depending on the phase relationship of the beams, there can be interesting interactions 

that take place between the high-power, collapsing, and propagating beams. 

There has been much work focused on the interactions of solitons [27].  The behavior has 

spanned a ride range of interactions.  There has been the study of long-range interactions 

between solitons [28].  The energy transfer between solitons with a π/2 phase relationship was 

also studied, with the ability to switch which soliton would acquire the energy by switching 

which soliton was phase-advanced [29].  The interaction was also investigated in quadratic 

nonlinear material as opposed to third-order media where the interaction is due to the Kerr effect 

[30].  Scattering and spiraling where shown in that specific experiment.  Interacting solitons were 

also shown to exhibit three-dimensional spiraling [31].  These interactions dependent on the 

phase relationship between solitons have been experimentally demonstrated before. 

 All of this work has been done looking at spatial solitions.  The study of interacting 

collapsing beams and filaments under similar conditions is also an active research topic.  It has 

been shown experimentally in glass that two collapsing beams propagating in the same direction, 

but with spatial separation can exhibit behavior similar to that of solitons.  The collapsing beams 

interact and can attract, repel, fuse, or share energy all depending on the initial separation and 

phase-relationship between the two beams [32].   The interaction of collapsing beams and 

filaments has also been numerically studied for high-power beams in air, showing the same 

interactions as were with collapsing beams in glass, attraction, repulsions, fusion, energy 

transfer, and additionally rotation [33].  These interactions of collapsing beams in air have been 

shown experimentally as well, with all of the expected interactions shown [34]. 

Here we look at the propagation of coupled, collapsing, optical beams with slightly 

different propagation directions in water.  The phase difference between the beams is controlled 

so we can achieve the desired interactions.  The beams are offset in the vertical and horizontal 

from each other, with a small crossing angle in the horizontal direction, but not the vertical 

direction.  The water cell allows us to get a better idea of the evolution of the propagation for 
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different distances, in addition to the critical power being at a lower value than in a gaseous 

medium.
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CHAPTER 2 

 

PULSE SPLITTING IN THE ANOMALOUS GROUP VELOCITY DISPERSION REGIME
1
 

 

With the advent of ultrashort lasers, the study of high intensity light interactions with matter 

became possible. A high-power laser pulse will experience an intensity-dependent refractive 

index, which can result in self-focusing if the power P of a laser pulse is greater than a certain 

critical power Pcr. Although much of the initial work dealt with spatial effects, the dynamics of 

spatio-temporal wave collapse has generated significant interest [1-3] and includes a broad range 

of phenomena including pulse compression, pulse-splitting, supercontinuum generation, 

harmonic generation, plasma formation, and filamentation [4, 5]. One of the fundamental 

dynamical effects that arises from the interplay of nonlinearity and normal group-velocity 

dispersion (GVD) is pulse-splitting [2, 3, 6, 7], which was demonstrated experimentally [8-13]. 

In the anomalous-GVD regime, temporal dynamics during beam collapse has not been 

extensively explored [14-16], and it was generally believed that the pulse should exhibit full 

spatio-temporal collapse. 

Recent investigations of the spatial dynamics of a collapsing super-Gaussian beam show 

a behavior distinct from that for a Gaussian beam. Theory predicts that as the beam self-focuses 

the transverse profile evolves initially to a ring solution [17, 18], which was confirmed 

experimentally [19]. These results provided compelling evidence for the role of the initial beam 

shape on the spatial collapse dynamics, and motivated the development of the nonlinear 

geometrical optics (NGO) method for analyzing beam collapse without the need for full 

integration of the 3-D nonlinear Schödinger equation [18]. Two key NGO predictions are that the 

                                                 
1
 S.E. Schrauth, B. Shim, A.D. Slepkov, L.T. Vuong, A.L. Gaeta, N. Gavish, and G. Fibich, “Pulse-splitting in the 

anomalous group-velocity-dispersion regime,” Opt. Express, 19, 9309-9314 (2011). 
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initial temporal dynamics in the anomalous-GVD regime is decoupled from the spatial dynamics 

and that it should depend on the temporal pulse shape in a manner entirely analogous to that 

exhibited in the spatial regime. 

In this work we confirm these predictions experimentally, by propagating ultrashort 

pulses in the anomalous-GVD regime in a fused-silica sample at powers several times Pcr. We 

observe that temporal super-Gaussian input pulses undergo pulse-splitting, whereas Gaussian 

ones do not. To the best of our knowledge, no previous experimental work has shown that the 

temporal dynamics depend on whether or not the input pulse is temporally flat-top. We also find 

that no pulse-splitting occurs at the zero-GVD regime, regardless of the initial pulse shape. 

2.1 Numerical model and results 

 

 

We simulate pulse propagation using the nonlinear Schrödinger equation (NLSE) with dispersion 

for the slowly-varying envelope A(η, ξ, τ) centered at frequency ω, 

 ( )
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ds nl
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where w0 is the spot size, Ldf=k w0
2
/2 is the diffraction length, Lnl=(n2n0ω|A0|

2
/2π)

-1
 is the 

nonlinear length, |A0| is the magnitude of the input laser field, η=x/ w0 and ξ=y/ w0 are the 

normalized coordinates, ζ=z/Ldf is the normalized propagation length, τp is the temporal pulse 

width, Lds= τp
2
/|β2| is the dispersion length, τ=[t-(z/vg)]/τp is the normalized retarded time for the 

pulse traveling at the group velocity vg. Figure 1 shows simulations of the NLSE. All simulations 

have a Gaussian spatial profile exp(-r
2
) as the input, while the temporal profile is varied. The 

value of Ldf / Lds for all simulations is 0.04. Two cases of the collapse of a Gaussian pulse exp(-

t
2
) are shown in the top part of the figure. Figure 2.1(a) is 2Pcr and Figure 2.1(b) is 3Pcr.  Overall 

the temporal dynamics result in 3-D collapse as predicted by previous work. However, for a 
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super-Gaussian temporal profile exp(-t
4
), the pulse undergoes splitting, as shown in Figure 2.1(c) 

for 2Pcr and Figure 2.1(d) for 3Pcr. In the spatial domain all input profiles are a Gaussian, and 

therefore they evolve into a peak-type profile. 
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Figure 2.1 Comparison of simulation results for Gaussian temporal profile (top) and super-

Gaussian temporal profile (bottom), for input power of 2Pcr [(a) and (c)], 3Pcr [(b) and (d)], 

wavelength of 1550 nm, and β2 of -279 fs
2
/cm. The input spatial profiles for all simulations are 

Gaussian. The spatio-temporal profiles are taken from the propagation point at which the beam is 

collapsing and before the intensity becomes sufficiently high that higher order effects change the 

dynamics. 

 

The pulse dynamics can be explained intuitively by the NGO method [18], which 

approximates the initial self-focusing dynamics with a reduced system of linear ordinary 

differential equations. These equations show that initially, the spatial and temporal dynamics are 

decoupled. The temporal dynamics in the anomalous-GVD regime is governed by the NGO 

eikonal equation for the ray trajectories, 
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( ) 2

02
dT z d

z
dz dT

ψ= , (2.2) 

and by the NGO transport equation for amplitude evolution along the rays, 

 
( ) ( ) ( )

2
2

02

dC z d
C T z z T

dz dT
ψ= −     (2.3) 

where T is the temporal coordinate of the ray at the propagation distance z, ψ0 is the input field 

and C is the z-dependent amplitude. Equations (2) and (3) show that for a high-power temporal 

profile of the form exp(-t
2m

), the pulse will undergo splitting if m >1, but will focus to a single 

peak if m = 1 [18], as is confirmed in direct numerical simulations of the NLSE, see Figure 2.1.  

Comparison of the on-axis temporal profile for m = 2 (temporal super-Gaussian), shows a 

remarkable agreement between the solutions of the NLSE and of the NGO equations, see Figure 

2.2.  Note that the peaks of the split pulses are at the same temporal position τ = ±0.2. 
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Figure 2.2 Comparison of simulation results for a super-Gaussian temporal profile. The top (a) is 

the on-axis temporal profile found by directly integrating the NLSE in the anomalous (a) with 

input power 3, wavelength of 1550 nm, and β2 of -279 fs
2
/cm. The bottom (b) is found using the 

1-D building block of the NGO method. Although the profiles are slightly different, the peaks of 

the split pulses occur at ±0.2 for both direct integration and the NGO method. 
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2.2 Experimental results 

 

We performed experiments to investigate these predictions with an amplified Ti:sapphire laser 

system operating at 800 nm, which generates 1.6-mJ, 70-fs pulses at a 1-kHz repetition rate. The 

output of the amplified system pumps an optical parametric amplifier to produce 150-µJ pulses at 

1510 nm or 125-µJ pulses at 1275 nm. These two wavelengths are chosen since they correspond 

to the anomalous-GVD and the zero-GVD regimes, respectively, for the fused-silica sample. We 

spatially filter the output and temporally shape the pulse using a standard 4-f pulse shaper [20] 

with a 1-D double-mask liquid-crystal spatial light modulator to tailor the amplitude and phase of 

the spectrum. The output of the pulse shaper has pulse durations of 200-fs and 160-fs at 1510 nm 

and 1275 nm, respectively. We focus the outputs of the pulse shaper onto the front face of the 

sample, with spot sizes of 245 µm and 185 µm for 1510 nm and for 1275 nm, respectively. We 

use a 30-mm fused-silica sample, for which the physical parameters are as follows: at 1510 nm 

β2 = -279 fs
2
/cm and n2 = 2.2x10

-16
 cm

2
/W, and at 1275 nm β2 = 1 fs

2
/cm and n2 = 2.5 x10

-16
 

cm
2
/W [15]. Upon propagation through the sample, we use a two-photon autocorrelator [21] and 

an optical spectrum analyzer as diagnostics. 
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Figure 2.3 Autocorrelation traces after propagation through 30 mm of fused silica at a 

wavelength of 1510 nm. The top plot (a) is for a temporal Gaussian input profile with peak 

power increasing from bottom to top (P = 15.7 MW, 24.7 MW, 33.7 MW, 41.5 MW, 49.4 MW, 

62.8 MW). The lower plot (b) is for a temporal super-Gaussian input profile with peak power 

increasing from bottom to top (P = 11.2 MW, 14.6 MW, 18.0 MW, 21.8 MW, 26.9 MW). For 

the super-Gaussian case the pulse-splitting is pronounced as the power is increased. 

 

 The autocorrelation of the pulse for various powers after propagation through the 30-mm 

fused-silica sample is shown in Figure 2.3. The traces in Figure 2.3(a) are the autocorrelations 

for a temporal Gaussian input profile through the sample. The energy increases from the bottom 

to the top trace. As the energy is increased, there is no indication of any pulse-splitting. The 

traces in Figure 2.3(b) are the autocorrelations for a temporal super-Gaussian input through the 

sample. They exhibit pulse splitting at the lowest peak power as evidenced by the appearance of 

shoulders on the autocorrelation trace, and as the energy is increased the pulse-splitting becomes 

more pronounced. These observations are consistent with our theoretical predictions. 
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Figure 2.4 Pulse autocorrelation traces after propagation through 30-mm of fused-silica at 

wavelength of 1275 nm. The top plot (a) is for a temporal Gaussian input profile with power 

increasing from bottom to top (P = 33.8 MW, 50.7 MW, 67.6 MW, 84.5 MW). The lower plot 

(b) is for a temporal super-Gaussian input profile with power increasing from bottom to top (P = 

19.7 MW, 29.6 MW, 45.1 MW). Pulse-splitting does not occur in either case. 

 

 As a comparison, we also perform the analogous experiment with pulses at 1275 nm, at 

which point the GVD is nearly zero (i.e., β2 = 1 fs
2
/cm). As expected, we do not observe pulse-

splitting at this wavelength for either a Gaussian pulse [Figure 2.4(a)] or for a super-Gaussian 

pulse [Figure 2.4(b)] for the range of powers studied, which indicates that the pulse-splitting of 

super-Gaussian pulses should only occur in the anomalous-GVD regime, as predicted. 

 

2.3 Conclusions 

 

In conclusion, we show that the spatio-temporal dynamics strongly depends on the temporal 

profile of the pulse. We observe that pulse-splitting can occur in the anomalous-GVD regime for 

the case of super-Gaussian input pulses, which confirms recent theoretical predictions. This 

splitting can be interpreted as a temporal focusing of the energy in the beam due to strong self-
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phase modulation, and is analogous to the spatial focusing of the beam to a ring profile for a 

super-Gaussian spatial profile [17-19]. These results are relevant to understanding how shaping 

the temporal profile of the initial pulse can dramatically change the temporal dynamics and the 

filamentation and plasma formation process. Finally, we note that this splitting is very different 

from the one in the normal-GVD regime. Indeed, in the normal GVD regime, both Gaussian and 

super-Gaussian pulses undergo a temporal splitting. Moreover, this temporal splitting strongly 

depends on the spatial dynamics, since it only occurs after the pulse undergoes a significant 

spatial self-focusing, and it is associated with a departure from a self-similar Townes spatial 

profile [7].
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CHAPTER 3 

 

SELF-FOCUSING OF HIGHER-ORDER MODES IN OPTICAL FIBERS  

 

Recent advances in fabrication techniques for optical fiber has resulted in much higher quality 

fiber.  The quality has improved such that one of the limitations on the power that can be 

propagated through a fiber is the nonlinear refractive index of the fiber.  The maximum power 

able to be transmitted through optical fibers is approaching the critical power for self-focusing of 

a radially symmetric beam, PCR [1-6].  The design of high-power fiber lasers and fiber amplifiers 

is one of the main areas of interest for the guidance of high power pulses.  In addition to 

propagation in step-index fibers, there has been interest in guiding high power pulses through gas 

filled capillaries for things such as high-harmonic generation [7]. 

This has resulted in a large amount of effort and interest in the nonlinear propagation of 

high-power pulses in waveguides.  One area of research has been looking at the propagation in 

simple, multimode step-index fibers.  There has been work looking at the propagation of LPν1, 

but for ν’s only up to 3 [8].  They found an increase in self-focusing distance with increasing 

values of ν.  There have been other studies looking at the propagation of the fundamental mode 

of a multimode fiber, with the main interest being the nonlinear broadening in such fibers [9].  

Other work on ultra-large-mode-area fibers studied the self-focusing length of a summation of 

many input modes [10].   

At the same time, there has been an effort to design and develop and produce specialty 

fiber designs and technologies that allow for the generation and guidance of few MW pulses.  

For wavelengths from near infrared to the common infrared communications wavelengths, this 

power is on the order of a few MW.  Specifically, the critical power PCR is 2 MW at 800 nm and 
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11 MW at 1550 nm.  Many schemes have been devised to allow the guidance of such high 

powers while mitigating the effects of beam collapse.  One example is fabricating fibers with a 

low index defect in the center of the fiber [11].  This does not allow for guiding of the 

fundamental Townes profile, which is the ground state solution to the bulk Nonlinear 

Schrödinger Equation (NLSE) [1, 3].  The propagation then takes place in a higher-order radially 

symmetric mode, such as LP02.  Another fiber design, utilizing long period gratings, converts a 

fundamental input mode into a single radially symmetric higher-order mode of a large mode area 

fiber.  The field then propagates in this single radially symmetric higher order mode [12, 13].  

There has also been work looking at the propagation of high-power beams in high-aspect ratio 

rectangular core fibers [14, 15].  These designs are good, but we want to study the propagation of 

the higher-order modes of step-index fibers, without having a specially designed fiber, which can 

be difficult to produce. 

In addition to interest in waveguides, there has been work done on beams that propagate 

in bulk with a power higher than the critical power for collapse for a radially symmetric beam.  

Work has been done on the collapse threshold of elliptical beams, finding a small increase in the 

collapse threshold for increasing ellipticity [15, 16].  In addition to work on elliptically shaped 

beam, there has also been work on the bulk propagation of necklace beams in Kerr media [16-

19].  For radially symmetric beams, the power of collapse is a few percent higher than the power 

of the Townes profile, PCR, in both bulk and waveguides [3].  This small difference is due to a 

shape dependent factor.  There have been theoretical predictions that in Kerr media, necklace 

beams are stable upon bulk propagation [18-21].  It has also been shown experimentally that 

necklace like beams resist collapse up to a certain power threshold.  The critical power for 

collapse of necklace like beams is approximately the number of bead multiplied by PCR, the 
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critical power for collapse of a radially symmetric beam [21].  The simple explanation of this 

stabilization has to do with the interaction between adjacent beads.  The interaction depends on 

the size of the beads and the separation between them [20].  When each bead has less than a 

critical power, each individual bead cannot collapse and the beam size will remain relatively 

large and there will be repulsive interactions between a bead and its two neighbors.  As this is 

occurring, the beam will also be diffracting, so that the intensity falls with propagation distance 

and the self-focusing gets weaker.  When there is more than a critical power for each bead, each 

bead starts to collapse.  As it collapses, the size of each bead gets smaller and the intensity 

dependent refractive index result in more self-focusing for each bead.  Once the bead is below a 

certain size, it no longer interacts and hence, no longer can be stabilized by its out-of-phase, 

neighboring beads.  So, there has been a large amount of interest in how the different initial 

beam shapes can effect the nonlinear propagation, such as critical power or collapse distance. 

The interest in beams with higher collapse thresholds leads naturally to studying these 

specific beam profiles in fibers.  The rectangular core fibers that have been designed and 

developed were intended to take advantage of the higher collapse threshold of rectangular beams 

[14], or the multi-moded, for higher-order modes, nature of the high-aspect ratio, rectangular 

core fibers.  Due to this increase in collapse threshold of necklace like beams, we are interested 

in whether these beams allow for high-power propagation in a waveguide.  In addition to the 

increase in collapse threshold, the beam shape of necklace beams is an advantage for propagation 

in fibers.  It turns out that for standard step-index fibers, using the weakly guiding 

approximation, the LPν1 modes are very much like the necklace or Laguerre-Gaussian beams 

studied theoretically and experimentally.  There are 2ν beads and each bead is π out-of-phase 

with the adjacent beads.  The other advantage is that there has been experimental work on the 
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generation of necklace like beams in bulk and in waveguides.  The generation of these necklace 

type beams has been achieved with long-period gratings [12, 13], an optical phase shifter [21], a 

phase mask [22], and fiber structures [23].  The bulk self-focusing advantage, interest in high-

power throughput through fiber, and the prevalence of methods for generation of necklace type 

beams all point towards the importance of studying the propagation at high-power in fibers. 

3.1 Numerical model 

 

To investigate this, we perform simulations modeling the propagation using the standard split 

step method to numerically integrate the normalized nonlinear Schrödinger equation (NLSE), 
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where ψ(η,ξ,ζ)=A(x,y,z)/ A0 is the normalized field, LDF = πn0w0
2
/λ is the diffraction length, n0 is 

the refractive index of the core, w0 is the characteristic radius, λ is the wavelength, η = x/ w0 is 

the normalized x coordinate, ξ = y/w0 is the normalized y coordinate, ζ = z/LDF is the normalized 

z coordinate, LNL = (n2n0ω|A0|
2
/2π)

-1
 is the nonlinear length, ω is the angular frequency of the 

light, n2 is the intensity dependent refractive index, and |A0| is the magnitude of the field.  It 

should be noted that w0 is the radius of the peak of the field at the input, which is similar to the 

convention used by Grow et. al [21].  The first term on the right is the diffraction term.  The 

second term gives rise to the intensity-dependent refractive index. The final term, f(η, ξ) takes 

into account the index profile of the waveguide [26] or for the hollow metallic waveguide, the 

absorptive boundary condition.  For the dielectric waveguide it accounts for the phase difference 

between the part of the field propagating in the core to the part of the field propagating in the 

cladding.  For the case of a circular step-index waveguide, which we are interested in here, the f 

is, 
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where ∆n is the index difference between the core and the cladding, r0 is the radius of the core, 

and c is the speed of light.  We do not model the propagation through with bends in the fiber.  

The fiber is assumed to be straight.  We confirmed our model for the propagation of low power 

modes of the waveguides.  The results of these simulations showed the expected guidance of the 

low-power fundamental mode and of low-power LPν1 modes.  Using this model based on the 

NLSE, we can start exploring the high-power propagation of LPν1 modes in step-index fiber. 

 To model the propagation, we use the split-step Fourier method [27].  This method 

consists of alternating between the linear spatial propagation and the nonlinear (self-focusing) 

propagation.  The linear propagation is treated by performing a Fourier transform on equation 

3.1, while neglecting the nonlinear and waveguide part.  Once in Fourier space, the propagation 

is account for by multiplication by a quadratic phase factor, over one half step, h.  This result is 

then inversely transformed back into real space.  To take into account the nonlinear and 

waveguide terms, we neglect the diffraction term and take a full step, 2h.  When the diffraction 

term is neglected then equation 3.1 can just be integrated over the 2h step, noting that the partial 

derivative in ζ of |ψ|
2
 is easily shown to be a constant.  In this approximation, the nonlinear term 

and the waveguide term result in a spatially dependent phase factor.  Finally, we repeat the 

diffraction step over the final half step h.  For all of the simulations, the step-size h was 0.0005 

LDF and the normalized simulation window had transverse dimensions of 2.5 w0 by 2.5 w0 and 

the grid size was 4096x4096. 
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3.2 Dielectric waveguide results 

 

 
Figure 3.1. A. The normalized peak intensity for an input LP21 for the waveguide with a radius of 

14.0 micron, with input powers 3.00, 3.50, 3.75, 3.95, and 4.05 PCR.  The inset is the input mode 

with the solid black line denoting the core-cladding interface.  B. Output profile for 3.00 PCR C. 

Output profile for 3.75 PCR. D. Profile for 3.95 PCR at 0.50 LDF. 

For our simulations we model two step-index waveguides with different radii, but a ∆n of 

0.0033.  We first test a fiber with a smaller radius, 14.0 microns.  The parameters are similar to 

those of a commercially available step-index fiber with V# = 10.7627.  This multi-mode fiber 

supports the LPν1 up to ν = 7 at 800 nm.  The peak intensity for the propagation of LP21 and 

output beam profiles is shown in Figure 3.1.  For the LP21 input with powers up to 3.75 PCR we 

see stable propagation, with some oscillation in the peak intensity of the beads.  For 3.95 PCR, an 

increase of only 0.05 PCR per bead, we see that the beam profile very quickly collapses.  This 

mode profile can be thought of as an approximation of a necklace beam with 4 beads.  Based on 

the results of Grow et. al, the critical power for collapse in the bulk is estimated as ~4 PCR.  The 

peak intensity for an input of 4.00 PCR is shown as this limiting case.  We see that for the LP21 

there is an improvement in the collapse threshold over the case of the radially symmetric 
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fundamental mode, which collapses at 1 PCR [3, 5].  Using the same waveguides parameters, we 

simulate the propagation of the LP31 mode, the results are shown in Figure 3.2.  Again, we see 

similar dynamics, where input powers of 4.00 PCR and 5.00 PCR propagate with some oscillation.  

Here, we see that there is collapse over these distances for an input power of 5.25 PCR. 

 

 
Figure 3.2 A. The normalized peak intensity for an input LP31 for the waveguide with the a radius 

of 14.0 micron, with input powers 4.00, 5.00, 5.25, 5.75 PCR.  The inset is the input mode with 

the solid black line denoting the core-cladding interface.  B. Output profile for 4.00 PCR C. 

Output profile for 5.75 PCR at 0.296 LDF. 

As a further test of the propagation dynamics in fibers, we simulate the propagation in a 

larger core fiber, 50 microns, with the rest of the fiber parameters remaining the same.  This is 

similar in size to the fibers that have been developed for use in fiber lasers and fiber amplifiers 

by other groups [10, 12, 13].  The other interesting aspect when compared with the smaller core 

is that the larger core fiber can guide many more modes.  This gives us an idea how much of an 

affect the fiber size has on the high-power propagation dynamics.  The simulations for the LP21 

mode and the LP31 mode are shown in Figure 3.3 and Figure 3.4, respectively.  We see very 

similar propagation dynamics for the smaller (14 micron) core fiber and the larger (50 micron) 
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core fiber.  The main difference is that there are more oscillations in the peak intensity for the 

larger core fiber.  This is simply due to there being more guided modes for the larger fiber so as 

the beam propagates and self-focuses, other higher-order modes are excited.  It does not appear 

to affect the high-power propagation dynamics.  This leads us to believe in that in these types of 

fibers, any benefit to collapse threshold or collapse distance is due to the shape of the beam, not 

any inherent property of the fiber.  For example, the collapse of the LP21 with 3.95 PCR occurs at 

0.5 LDF in the smaller core fiber and occurs at 0.58 LDF in the larger core fiber. 

 
Figure 3.3 A. The normalized peak intensity for an input LP21 for the waveguide with a radius of 

50.0 micron, with input powers 3.00, 3.75, and 3.95 PCR.  The inset is the input mode with the 

solid black line denoting the core-cladding interface.  B. Output profile for 3.00 PCR C. Output 

profile for 3.75 PCR D. Profile for 3.95 PCR at 0.58 LDF. 
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Figure 3.4 A. The normalized peak intensity for an input LP31 for the waveguide with a radius of 

50.0 micron, with input powers 4.00, 5.00, and 5.25 PCR.  The inset is the input mode with the 

solid black line denoting the core-cladding interface.  B. Output profile for 4.00 PCR C. Output 

profile for 5.00 PCR D. Profile for 5.25 PCR at 3.725 LDF. 

With these simulations looking specifically at the propagation of the necklace type 

beams, we can say that there is a benefit in terms of collapse threshold and distance for the 

distances studied.  The collapse threshold is shown in Figure 3.5.  The line denotes the bulk 

threshold as determined experimentally [21].  The red squares are the numerically determined 

collapse threshold from our simulations.  We believe this saturation is due to the confinement of 

the beam provided by the fiber.  This is different from the bulk case, because in bulk the 

necklace beams either collapse or diffract and the intensity decrease monotonically.  For the 

propagation in fibers, the energy remains in the fiber; this is evidenced by the oscillations shown 

in the peak intensity in Figures 3.1-3.4. 
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Figure 3.5. The collapse threshold for unperturbed beams over these distances studied in the 

simulations.  For the lower values of ν the collapse threshold follows that of the bulk case.  As ν 

is increased, the collapse threshold appears to saturate. 

So far, the simulations have been done with inputs that are exactly an LPν1 mode.  To see 

the affect a perturbation would have on the propagation dynamics, we looked at what would 

happen if one of the beads had an amplitude that is 1.01 times larger than the other beads.  This 

corresponds to the perturbed bead having 1.02 times the power contained in each of the other 

beads.  We looked at the LP31 mode in the waveguide with the 50 micron radius.  The results of 

the simulations are shown in Figure 3.6.  When the input beam has this perturbation we see 

collapse at much shorter distances then the case where the input is an unperturbed LPν1 mode of 

the fiber.  This is due to the fact that the slight perturbation on one bead of the input means the 

input is no longer a single pure LPν1 mode of the fiber.  There is one predominant ν, but there are 

others that are propagating as well.  In the linear case the different modes would propagate and 

the profile would evolve based on the propagation constants of the specific modes, resulting in 

interference between modes, but no interactions.  For the nonlinear propagation, the modes will 

still interact, like the linear case, but there would also be interactions between the modes due to 

the nonlinearity. Along the propagation, it appears the power in each bead changes.  This is in 

stark contrast to the unperturbed nonlinear propagation. The peak intensities for propagation of 

perturbed and unperturbed beams are shown in Figures 3.6-3.9 for the LP11- LP41 modes with 
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unperturbed and perturbed beam profiles.  The power is over the entire beam.  For the 

unperturbed LP11- LP41 modes, the unperturbed case propagates for at least 15 LDF with all the 

beads having equal power.  The beam profiles at the end of the propagation are shown.  Note that 

the beads all have the same intensity and thus contain the same power at the end of propagation.  

With the overall same power, but a slightly perturbed mode, then the beam collapses.  The beam 

evolves with power switching between beads.  Eventually, part of the profile will contain power 

greater than one critical power.  At this point, that beam will collapse.  The profiles during 

collapse are shown.  The propagation distances at which the beam collapses are 8.90 LDF, 14.125 

LDF, 11.95 LDF, and 14.75 LDF for the perturbed LP11, LP21, LP31, and LP41 respectively.   

 

 
Figure 3.6. A. Peak intensity versus distance for the unperturbed (UP) beam and perturbed (P) 

beam for the LP11 mode of the 50 micron radius fiber.  B. The beam profile after 15 LDF 

propagation for the unperturbed input. C. The beam profile as the beam is collapsing for the 

perturbed inputs of LP11.  The distance at which the profile is taken is 8.90 LDF. 
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Figure 3.7. A. Peak intensity versus distance for the unperturbed (UP) beam and perturbed (P) 

beam for the LP21 mode of the 50 micron radius fiber.  B. The beam profile after 15 LDF 

propagation for the unperturbed input. C. The beam profile as the beam is collapsing for the 

perturbed inputs of LP21.  The distance at which the profile is taken is 14.125 LDF. 

 

 
Figure 3.8. A. Peak intensity versus distance for the unperturbed (UP) beam and perturbed (P) 

beam for the LP31 mode of the 50 micron radius fiber.  B. The beam profile after 15 LDF 

propagation for the unperturbed input. C. The beam profile as the beam is collapsing for the 

perturbed inputs of LP31.  The distance at which the profile is taken is 11.95 LDF. 
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Figure 3.9. A. Peak intensity versus distance for the unperturbed (UP) beam and perturbed (P) 

beam for the LP41 mode of the 50 micron radius fiber.  B. The beam profile after 15 LDF 

propagation for the unperturbed input. C. The beam profile as the beam is collapsing for the 

perturbed inputs of LP41.  The distance at which the profile is taken is 14.75 LDF. 

 

 Finally we can look at how the propagation of the perturbed modes with different powers 

compares to the propagation of an unperturbed mode with a set power.  The simulation results 

are shown in Figure 3.10.  We see that for the unperturbed case of an input LP31 with 2.00 PCR, 

the beam propagates over the entire distance.  The final beam profile can be seen in 3.10 B.  For 

the case of a perturbed LP31 input, the beam collapses as it propagates.  The beam profiles for the 

perturbed input with powers 1.25 PCR, 1.50 PCR, and 2.00 PCR are shown in Figure 3.10 C-E.  The 

beams propagate 17.5 LDF, 15.75 LDF, and 11.95 LDF respectively. 
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Figure 3.10 A. Comparison of the peak intensity of the unperturbed (UP) LP31 mode with the 

perturbed (P) LP31 mode.  B. Beam profile for unperturbed case with input power of 2.00 PCR at 

20.0 LDF. C. Beam profile for perturbed case with input power of 1.25 PCR at 17.5 LDF.  D. Beam 

profile for perturbed case with input power of 1.50 PCR at 15.75 LDF. E. Beam profile for 

perturbed case with input power of 2.00 PCR at 11.95 LDF. 

 

 The propagation of high-power, higher-order LPν1 modes in fibers is found to be possible 

numerically.  The power able to be transmitted over the distances studied does increase, though 

not to the threshold that is predicted for the collapse of necklace beams in bulk media.  In 

addition, we observe the importance of the exciting the particular mode in attaining this benefit. 

3.3 Hollow waveguide results 

 

Also of interest is the case of a hollow waveguide.  This is due to recent experimental results 

with high pressure gases in hollow capillaries where the input power is near or above the critical 

power [7].  In order to model this, we can use the same model we used for the step index 

waveguide, but with a f=0 in equation 1.1 and an absorbing boundary to model the metallic 

walls, 
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where r0 is the radius of the hollow waveguide.  For our simulations we set this radius to 200 

microns, which is similar to the inner diameter of many hollow glass capillaries used in gas-filled 

capillary experiments.  The peak intensity as a function of propagation distance is shown in 

Figures 3.11-3.14 for the LP11-LP41 modes.  The collapse threshold is shown in Figure 3.15.  The 

collapse threshold is stated in the number of critical powers.  The expectation for the bulk case is 

also shown as the line.  We see that initially the collapse power follows the expectation for bulk, 

much like the case for the dielectric waveguide.  At higher values of ν the collapse threshold falls 

off from the bulk prediction.  The reason the collapse threshold for the beams in the metallic 

waveguide are closer to that of in the bulk, is that the power is that at the beginning of the 

simulation.  In the dielectric waveguide, very little energy was lost on propagation.  For the 

hollow metallic waveguide and capillaries, there is energy lost, so that the combination of loss 

and the necklace beam profile results in the threshold for collapse being above that of a radially 

symmetric beam. 

Figure 3.11 The peak intensity for the propagation of unperturbed LP11 mode in a hollow 

metallic waveguide. 
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Figure 3.12 The peak intensity for the propagation of unperturbed LP21 mode in a hollow 

metallic waveguide. 

 

 

 
Figure 3.13 The peak intensity for the propagation of unperturbed LP31 mode in a hollow 

metallic waveguide. 
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Figure 3.14 The peak intensity for the propagation of unperturbed LP41 mode in a hollow 

metallic waveguide.   

 

 

Figure 3.15 Collapse threshold as a function of ν for LPν1 modes in a hollow metallic waveguide. 

3.4 Conclusions 

 

We see an increase in collapse threshold of the LPν1 over the radially symmetric fundamental 

mode in the fibers and hollow metallic waveguides over the distances studied. Similar to the 

studies done previously looking at the propagation of LPν1 modes with low values of ν, we find 

that there is an increase in the threshold power for collapse [6].  Further, we see a saturation 

effect in the threshold for collapse for higher values of ν in both dielectric waveguides and a 
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hollow metallic waveguide.  Further, for the case of the dielectric waveguide, we find that the 

size of the waveguide does not have a large effect on the nonlinear propagation, it seems to be 

primarily the beaded structure of the necklace-like LPν1 modes.  In addition to this, there is also 

an increase in the self-focusing length, which is something suggested for ultra-large-mode-area-

fibers [10].  The other important feature is that the beam profile retains the beaded structure for 

powers such as for 4.00 PCR for the LP31 input.  In addition, the importance of exciting a specific 

mode in the dielectric waveguide is shown, with small perturbations decreasing the threshold and 

collapse distance.  These results help to advance the design and development of waveguide 

structures for the propagation of beams with powers above the critical power in dielectric and 

hollow structures. 
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CHAPTER 4 

 

SPIRAL MOTION OF COLLAPSING BEAMS IN WATER  

 

The interaction between light beams has been of significant interest, specifically the ability to 

control light beams from a distance.  The interaction of solitons is one such related field, which 

has been extensively studied [1-11].  These studies have revealed a wealth of interesting 

phenomena related to the interactions of solitons, such as fusion, fission, annihilation, and stable 

orbiting.  The specific propagation characteristics and the interactions between the solitons are 

generally set by the initial phase relationship between the solitons.  These interactions have been 

studied in a wide range of materials, such as bulk quadratic media [4], photorefractive crystals 

[5,6], saturable nonlinear media [7,8], and nonlocal nonlinear media [9].  Some of the interest in 

the spiralling of solitons can be attributed to the properties of angular momentum as it relates to 

solitons.  This could either be for general interest in angular momentum, or interest in the 

propagation dynamics of solitons with angular momentum [10], or the possibility of suppressing 

collapse of high power beams [11].  Such studies have provided a wealth of understanding on the 

behavior of solitons.   

In a similar vein of study, the interaction between collapsing beams propagating in glass 

with a defined phase relationship has also been studied [12, 13].  These studies were carried out 

with the two beams travelling in one plane, so the only phenomena seen were attraction, 

repulsion, or fusion.  Whether the beams were attracted to each other or repelled from each other 

was dependent on the initial phase.  Whether the beams fused was dependent on the initial 

separation as well.  Similar to the studies on solitions, these studies have expanded the 

understanding of interactions between collapsing beams in solids. 

Recently the interest in the interaction of filaments has grown in the laser filamentation 

science community.  The control of filaments at long distances is of great interest, hence the 

extension of these studies to the filamentation science field [14-16].  The interaction of filaments 
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in air was numerically studied and was shown to exhibit behavior similar to that of solitons and 

collapsing beams such as attraction, repulsion, fusion, energy transfer, and spiralling [14].  

Experimental studies with small crossing angles have shown the deflection of time-overlapped 

filaments, though it was only about 7 degrees [15].  Energy exchange between two filaments 

with a larger crossing angle of 17 degrees has also been shown experimentally [16].  We 

continue along this vein of research and display large rotations of interacting, collapsing beams 

in water in an effort to further understand the interactions of collapsing beams. 

 

4.1 Experimental setup 

 

The experimental setup is shown in figure 1.  For the experiment we used an amplified 

Titanium:sapphire laser with center wavelength of 800 nm, a repetition rate of 1 kHz, and a 50 fs 

FWHM pulse width when optimally compressed.  The output of the laser was spatially filtered 

and resized.  After resizing, the beam was separated by a polarizing beam splitter into an s-

polarized arm and a p-polarized arm.  The s-polarized arm had a delay line.  To control the phase 

relationship between the two arms, there was a computer controlled, motorized delay stage in the 

s-polarization arm.  In the p-polarization arm there is a half-wave plate to rotate the polarization 

to s-polarization, so that there will be interaction between the beams in the water cell.  The 

beams are recombined on a non-polarizing beam splitter.  The beams are arranged in such a way 

that there is a vertical separation of 250 µm between the two beams, which remains constant for 

large time separation.  There is also a horizontal separation, but the beams are arranged to cross 

with a very small angle in the water cell.  The half-angle of the crossing is 0.063°.  The beams 

start out separated at the beginning of an extendable water cell.  The input and output windows 

of the cell are AR coated for 800 nm.  The beams cross a distance 17.9 cm from the input 
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window of the water cell.  The two beams have waists of approximately 180 µm, which means a 

diffraction length of approximately 17 cm.  The water cell has a maximum length of 22.50 cm.  

The temporal characteristics of the input pulses at the beginning of the water cell are also of 

importance.  The pulses are chirped at the input of the water cell, with FWHM pulse duration of 

330 fs.  This is done so that upon propagation in the water cell, the pulses compress.  That way 

the highest intensity is at the interaction region, where the beams are crossing.  Water has a 

group-velocity dispersion of 250 fs
2
/cm.  The dispersion length of a pulse has a FWHM pulse 

width of 50 fs in water is 3.6 cm.   
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Figure 4.1 Experimental setup.  The output of the laser is spatially filtered and resized.  The 

beam is split by a polarizing beam splitter into a P-polarized arm and an S-polarized beam.  The 

half wave plate in the P-arm rotates the polarization to S.  There is a delay stage in the S-arm to 

vary the phase difference between the two beams.  The two beams are then recombined on a non-

polarizing beam splitter.  The beams are not perfectly overlapped on the beam splitter.  There is a 

constant vertical separation and a slight difference in k-vectors, resulting in a small crossing 

angle in the water cell.  The inset shows the geometry of the beam profile at the input face of the 

extendable water cell. 

 

Due to the construction of the water cell, the smallest propagation length at which we can 

measure the beam profiles is 16.5 cm from the input face of the water cell.  This is just before the 

crossing point of the beams in the water cell, so there will be some interaction between the 

beams before this point as the beams move closer together.  We are able to see the beam profiles 

right after the low power crossing point. 

4.2 Experimental results 

Figure 4.2 shows the beam profiles for the case where each beam has energy of 4.20 µJ.  The 

angle of rotation is determined by connecting the center of each beam, then using a simple 

geometric construction to determine the apparent angle of rotation. When the collapsing beams 

are separated (4 ps) in time, they propagate without interacting.  Note that there does appear to 
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be an angle of rotation, but it is not rotation due to the interaction of the beams.  The apparent 

angles are just due to the geometric construction, since the vertical separation remains the same.  

The horizontal separation on the other had increases due to the crossing geometry.  As we look at 

beam profiles further along the propagation distance, we see the horizontal separation increase 

even for the case of no interactions between collapsing beams.  For the case where they are 

overlapped in time, we see more rotation than would be expected to due to the simple crossing 

geometry.  The interaction is evident in the change in the vertical separation between the two 

beams.  The maximum rotation seen for these parameters is 32.66 degrees. 

 

Figure 4.2 Beam profiles along propagation in the water cell for the case where both the S-arm 

and the P-arm have pulse energies of 4.20 µJ.  The top row is the beam profiles for the time-

separated case when the beams are not interacting, the bottom row is for interacting, time 

overlapped case.  

We see the rotation in the very first beam profile and continue to see a greater rotation in each 

beam profile when compared to the non-interacting case, which does not show any change in the 

vertical separation between the two beams.   
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Figure 4.3 Beam profiles along propagation in the water cell for the case where both the S-arm 

and the P-arm have pulse energies of 4.90 µJ.  The top row is the beam profiles for the time-

separated case when the beams are not interacting, the bottom row is for interacting, time 

overlapped case.  

As another example of this rotation, we increase the pulse energy in each arm to 4.90 µJ.  

The beam profiles for this larger input energy are shown in Figure 4.3.  The non-interacting, time 

separated case is shown on the top row, while the interacting, time overlapped case is shown 

along the bottom.  Again, we see rotation take place, with a maximum rotation of 59 degrees.   

This rotation can be seen clearly in the Figure 4.4, which shows the isosurface along the 

propagation length for the non-interacting A and interacting case B, respectively.  The surface is 

the surface where the intensity is one-half that of the peak intensity.  For the non-interacting 

case, the beams cross and continue to propagate in their original directions.  For the interacting 

case, the rotation is easily seen, especially at the longest propagation distance.  At the end of the 

water cell, we see rotation of 50 degrees, which is a difference of about 40 degrees from the non-

interacting case.  This is much greater than the previous experimental rotation of 7 degrees 

shown in air [15]. 
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Figure 4.4  Isosurface for the 4.90 µJ input beam energy for the A. time separated case and for 

the  B. time overlapped case. 

 Finally, we increase the input pulse energy to 5.30 µJ to see how the rotation changes 

with higher energy.   Beam profiles for this higher energy are shown in figure 4.5.  For these 

beam parameters, we see a maximum rotation of 50.23 degrees. 

 

 
Figure 4.5 Beam profiles along propagation in the water cell for the case where both the S-arm 

and the P-arm have pulse energies of 5.30 µJ.  The top row is the beam profiles for the time-

separated case when the beams are not interacting, the bottom row is for interacting, time 

overlapped case. 

The rotations for different energy levels are shown in figure 4.6.  There are two 

interesting trends that can be gleaned from these results.  The first trend is the large difference in 

rotation between the time-separated and time-overlapped cases.  The interacting beams rotate 20-

40 degrees more than the non-interacting case, which doesn’t truly rotate.  The apparent angle is 

just due to the horizontal beam separation increasing upon propagation.  The second trend is the 

difference at long propagation lengths for the higher powers when the two beams are time-

overlapped.  For the time-separated case we measured the beam profiles at five different 

propagation distances for 3 different powers.  As expected, the beams propagated without 
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rotation.  This was expected, since there would be no interaction due to the instantaneous Kerr 

effect since there is a large (4ps) time separation.  For the time-overlapped case, we see a marked 

difference when compared to the time-separated case.  The beams have already crossed by the 

time they reached the geometric crossing point, so there has been interaction before the crossing 

point, which is to be expected.  As the beams are propagating the separation between the beams 

is getting smaller due to the change in horizontal separation.  The interaction of collapsing beams 

was shown to be heavily dependent on the separation of the beams [12].  As the beams get closer 

together, the interaction gets stronger.  Since the beams are in phase with each other, this will be 

an attractive interaction.  The attractive interaction is balanced by the difference in the 

propagation directions.  The results in the large rotation we see in the beam profiles, showing a 

maximum rotation of 40 degrees when compared to the non-interacting case.  The other 

interesting thing to note is the difference between the maximum rotation for the energies of 4.30 

µJ, 4.90 µJ, and 5.30 µJ.  The time-overlapped propagation with energy of 4.30 µJ shows smaller 

rotation then the both 4.90 µJ and 5.30 µJ.  The interesting part is that the rotation for the 4.90 µJ 

is larger than that of the 5.30 µJ.  We suspect this could be due to the Loss of Phase effect for 

collapsing beams [17]. 

 
Figure 4.6 The apparent rotation seen for 3 different beam energies.  For each energy, there are 

two cases, the time-separated case show the propagation dynamics when there is no interaction 

between the beams.  The time-overlapped is when the beams are interacting with each other upon 

propagation.  The difference between in apparent rotation between the two cases is clear. 
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4.3 Conclusion 

 

In conclusion, we have shown the interaction between collapsing beams in water can result in the 

rotation of the collapsing beams.  We have shown it to be a large rotation of close to 60 degrees, 

with the difference between apparent rotation of the non-interacting case and the interacting case 

being about 40 degrees.  This can act as a model for studying filament interactions in water and 

other transparent media.  Future studies, both numerical and experimental could be carried out 

with a focus on the temporal and spectral characteristics of the interacting beams.  Variations of 

the initial temporal and spectral characteristics, such as temporal or spectral chirp or pulse shape, 

could alter the interactions that take place.  Also of interest are the output temporal and spectral 

profiles of the interacting beams after propagation.  These studies could offer more insight into 

the spatio-temporal collapse dynamics of interacting beams.
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

Here we have presented work exploring the nonlinear propagation of ultrashort pulses in 

transparent media, in which the initial conditions have significant effects on the dynamics.  

Tailoring these initial conditions for a desired result after propagation is fundamentally 

interesting, relevant, and useful.  For example, it could be producing a specific temporal profile 

for a desired output as in the case of the super-Gaussian pulse collapse resulting in pulse-splitting 

as opposed to spatio-temporal collapse.  Another case in which the initial conditions can change 

the dynamics is the choice of input profile.  There is the possibility of using a non-Gaussian input 

in order to increase the collapse threshold and collapse distance as for the propagation of the 

higher-order necklace beams in waveguides.  Finally, setting up the initial beams with a given 

phase difference, separation, and direction can produce interactions such as rotation upon self-

focusing.  All of these results further the understanding of the importance that initial conditions 

play in the self-focusing of ultrashort pulses in transparent media. 

 The study of super-Gaussian pulses in the anomalous-GVD regime is an example of 

experiments exploring spatio-temporal collapse dynamics by using the results of spatial collapse 

experiments.  By using a 4-f shaper [1], the spatio-temporal collapse dynamics in the anomalous-

GVD regime of materials can be studied in order to glean fundamental or applicable results.  The 

spatio-temporal collapse of a spatial and temporal Super-Gaussian study is possibly of interest 

due to the possibility of observing pulse-splitting as the super-Gaussian pulse collapses and a 

spatial ring profile as the super-Gaussian spatial profile collapses.  Also, using spatial 

experiments as a guide, the collapse and filamentation of high-power Airy-ring, also known as 

abruptly autofocusing beams, have been studied in the spatial domain with the goal of tailoring 

the filamentation properties, such as collapse [2].  Perhaps the autofocusing pulses would have 

interesting temporal dynamics upon self-focusing in the anomalous-GVD regime, perhaps 
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resulting in a single pulse in the temporal domain, much like the experiment in the spatial 

domain results in a localized beam.  The demonstration of the super-Gaussian pulse not 

undergoing spatio-temporal collapse in the anomalous-GVD regime is important because it 

shows that other pulse-shapes may exhibit interesting and unexpected collapse dynamics in this 

regime. 

In addition, the nonlinear geometrical optics (NGO) method succeeded in qualitatively 

reproducing the numerical and experimental results of a super-Gaussian pulse in the anomalous-

GVD regime.  The NGO method could be used to gain some intuition into the high-power 

collapse of a specific high-power temporal pulse shape, without the need for numerical 

integration [3].  This would be beneficial in the initial planning for experiments as a way to 

discover what pulse shapes would be interesting before devoting the full experimental and 

numerical resources to generating and simulating the desired pulse shape.  Looking at self-

focusing dynamics in the anomalous-GVD regime, specifically applying the NGO method, for 

high-power pulses allows for new temporal dynamics to be discovered from spatial results. 

 The high-power propagation of the necklace higher-order modes in fibers are relevant to 

many experiments related to high-power propagation in waveguides, both hollow and dielectric.  

The propagation in dielectric waveguides could be of use in pursuing the development of high-

power fiber lasers and amplifiers, similar to what has been done with previous large mode area 

fibers, both radially symmetric [4, 5], and more specialized fibers such as high aspect ratio 

rectangular core fibers [6, 7].  In addition, if there is the possibility of designing and fabricating 

specific optical fiber, the combination of a designed fiber and propagation of a higher-order 

might further increase collapse thresholds in dielectric fibers.  The large hollow capillaries are 

applicable to studies of nonlinear interactions in gas filled capillaries for such as high-harmonic 

generation [8].  The higher-order modes could allow for higher power beams to be sent through 

the hollow, gas-filled waveguide.  It could also be interesting to generate high-harmonics in a 

necklace shape as opposed to something approximating a Gaussian beam profile.  Higher-order 

modes that have a necklace shape can be of use in further studies of high-power optical pulse 
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propagation through waveguides, whether they are dielectric or hollow, for such things as lasers 

and nonlinear interactions with gas.  As this work was numerical, the next step is to try and 

experimentally verify the propagation dynamics of these necklace type modes in fiber. 

 The interaction of beams that resulted in the observation of spiral motion in water is 

important from both a fundamental and application point of view.  Many of the studies in 

filamentation science have been interested in the control of filaments at a distance [9, 10].  The 

Airy-ring beams are one example of this theoretical and experimental interest in how spatial 

input profile can affect the collapse and filamentation dynamics.  The spatial profile of the initial 

beam is tailored to give a desired result upon nonlinear propagation [2].  In this case it was 

intended to generate a filament at a specific distance.  Another possible extension of the 

interaction of collapsing beams is looking at the interactions of more than two beams with 

different phases and propagation directions.  The study of the spiral motion of collapsing beams 

in water adds to the field of interaction of collapsing beams. 

 Another future direction involves modeling the spatio-temporal dynamics of the 

interacting collapsing beams.  This would build off of the spatio-temopral super-Gaussian pulse 

collapse dynamics and the interacting beams.  The possibility of setting up interacting beams 

with non-Gaussian pulse shapes would be interesting.  Not only would looking at how the initial 

pulse shape changes the interaction upon propagation be interesting, also looking at how the 

initial pulse shape itself changes upon propagation would be interesting. 

 We have demonstrated the importance that the initial conditions of a self-focusing laser 

beam or beams can have on the self-focusing dynamics upon propagation in a transparent 

medium.  This work gives further insight into the ways in which the initial conditions of 

collapsing laser beams can alter collapse dynamics.  It is applicable to such fields as nonlinear 

beam collapse, high-power propagation in fiber, and filamentation studies in condescended 

media and gases. Future studies are promising to expand on this work and contribute to these 

fields. 
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