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ABSTRACT

Natural and synthetic biological objects, e.g., Tobacco Mosaic Virus and tubes

from bacteriophage P22 hexamers, form a large class of helically-symmetric bio-

logical nano-scale objects. Helical symmetry is a class of symmetries described by

two relatively prime integers (u, v) and a period c. Typically u, v, and c are all

unknown. Electron microscopy provides a method of visualizing such objects in

3-D via computational reconstruction from projection 2-D image measurements.

Damage of the object by the electron beam restricts high-resolution studies to a

single image of an unoriented object at low (≤ 0.2) SNR. This work considers

the frequently-occurring case where multiple identical objects are available and so

multiple images, one of each object, can be combined by computation to achieve

a 3-D reconstruction of the object. Due to the poor SNR, the focus of this work

is on maximum likelihood (ML) estimators to determine the reconstruction. The

unknown orientation of the object in the microscope and the period of the helical

symmetry are treated as nuisance parameters and the joint ML estimate of (u, v)

and the parameters that describe the 3-D structure given the helical symmetry pa-

rameters is computed via an expectation maximization approach. This approach

contrasts with a variety of current approaches which separate symmetry determi-

nation from reconstruction and which do not use explicit statistical models of the

noise. Examples of the application of this approach to synthetic and experimental

images from Tobacco Mosaic Virus are described.
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CHAPTER 1

INTRODUCTION

In this document, we present a statistical method to simultaneously determine the

helical symmetry parameters and the electron scattering intensity as a function

of 3-D spatial coordinates for an object based on electron microscopy images of

the object. A novel extended Fourier-Bessel model is used where the Bessel order

terms are replaced by a linear superposition of orthogonal basis functions. This

method does not require that the orientation of the object shown in each image

be determined before the 3-D reconstruction is computed. This method also does

not require reference frames. Instead, this method includes all possible alignment

parameters as nuisance parameters in a maximum likelihood (ML) estimator which

is computed by an Expectation Maximization (EM) algorithm. If desired, the

correct orientation can be determined as the orientation that results the highest

likelihood given that the true structure is the same as the structure resulting from

the ML estimator. A further advantage of this method is the automated processing

of multiple images.

1



CHAPTER 2

PREVIOUS WORK

Objects with helical symmetry are studied. The primary motivation for studying

objects with helical symmetry is the occurrence of viruses with such symmetry,

especially Tobacco Mosaic Virus (TMV). Extensive theory has been developed for

objects with helical symmetry [5]. Typically, both the electron scattering intensity

as a function of 3-D spatial coordinates and the parameters of the helical symmetry

are unknown and therefore are the goal of the computation. The helical symmetry

implies that a single image of an object provides limited 3-D information because

each object contains the asymmetric unit of the helical symmetry in a fixed set

of different orientations [6]. To achieve a resolution of 20Å or better, additional

views of the asymmetric unit of the helical symmetry are required. These views

are provided by images of other objects in the electron microscope’s field of view

which are rotated about their helical axis relative to the first object. Therefore,

tilting the stage of the microscope is unnecessary.

A Fourier-Bessel model representing the reciprocal space of an object with

helical symmetry has been developed [7]. Due to the periodicity in the direction of

the helical axis, the 3-D and 2-D reciprocal space of a helical object is made up of

layer planes and layer lines, respectively. In order to reconstruct the particle, the

problem becomes to determine the Bessel order terms on each layer line. This can

be difficult since on each layer line, there are many Bessel order terms, and they

cannot be easily separated.

Methods using the x-ray scattering pattern from ordered or partially ordered

ensembles of particles have been studied extensively [8, 9, 10, 11]. The main

challenge in the analysis of x-ray patterns is that the phase information for the
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layer lines is lost. On the other hand, if using electron micrographs, the phase

information is maintained, and the difficulty becomes to accurately determine the

Contrast Transfer Function (CTF) that describes the effect of the microscope.

An atomic resolution of 2.9Å was achieved by Namba et al. in 1989 using x-

ray diffraction data. Various researchers before that had also tried to reconstruct

TMV using x-ray diffraction data. For example, in 1972, Barrett et al. [8] made an

electron-density map of TMV at 10Å using the isomorphous replacement method

(which was first introduced in Ref. [12]) to determine the helical parameters. Since

then, the extended isomorphous replacement method had been employed to solve

the phase problem when using data from x-ray diffraction pattern. In 1975, Holmes

et al. [9] achieved 6.7Å in reconstructing TMV. In 1985, Namba et al. [10] also

applied the method of isomorphous replacement; in addition, they made use of

layer line splitting to get extra phase information. As a result, it was possible

to separate five Bessel order terms per layer line, and a resolution of 3.6Å was

achieved.

The fact that TMV diffraction pattern exhibits layer line splitting was first

mentioned and explained in Ref. [13] in 1958. The helical parameters for TMV are

(u, v, c). The reason the layer lines split is that the number of motifs for TMV is

not an integer. If u/v is not rational, then a true axial repeat does not exist. That

is to say, the Bessel-function contributions from different origins will no longer lie

at exactly the same level, but will lie on either side of the mean layer lines that

correspond to the rational approximation to u/v. When u is not an integer, the

departure from an exact integer ratio will manifest itself as a splitting of the layer

lines.
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Researchers had also performed reconstructions from electron micrograph

data [6, 14, 3]. In 1968, DeRosier and Klug [6] described the idea of using the

projection slice theorem in reconstructing a three dimensional structure from elec-

tron micrographs. Over the succeeding years, several additional papers described

methods related to reconstruct an object with helical symmetry [2, 5, 15, 16, 17].

In 1989, Jeng et al. [17] were able to resolve the structure to 10Å using 12 electron

micrographs with sampling interval of 1.7Å per pixel. The images had observable

data in the 7th layer line and, in theory, it is possible to reach 10Å if the 7th layer

line of TMV could be computed. Three different defocus values for the CTF were

present among the twelve images in order to retrieve the entire set of structure

factors. CTF defocus and amplitude were furthered adjusted by examining the

electron microscopy data and comparing to the x-ray model data. The procedures

used to do the 3-D reconstruction were presented in Ref. [18]: first determine the

relative orientations and axial displacement and then separate the Bessel terms by

solving a linear system.

Determination of the orientation parameters can be difficult, especially when

the Bessel-term overlap is severe. If the Bessel-term overlap is not severe, the

orientation relationship between two images of the helix can be calculated by com-

paring the phases of layer lines closest to the meridian where there is only single

Bessel term that contributes strongly to the layer line. If the Bessel overlap is

severe, then an iterative Fourier-Bessel algorithm for determining the orientations

can be applied [19].

All the work described above made use of the Fourier-Bessel model. Using

reciprocal-space procedures, indexing is needed first to determine the helical pa-

rameters. Some real-space single particle procedures, such as IHRSR [20], can
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determine the helical parameters automatically. IHRSR was developed by Egel-

man and collaborators which has been applied to reconstruct helical structures.

Since it does not work in reciprocal space, the Bessel order overlap problem is

avoided. The method describes a process which first imposes the helical symmetry

on the estimated structure, then compares the estimated structure with reference

projections to determine azimuthal rotation, and finally back projects images with

assigned alignment (translational and rotational) to compute the 3-D structure.

Sachse et al. [21] reconstructed TMV to 5Å using an extended IHRSR procedure

with further CTF correction, introducing alignment parameters, and optimizing

the helical symmetry of TMV. 135 images with sampling interval of 1.163Å per

pixel were used. Images were broken up into segments with 90% overlap between

successive segments. In total, 4251 segments, each of 770Å × 770Å were used in

the processing. Each of the 4251 segments was included 50 times in the 3-D re-

construction to cover all symmetry-related views of TMV. Alignment parameters

(α, β, γ) for rotational alignment and (xL1 , xL2) for translational alignment were

introduced, with α and β being processed one degree per step. In addition to

normal CTF correction, after 3-D reconstruction of the volume from the CTF-

corrected images, the amplitudes of the reconstruction were corrected again using

sum-squared 3-D CTFs. Finally, additional refinement on the atomic model was

applied to reconstruct the structure to atomic resolution.

In the following chapters, we present a new approach, using the extended

Fourier-Bessel model, to perform the helical reconstruction.
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CHAPTER 3

MATHEMATICAL PRELIMINARIES

Standard notation for the 2-D and 3-D vectors in real and reciprocal space in

both rectangular and cylindrical coordinates (e.g., Ref. [22, p. 190]) is used as is

described in Tables 3.1 and 3.2. The symbols Z, Z+, IR, and IR+ indicate the

integers, positive integers, real numbers, and positive real numbers, respectively.

The Fourier transform pair is defined by

F (k) =
∫

x
ρ(x) exp

(
−i2πkTx

)
dx (3.1)

ρ(x) =
∫

k
F (k) exp

(
+i2πkTx

)
dk (3.2)

for any dimension. The uth-order cylindrical Hankel transform pair is defined by

Au(k) = 2π
∫ ∞

0
a(r)Ju(2πrk)rdr (3.3)

a(r) = 2π
∫ ∞

0
Au(k)Ju(2πrk)kdk. (3.4)

Rotations are typically described by Euler angles (α, β, γ) using the conventions

of Ref. [23, pp. 50–51] and the rotation matrix, denoted by R, is given by Ref. [23,

Eq. 4.43, p. 65]. All rotation matrices satisfy R−1 = RT and det R = 1. Let δm,n

denote the Kronecker δ function which is defined by

δm,n =





1 m = n

0 m 6= n
(3.5)

Table 3.1: Terminology for real- and reciprocal-space vectors in 2-D.

2-D
Abstract Rectangular Polar

Real χ (χ1, χ2)
T (r, ϕ)

Reciprocal κ (κ1, κ2)
T (R, ψ)
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Table 3.2: Terminology for real- and reciprocal-space vectors in 3-D.

3-D
Abstract Rectangular Cylindrical

Real x (x1, x2, x3)
T (r, ϕ, z)

Reciprocal
k (k1, k2, k3)

T (R, ψ, ζ)
kL = R−1k (kL1 , kL2 , kL3)

T (RL, ψL, ζL)
k′L = R−1(k1, k2, 0)T (k′L1

, k′L2
, k′L3

)T (R′
L, ψ′L, ζ ′L)

or, if the second argument is a subset of Z, by

δm,S =





1, m ∈ S

0, otherwise
. (3.6)

The Dirac δ function is denoted by δ(·).
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CHAPTER 4

MATHEMATICAL MODEL OF THE 3-D OBJECT

4.1 Objects that are periodic in one of three dimensions

In this chapter, the standard Fourier-Bessel model [7, 22] is derived in preparation

for our generalization in later chapters. A helical object has infinite extent in one

direction and is periodic with period c ∈ IR+∪{0} in that direction. (The period is

sometimes called the axial repeat of the helix). Therefore it is natural to describe

the helical object in cylindrical coordinates, denoted by (r, ϕ, z), where the z axis

of the coordinate system corresponds with the periodic direction of the helix. Let

the electron scattering intensity be denoted by ρ(x) = ρ(r, ϕ, z). The periodicity

in z corresponds to

ρ(r, ϕ, z) = ρ(r, ϕ, z + mc) (4.1)

for m ∈ Z. Because ρ(r, ϕ, z) is periodic in ϕ with period 2π by definition and

periodic in z with period c by assumption, it follows that ρ(r, ϕ, z) can be expanded

as a double Fourier series in ϕ and z [24]:

ρ(r, ϕ, z) =
+∞∑

l=−∞

+∞∑

n=−∞
gn,l(r) exp

[
i
(
nϕ +

2π

c
lz

)]
(4.2)

where the weights gn,l(r) can be computed by

gn,l(r) =
1

2πc

∫ c

z=0

∫ 2π

ϕ=0
ρ(r, ϕ, z) exp

[
−i

(
nϕ +

2π

c
lz

)]
dϕdz (4.3)

for all n ∈ Z and l ∈ Z. The key to compute the 3-D Fourier transform of ρ(x) is

to derive the relationship between exp
(
−i2πkTx

)
and the components of k and x

in cylindrical coordinates. This relationship can be derived as follows:

exp
(
−i2πkTx

)
= exp [−i2π (Rr cos ϕ cos ψ + Rr sin ϕ sin ψ + zζ)] (4.4)

8



Use cos(ϕ− ψ) = cos ϕ cos ψ + sin ϕ sin ψ to get

= exp [−i2π (Rr cos(ϕ− ψ) + zζ)] (4.5)

Use cos(ω) = sin(π/2− ω) to get

= exp
[
−i2π

(
Rr sin

(
π

2
− ϕ + ψ

)
+ zζ

)]
(4.6)

= exp(−i2πzζ) exp
[
−i2πRr sin

(
π

2
− ϕ + ψ

)]
(4.7)

= exp(−i2πzζ)
∞∑

n=−∞
exp

[
−in

(
π

2
− ϕ + ψ

)]
Jn(2πRr)

(4.8)

where the final equality is due to the complex conjugate of a standard result [25,

p. 620] and the fact that the nth order cylindrical Bessel function of the first kind

is real, where the standard result is

exp(iz sin θ) =
∞∑

n=−∞
exp(inθ)Jn(z). (4.9)

Alternative formulas are possible. In particular, if cos(ω) = cos(−ω) is used be-

tween Eqs. 4.5 and 4.6 then the result is

exp
(
−i2πkTx

)
= exp(−i2πzζ)

∞∑

n=−∞
exp

[
−in

(
π

2
+ ϕ− ψ

)]
Jn(2πRr) (4.10)

which is the form that is used in the sequel.

Substitution of Eqs. 4.2 and 4.10 into Eq. 3.1 and performing the ϕ and z

integrations leads to [7]

F (R,ψ, ζ)

=
∫ ∞

r=0

∫ 2π

ϕ=0

∫ +∞

z=−∞




+∞∑

l=−∞

+∞∑

n=−∞
gn,l(r) exp

[
i
(
nϕ +

2π

c
lz

)]
×

×

exp (−i2πζz)

+∞∑

n′=−∞
exp(−in′(ϕ− ψ + π/2))Jn′(2πRr)


 dzdϕrdr

(4.11)

=
+∞∑

l=−∞

+∞∑

n=−∞

+∞∑

n′=−∞
exp(−in′(−ψ + π/2))

[∫ ∞

r=0
gn,l(r)Jn′(2πRr)rdr

]
×
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×
[∫ 2π

ϕ=0
exp(−in′ϕ) exp (inϕ) dϕ

] [∫ +∞

z=−∞
exp

(
i
2π

c
lz

)
exp (−i2πζz) dz

]

(4.12)

=
+∞∑

l=−∞

+∞∑

n=−∞

+∞∑

n′=−∞
exp(−in′(−ψ + π/2))

[∫ ∞

r=0
gn,l(r)Jn′(2πRr)rdr

]
×

×
[∫ 2π

ϕ=0
exp (i(n− n′)ϕ) dϕ

] [∫ +∞

z=−∞
exp

(
i2π

(
l

c
− ζ

)
z

)
dz

]

(4.13)

=
+∞∑

l=−∞

+∞∑

n=−∞

+∞∑

n′=−∞
exp(−in′(−ψ + π/2))

[∫ ∞

r=0
gn,l(r)Jn′(2πRr)rdr

]
×

× 2πδn,n′δ

(
ζ − l

c

)
(4.14)

=
+∞∑

l=−∞

+∞∑

n=−∞
exp(−in(−ψ + π/2))

[
2π

∫ ∞

r=0
gn,l(r)Jn(2πRr)rdr

]
×

× δ

(
ζ − l

c

)
(4.15)

=
+∞∑

l=−∞

[
+∞∑

n=−∞
Gn,l(R) exp(in(ψ − π/2))

]
δ

(
ζ − l

c

)
(4.16)

where

Gn,l(R) = 2π
∫ ∞

r=0
gn,l(r)Jn(2πRr)rdr (4.17)

which is the cylindrical Hankel transform of order n of gn,l(r). Note that Eq. 4.16

is different from Ref. [7, Eq. 6] due to the sign convention in the Fourier transform,

i.e., Eq. 3.1 has a minus sign in the exponent and Eq. 3.2 has a plus sign in the

exponent. F (R,ψ, ζ) is non-zero only when ζ is an integer multiple of 1/c and

these values of ζ are the so-called layer planes and are specified by the argument

of the δ function in Eq. 4.16. Consider a particular layer plane with index l = l0.

Note that all terms in the sum

+∞∑

n=−∞
Gn,l0(R) exp(in(ψ − π/2)) (4.18)

contribute to the signal on the l0th layer plane and do not contribute to the signal

on any other layer plane. This fact is referred to as “Bessel function overlap”.
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Given only a single view, the Bessel terms on the same layer line cannot be

separated [7], and various methods have been developed to deal with this problem

by finding the correct orientation relationship among multiple views of the par-

ticles [16]. With multiple images, we are able to solve for Gn,l(R) in a subspace

defined by a collection of Hn,p(R) functions.

4.2 Objects that have helical symmetry

Eqs. 4.2 and 4.16 describe objects that are periodic in z with period c. However,

helical symmetry is more complicated. Let u ∈ Z+ be the number of subunits

in one period (c) and v ∈ Z+ ∪ {0} be the number of turns in one period (c).

(Standard terminology is that p = c/v is the pitch and ∆z = c/u is the axial rise

of the helix). Furthermore, a helix can be right or can be left handed. Note that

v = 0 means that the symmetry of the helix is simply periodic with period c/u so

results on periodic structures in the previous sections can be applied directly. For

the case v = 0, it is not typical to refer to either right or left handedness.

There are several equivalent expressions for the helical symmetry. One expres-

sion for the symmetry of a right-handed helix is

ρ(r, ϕ, z) = ρ(r, ϕ +
2πv

u
m, z − c

u
m) (4.19)

for m ∈ Z and the corresponding expression for a left-handed helix is

ρ(r, ϕ, z) = ρ(r, ϕ− 2πv

u
m, z − c

u
m) (4.20)

for m ∈ Z. If m is replaced by −m, which changes nothing since the equations are

true for all m ∈ Z, then a second expression for the symmetry of a right-handed

11



helix is

ρ(r, ϕ, z) = ρ(r, ϕ− 2πv

u
m, z +

c

u
m) (4.21)

for m ∈ Z and the corresponding expression for a left-handed helix is

ρ(r, ϕ, z) = ρ(r, ϕ +
2πv

u
m, z +

c

u
m) (4.22)

for m ∈ Z.

Eqs. 4.19 and 4.20 or Eqs. 4.21 and 4.22 can be combined by allowing negative

values of v. Allowing negative values of v leads to four equivalent expressions:

ρ(r, ϕ, z) = ρ(r, ϕ +
2πv

u
m, z − c

u
m) (4.23)

for m ∈ Z where v > 0 is right handed and v < 0 is left handed,

ρ(r, ϕ, z) = ρ(r, ϕ− 2πv

u
m, z − c

u
m) (4.24)

for m ∈ Z where v > 0 is left handed and v < 0 is right handed,

ρ(r, ϕ, z) = ρ(r, ϕ− 2πv

u
m, z +

c

u
m) (4.25)

for m ∈ Z where v > 0 is right handed and v < 0 is left handed, or

ρ(r, ϕ, z) = ρ(r, ϕ +
2πv

u
m, z +

c

u
m) (4.26)

for m ∈ Z where v > 0 is left handed and v < 0 is right handed.

The presence of a helical symmetry forces an infinite subset of the Gn,l(R)

functions (or equivalently, the gn,l(r) functions) to be identically zero. In order to

derive this fact, return to Eq. 4.3. Note that

∫ c

z=0
=

u−1∑

m=0

∫ (m+1)c/u

z=mc/u
. (4.27)

Use Eq. 4.27 in Eq. 4.3 to get

gn,l(r) =
1

2πc

u−1∑

m=0

∫ (m+1)c/u

z=mc/u

∫ 2π

ϕ=0
ρ(r, ϕ, z) exp

[
−i

(
nϕ +

2π

c
lz

)]
dϕdz. (4.28)
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In the mth integral, change variables from z to z′ = z −mc/u to get

gn,l(r)

=
1

2πc

u−1∑

m=0

∫ c/u

z′=0

∫ 2π

ϕ=0
ρ(r, ϕ, z′ + mc/u) exp

[
−i

(
nϕ +

2π

c
l (z′ + mc/u)

)]
dϕdz′

(4.29)

=
1

2πc

u−1∑

m=0

∫ c/u

z′=0

∫ 2π

ϕ=0
ρ

(
r,

(
ϕ +

2πvm

u

)
− 2πvm

u
, z′ +

mc

u

)
×

× exp

[
−i

(
nϕ +

2πl

c
z′ +

2πlm

u

)]
dϕdz′. (4.30)

Use Eq. 4.25 in the form

ρ(r, ϕ, z) = ρ(r, ϕ +
2πv

u
m, z − c

u
m) (4.31)

to get

gn,l(r)

=
1

2πc

u−1∑

m=0

∫ c/u

z′=0

∫ 2π

ϕ=0
ρ

(
r, ϕ +

2πvm

u
, z′

)
exp

[
−i

(
nϕ +

2πl

c
z′ +

2πlm

u

)]
dϕdz′.

(4.32)

In the mth integral, change variables from ϕ to ϕ′ = ϕ + 2πvm
u

to get

gn,l(r)

=
1

2πc

u−1∑

m=0

∫ c/u

z′=0

∫ 2π

ϕ′=0
ρ (r, ϕ′, z′)×

× exp

[
−i

(
n

(
ϕ′ − 2πvm

u

)
+

2πl

c
z′ +

2πlm

u

)]
dϕ′dz′

(4.33)

=
1

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0
ρ (r, ϕ′, z′) exp

[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′ ×

[
u−1∑

m=0

exp

[
−i

(
−2πvnm

u
+

2πlm

u

)]]
dϕ′dz′

(4.34)

=
1

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0
ρ (r, ϕ′, z′)×
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exp

[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′

[
u−1∑

m=0

exp
[
i
2π

u
(vn− l) m

]]
dϕ′dz′

. (4.35)

Since
u−1∑

m=0

αm =





1−αu

1−α
, α 6= 1

u, α = 1
(4.36)

it follows that

u−1∑

m=0

exp
[
i
2π

u
(vn− l) m

]

=





1−exp[i 2π
u

(vn−l)u]
1−exp[i 2π

u
(vn−l)]

, exp
[
i2π

u
(vn− l)

]
6= 1

u, exp
[
i2π

u
(vn− l)

]
= 1

(4.37)

=





1−exp[i2π(vn−l)]

1−exp[i 2π
u

(vn−l)]
, exp

[
i2π

u
(vn− l)

]
6= 1

u, 1
u

(vn− l) = −j for some j ∈ Z
(4.38)

=





0, exp
[
i2π

u
(vn− l)

]
6= 1

u, vn + uj = l for some j ∈ Z
(4.39)

= uδn,Sl
(4.40)

where Sl is the set

Sl = {n ∈ Z : ju + nv = l for some j ∈ Z}. (4.41)

Therefore,

gn,l(r)

=
uδn,Sl

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0
ρ (r, ϕ′, z′) exp

[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′

(4.42)

for all n ∈ Z and l ∈ Z which implies that for each layer plane (indexed by l),

only certain Bessel orders are allowed, in particular, those Bessel orders n such

that n ∈ Sl.
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Table 4.1: Allowed pairs of l and n satisfying 0 ≤ l ≤ lmax and −nmax ≤ n ≤ nmax

for lmax = 7 and nmax = 49 for a left-handed helix and for a right-handed helix
where both helices have parameters u = 49 and v = 3.

left hand right hand
l n l n
0 0 0 0
0 49 0 49
0 -49 0 -49
1 16 1 -16
1 -33 1 33
2 32 2 -32
2 -17 2 17
3 48 3 -48
3 -1 3 1
4 15 4 -15
4 -34 4 34
5 31 5 -31
5 -18 5 18
6 47 6 -47
6 -2 6 2
7 14 7 -14
7 -35 7 35

4.3 Properties of the helical selection rule

As is shown in Table 4.1 for the values of u and v that occur in Tobacco Mosaic

Virus (TMV) (Chapter 12), the helical selection rule is a powerful aid to recon-

struction since the large majority of (l, n) pairs are excluded and, furthermore, the

values of l and n allowed by the selection rule differ if the helix is right- versus

left-handed.
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4.3.1 Solving the equation

The selection rule is defined by Eq. 4.41. The task is to determine all n ∈ Z such

that

ju + nv = l (4.43)

for some specific l ∈ Z and any j ∈ Z. Eq. 4.43 is a linear Diophantine Equa-

tion [26, Section 2.5, p. 44]. The fundamental result for such equations is the

following theorem.

Theorem 1 Linear Diophantine Equations [26, Theorem 2.18, p. 44]. Suppose

that a, b ∈ Z with a 6= 0 and b 6= 0 and d is the greatest common divisor of a and

b. If d does not divide c then the equation

ax + by = c (4.44)

has no integral solutions for x and y. If d divides c then Eq. 4.44 has infinitely

many solutions. If x = x0 and y = y0 is one integral solution to Eq. 4.44, then all

integral solutions to Eq. 4.44 are given by

x = x0 + t
b

d
(4.45)

y = y0 − t
a

d
(4.46)

where t ∈ Z.

In the helical problem, it is natural to assume that u and v have greatest

common divisor of 1. Otherwise, let ξ be the greatest common divisor and then

the helical symmetry (u, v, c) is the same as the helical symmetry (u/ξ, v/ξ, c/ξ)

where the second form is more fundamental since the period is shorter. Therefore,

in all that follows, it is assumed that u and v are relatively prime. Then Theorem 1
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guarantees an infinite set of (j, n) pairs that satisfy Eq. 4.43 for each value of l.

This set must then be reorganized to find all pairs of (n, l) that satisfy Eq. 4.43

for some value of j ∈ Z.

The values of n that satisfy the selection rule for fixed l, i.e., the set Sl

(Eq. 4.41), are described in the following theorem.

Theorem 2 Let u ∈ Z and v ∈ Z be relatively prime and fixed. Let l ∈ Z be

fixed. Let q ∈ Z be such that

qv (mod u) = +1. (4.47)

Then the set N defined by

N = {n ∈ Z : ju + nv = l for some j ∈ Z} (4.48)

and the set N ′ defined by

N ′ = {n ∈ Z : n = ql + um for some m ∈ Z} (4.49)

are equal.

Proof: ql (mod u) = q(ju + nv) (mod u) by Eq. 4.48. Furthermore, q(ju +

nv) = (qv)n (mod u) by the definition of equality mod u. In addition, (qv)n

(mod u) = n by the definition of q (Eq. 4.47). Therefore, it follows that ql

(mod u) = n which implies that n = ql + um for some m ∈ Z. ¦

4.3.2 Properties of the selection rule equation

The selection rule has several important properties that can be exploited in order

to reduce computation. Let m ∈ Z.
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1. If l = 0 then n = mu is always a solution, since it results from choosing j = 0.

l = 0 is the case where the helix does not have a handedness. l = 0 and n = 0

is the case where the object has a cylindrical symmetry, i.e., ρ(r, ϕ, z) is a

function of r alone.

2. Let n = n∗ be a solution for l = l∗. Then

(a) n = n∗ + mu is also a solution for l = l∗.

(b) n′ = mn∗ is a solution for l′ = ml∗.

For example,

1 = 49(−2) + 3(33) (4.50)

33× 40 (mod 49) = 46 (4.51)

and therefore

40 = 49(−2) + 3(46) (4.52)

is true. If one value of n is known for l = 1, then all other solutions are known for

all l.

4.3.3 Left-handed versus right-handed selection rule

Let l ∈ Z be fixed. In both the right- and left-handed cases, the values of n are

{n ∈ Z : n = ql + um for some m ∈ Z}. (4.53)

However, the constraint satisfied by q is different in the right- versus left-handed

cases. In particular, for the right-handed case, q must satisfy (Eq. 4.47)

qv (mod u) = +1 (4.54)
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while for the left-handed case, q must satisfy

qv (mod u) = u− 1. (4.55)

The reason for the difference is that the left-handed rule is related to the right-

handed rule by negating v.

4.4 The gn,l(r) and Gn,l(R) functions for the case where the

fundamental model for a helically-symmetric object is

an impulsive atomic model

Suppose that the electron scattering intensity is impulsive, i.e.,

ρ (x) =
Nj∑

j=1

fjδ(x− xj) (4.56)

or, in cylindrical coordinates,

ρ (r, ϕ′, z′) =
Nj∑

j=1

fjδ(z − zj)δ(ϕ− ϕj)δ(r − rj)/r, (4.57)

where the Nj impulses represent one asymmetric unit of the helical symmetry, e.g.,

the Nj impulses are all located in the region 0 ≤ z ≤ c/u and 0 ≤ ϕ ≤ 2π. Then

(Eq. 4.42),

gn,l(r)

=
uδn,Sl

2πc

∫ c/u

z=0

∫ 2π

ϕ=0




Nj∑

j=1

fjδ(z − zj)δ(ϕ− ϕj)δ(r − rj)/r


×

× exp

[
−i

(
nϕ +

2πl

c
z

)]
dϕdz

(4.58)

=
uδn,Sl

2πcr

Nj∑

j=1

fjδ(r − rj) exp

[
−i

(
nϕj +

2πl

c
zj

)]
(4.59)
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for all n ∈ Z and l ∈ Z. Therefore (Eq. 4.17),

Gn,l(R) = 2π
∫ ∞

r=0


uδn,Sl

2πcr

Nj∑

j=1

fjδ(r − rj) exp

[
−i

(
nϕj +

2πl

c
zj

)]
 Jn(2πRr)rdr

(4.60)

= 2π
uδn,Sl

2πc

Nj∑

j=1

fj exp

[
−i

(
nϕj +

2πl

c
zj

)]
Jn(2πRrj). (4.61)

Using Eq. 4.61 in Eq. 4.16 provides an expression for the 3-D Fourier transform

F (R,ψ, ζ) in terms of the atomic locations (rj, ϕj, zj) and scattering strengths fj:

F (R, ψ, ζ)

=
+∞∑

l=−∞




+∞∑
n=−∞


2π

uδn,Sl

2πc

Nj∑

j=1

fj exp
[
−i

(
nϕj +

2πl

c
zj

)]
Jn(2πRrj)


 exp(in(ψ − π/2))


×

×δ

(
ζ − l

c

)

(4.62)

=
+∞∑

l=−∞




+∞∑
n=−∞

uδn,Sl

c

Nj∑

j=1

fjJn(2πRrj) exp
[
i

(
n(ψ − π/2− ϕj)− 2πl

c
zj

)]
 δ

(
ζ − l

c

)

. (4.63)

where lth layer plane in Eq. 4.63 is the −lth layer plane in the Ref. [7, Eq. 8].

4.5 Objects with further symmetries

4.5.1 Cµ symmetry

In addition to helical symmetry, Cµ symmetry may be present. Such symmetry

implies

ρ(r, ϕ, z) = ρ

(
r, ϕ +

2π

µ
m, z

)
(4.64)

for all m ∈ Z. Therefore, this symmetry concerns only the ϕ variable.

20



Any square-integrable function f(ϕ) that is periodic with period 2π has a

Fourier series

f(ϕ) =
+∞∑

n=−∞
fn exp(inϕ) (4.65)

fn =
1

2π

∫ 2π

ϕ=0
f(ϕ) exp(−inϕ)dϕ. (4.66)

In terms of the Fourier series coefficients fn,

f(ϕ) = f

(
ϕ +

2π

µ
m

)
(4.67)

for all m ∈ Z if and only if n 6= µm (m ∈ Z) implies fn = 0.

Define the set

SC
µ = {µm : m ∈ Z}. (4.68)

Then the result of the previous paragraph, combined with Eq. 4.42, implies that

gn,l(r)

=
uδn,Sl

δn,SC
µ

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0
ρ (r, ϕ′, z′) exp

[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′

(4.69)

for all n ∈ Z and l ∈ Z which reduces the number of Bessel orders allowed on any

particular layer plane.

4.5.2 Dµ symmetry

In addition to helical symmetry, Dµ symmetry may be present. Such symmetry

implies Cµ symmetry plus the additional symmetry

ρ(r, ϕ, z) = ρ(r, ϕ,−z). (4.70)
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Therefore, relative to helical plus Cµ symmetry, the additional symmetry concerns

only the z variable.

Any square-integrable function f(z) that is periodic with period c has a Fourier

series

f(z) =
+∞∑

n=−∞
fn exp

(
i
2π

c
nz

)
(4.71)

fn =
1

c

∫ c

z=0
f(z) exp

(
−i

2π

c
nz

)
dz. (4.72)

In terms of the Fourier series coefficients fn,

f(z) = f(−z) (4.73)

if and only if fn = f−n for all n ∈ Z since

fn =
1

c

∫ c

z=0
f(z) exp

(
−i

2π

c
nz

)
dz (4.74)

change variables from z to z′ = −z to get

=
1

c

∫ 0

z′=−c
f(−z′) exp

(
−i

2π

c
n(−z′)

)
dz′ (4.75)

since the integrand is period with period c, any region

of integration of duration c is equivalent and so

=
1

c

∫ c

z′=0
f(−z′) exp

(
−i

2π

c
n(−z′)

)
dz′ (4.76)

which, by applying the symmetry, is equivalent to

=
1

c

∫ c

z′=0
f(z′) exp

(
−i

2π

c
(−n)z′

)
dz′ (4.77)

= f−n. (4.78)

Therefore, there is an additional constraint on the gn,l(r) functions, in particular,

based on Eq. 4.69,

gn,−l(r)

= gn,l(r) (4.79)
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=
uδn,Sl

δn,SC
µ

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0
ρ (r, ϕ′, z′) exp

[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′

(4.80)

for all n ∈ Z and l ∈ Z+ ∪ {0} which constrains the +l and −l layer planes to

share the same gn,l(r) (or, equivalently, Gn,l(R)) functions.

4.5.3 ρ(x) is real valued

If ρ(x) ∈ IR then there is a further constraint on the gn,l(r) (or, equivalently,

Gn,l(R)) functions.

The most elementary implication of ρ(x) ∈ IR is that F (k = 0) ∈ IR since

F (k) is the 3-D Fourier transform of ρ(x). This result follows immediately from

the definition of the Fourier transform evaluated at k = 0, i.e., Eq. 3.1 evaluated

at k = 0. Evaluating F (k = 0) via Eq. 4.16 implies evaluating Eq. 4.16 at R = 0

and ζ = 0 for arbitrary value of ψ. The result is

F (R = 0, ψ, ζ = 0) =
+∞∑

l=−∞

[
+∞∑

n=−∞
Gn,l(0) exp(in(ψ − π/2))

]
δ

(
− l

c

)
. (4.81)

Because the δ function is nonzero only for l = 0 it follows that the only nonzero

contribution is

F (R = 0, ψ, ζ = 0) =

[
+∞∑

n=−∞
Gn,0(0) exp(in(ψ − π/2))

]
δ (0) . (4.82)

From the definition of Gn,l(R) (Eq. 4.17) it follows that

Gn,0(0) = 2π
∫ ∞

r=0
gn,0(r)Jn(0)rdr. (4.83)

Because Jn(0) = 0 for all n ∈ {±1,±2, . . .} it follows that the only nonzero Gn,0(0)

is for n = 0 which implies that

F (R = 0, ψ, ζ = 0) = G0,0(0)δ (0) (4.84)
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so that F (k = 0) is completely determined by G0,0(0). This implies that G0,0(0) ∈
IR for ρ(x) ∈ IR. But more is true, in particular, the definition of gn,l(r) (Eq. 4.3)

evaluated at n = l = 0 gives

g0,0(r) =
1

2πc

∫ c

z=0

∫ 2π

ϕ=0
ρ(r, ϕ, z)dϕdz (4.85)

so ρ(x) ∈ IR implies g0,0(r) ∈ IR which implies G0,0(R) ∈ IR since J0(·) ∈ IR.

Therefore, for ρ(x) ∈ IR, G0,0(R) ∈ IR for all R, not just R = 0.

More generally, take the complex conjugate of Eq. 4.3 to get

[gn,l(r)]
∗ =

[
1

2πc

∫ c

z=0

∫ 2π

ϕ=0
ρ(r, ϕ, z) exp

[
−i

(
nϕ +

2π

c
lz

)]
dϕdz

]∗
(4.86)

=
1

2πc

∫ c

z=0

∫ 2π

ϕ=0

[
ρ(r, ϕ, z) exp

[
−i

(
nϕ +

2π

c
lz

)]]∗
dϕdz (4.87)

which, since ρ∗(x) = ρ(x), implies that

=
1

2πc

∫ c

z=0

∫ 2π

ϕ=0
ρ(r, ϕ, z)

[
exp

[
−i

(
nϕ +

2π

c
lz

)]]∗
dϕdz (4.88)

=
1

2πc

∫ c

z=0

∫ 2π

ϕ=0
ρ(r, ϕ, z) exp

[
−i

(
(−n)ϕ +

2π

c
(−l)z

)]
dϕdz

(4.89)

= g−n,−l(r) (4.90)

for all n ∈ Z and l ∈ Z. Eq. 4.90 implies that

g0,0(r) ∈ IR (4.91)

which in turn implies that

G0,0(R) ∈ IR (4.92)

since Jn(·) ∈ IR in Eq. 4.17. More generally, Eq. 4.90 implies that there is an

additional constraint on the gn,l(r) functions, specifically,

g∗−n,−l(r)

= gn,l(r) (4.93)

=
uδn,Sl

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0
ρ (r, ϕ′, z′) exp

[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′ (4.94)
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for all n ∈ Z and l ∈ Z+ ∪ {0} which constrains the +l and −l layer planes to

have complex-conjugate pairs of gn,l(r) (or, equivalently, Gn,l(R)) functions.

If ρ(x) ∈ IR is combined with Cµ symmetry then

g∗−n,−l(r)

= gn,l(r) (4.95)

=
uδn,Sl

δn,SC
µ

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0
ρ (r, ϕ′, z′) exp

[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′

(4.96)

for all n ∈ Z and l ∈ Z+ ∪ {0} which constrains the +l and −l layer planes to

have complex-conjugate pairs of gn,l(r) (or, equivalently, Gn,l(R)) functions and

further restricts the number of nonzero Bessel orders that are permitted by the

δn,SC
µ

factor. If ρ(x) ∈ IR is combined with Dµ symmetry then g∗−n,−l(r) = gn,l(r)

and gn,−l(r) = gn,l(r) which implies

g∗−n,−l(r)

= gn,−l(r) (4.97)

= gn,l(r) (4.98)

=
uδn,Sl

δn,SC
µ

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0
ρ (r, ϕ′, z′) exp

[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′

(4.99)

for all n ∈ Z and l ∈ Z+∪{0} which constrains the +l and −l layer planes to have

complex-conjugate pairs of gn,l(r) functions, constrains the gn,l(r) functions on a

single layer plane such that gn,l(r) = g∗−n,l(r), and further restricts the number of

nonzero Bessel orders that are permitted by the δn,SC
µ

factor.

In terms of F (R, ψ, ζ), the constraint ρ(x) ∈ IR implies F (k) = F ∗(−k) which

implies F (R, ψ, ζ) = F ∗(R, ψ + π,−ζ).
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CHAPTER 5

MATHEMATICAL MODEL OF THE IMAGE FORMATION

PROCESS

5.1 Images of infinite extent

The image formation model includes the orientation (rotation and translation) of

the object in the microscope, the 2-D projection of the 3-D object, and the convolu-

tion of the 2-D projection with the so-called contrast transfer function (CTF) [27]

of the microscope to include the electron-optical effects of the microscope. Let

ρ(x) (with 3-D Fourier transform F (k)) be the electron scattering function of the

object in the natural coordinates of the object, e.g., the coordinates where z is

the axis of the helix. Let ρ′(x) (with 3-D Fourier transform F ′(k)) be the electron

scattering function of the object after it is rotated to the orientation it has in the

microscope where the rotation is described by Euler angles (α, β, γ). Then

ρ′(x) = ρ(R−1(α, β, γ)x) (5.1)

which implies that

F ′(k) = F (R−1(α, β, γ)k). (5.2)

Let ρ′′(x) (with 3-D Fourier transform F ′′(k)) be the electron scattering function

of the object after it is both rotated and translated so that it is in its final position

in the microscope. Then

ρ′′(x) = ρ′(x− x0) = ρ(R−1(α, β, γ)(x− x0)) (5.3)

which implies that

F ′′(k) = exp(−i2πkTx0)F
′(k) = exp(−i2πkTx0)F (R−1(α, β, γ)k). (5.4)
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The coordinate system in the microscope is chosen so that the 2-D projection is

always in the z direction. Note that this is the coordinate system in the microscope,

not the coordinate system for describing the object. The object coordinate system

is related to the microscope coordinate system by the rotation described by Euler

angles (α, β, γ) and, typically, β is near π/2 so that the long axis of the helix

lies nearly flat on the stage of the microscope. Let σ′(χ) be the resulting 2-D

projection image with 2-D Fourier transform denoted by Σ′(κ). Therefore, by the

projection-slice theorem [28, 29],

Σ′(κ) = F ′′((κT , 0)T ), (5.5)

i.e., F ′′(k) evaluated at the 3-D k vector whose first two components are κ and

whose third component is 0. Therefore,

Σ′(κ) = exp(−i2π(κT , 0)x0)F (R−1(α, β, γ)(κT , 0)T ) (5.6)

= exp(−i2πκT χ0)F (R−1(α, β, γ)(κT , 0)T ) (5.7)

where χ0 ∈ IR2 is the first two components of x0 ∈ IR3. Finally, let σ(χ) be the

ideal (i.e., uncorrupted and infinite in extent) image with 2-D Fourier transform

Σ(κ). Then

Σ(κ) = C(|κ|)Σ′(κ) = C(|κ|) exp(−i2πκT χ0)F (R−1(α, β, γ)(κT , 0)T ) (5.8)

where C(·) is the CTF.

In order to derive an explicit formula combining Eqs. 4.16 and 5.8, it is necessary

to determine the cylindrical coordinates of the 3-D vector R−1(α, β, γ)(κT , 0)T as

a function of κ = (κ1, κ2)
T and (α, β, γ). As is indicated in Table 3.2, these

coordinates are denoted by

k′L = R−1(α, β, γ)(κ1, κ2, 0)T = (k′L1
, k′L2

, k′L3
)T = (R′

L, ψ′L, ζ ′L) (5.9)
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which depends on the details of RL(α, β, γ).

For general k,



kL1

kL2

kL3




= R−1k (5.10)

=




k1(cos α cos β cos γ − sin α sin γ)− k2(cos α cos β sin γ + sin α cos γ) + k3 cos α sin β

k1(sin α cos β cos γ + cos α sin γ) + k2(− sin α cos β sin γ + cosα cos γ) + k3 sin α sin β

−k1 sin β cos γ + k2 sin β sin γ + k3 cos β



.

(5.11)

Converting to cylindrical coordinates gives

RL =
√

k2
L1

+ k2
L2

(5.12)

ψL = arctan(kL2/kL1)

(5.13)

ζL = kL3 (5.14)

= −k1 sin β cos γ + k2 sin β sin γ + k3 cos β. (5.15)

Because (α, β, γ) represent a rotation, it follows that R−1(α, β, γ) is an orthogonal

matrix and therefore

|kL| = |k| (5.16)

but the length of the 3-D vector is not one of the coordinates in cylindrical coor-

dinates. For the case when k = (κT , 0)T , which is needed in Eq. 5.8, the formulas

simplify:

R′L =
√

k′2L1
+ k′2L2

(5.17)

=




[κ1(cos α cosβ cos γ − sin α sin γ)− κ2(cosα cos β sin γ + sin α cos γ)]2

+ [κ1(sinα cosβ cos γ + cos α sin γ) + κ2(− sinα cos β sin γ + cosα cos γ)]2




1/2
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(5.18)

=




κ2
1

[
(cos α cosβ cos γ − sin α sin γ)2 + (sin α cos β cos γ + cos α sin γ)2

]

+κ2
2

[
(cos α cosβ sin γ + sin α cos γ)2 + (− sin α cosβ sin γ + cos α cos γ)2

]

+κ1κ2[−2(cos α cosβ cos γ − sin α sin γ)(cos α cos β sin γ + sin α cos γ)

+2(sin α cos β cos γ + cos α sin γ)(− sin α cos β sin γ + cosα cos γ)]




1/2

(5.19)

=




κ2
1[cos2 α cos2 β cos2 γ + sin2 α sin2 γ − 2 cos α cos β cos γ sin α sin γ

+sin2 α cos2 β cos2 γ + cos2 α sin2 γ + 2 sin α cosβ cos γ cosα sin γ]

+κ2
2[cos2 α cos2 β sin2 γ + sin2 α cos2 γ + 2 cos α cosβ sin γ sin α cos γ

+sin2 α cos2 β sin2 γ + cos2 α cos2 γ − 2 sin α cosβ sin γ cos α cos γ]

+κ1κ22[− cos2 α cos2 β sin γ cos γ − sin α cos α cosβ cos2 γ

+sin α cosα cos β sin2 γ + sin2 α sin γ cos γ

− sin2 α cos2 β sin γ cos γ + sin α cosα cos β cos2 γ

− sinα cos α cosβ sin2 γ + cos2 α sin γ cos γ]




1/2

(5.20)

=




κ2
1

[
cos2 β cos2 γ + sin2 γ

]

+κ2
2

[
cos2 β sin2 γ + cos2 γ

]

+κ1κ22[− cos2 β sin γ cos γ + sin γ cos γ]




1/2

(5.21)

=




κ2
1

(
cos2 β cos2 γ + sin2 γ

)
+ κ2

2

(
cos2 β sin2 γ + cos2 γ

)

+κ1κ22 sin2 β sin γ cos γ




1/2

(5.22)

ψ′L = arctan(k′L2
/k′L1

) (5.23)

= arctan
[
κ1(sinα cos β cos γ + cos α sin γ) + κ2(− sin α cos β sin γ + cos α cos γ)
κ1(cos α cos β cos γ − sin α sin γ)− κ2(cos α cosβ sin γ + sin α cos γ)

]

(5.24)

ζ ′L = k′L3
(5.25)

= −κ1 sin β cos γ + κ2 sin β sin γ. (5.26)

Note from Eq. 5.22 that R′
L is not a function of α. Furthermore, if γ = 0 (please

see Section 5.2), then

R′
L =

√
κ2

1 cos2 β + κ2
2 (5.27)

ψ′L = arctan

[
κ1 sin α cos β + κ2 cos α

κ1 cos α cos β − κ2 sin α

]
. (5.28)

29



Consider the δ function in Eq. 4.16:

δ

(
ζ ′L −

l

c

)
= δ

(
−κ1 sin β cos γ + κ2 sin β sin γ − l

c

)
(5.29)

= δ

(
− sin β cos γ

[
κ1 − κ2 tan γ +

l

c sin β cos γ

])
(5.30)

=
1

| − sin β cos γ|δ
(
κ1 − κ2 tan γ +

l

c sin β cos γ

)
(5.31)

=
1

| sin β cos γ|δ
(
κ1 − κ2 tan γ +

l

c sin β cos γ

)
(5.32)

since δ(at) = (1/|a|)δ(t). Note that the Euler angle β satisfies 0 ≤ β ≤ π so that

sin β ≥ 0 always. However, the Euler angle γ satisfies 0 ≤ γ < 2π so that cos γ

can take either sign and therefore the absolute value signs are necessary. Using

Eq. 5.32 in Eq. 4.16 and the result in Eq. 5.8 implies that

Σ(κ) =
1

| sin β cos γ|C(|κ|) exp(−i2πκT χ0)
+∞∑

l=−∞

[
+∞∑

n=−∞
Gn,l(R′L) exp(in(ψ′L − π/2))

]
×

× δ

(
κ1 − κ2 tan γ +

l

c sin β cos γ

)
(5.33)

for structures with no symmetry and

Σ(κ) =
1

| sinβ cos γ|C(|κ|) exp(−i2πκT χ0)
+∞∑

l=−∞

[
+∞∑

n=−∞
δn,Sl

Gn,l(R′L) exp(in(ψ′L − π/2))

]
×

× δ

(
κ1 − κ2 tan γ +

l

c sin β cos γ

)
(5.34)

for objects with helical symmetry where R′
L and ψ′L are defined as functions of

κ1, κ2, α, β, and γ by Eqs. 5.22 and 5.24, respectively. For an impulsive electron

scattering intensity, use of Eq. 4.61 in Eq. 5.34 or, equivalently, use of Eq. 5.32 in

Eq. 4.63 followed by using the result in Eq. 5.8, provides a formula for the 2-D

Fourier transform Σ(κ) of the image in terms of the atomic locations (rj, ϕj, zj)

and scattering strengths fj for a helical object,

Σ(κ) =
1

| sin β cos γ|C(|κ|) exp(−i2πκT χ0)×

×
+∞∑

l=−∞




+∞∑
n=−∞

uδn,Sl

c

Nj∑

j=1

fjJn(2πR′Lrj) exp
[
i

(
n(ψ′L − π/2− ϕj)− 2πl

c
zj

)]
×

× δ

(
κ1 − κ2 tan γ +

l

c sin β cos γ

)
, (5.35)
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where R′
L and ψ′L are defined as functions of κ1, κ2, α, β, and γ by Eqs. 5.22

and 5.24, respectively.

5.2 Windowed images [1, 2, 3]

The real-space 3-D cube (2-D image) for an ideal helix is periodic along the axis

of the helix and, correspondingly, the reciprocal-space 3-D cube (2-D image) has

layer planes or layer lines represented by, for example, the δ functions of Eq. 4.16

(Eqs. 5.33–5.35). While the electron micrograph will show the entire width of

the helix, it will not, of course, show the entire infinite length of the helix and

therefore it is inevitable that processing must be based on windowed images. In

addition to being realistic, windowing provides the computational advantage that

the impulsive layer line is broadened to a smooth function that can be represented

numerically. Because the electron micrograph shows the entire width of the helix

but only a part of its length, the window that is used in this document is infinite

in the width direction but finite in the length direction. The use of infinite width

simplifies the mathematics, as will be shown in the sequel, because it leads to a δ

function in κ2.

Let µ(χ) and M(κ) denote the real-space and reciprocal-space representations

of the window, respectively. Define µ(χ) by

µ(χ) =





1 |χ1| ≤ w/2

0 otherwise
(5.36)

where w is the width of the window. In the calculations of this document, if ∆

is the sampling interval of the image and N1 is the number of pixels in the χ1
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direction in the image then w = N1∆/2. Correspondingly,

M(κ)

=
∫

µ(χ) exp(−i2πκT χ)d2χ (5.37)

=

[∫ +w/2

χ1=−w/2
exp(−i2πκ1χ1)dχ1

] [∫ +∞

χ2=−∞
exp(−i2πκ2χ2)dχ2

]
(5.38)

=
[

1

−i2πκ1

exp(−i2πκ1χ1)|+w/2
χ1=−w/2

]
[δ(κ2)] (5.39)

= δ(κ2)
1

−i2πκ1

[exp(−i2πκ1w/2)− exp(i2πκ1w/2)] (5.40)

= δ(κ2)
1

−i2πκ1

[−2i sin(2πκ1w/2)] (5.41)

= δ(κ2)
1

πκ1

sin(πκ1w) (5.42)

= δ(κ2)w
sin(πκ1w)

πκ1w
(5.43)

= δ(κ2)w sinc(κ1w) (5.44)

where sinc(x) = sin(πx)/(πx). Let µ(χ) and M(κ) denote the real-space and

reciprocal-space representations of the windowed image, respectively. Therefore,

y(χ) = µ(χ)σ(χ) (5.45)

which implies that

Y (κ)

= M(κ) ∗ Σ(κ) (5.46)

=
∫

M(κ′)Σ(κ− κ′)d2κ′ (5.47)

=
∫ +∞

κ′1=−∞

∫ +∞

κ′2=−∞
δ(κ′2)w sinc(κ′1w)Σ

(
(κ1 − κ′1, κ2 − κ′2)

T
)

dκ′1dκ′2 (5.48)

=
∫ +∞

κ′1=−∞
w sinc(κ′1w)Σ

(
(κ1 − κ′1, κ2)

T
)

dκ′1 (5.49)

where ∗ indicates convolution (here, 2-D convolution). The expressions for Σ(κ)

(e.g., Eqs. 5.33–5.35) are all of the form

Σ(κ) = Σ(a)(κ; β, γ, χ0)
+∞∑

l=−∞
Σ

(b)
l (κ; α, β, γ)δ

(
κ1 − κ2 tan γ +

l

c sin β cos γ

)
.

(5.50)
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Inserting Eq. 5.50 in Eq. 5.49 gives

Y (κ)

=
∫ +∞

κ′1=−∞
w sinc(κ′1w)Σ(a)

(
(κ1 − κ′1, κ2)

T ; β, γ, χ0

)
×

×
+∞∑

l=−∞
Σ

(b)
l

(
(κ1 − κ′1, κ2)

T ; α, β, γ
)
δ

(
κ1 − κ′1 − κ2 tan γ +

l

c sin β cos γ

)
dκ′1

(5.51)

=
+∞∑

l=−∞

∫ +∞

κ′1=−∞
w sinc(κ′1w)Σ(a)

(
(κ1 − κ′1, κ2)

T ; β, γ, χ0

)
×

× Σ
(b)
l

(
(κ1 − κ′1, κ2)

T ; α, β, γ
)
δ

(
κ1 − κ′1 − κ2 tan γ +

l

c sin β cos γ

)
dκ′1.

(5.52)

Using the δ function to evaluate the κ′1 integral implies that

κ′1 = κ1 −
(
κ2 tan γ − l

c sin β cos γ

)
(5.53)

or, equivalently,

κ1 − κ′1 = κ2 tan γ − l

c sin β cos γ
(5.54)

so that

Y (κ) =
+∞∑

l=−∞
w sinc

((
κ1 −

(
κ2 tan γ − l

c sin β cos γ

))
w

)
×

× Σ(a)




(
κ2 tan γ − l

c sin β cos γ
, κ2

)T

; β, γ, χ0


×

× Σ
(b)
l




(
κ2 tan γ − l

c sin β cos γ
, κ2

)T

; α, β, γ


 . (5.55)

Define

K1(l; κ2, c, β, γ) = κ2 tan γ − l

c sin β cos γ
. (5.56)

K1 is the κ1 location of the lth layer line as a function of the value of κ2 and the

period (c) and orientation (β and γ) of the helix. If the long axis of the helix is

aligned with the χ1 axis of the image, then γ = 0. This case is the most important
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case because most experimental images are preprocessed so that the axis of the

helix is in the χ1 direction. Furthermore, this is the only case used in this document

in the synthetic image results of Chapter 15. In the case of γ = 0, K1 simplifies and

loses its dependence on κ2 because the layer lines are now along the κ2 direction.

The result is

K1(l; κ2, c, β, γ = 0) = − l

c sin β
. (5.57)

Using Eq. 5.56 in Eq. 5.55 gives

Y (κ) =
+∞∑

l=−∞
w sinc ((κ1 −K1(l; κ2, c, β, γ)) w)×

× Σ(a)
(
(K1(l; κ2, c, β, γ), κ2)

T ; β, γ, χ0

)
×

× Σ
(b)
l

(
(K1(l; κ2, c, β, γ), κ2)

T ; α, β, γ
)
. (5.58)

For the case of γ = 0, Eqs. 5.33, 5.34, and 5.35, become

Y (κ) =
1

| sin β cos γ|
+∞∑

l=−∞
C




√√√√
(

l

c sin β

)2

+ κ2
2


×

× exp

(
−i2π

(
− l

c sin β
xL1 + κ2xL2

))
×

×
[

+∞∑

n=−∞
Gn,l(R

′
L) exp(in(ψ′L − π/2))

]
w sinc

((
κ1 +

l

c sin β

)
w

)

(5.59)

for structures with no symmetry,

Y (κ) =
1

| sin β cos γ|
+∞∑

l=−∞
C




√√√√
(

l

c sin β

)2

+ κ2
2


×

× exp

(
−i2π

(
− l

c sin β
xL1 + κ2xL2

))
×

×
[

+∞∑

n=−∞
δn,Sl

Gn,l(R
′
L) exp(in(ψ′L − π/2))

]
×

×w sinc

((
κ1 +

l

c sin β

)
w

)
(5.60)
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for objects with helical symmetry, and

Y (κ) =
1

| sin β cos γ|
+∞∑

l=−∞
C




√(
l

c sinβ

)2

+ κ2
2


×

× exp
(
−i2π

(
− l

c sin β
xL1 + κ2xL2

))
×

×



+∞∑
n=−∞

uδn,Sl

c

Nj∑

j=1

fjJn(2πR′Lrj) exp
[
i

(
n(ψ′L − π/2− ϕj)− 2πl

c
zj

)]
×

× w sinc
((

κ1 +
l

c sin β

)
w

)
(5.61)

for objects with helical symmetry and an impulsive electron scattering inten-

sity where R′
L and ψ′L are defined as functions of κ1 = K1(l; κ2, c, β, γ = 0) =

−l/(c sin β), κ2, α, β, and γ = 0 by Eqs. 5.22 and 5.24, respectively, or Eqs. 5.27

and 5.28, respectively.

Note from Eqs. 5.27 and 5.28 that R′
L depends on β but not α while ψ′L depends

on both α and β except for the 0th layer line (i.e., l = 0) in which case κ1 = 0 so that

ψ′L depends on α but not β. These results have implications for the computational

complexity of the algorithm (please see Chapter 9.3).
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CHAPTER 6

REPRESENTING THE BESSEL ORDER TERMS BY A LINEAR

SUPERPOSITION OF ORTHONORMAL BASIS FUNCTIONS

The goal of structure determination is to determine gn,l(r) or, equivalently, Gn,l(R),

for each (n, l) pair subject to any selection rule or other constraint imposed by a

symmetry condition. The novel approach of this document is to assume that gn,l(r)

is nonzero only in the region r1 ≤ r ≤ r2 in which case gn,l(r) can be represented

as a weighted sum of basis functions which are denoted by hn,p(r):

gn,l(r) =
∞∑

p=1

dl,n,phn,p(r). (6.1)

While r1 = 0 is allowed, r2 = ∞ is not allowed. In this framework, the goal of

structure determination is to estimate the values of the unknown weights dl,n,p for

some range of indices (l, n, p). Representing gn,l(r) by Eq. 6.1 implies that

Gn,l(R) =
∞∑

p=1

dl,n,pHn,p(R) (6.2)

where Hn,p(r) is the nth order cylindrical Hankel transform (defined in Eqs. 3.3

and 3.4) of hn,p(r):

Hn,p(R) = 2π
∫ ∞

r=0
hn,p(r)Jn(2πRr)rdr. (6.3)

With the assumptions of Eqs. 6.1 and 6.2, the previous formulas can be rewrit-

ten in terms of the unknown weights dl,n,p: Eq. 4.2 (real-space 3-D cube, periodicity

only) becomes

ρ(r, ϕ, z) =
+∞∑

l=−∞

+∞∑

n=−∞



∞∑

p=1

dl,n,phn,p(r)


 exp

[
i
(
nϕ +

2π

c
lz

)]
, (6.4)

Eq. 4.16 (reciprocal-space 3-D cube, periodicity only) becomes

F (R,ψ, ζ) =
+∞∑

l=−∞




+∞∑

n=−∞



∞∑

p=1

dl,n,pHn,p(R)


 exp(in(ψ − π/2))


 δ

(
ζ − l

c

)
, (6.5)
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Eq. 5.33 (reciprocal-space 2-D image, periodicity only) becomes

Σ(κ) =
1

| sin β cos γ|C(|κ|) exp(−i2πκT χ0)×

×
+∞∑

l=−∞
δ

(
κ1 − κ2 tan γ +

l

c sin β cos γ

)
×

×



+∞∑

n=−∞



∞∑

p=1

dl,n,pHn,p(R
′
L)


 exp(in(ψ′L − π/2))


 , (6.6)

Eq. 5.34 (reciprocal-space 2-D image, helical symmetry) becomes

Σ(κ) =
1

| sin β cos γ|C(|κ|) exp(−i2πκT χ0)×

×
+∞∑

l=−∞
δ

(
κ1 − κ2 tan γ +

l

c sin β cos γ

)
×

×



+∞∑

n=−∞
δn,Sl



∞∑

p=1

dl,n,pHn,p(R
′
L)


 exp(in(ψ′L − π/2))


 , (6.7)

Eq. 5.59 (reciprocal-space 2-D windowed image, only periodicity) becomes

Y (κ)

=
1

| sin β cos γ|
+∞∑

l=−∞
C




√√√√
(

l

c sin β

)2

+ κ2
2


×

× exp

(
−i2π

(
− l

c sin β
xL1 + κ2xL2

))
×

×



+∞∑

n=−∞



∞∑

p=1

dl,n,pHn,p(R
′
L)


 exp(in(ψ′L − π/2))


×

×w sinc

((
κ1 +

l

c sin β

)
w

)
, (6.8)

and Eq. 5.60 (reciprocal-space 2-D windowed image, helical symmetry) becomes

Y (κ)

=
1

| sin β cos γ|
+∞∑

l=−∞
C




√√√√
(

l

c sin β

)2

+ κ2
2


×

× exp

(
−i2π

(
− l

c sin β
xL1 + κ2xL2

))
×
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×



+∞∑

n=−∞
δn,Sl



∞∑

p=1

dl,n,pHn,p(R
′
L)


 exp(in(ψ′L − π/2))


×

×w sinc

((
κ1 +

l

c sin β

)
w

)
(6.9)

where R′
L and ψ′L are defined as functions of κ1 = K1(l; κ2, c, β, γ = 0) =

−l/(c sin β), κ2, α, β, and γ = 0 by Eqs. 5.22 and 5.24, respectively, and

χ0 = (xL1 , xL2)
T (6.10)

The key feature of all of these equations is that they are linear in the unknown

weights dl,n,p though the coefficients of the linear operator depend on the unknown

parameters (u, v, c) and (α, β, γ, xL1 , xL2). After the infinite sums are truncated,

let Nd be the number of (l, n, p) triples that are used. It is most natural to consider

only triples which satisfy the helical selection rule although that is not necessary

in order to make the following definitions. For computation, the reciprocal-space

2-D image will be sampled at values κξ and let Ny be the number of samples.

Array the values of dl,n,p in a Nd-dimensional vector denoted by d and the values

of Y (κξ) in a Ny-dimensional vector denoted by y. Define

τ = (α, β, γ, xL1 , xL2) (6.11)

and

η = (u, v, c). (6.12)

Then Eq. 6.9 is equivalent to

y = L(τ, η)d (6.13)

where the matrix L, with dimensions Ny ×Nd, has elements

(L(τ, η))ξ,(l,n,p)

=
1

| sin β cos γ|C



√√√√
(

l

c sin β

)2

+ κ2
ξ,2


 exp

(
−i2π

(
− l

c sin β
xL1 + κξ,2xL2

))
×
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× δn,Sl
dl,n,pHn,p(R

′
L) exp(in(ψ′L − π/2))w sinc

((
κξ,1 +

l

c sin β

)
w

)

(6.14)

where κξ = (κξ,1, κξ,2)
T . R′

L and ψ′L are defined as functions of κξ,1 =

K1(l; κξ,2, c, β, γ = 0) = −l/(c sin β), κξ,2, α, β, and γ = 0 by Eqs. 5.22 and 5.24,

respectively.

6.1 Defining hn,p(r)

The goal is that for each n, the functions hn,p(r) (p ∈ {1, 2, . . .}) form a complete

orthonormal basis for square-integrable functions on r1 ≤ r ≤ r2. The choices

made in this section yield hn,p(r) ∈ IR and Hn,p(R) ∈ IR.

6.1.1 The case where r1 = 0 and ρ(x = 0) 6= 0

While basis functions exist for this case, they are not developed in this document.

6.1.2 The case where r1 = 0 and ρ(x = 0) = 0 or where r1 > 0

The Sturm-Liouville problem

The basis functions are defined by a Sturm-Liouville problem for the second-order

ordinary differential equation that is one definition of cylindrical Bessel functions.

From the general theory of Sturm-Liouville problems [30, Chap. 7], the result-

ing countably-infinite set of functions is a complete basis in the space of square
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integrable functions on the chosen subset of IR. Let primed and double primed

functions denote first and second derivatives, respectively. The differential equa-

tion for cylindrical Bessel functions is [25, p. 550]

r2z′′(r) + rz′(r) + (r2 − n2)z(r) = 0. (6.15)

Define

y(r) = z(γr) (6.16)

or, equivalently,

y(r/γ) = z(r). (6.17)

From Eq. 6.16 and the chain rule it follows that the derivatives of y are

y′(r) = z′(γr)γ (6.18)

y′′(r) = z′′(γr)γ2. (6.19)

Therefore

y′(r)/γ = z′(γr) (6.20)

y′′(r)/γ2 = z′′(γr) (6.21)

and therefore

y′(r/γ)/γ = z′(r) (6.22)

y′′(r/γ)/γ2 = z′′(r). (6.23)

Substituting Eqs. 6.17, 6.22, and 6.23 into Eq. 6.15 gives

r2y′′(r/γ)/γ2 + ry′(r/γ)/γ + (r2 − n2)y(r/γ) = 0 (6.24)

which implies

(γr)2y′′(r)/γ2 + γry′(r)/γ + ((γr)2 − n2)y(r) = 0 (6.25)
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which implies

r2y′′(r) + ry′(r) + (γ2r2 − n2)y(r) = 0. (6.26)

Since the general solution to Eq. 6.15 is

c1Jn(r) + c2Yn(r) (6.27)

it follows from Eq. 6.16 that the general solution to Eq. 6.26, which is the equation

to which Sturm-Liouville theory will be applied, is

hn(r) = c1Jn(γnr) + c2Yn(γnr) (6.28)

where c1 and c2 are arbitrary constants. Impose the boundary conditions

y(a) = 0, y(b) = 0 (6.29)

on Eq. 6.26 where a and b rather than r1 and r2, respectively, are used in order

to simplify notation. Since hn(r) must satisfy the boundary conditions, if follows

that

c1Jn(γna) + c2Yn(γna) = 0 (6.30)

c1Jn(γnb) + c2Yn(γnb) = 0 (6.31)

or equivalently that




Jn(γna) Yn(γna)

Jn(γnb) Yn(γnb)







c1

c2


 =




0

0


 . (6.32)

From Eq. 6.32 it follows that a necessary and sufficient condition for Eq. 6.28 to

represent the solution of the Sturm-Liouville problem is that

det




Jn(γna) Yn(γna)

Jn(γnb) Yn(γnb)


 = 0 (6.33)
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or equivalently that

Jn(γna)Yn(γnb)− Jn(γnb)Yn(γna) = 0. (6.34)

Eq. 6.34 has an countably-infinite number of solutions for γn which are labeled γn,p

for p ∈ {1, 2, . . .}. When the pth solution is used, the resulting basis function is

labeled hn,p(r). The hn,p(r) function is only defined up to a multiplicative scaling.

Rearrange Eq. 6.30 to give

c1 = −c2
Yn(γn,pa)

Jn(γn,pa)
. (6.35)

Set

c2 = Jn(γn,pa) (6.36)

in which case it follows that

c1 = −Yn(γn,pa). (6.37)

Then,

hn,p(r) =





[−Yn(γn,pa)Jn(γn,pr) + Jn(γn,pa)Yn(γn,pr)] /Mn,p, a ≤ r ≤ b

0, otherwise
(6.38)

where Mn,p is an arbitrary scaling.

Mathematical facts concerning Bessel functions

There are two key indefinite integrals [31, Eq. 7.14.1 (9)-(10)]:

∫
wν(αz)Wν(βz)zdz

= z(β2 − α2)−1 [βWν+1(βz)wν(αz)− αWν(βz)wν+1(αz)] (6.39)
∫

wν(αz)Wν(αz)zdz

=
1

4
z2 [2wν(αz)Wν(αz)− wν+1(αz)Wν−1(αz)− wν−1(αz)Wν+1(αz)](6.40)
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where wν(·) and Wν(·) are any cylindrical Bessel functions of the first, second, or

third kinds of the same order ν. There are four key recursions [31, 7.2.7 (54)–(57)]

for Bessel functions of the first, second, or third kinds. Similar relationships hold

for modified Bessel functions. In terms of Wν(·) which is any cylindrical Bessel

function of the first, second, or third kind of order ν, the recursions are

zW ′
ν(z) + νWν(z) = zWν−1(z), (6.41)

zW ′
ν(z)− νWν(z) = −zWν+1(z), (6.42)

Wν−1(z) + Wν+1(z) = 2νz−1Wν(z), (6.43)

Wν−1(z)−Wν+1(z) = 2W ′
ν(z).. (6.44)

Eqs. 6.41 and 6.42 can be rearranged to give for Jν(·) and Yν(·), specifically,

Jv−1(z) = J ′v(z) +
v

z
Jv(z) (6.45)

Jv+1(z) = −J ′v(z) +
v

z
Jv(z) (6.46)

Yv−1(z) = Y ′
v(z) +

v

z
Yv(z) (6.47)

Yv+1(z) = −Y ′
v(z) +

v

z
Yv(z). (6.48)

The calculation of the normalizer

The functions defined by Eq. 6.38 are orthogonal but not necessarily orthonormal.

To achieve orthonormality, it is necessary to chose a particular definition of Mn,p.

The requirement is that
∫ ∞

r=0
h2

n,p(r)rdr = 1 (6.49)

which implies that

M2
n,p =

∫ ∞

r=0
[−Yn(γn,pa)Jn(γn,pr) + Jn(γn,pa)Yn(γn,pr)]

2 rdr. (6.50)
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This integral can be done explicitly by using Eqs. 6.39–6.40 and 6.45–6.48 as is

shown in Appendix A. The result is

M2
n,p =

1

2

{
b2[Jn(γn,pa)Y ′

n(γn,pb)− J ′n(γn,pb)Yn(γn,pa)]2

− a2[Jn(γn,pa)Y ′
n(γn,pa)− J ′n(γn,pa)Yn(γn,pa)]2

}
. (6.51)

The calculation of Hn,p(R)

The function Hn,p(R) is the nth order cylindrical Hankel transform (Eqs. 3.3

and 3.4) of the function hn,p(r). Because of Eq. 6.39, the cylindrical Hankel trans-

form can be computed symbolically which is the primary reason for using the

Bessel function differential equation in the Sturm-Liouville problem. As is shown

in more detail in Appendix B, the cylindrical Hankel transform is

Hn,p(R) = 2π
∫ b

a
hn,p(r)Jn(2πRr)rdr (6.52)

= 2π
bh′n,p(b)Jn(2πRb)− ah′n,p(a)Jn(2πRa)

(2πR)2 − γ2
n,p

(6.53)

where h′n,p(·) is the derivative of hn,p(·). If 2πR = γn,p then, by L’Hospital’s Rule,

Hn,p(R) = π
b2h′n,p(b)J

′
n(γn,pb)− a2h′n,p(a)J ′n(γn,pa)

γn,p

. (6.54)

6.2 Computing dl,n,p from a known ρ(x), including the case

of an impulsive ρ(x)

Since dl,n,p and hn,p(r) are related by Eq. 6.1 and hn,p(r) are a complete orthonormal

basis, it follows that

dl,n,p =
∫ ∞

r=0
gn,l(r)hn,p(r)rdr. (6.55)
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Then, for the case of helical symmetry, by Eq. 4.42 it follows that

dl,n,p

=
∫ ∞

r=0

uδn,Sl

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0
ρ (r, ϕ′, z′) exp

[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′hn,p(r)rdr.

(6.56)

When ρ(x) is impulsive, i.e., Eq. 4.56, it follows that

dl,n,p =
uδn,Sl

2πc

Nj∑

j=1

fj exp

[
−i

(
nϕj +

2πl

c
zj

)]
hn,p(rj). (6.57)
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CHAPTER 7

STATISTICAL NOISE MODEL

An Additive White Gaussian Noise (AWGN) model is used to describe the un-

certainty of pixel values in the real-space 2-D image. Therefore, since real- and

reciprocal-space 2-D images are related by a 2-D Fourier transform, the noise in

reciprocal space is also AWGN. Continue with the vector notation for y and d that

was introduced in Section 6 and use similar notation for the noise which is denoted

by w(χ) in real space and W (κ) in reciprocal space. Then

y = L(τ, η)d + w (7.1)

where w is the vector of pixel noises and τ (η) was defined in Eq. 6.11 (Eq. 6.12).

Let N(µ, Q)(x) be the multivariate Gaussian probability density function (pdf)

with mean µ and covariance Q. Then w has pdf N(0, K) where K is proportional

to the identity matrix. Since the theory to be developed in the following sections

does not depend on the structure of K, beyond the fact that K is a covariance

matrix and therefore K = KT and K > 0, the general notation of an arbitrary

covariance matrix K is used. However, in the software, the fact that K is propor-

tional to the identity can be exploited to decrease the computational burden. The

additive Gaussian model is used rather than alternative models, such as Poisson

models, which more accurately describe at least the electron-counting parts of the

physics of the microscope. The reason for using the additive Gaussian model is

that it greatly reduces the computation in the maximum likelihood (ML) estimator

for dl,n,p when the ML estimator is computed by an expectation maximization al-

gorithm because the maximization step of the algorithm is to maximize a quadratic

form which can be done by solving a linear system of equations. When multiple

images are considered, it is natural to consider the noise present in each image to
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be independent. This independence assumption allows the joint pdf for all of the

images conditional on the values of (u, v, c) and (α, β, γ, xL1 , xL2) for each image

to factor. The factorization reduces computation in the computation of the ML

estimate by expectation maximization in the expectation step.
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CHAPTER 8

INVERSE PROBLEM

8.1 The maximum likelihood (ML) estimators

The approach of this document is to simultaneously solve for the parameters that

define the helical symmetry and the 3-D structure by using a maximum likelihood

(ML) estimator. The image-formation probability density function (pdf) is

p(y|α, β, γ, xL1 , xL2 , u, v, c, d) = N(L(α, β, γ, xL1 , xL2 , u, v, c)d,K)(y) (8.1)

where xL1 and xL2 are defined in Eq. 6.10. The parameters to be estimated are

(u, v, d). The remaining parameters,

z = (α, β, γ, xL1 , xL2 , c), (8.2)

are treated as nuisance parameters which means that a priori pdfs for these pa-

rameters are defined and used to integrate these parameters out of the likelihood

function. Specifically, the likelihood function to be maximized with respect to

(u, v, d) is

p(y|u, v, d) =
∫

z
p(y|z, u, v, d)dz (8.3)

and so the estimate is

̂u, v, d = arg max
u,v,d

p(y|u, v, d). (8.4)

The nuisance parameters for different images are assumed to be independent ran-

dom variables. The motivation for the independence assumption is complicated.

The orientational parameters (α, β, γ, xL1 , xL2) are probably independent from ob-

ject to object. However, more is assumed. In particular, most biological helical

objects are imperfect helices. Therefore, most processing of an image of a heli-

cal object is done by first dividing the image into subimages which are sufficiently
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Table 8.1: Nuisance parameter ranges and a priori probability density functions:
α describes rotation around the long axis (z-axis) of the helix, β describes how
the helix is tilted out of the plane of the microscope stage, γ describes rotation
around the z-axis in the plane of the microscope stage, and xL1 and xL2 describe the
translational shift along x1 and x2 directions, respectively. 0 ≤ β0 < π

2
, 0 ≤ γ0 < π,

0 ≤ ε ¿ 1.

nuisance parameter pdf interval
α

uniform

[0, 2π)
β [π

2
− β0,

π
2

+ β0]
γ [0, γ0) ∪ [2π − γ0, 2π)

xL1 [0, (c sin β)/u)
xL2 [−NxL2

∆, NxL2
∆]

c [(1− ε)c0, (1 + ε)c0]

small such that the assumption of perfect helical symmetry is accurate. We assume

that the orientational parameters (α, β, γ, xL1 , xL2) for each subimage are indepen-

dent while, in fact, there is some dependence because the imperfect helical object

does have some helical character that extends over the entire image. However, the

dependence is difficult to quantify. For the problems of interest in this document

all images (and therefore all subimages) share the same nominal helical symmetry,

where the word “nominal” is used in recognition of the fact that the symmetry

is imperfectly obeyed. Therefore, (u, v, c) are nominally the same for all images

(including all subimages). For (u, v) this characteristic is enforced exactly and

there is only one (u, v) pair for all images (including all subimages). However, for

c this characteristic is relaxed and c is treated like an orientational parameter and

assumed to be independent from subimage to subimage. The nuisance parameters

have a priori pdfs that are tabulated in Table 8.1.

This approach is similar to the approach of Refs. [28, 29, 32] and, in particular,

the fact that the nuisance parameters for different subimages are independent

implies that it is a Case 1 problem in the classification of Ref. [28]. The approach
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is also similar to the approach of Ref. [1] except that the method of describing the

object by a finite number of parameters is completely different (compare Eq. 6.14

with the corresponding equations in Ref. [33]) and that Ref. [1] also considers the

situation where one value of c is common to all images (including all subimages),

i.e., so that c is treated like (u, v) rather than like (α, β, γ, xL1 , xL2).

To simplify the notation, let

ω = (u, v). (8.5)

There are several reasons why ω is chosen not to be a nuisance parameter. First,

eventually the value of ω is necessary in order to use the estimated coefficients d

to reconstruct the helical object, though its value could be estimated in a second

step analogous to what is done for c [34]. Second, it is difficult to specify the joint

probability mass function on the u and v components of ω. Third, changing u

and v changes the selection rule which implies a different set of (l, n, p) indices

are permitted and this change would complicate the data structure for d. Fourth,

estimating ω rather than treating it as a nuisance parameter leads to software that

can easily be parallelized, which leads to decreased wall clock time. In order to

treat all values of ω equivalently, the same number of dl,n,p coefficients are estimated

for each value of ω (i.e., Nd is constant) even though the coefficients contribute

to different sets of Bessel orders due to the different selection rules implied by

different values of ω.

Soft constraints of packing in the helical object limit the allowed pairs of

(u, v) [1]. The resulting list has less than 100 elements and therefore it is prac-

tical to compute the maximum likelihood estimate (Eq. 8.4) by computing the

maximum over d for fixed (u, v) for each element in the list and finally taking the
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maximum of the maxima, that is,

ω̂, d = arg max
ω,d

p(y|ω, d) (8.6)

can be implemented by

ω̂ = arg max
ω

[
max

d
p(y|ω, d)

]
(8.7)

d̂ = arg max
d

p(y|ω̂, d). (8.8)

Pseudo-code implementing this approach, where the pseudo-code includes results

from Chapter 9, is:

pseudo code

for ω in ω list do
while not converged (d0, d∗) do

d0 = d∗
[T, g] = getTg(ω, d0, y)
Solve Td = g for d∗

end while
Store d∗ and p(y|ω, d∗) indexed by ω

end for
ω̂ = index of the largest p(y|ω, d∗)
d̂ = d∗(ω̂)

8.2 Uniqueness of the inverse problem

If only one image is recorded of each object then a unique reconstruction is not

possible since it is not possible to distinguish ρ(x) from ρ′(x) = ρ(−x). If ρ(x)

has right-handed helical symmetry then ρ′(x) has left-handed helical symmetry.

Therefore, if it is possible to achieve atomic resolution, which is unusual, the

correct choice can be made since all biological amino acids are left handed and so

which ever of ρ(x) and ρ′(x) show left-handed amino acids is the correct structure.
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However, if multiple images of the same object are recorded where the projection

directions of the different images are different and at least the relative projection

directions are known, then it is possible to compute a unique reconstruction [22].

In terms of gn,l(r) functions, the relation between right- and left-handed helical

objects is gn,l(r) = g′n,−l(r). Using this fact, it is always possible to assume that

the object is right handed (or left handed) and then perform the above operation

to reverse the hand if the object is later determined to be left handed (or right

handed).
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CHAPTER 9

THE EXPECTATION MAXIMIZATION (EM) ALGORITHM FOR

COMPUTING MAXIMUM LIKELIHOOD (ML) ESTIMATORS

9.1 General comments

A variety of nonlinear programming algorithms are available to maximize the like-

lihood defined by Eq. 8.3. Most algorithms compute a search direction and then

perform a line search along that direction. The line search requires appropriate

step sizes, and choosing step sizes has been a challenge in electron microscopy

problems [35]. Because our problem formulation has natural nuisance variables

and expectation maximization (EM) algorithms do not require step sizes, we have

computed the maximum likelihood (ML) estimate via an EM algorithm where the

natural nuisance parameters are used.

EM algorithms are local search algorithms. As is described in Chapter 13, we

address that issue by testing multiple different initial conditions.

EM algorithms are iterative algorithms. Therefore, the EM algorithm requires

a convergence test which is also described in Chapter 13.

At each iteration, an EM algorithm performs both an expectation and a max-

imization step. In our problem, the expectation step, which integrates out the

nuisance parameters given their known pdfs, represents the bulk of the compu-

tation and the maximization step, a maximization over the unknown parameter

values in order to compute the next in the sequence of parameter value estimates,

is a simple computation, in particular, the solution of a linear system. As discussed

in Chapter 7, this simplicity follows from our assumption of a Gaussian model and
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is one of the primary motivations for the Gaussian assumption.

9.2 Detailed results

Let yi for i ∈ {1, . . . , Nv} denote the total set of subimages. Using Eq. 7.1 for each

subimage, it follows that,

yi = Li(zi, ω)d + wi (9.1)

where wi is independent and identically distributed with pdf N(0, Ki). Let y

and z denote the vector representation of all yi and all zi for i ∈ {1, ..., Nv},
respectively. Let Ny be the total number of pixels in an image. (In detail, we

divide a complex-valued pixel into real and imaginary parts and count the resulting

number of real numbers after accounting for the conjugate symmetry implied by

ρ(x) ∈ IR). Recall that ω is to be estimated by ML using an EM algorithm in

which zi (i ∈ {1, . . . , Nv}) is the nuisance parameter to be integrated out for the

ith image. When multiple images are processed, the generalization of Eq. 8.1 is

p(y|z, ω, d) =
Nv∏

i=1

N(Li(zi, ω)d,Ki)(yi). (9.2)

The expectation step in the EM algorithm is to compute

Q(ω, d|ω0, d0, y) =
∫

z
ln [p(y, z|ω, d)] p(z|ω0, d0, y)dz. (9.3)

It can be shown that

Q(ω, d|ω0, d0, y) =
Nv∏

i=1

Qi(ω, d|ω0, d0, y) (9.4)

where

Qi(ω, d|ω0, d0, y) =

∫
zi

ln [p(yi|zi, ω, d)p(zi)] p(yi|zi, ω0, d0)p(zi)dzi∫
zi

p(yi|zi, ω0, d0)p(zi)dzi

. (9.5)

54



We now incorporate the details of the Gaussian pdf p(yi|zi, ω, d). Define

ai(yi, zi, ω) = ln
[
(2π)

Ny
2

√
det Ki

]
+

1

2
yT

i K−1
i yi (9.6)

bi(yi, zi, ω) = LT
i (zi, ω)K−1

i yi (9.7)

Di(zi, ω) = LT
i (zi, ω)K−1

i Li(zi, ω) (9.8)

where the dimensions of ai, bi, Di are Nzi
×Nv, Nd×Nzi

×Nv, and Nd×Nd×Nzi
,

respectively, where Nzi
is the number of abscissas that are eventually required to

perform a numerical integral over the nuisance parameters in zi. Then

p(yi|zi, ω, d) = N(Li(zi, ω)d,Ki)(yi)

= exp
[
−ai(yi, zi, ω) + bT

i (yi, zi, ω)d− 1

2
dT Di(zi, ω)d

]
. (9.9)

Note that

ln p(yi|zi, ω, d) = −ai(yi, zi, ω) + bT
i (yi, zi, ω)d− 1

2
dT Di(zi, ω)d. (9.10)

Define

αi(yi, ω, d) =
∫

zi

ai(yi, zi, ω)p(yi|zi, ω, d)p(zi)dzi (9.11)

βi(yi, ω, d) =
∫

zi

bi(yi, zi, ω)p(yi|zi, ω, d)p(zi)dzi (9.12)

∆i(yi, ω, d) =
∫

zi

Di(yi, zi, ω)p(yi|zi, ω, d)p(zi)dzi (9.13)

γi(yi, ω, d) =
∫

zi

p(yi|zi, ω, d)p(zi)dzi (9.14)

υi(yi, ω, d) =
∫

zi

ln [p(zi)] p(yi|zi, ω, d)p(zi)dzi (9.15)

Ii(ω, d|ω0, d0, yi) =
∫

zi

ln [p(yi|zi, ω, d)] p(yi|zi, ω0, d0)p(zi)dzi (9.16)

= −αi(yi, ω0, d0) + βT
i (yi, ω0, d0)d− 1

2
dT ∆i(yi, ω0, d0)d.

(9.17)

We have

Q(ω, d|ω0, d0, y)
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=
Nv∑

i=1

Ii(ω, d|ω0, d0, yi) + υi(yi, ω0, d0)

γi(yi, ω0, d0)
(9.18)

=
Nv∑

i=1

[
−αi(yi, ω0, d0) + βT

i (yi, ω0, d0)d− 1
2
dT ∆i(yi, ω0, d0)d + υi(yi, ω0, d0)

]

γi(yi, ω0, d0)

(9.19)

= −h(ω, ω0, d0, y) + gT (ω, ω0, d0, y)d− 1

2
dT T (ω, ω0, d0, y)d (9.20)

where

T (ω, ω0, d0, y) =
Nv∑

i=1

∆i(yi, ω0, d0)

γi(yi, ω0, d0)
(9.21)

g(ω, ω0, d0, y) =
Nv∑

i=1

βi(yi, ω0, d0)

γi(yi, ω0, d0)
(9.22)

h(ω, ω0, d0, y) =
Nv∑

i=1

−αi(yi, ω0, d0) + υi(yi, ω0, d0)

γi(yi, ω0, d0)
. (9.23)

These formulas complete the expectation step of the EM algorithm.

To locate the maximum of Q with respect to d is straightforward because

Eq. 9.20 is a quadratic form. In particular, the location is the solution of the

linear equation found by setting the gradient of Q with respect to d equal to zero:

Td = g. (9.24)

Therefore even for a large number of d’s (e.g., Nd on the order of 103), the maxi-

mization computation contributes little to the computational burden in comparison

with the expectation step which typically involves Nzi
on the order of 105 abscissas.

9.3 Computation complexity of the EM algorithm

This section contains a list of useful observations that help decrease the computa-

tion complexity of the EM algorithm.
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1. Due to conjugate symmetry property in reciprocal space, only half of the

data needs to be processed for a real-valued object. Furthermore, in order

to achieve a resolution of 10Å, only the data up to 7th layer line (i.e., l = 7)

is needed.

2. Due to the periodicity of the helical object in the z direction, the reciprocal

space is composed of layer lines with a line width due to windowing. By

ignoring the regions of reciprocal space outside of the widened layer lines,

many rows in the L matrix can be dropped, equivalently, Ny is reduced,

without removing any information from the estimation problem.

3. Hn,p(R
′
L) is a complicated and nested function which must be computed in

order to compute L. Many L values are required, in particular, a different

value for each of the zi abscissas of which there are Nzi
. However, Hn,p(R

′
L)

is not a function of α (Eq. 5.22) and therefore only needs to be computed

Nzi
/Nα times where Nα is the number of abscissas for α in an overall rule

which is the product of rules for each element in zi (Eq. 8.2).

4. If one image is processed instead of many subimages from many images, then

the nuisance parameters α and xL1 are unnecessary. The reason that they

can be removed is that any helical object can be translated along its axis and

rotated around its axis and remain a helical object that can be represented

by the mathematics used in this document. However, the values of dl,n,p

for the translated and rotated object will change (Eqs. 6.56 and 10.7). This

approach can be employed for getting a fast and low resolution estimate from

one image of a relatively straight long helical object.
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CHAPTER 10

MEASURES OF PERFORMANCE

10.1 Fourier Shell Correlation (FSC)

A standard definition of resolution is based on the Fourier Shell Correlation (FSC)

function [36, Eq. 2] [37, Eq. 17] [27, p. 879] [38] which compares the reciprocal-

space scattering densities of two structures. Let F a(k) and F b(k) be the two

reciprocal-space scattering densities to be compared. The FSC function [denoted

by pFSC(k)] is a function of the magnitude of the reciprocal-space frequency vector

(k) and is defined by

pFSC(k)
.
=

∫
F a(k)

[
F b(k)

]∗
dΩ′

√∫ |F a(k)|2dΩ′ ∫ |F b(k)|2dΩ′
(10.1)

where dΩ′ is integration over the angles of spherical coordinates (i.e.,
∫

dΩ′ =

∫ 2π
φ′=0

∫ π
θ′=0 sin(θ′)dθ′dφ′ where θ′ and φ′ are the angles of spherical coordinates in

reciprocal space). Note that pFSC(k) is real valued because ρ(x) is real valued

and that |pFSC(k)| ≤ 1 by the Cauchy-Schwarz inequality. The two structures,

F a(k) and F b(k), are often the reconstructions resulting from using even and odd

numbered images, respectively. We also consider the case where F b(k) is a known

reciprocal-space cube. Once the FSC has been computed, the resolution is defined

as the smallest value of k such that pFSC(k) is less than a threshold which may

depend on k [39].

Because of the periodicity in z, as is shown in Eq. 4.16, the reciprocal-space

cube has the form

F (R, ψ, ζ) =
+∞∑

l=−∞
Fl(R, ψ)δ(l/c− ζ). (10.2)
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Because of the δ functions, the integrals in Eq. 10.1 are not defined. Both to make

the integrals in Eq. 10.1 well-defined and to evaluate their values, we define a

discretized version of F (R,ψ, ζ) which has value Fl(R,ψ) when the voxel contains

ζ = l/c and has value 0 otherwise and use the discretized version in a numerical

quadrature. An alternative approach would be to write ρ′(x) = ρ(x)w(x3) where

w(·) is a windowing function so that F ′(k) = F (k) ∗ [δ(k1)δ(k2)W (k3)] and use F ′

in FSC rather than F . This does not appear to be fundamentally better because,

while the continuous k integrals would exist, they would still have to be done

numerically.

We are not aware of a method to uniquely chose the coordinate system used to

describe a helically-symmetric object by the mathematics used in this document.

In particular, if such an object is rotated around the z axis by angle δϕ and/or

translated along the z axis by distance δz, it remains a helically-symmetric object

that can be described by the same mathematics. However, the values of dl,n,p

will change in accordance with Eq. 6.56. Let ρ(x) be one density and ρ′(x) =

ρ(r, ϕ− δϕ, z − δz) be the second density. Let dl,n,p correspond to ρ(x). Then

d′l,n,p

=
∫ ∞

r=0

uδn,Sl

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0

ρ′ (r, ϕ′, z′) exp
[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′hn,p(r)rdr

(10.3)

=
∫ ∞

r=0

uδn,Sl

2πc

∫ c/u

z′=0

∫ 2π

ϕ′=0

ρ(r, ϕ′ − δϕ, z′ − δz) exp
[
−i

(
nϕ′ +

2πl

c
z′

)]
dϕ′dz′hn,p(r)rdr.

(10.4)

Change variables from ϕ′ to ϕ = ϕ′ − δϕ and from z′ to z = z′ − δz to get

d′l,n,p

=
∫ ∞

r=0

uδn,Sl

2πc

∫ c/u

z=0

∫ 2π

ϕ=0

ρ(r, ϕ, z) exp
[
−i

(
n(ϕ + δϕ) +

2πl

c
(z + δz)

)]
dϕdzhn,p(r)rdr

(10.5)

= exp
[
−i

(
nδϕ +

2πl

c
δz

)] ∫ ∞

r=0

uδn,Sl

2πc

∫ c/u

z=0

∫ 2π

ϕ=0

ρ(r, ϕ, z) exp
[
−i

(
nϕ +

2πl

c
z

)]
×

× dϕdzhn,p(r)rdr
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(10.6)

= exp
[
−i

(
nδϕ +

2πl

c
δz

)]
dl,n,p. (10.7)

Therefore, when comparing an estimated value of dl,n,p with a standard value of

dl,n,p, denoted by d0
l,n,p, it is first necessary to consider all possible variations in

dl,n,p. We quantify this comparison by defining a cost,

C(dl,n,p, d
0
l,n,p, δϕ, δz) =

+∞∑

l=−∞

+∞∑

n=−∞

+∞∑

p=1

[
d0

l,n,p − exp

[
−i

(
nδϕ +

2πl

c
δz

)]
dl,n,p

]2

,

(10.8)

and determining the optimal variation by

δ0
ϕ, δ0

z = arg min
δϕ∈[0,2π),δz∈[0,c/u)

C(dl,n,p, d
0
l,n,p, δϕ, δz). (10.9)

When computing the reciprocal-space 3-D cube for the reconstruction in prepa-

ration for computing FSC, the estimated values of dl,n,p, u, v, and c are used in

Eqs. 4.16 and 6.2. The period c is treated as a nuisance parameter in the maximum

likelihood estimator that estimates dl,n,p, u, and v. However, an estimate of c can

be computed as a post processing operation [34].

10.2 Quadratic norm

The basis functions are orthonormal (Chapter 6.1), the Fourier transform definition

(Eqs. 3.1 and 3.2) is unitary, and ρ(x) ∈ IR. Therefore,

∫
ρ2(x)d3x =

∫
|F (k)|2d3k =

+∞∑

l=−∞

+∞∑

n=−∞

∞∑

p=1

|dl,n,p|2. (10.10)

In the case where it is desired to compare two structures, both defined by dl,n,p

coefficients and sharing the same values for r1 and r2, then by replacing ρ, F , and

dl,n,p by ρa−ρb, F a−F b, and da
l,n,p−db

l,n,p, respectively, Eq. 10.10 provides an exact
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and straightforward way to compute the squared quadratic norm of the difference

between the two structures which is denoted by q2.
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CHAPTER 11

IMAGE PROCESSING

The cross correlation function can be used to select good images automatically,

but since the number of images we have is of order 102, it is possible for us to do

an interactive particle selection [40, Chapter 3 Section II]. First, images showing

relatively good and straight helical objects are selected by examining the real-

space 2-D images directly. Second, among those images, only the images which

have relatively clean layer lines, determined by examining the reciprocal-space 2-D

images directly, are used.

About 102 near-to-focus images were selected using the above method. Further

preprocessing was then performed: first and second order sample statistics were

computed by averging in areas outside the helical object. The assumption of zero

mean pixel noise was achieved in practice by subtracting the mean from the data.

The period c is estimated as follows. First, each real-space 2-D image is trans-

formed to reciprocal space by a 2-D fast Fourier transform (FFT). Second, the

magnitude-squared of each reciprocal-space 2-D image is averaged in the κ2 di-

rection. Third, define the apparent period, ca = c sin β cos γ. The inverse of the

location of the maximum in the average determines the estimate of ca, which is

denoted by ĉa. Often the maximum does not occur at the first harmonic, e.g.,

in Figure 16.2 the maximum occurs at the third harmonic, so the relationship is

ĉa = ξ/κ∗ where ξ is the order of the harmonic that has the maximum value and κ∗

is the reciprocal space location of the maximum. Different images have different

apparent periods due to different rotation angles β and γ while c is ideally the

same for every object. With order 102 trials, it is likely that at least one value of β

is quite close to π/2. We assume γ = 0 by previous alignment of the images. Since
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c sin β cos γ ≤ c, the maximum of the ĉa values is taken to be the nominal period

c0. The nuisance parameter c has a uniform pdf centered at c0. Notice that when

c changes, the layer lines move. In particular, if c increases, the distance between

two layer lines decreased, and vice versa.

The data y input to the EM algorithm is prepared by subdividing each image

into subimages of size 128× 128 pixels. Subimages are used instead of the original

images to prevent the errors in an imperfect helix from accumulating over a long

distance as was discussed in Chapter 8.1. Successive subimages do not overlap

each other. Using nonoverlapping subimages differs from the methods other inves-

tigators [20, 21] use to create subimages. There are two reasons we decided not

to overlap images in our approach. First, the helical symmetry is built into our

approach so overlapping information is not required. Second, the noise model used

in our approach includes the assumption that the additive pixel noise in different

subimages is independent (Eq. 9.1).

Once the subimages are generated, the 2-D reciprocal data which the EM al-

gorithm processes is generated in the following way. A 2-D FFT is performed

to compute the reciprocal space image which contains the layer lines. The layer

lines are separated by 1/(c sin β cos γ) with the 0th layer line at the origin of 2-D

reciprocal space. The spatial frequency variable κ1 is discretized. The numerical

integral over the nuisance parameter zi includes integrals over c, β and γ. There-

fore ca = c sin β cos γ changes. As ca changes, the software changes the location

of the layer lines in the reciprocal space image. In particular, the three columns

of pixels (a column has fixed κ1 and varying κ2 values) closest to the layer line

location l/ca are only pixels included in the data yi. (Eq. 9.1).

63



CHAPTER 12

TOBACCO MOSAIC VIRUS (TMV) AND THE CHOICE OF

CONTRAST TRANSFER FUNCTION (CTF) AND OTHER

PARAMETERS

Tobacco Mosaic Virus (TMV) has been studied because TMV has been much

investigated (e.g., [21]) and because an atomic resolution structure of the motif is

known [11]. The helical parameters for TMV are [11] uTMV = 49, vTMV = 3, and

cTMV = 69Å and the helix has one start (so there is no additional symmetry of the

Cµ or Dµ type). There are NTMV = 1354 [11] non-hydrogen atoms in the motif

structure. Let the NTMV atomic scattering intensities and cylindrical coordinates

be denoted by fj and xj = (rj, ϕj, zj), respectively.

110 images of TMV each measuring roughly 128 × 1300 pixels at sampling

interval 2.263Å were kindly provided by Prof. Bridget Carragher (The Scripps

Research Institute). Because the experimental TMV images have CTFs that can

be approximated by the parameter values described in Table 12.1, these values

have been used in all forward and inverse calculations.

Table 12.1: CTF parameters: ∆f is the deviation from Gaussian focus, Cs is
the coefficient of spherical aberration, λ is the electron wavelength, Famp is the
fractional amplitude contrast, and B is the decay.

CTF

parameter value
∆f 0.7× 104Å
Cs 2.0× 107Å
λ 0.0336Å

Famp 0.2

B 100Å
2
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Based on the dimensions of the TMV particle, all calculations described in

this document use the basis functions of Chapter 6.1.2 with values r1 = 20Å and

r2 = 90Å.
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CHAPTER 13

PRACTICAL ISSUES FOR ALL RECONSTRUCTION

CALCULATIONS

As in many other structural biology reconstruction algorithms, the resolution of

the reconstruction is increased as the computation progresses. In the algorithm

of this paper, resolution is increased in a series of steps where the number of d

coefficients used in a step increases from the number used in the previous step as

is described in Table 13.1.

The expectation maximization algorithm is an iterative algorithm and therefore

each step requires an initial condition. Because it is also a local optimization

algorithm, multiple initial conditions are tested and the best (in the sense of log

likelihood) of the answers are taken as the source of the initial conditions for the

subsequent step. In the final step, the answer with the highest log likelihood is

taken as the final answer of the complete algorithm.

A Step 0 which is not described in Table 13.1 is used to start the calculation.

First, use a model with only dl=0,n=0,p=1 and determine the value of dl=0,n=0,p=1 by

least squares. Second, use a model of the size described for Step 1 in Table 13.1.

Initialize the model with all 0s except for dl=0,n=0,p=1 which takes the value de-

termined by least squares. Use this model as the initial condition for the EM

algorithm and iterate until convergence is achieved. The resulting model and 499

random perturbations of that model are the Nic = 500 initial conditions for Step 1.

When transitioning from Step i to Step i+1, the best 3 results from the earlier step

are saved. The saved results are augmented with 0s and used as initial conditions.

These initial conditions are also random perturbed to generate additional initial

conitions for the later step.

66



Table 13.1: Truncation limits (lmax, nmax, and pmax) at each step of the algorithm
and the resulting number of dl,n,p coefficients (Nd). The numbers of random initial
conditions used at each step are denoted by Nic which are also tabulated. As is
illustrated in Table 4.1, the allowed n are not nearly all n. In fact, for the case of
(u, v) = (49, 3), the choice of nmax = 49 leads to 2 values of n for each l 6= 0 and
three values of n for l = 0 which are n ∈ {−49, 0, +49}. But, since ρ(x) ∈ IR, there
is the constraint g∗−n,−l(r) = gn,l(r) (Eq. 4.93) which implies g−n,l=0(r) = g∗n,l=0(r).
Therefore gn=−49,l=0(r) = g∗n=49,l=0(r) so the (n = −49, l = 0) term is determined
by the (n = 49, l = 0) term. Therefore, there are only 2 independent terms for
l = 0 exactly as there are 2 independent terms for l 6= 0.

step lmax nmax pmax Nd Nic

1 7 25 1 15 500
2 7 49 1 31 300
3 7 49 5 155 10
4 7 49 10 310 4

The EM algorithm is iterative and therefore requires a convergence test. We

use the same test that was used in Ref. [29]. In particular, the EM algorithm is

stopped if the l1-norm of the difference between the weights d at the previous and

current iterations normalized by the average of the l1-norms of the weight at the

previous and current iterations is less than 10−5.

The optimization of the log likelihood could be done over all relatively prime

pairs of u and v. However, given some knowledge of the size of the motif and the

radius of the helix, considering all relatively prime pairs of u and v is wasteful of

computation since many (u, v) pairs lead to impossible packing of the motifs. Based

on such considerations [1], a feasible set of reduced size is used as is enumerated

in Table 13.2.

For computing synthetic 3-D cubes and 2-D images and for computing recon-

structions, the various infinite summations must be truncated. Let the integers

lmax, nmax, and pmax describe the truncations used by the reconstruction algo-
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Table 13.2: Feasible set for the optimization of (u, v).

u v
41 3
43 3
44 3
46 3
47 3
49 3
50 3
52 3
53 3
55 3
55 4
56 3
57 4
58 3
59 3
59 4
61 3
61 4
63 4
65 4
67 4
68 5
69 4
71 4
73 4
75 4
77 4
79 4
81 4
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rithm of the three infinite sums in Eq. 6.9. Similarly, the integers lTMV
max , nTMV

max ,

and pTMV
max describe the truncations used in generating synthetic TMV images and

comparing reconstructions with the PDB reconstruction. Typically, lmax ≤ lTMV
max ,

nmax ≤ nTMV
max , and pmax ≤ pTMV

max .

In several equations, e.g., Eqs. 5.13 and 5.24, the arctan function that is indi-

cated in the equation is replace by the atan2 function in the software.

To get a resolution of 10Å, 8 layer lines including the 0th layer line must be

estimated. For each layer line, two Bessel terms are necessary and sufficient to get

a resolution of 6-7Å [9]. With up to the 7th layer line estimated, the resolution we

can possibly obtain would be 7
69

Å ≈ 1
10

Å [17].
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CHAPTER 14

CALCULATION OF SYNTHETIC IMAGES

Two methods have been developed for computing synthetic images from the known

atomic resolution structure of TMV.

14.1 PDB atomic locations to d coefficients to synthetic

images

The first way in which to compute synthetic reciprocal-space images and cubes is

to use an impulsive mathematical model for the electron scattering intensity, i.e.,

ρTMV(x) =
NTMV∑

j=1

fjδ(x− xj), (14.1)

evaluate the d coefficients by Eq. 6.57 for l ∈ {−lTMV
max , . . . , lTMV

max }, n ∈
{−nTMV

max , . . . , nTMV
max }, and p ∈ {1, . . . , pTMV

max }, and then use Eqs. 5.60 and 6.2 to

compute a reciprocal-space windowed 2-D image or Eqs. 4.16 and 6.2 to compute

a reciprocal-space 3-D cube. To compute a reciprocal-space image it is also neces-

sary to choose nuisance parameters. When computing a set of images, the values of

the nuisance parameters α, β, γ, xL1 , and xL2 were set as independent realizations

of pseudo random variables drawn from the pdfs described in Chapter 8.1. For

the nuisance parameter c, the value was set to cTMV for all images., i.e., the pdf is

δ(c− cTMV) and there is no distinction between using one realization for all images

and using independent realizations for each image. Let the signal variance in the

ith image be denoted by σ2
s(i) and defined by

σ2
s(i) =

1

Ny

Ny∑

n=1


yi(n)− 1

Ny

Ny∑

n=1

yi(n)




2

(14.2)
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where yi(n) is the nth pixel of the ith image. Independently for each image, the

ith noisy image is the ith noise-free image plus additive zero-mean white Gaussian

noise with variance σ2
s(i)/SNR where a variety of values for SNR are considered.

14.2 PDB atomic locations to synthetic images directly

The second way in which to compute synthetic reciprocal-space images and cubes

is to use an impulsive mathematical model for the electron scattering intensity,

i.e.,

ρTMV(x) =
NTMV∑

j=1

fjδ(x− xj), (14.3)

and apply Eq. 4.63 to compute a reciprocal-space 3-D cube or Eq. 5.61 to compute

a reciprocal-space windowed 2-D image. This amounts to the case of pTMV
max = ∞.

All other processing is identical to the processing described in Section 14.1.
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CHAPTER 15

NUMERICAL RESULTS BASED ON SYNTHETIC IMAGES

Figure 15.1 gives an overview of the entire algorithm which is used in this section

on synthetic images and in the following section on experimental images.

Using the method of Section 14.1, a total of 64 images each measuring 128×128

pixels with sampling interval ∆ = 2.2Å were computed with independent realiza-

tions of the nuisance parameters α, β, γ, xL1 , and xL2 and the additive pixel noise

for each image and the same value of nuisance parameter c = cTMV for all images.

There was no partitioning of an image into subimages: there is one subimage

per image and the subimage is identical to the image. The sampling interval and

subimage size are the same as in the experimental TMV images (Chapter 12). The

values at which the infinite sums were truncated in the computing of the images

and the computing of the reconstructions were the same (i.e., the calculations were

matched) and had values (Table 13.1) lTMV
max = lmax = 7, nTMV

max = nmax = 49, and

pTMV
max = pmax = 10. Two SNR values were considered, specifically, 1.0 and 0.2.

Two natural ways in which to compute FSC are to compare the reciprocal-space

3-D cube from the reconstruction with the reciprocal-space 3-D cube computed

from Eq. 4.16 with either (1) Gn,l(R) computed from Eq. 6.2 using the same

number of dl,n,p coefficients (i.e., lTMV
max , nTMV

max , and pTMV
max ) as were used to compute

the reconstruction and using the values of the dl,n,p coefficients computed from the

PDB structure of TMV by Eq. 6.57 or (2) Gn,l(R) computed from Eq. 4.61, i.e.,

directly from the atomic scattering factors and locations, using the same values

of lTMV
max and nTMV

max as where used in computing the images. Calculations of the

first type are referred to as matched-FSC and calculations of the second type are

referred to as direct-FSC. A third natural way is to divide the set of images into
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Figure 15.1: Overview.
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Figure 15.2: The shifted sinc functions for the l ∈ {0, 1, 2} layer lines indicating
the amount of layer line broadening due to windowing of the images.

two equal-sized subsets, typically the even and the odd numbered images, and

compute the FSC between a reconstruction based on the even number images

and a reconstruction based on the odd numbered images. This third method is

the method typically used when the true structure is unknown and is referred

to as even/odd-FSC. In this document, the third method is used only for the

experimental TMV images.

15.1 Determination of the effect of the windowing

The windowing introduces a broadening of the layer lines. If the broadening is too

great, then the layer lines will overlap. Figure 15.2 shows a plot of the shifted sinc

functions that result from the windowing for the lowest three layer lines, i.e., for

l ∈ {0, 1, 2}, versus κ1. Because the three sinc functions do not greatly overlap,

the broadened layer lines will not greatly overlap.
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Table 15.1: Integration rules for nuisance parameters. Note also Table 8.1.

nuisance integration number of
parameter rule type abscissas

α uniform 150
β Gauss-Legendre 7
γ Gauss-Legendre 1
c Gauss-Legendre 1

xL1 Gauss-Legendre 3
xL2 Gauss-Legendre 10

15.2 Determination of the number of abscissas in the nui-

sance parameter integration rules

The necessary number of abscissas in the integration rules used in the expecta-

tion step of the expectation maximization algorithm for integrating the nuisance

parameters was investigated by holding all but one nuisance parameter at its true

value and computing the log likelihood with a variety of integration rules for the

remaining nuisance parameter. Plots of log likelihood versus number of abscissas

for each of the nuisance parameters is shown in Figure 15.3. The result is the

integration rules listed in Table 15.1.
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Figure 15.3: The log likelihood as a function of the number of abscissas in the
integration rule for one nuisance parameter when the other nuisance parameters
are held constant at their true values.
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Figure 15.4: FSC curves for reconstruction calculations using 64 images and two
different SNRs. Both matched-FSC and direct-FSC calculations are shown illus-
trating that the difference between the two types is small.

15.3 Resolution via FSC as a function of SNR and the

similarity of the two FSC comparisons

The resolution achieved should increase as the SNR increases. As is shown by the

FSC curves plotted in Figure 15.4 for the case of 64 images, that behavior occurs as

expected. Figure 15.4 shows both matched-FSC and direct-FSC calculations and

the differences are small. For that reason, the remainder of the FSC calculations

described in this document are of the direct-FSC type unless otherwise specified.
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Figure 15.5: Matched-FSC curves for reconstruction calculations using SNR 0.2
and a variety of number of images. Note the different ranges of k in each plot.

15.4 Resolution via FSC as a function of number of images

The resolution achieved should increase as the number of images used increases.

As is shown by the FSC curves plotted in Figure 15.5 for the case of SNR 0.2, that

behavior occurs as expected.
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15.5 Coefficients and reconstructions as a function of iter-

ation

At each resolution step, the expectation-maximization algorithm is an iterative

algorithm. Using 64 images and SNR 0.2, Figure 15.6 shows the evolution of dl,n,p

for the selected values of l, n, and p at the highest resolution step (Table 13.1)

which uses lmax = 7, nmax = 49, pmax = 10 resulting in Nd = 310 coefficients. Both

Figure 15.6 and Table 15.2 show the values for the same selected dl,n,p computed

by Eq. 6.57 for comparison. Figure 15.7 shows the change of the real-space 3-D

cube from the initial to the final iteration for the same calculation.

15.6 Ability to determine the correct values of u and v

All of the previous calculations were done with the correct values of u and v,

specifically, u = 49 and v = 3. In Table 15.3 is shown the rank-ordered list of log

likelihood values as a function of the assumed value of u and v for a reconstruction

problem with 64 subimages at SNR values 0.2 and 1.0. The estimated values are

the correct values. The SNR 0.2 data from Table 15.3 are plotted in Figure 15.8.

These plots make clearer the absence of ambiguity in the estimate of v and the

presence of ambiguity in the estimate of u, where the estimator is ambiguous about

u ∈ {43, 49, 55} which is every 6th integer corresponding to insertion or deletion

of pair of motifs from each of the three turns of one period of the v = 3 helical

symmetry.
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Table 15.2: Comparison of selected estimated dl,n,p at Iteration 0 - 5 at Step 4
against the true dl,n,p that are derived from the PDB. The total number of dl,n,p is
310 (Table 13.1). For cases in which l is non-zero, both the real and imaginary part
of the coefficients are estimated and the real part is listed before the imaginary
part in the table.

0 1 2 3 4 5 PDB l n p
23.8163 23.724 23.7239 23.7239 23.7239 23.7239 23.7829 0 0 1
2.20021 2.33195 2.33194 2.33194 2.33194 2.33194 2.39091 0 0 2

0.537217 0.712254 0.712244 0.712247 0.712248 0.712249 0.644081 0 0 3
2.72175 3.06445 3.06443 3.06443 3.06443 3.06443 3.06768 0 0 4

-0.958153 -0.78198 -0.78198 -0.78198 -0.78197 -0.78197 -0.7157 0 0 5
-0.962662 -1.17696 -1.17719 -1.1772 -1.1772 -1.1772 -1.04362 3 1 1
0.945372 1.10446 1.10396 1.1039 1.10388 1.10389 1.05668 3 1 2
-1.02869 -1.23776 -1.23699 -1.23689 -1.23687 -1.23687 -1.12306 3 1 3

-0.0486221 -0.05711 -0.05778 -0.05787 -0.05789 -0.05789 -0.01252 3 1 4
0.907487 0.778129 0.778825 0.778914 0.778929 0.77893 0.679688 3 1 5
2.00293 1.90189 1.90224 1.90228 1.9023 1.90229 1.92453 3 1 1

-1.47361 -1.37867 -1.37795 -1.37786 -1.37784 -1.37785 -1.45844 3 1 2
1.27137 1.15497 1.15413 1.15403 1.15401 1.15401 1.27026 3 1 3

0.795841 0.802666 0.803647 0.803766 0.803787 0.803786 0.80188 3 1 4
-1.5948 -1.56273 -1.56325 -1.56331 -1.56332 -1.56332 -1.62282 3 1 5
1.10717 0.855538 0.854809 0.854297 0.854135 0.85408 0.920829 6 2 1

-1.21512 -1.07563 -1.07727 -1.07724 -1.07718 -1.07721 -0.95605 6 2 2
0.427031 0.5017 0.496338 0.495894 0.495838 0.495831 0.875235 6 2 3
0.677793 0.424208 0.427146 0.427113 0.427012 0.427018 1.20115 6 2 4

-0.185935 -0.27936 -0.28476 -0.2856 -0.28583 -0.28586 -0.55443 6 2 5
1.37396 1.54002 1.54105 1.54091 1.54086 1.54084 1.42681 6 2 1

-0.578738 -0.72657 -0.72202 -0.7213 -0.72117 -0.72113 -0.57811 6 2 2
-0.0122239 0.114931 0.112888 0.112612 0.11254 0.112557 -0.05289 6 2 3

1.36882 1.43885 1.4506 1.45181 1.45205 1.45206 1.71484 6 2 4
0.0907919 0.216545 0.204593 0.20283 0.202526 0.202516 0.427629 6 2 5
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Figure 15.6: Evolution of dl,n,p for the selected values of l, n, and p used in Ta-
ble 15.2 (with the exception of (l, n, p) = (0, 0, 1)) at Step 4 (Table 13.1). The red
curve with star markers is the truth from PDB. The various blue dashed curves,
which are mostly superimposed, show values of estiamted dl,n,p at Iteration 0 -
5. Convergence is rapid and accurate for lower indexed dl,n,p and slower and less
accurate for higher indexed dl,n,p.
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initial final

Figure 15.7: Change of the real-space 3-D cube from the initial to the final iteration
of the calculation for which the evolution of dl,n,p is shown in Figure 15.6 and
Table 15.2.
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Figure 15.8: Plots of the SNR 0.2 log likelihood values from Table 15.3. Panel (a):
The log likelihood values as a function of u for the case v = 3. In order to get the
correct u, a high resolution reconstruction is required, otherwise, as shown in the
plot, the estimated u is likely to be a multiple of 2 motifs per turn different from
the true answer. Panel (b): The log likelihood values as a function of v showing
that v = 3 has a substantially higher likelihood than v = 4 or v = 5.

However, with fewer images, the correct values of u and v are not always chosen.

In Table 15.4 is shown the rank-ordered list of log likelihood values as a function

of the assumed value of u and v for a reconstruction problem at SNR 0.2 with

1, 4, 16, or 64 subimages. Only the calculation with 64 images yields the correct

estimate for u and v.
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Table 15.3: Rank-ordered list of log likelihood values as a function of the assumed
value of u and v for 64 images and SNR values 0.2 and 1.0. The correct values are
u = 49 and v = 3. Q indicates the natural logarithm of the likelihood defined in
Eq. 9.2.

SNR 0.2 SNR 1.0
u v Q u v Q

49 3 -2503315 49 3 -2093496
55 3 -2503346 55 3 -2093638
43 3 -2503362 43 3 -2093668
61 3 -2503541 61 3 -2094633
41 3 -2503946 41 3 -2096605
47 3 -2503961 47 3 -2096739
53 3 -2504015 53 3 -2096988
59 3 -2504141 59 3 -2097601
52 3 -2504637 52 3 -2099929
46 3 -2504641 46 3 -2099940
58 3 -2504650 58 3 -2099950
44 3 -2504650 44 3 -2100168
50 3 -2504651 50 3 -2100179
56 3 -2504670 56 3 -2100187
55 4 -2513270 55 4 -2143029
63 4 -2513495 63 4 -2144218
57 4 -2513522 57 4 -2144291
65 4 -2513596 65 4 -2144816
71 4 -2513626 71 4 -2144913
73 4 -2513640 73 4 -2144999
79 4 -2513767 79 4 -2145573
81 4 -2513776 81 4 -2145688
68 5 -2514022 68 5 -2147031
59 4 -2514125 59 4 -2147433
61 4 -2514286 61 4 -2148238
67 4 -2514319 67 4 -2148246
69 4 -2514354 69 4 -2148492
75 4 -2514355 75 4 -2148570
77 4 -2514361 77 4 -2148592
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Table 15.4: Rank-ordered list of log likelihood values as a function of the assumed
value of u and v for SNR value 0.2 and 1, 4, 16, and 64 images. The correct values
are u = 49 and v = 3. Q indicates the natural logarithm of the likelihood defined
in Eq. 9.2.

64 images 16 images 4 images 1 image
u v Q u v Q u v Q u v Q

49 3 -2503315 55 3 -625470 55 3 -156411 56 3 -38874
55 3 -2503346 49 3 -625477 49 3 -156417 50 3 -38877
43 3 -2503362 43 3 -625481 43 3 -156421 49 3 -38882
61 3 -2503541 61 3 -625529 61 3 -156425 47 3 -38883
41 3 -2503946 41 3 -625625 50 3 -156444 44 3 -38883
47 3 -2503961 47 3 -625639 41 3 -156447 53 3 -38884
53 3 -2504015 53 3 -625641 56 3 -156450 59 3 -38885
59 3 -2504141 59 3 -625676 47 3 -156451 55 3 -38885
52 3 -2504637 58 3 -625771 44 3 -156453 41 3 -38886
46 3 -2504641 46 3 -625774 52 3 -156453 61 3 -38888
58 3 -2504650 52 3 -625775 53 3 -156457 52 3 -38890
44 3 -2504650 50 3 -625781 46 3 -156457 58 3 -38891
50 3 -2504651 44 3 -625782 58 3 -156462 46 3 -38891
56 3 -2504670 56 3 -625789 59 3 -156465 43 3 -38891
55 4 -2513270 55 4 -627958 63 4 -156991 68 5 -39012
63 4 -2513495 57 4 -628022 55 4 -156991 57 4 -39020
57 4 -2513522 63 4 -628023 71 4 -157004 71 4 -39025
65 4 -2513596 65 4 -628035 73 4 -157005 59 4 -39027
71 4 -2513626 71 4 -628041 57 4 -157006 73 4 -39027
73 4 -2513640 73 4 -628042 65 4 -157007 55 4 -39030
79 4 -2513767 79 4 -628064 81 4 -157016 65 4 -39032
81 4 -2513776 81 4 -628075 79 4 -157025 61 4 -39032
68 5 -2514022 68 5 -628127 68 5 -157035 63 4 -39033
59 4 -2514125 67 4 -628169 75 4 -157040 75 4 -39033
61 4 -2514286 75 4 -628186 67 4 -157041 69 4 -39037
67 4 -2514319 61 4 -628190 77 4 -157044 77 4 -39037
69 4 -2514354 59 4 -628193 59 4 -157057 79 4 -39039
75 4 -2514355 69 4 -628195 61 4 -157062 67 4 -39039
77 4 -2514361 77 4 -628199 69 4 -157063 81 4 -39046
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Figure 15.9: Layer planes shown as images: Column (a): The reconstruction from
64 images at SNR 0.2. Column (b): The planes computed from the PDB which
would be used in a matched-FSC calculation.
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(a)

(b)

(c)
top view side view

Figure 15.10: Surface renderings by UCSF Chimera [4]. Row (a): The reconstruc-
tion from 64 images at SNR 0.2. Row (b): The cube that results from the planes
computed from PDB which would be used in a matched-FSC calculation. Row (c):
The cube that results from the planes computed from PDB which would be used
in a direct-FSC calculation.
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15.7 Comparison with PDB for 64 images and SNR 0.2

Figures 15.9 and 15.10 compare the reconstruction from 64 synthetic images at

SNR 0.2 with the PDB structure. Figure 15.9 shows three of the layer planes

while Figure 15.10 shows the real-space 3-D cubes.
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CHAPTER 16

NUMERICAL RESULTS BASED ON EXPERIMENTAL IMAGES

Figure 16.1 shows one experimental image as it progresses through the preprocess-

ing. First the image is masked, then it is broken up into subimages, and then each

subimage is transformed to reciprocal space.

16.1 Determination of the period

For one example image, Figure 16.2 shows the curve from which the estimate of

the apparent period, ĉa, is determined. As discussed in Chapter 11, the curve is

the average of the magnitude-squared over the discretized κ2 variable of the 2-D

FFT of the real space image. Note that the value of ĉa is not ambiguous.

The stated sampling interval for the experimental images of TMV is 2.263Å.

The published value for the period c of TMV is 69Å. All ĉa values, one for each

image, are listed in Table 16.1. Note that most exceed 69Å. One explanation

is an inaccuracy in the sampling interval. In particular, if the sampling interval

is reduced from 2.263Å to 2.2Å then the largest value of ĉa, 70.984Å, would be

reduced to 69.008Å which is the published value. Therefore, in all calculations

with both synthetic and experimental images, we have used a sampling interval of

2.2Å.
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Figure 16.1: Preprocessing of one experimental image.

Table 16.1: A rank-ordered list of the estimated apparent period ĉa in Å for the
110 experimental images of TMV.

69.003 69.297 69.485 69.609 69.757 69.935 70.072 70.263 70.482 70.654
69.061 69.311 69.498 69.656 69.803 69.947 70.096 70.296 70.497 70.672
69.093 69.375 69.521 69.666 69.82 69.947 70.104 70.338 70.521 70.673
69.104 69.388 69.548 69.679 69.82 69.988 70.123 70.344 70.521 70.682
69.114 69.405 69.551 69.697 69.822 69.995 70.153 70.359 70.53 70.728
69.147 69.408 69.554 69.7 69.859 70.017 70.153 70.374 70.551 70.784
69.163 69.416 69.559 69.707 69.88 70.024 70.182 70.397 70.563 70.815
69.17 69.438 69.573 69.722 69.899 70.038 70.185 70.463 70.568 70.826
69.248 69.447 69.587 69.725 69.902 70.055 70.195 70.465 70.606 70.829
69.27 69.465 69.598 69.742 69.905 70.058 70.203 70.471 70.645 70.86
69.275 69.472 69.608 69.754 69.927 70.062 70.258 70.476 70.65 70.984
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Figure 16.2: Fast Fourier Transform of one of the experimental TMV images.
The highest peak appears at the 3rd layer line, and thus the apparent period is
estimated to be 67.3401Å.
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16.2 Resolution via FSC as a function of number of images

Figure 16.3 shows FSC curves of three types: direct-FSC where F a(k) is the re-

construction resulting from using even numbered images, direct-FSC where F a(k)

is the reconstruction resulting from using odd numbered images, and even/odd-

FSC, as a function of the number of images used in the reconstruction calculation.

Each image yields subimages where each subimage measures 128 × 128 pixels.

Three subimages per image are used due to computer memory constraints and the

subimages used are taken from the center of the image. As the number of images

increases, the three types of FSC give roughly the same resolution values given,

i.e., at threshold of 0.5 for the case of 55 images. In Figure 16.4, a part of the

data shown in Figure 16.3 is replotted in order to emphasize the gain in resolution

achieved by using more images.

16.3 Ability to determine the correct values of u and v

In Table 16.2 is shown the rank-ordered list of log likelihood values as a function

of the assumed value of u and v for a reconstruction problem with 64 images. The

second highest log likelihood value corresponds to the correct u and v values, which

are u = 49 and v = 3, while the highest log likelihood values correspond to u = 43

and v = 3. The data from Table 16.2 are plotted in Figure 16.5. These plots make

clearer the absence of ambiguity in the estimate of v and the presence of ambiguity

in the estimate of u, where the estimator is ambiguous about u ∈ {43, 49, 55} which

is every 6th integer corresponding to insertion or deletion of pair of motifs from

each of the three turns of one period of the v = 3 helical symmetry.
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Figure 16.3: FSC curves as a function of number of experimental images used. Each
panel shows three FSC curves: direct-FSC where the reconstruction results from
using even numbered images, direct-FSC where the reconstruction results from
using odd numbered images, and even/odd-FSC, which are indicated by dashed
red, solid starred green, and solid blue, respectively.
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Figure 16.4: Direct-FSC curves as a function of number of experimental images
used.
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Table 16.2: Rank-ordered list of log likelihood values as a function of the assumed
value of u and v for 64 images. The correct values are u = 49 and v = 3 which is
the second highest log likelihood in the list.

u v log likelihood
43 3 -5046639
49 3 -5046673
55 3 -5046753
41 3 -5046845
47 3 -5046876
53 3 -5046936
61 3 -5046984
59 3 -5047025
58 3 -5047591
50 3 -5047599
56 3 -5047609
52 3 -5047614
46 3 -5047629
44 3 -5047677
59 4 -5054236
61 4 -5054445
67 4 -5054547
69 4 -5054587
75 4 -5054642
77 4 -5054645
55 4 -5054665
57 4 -5054752
68 5 -5054864
63 4 -5054903
65 4 -5054987
71 4 -5054998
73 4 -5055040
81 4 -5055117
79 4 -5055130
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Figure 16.5: Plots of the log likelihood values from Table 16.2. Panel (a): The log
likelihood values as a function of u for the case v = 3. In order to get the correct
u, a high resolution reconstruction is required, otherwise, as shown in the plot, the
estimated u is likely to be a multiple of 2 motifs per turn different from the true
answer. Panel (b): The log likelihood values as a function of v showing that v = 3
has a substantially higher likelihood than v = 4 or v = 5.
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Figure 16.6: Layer planes shown as images: Column (a): The reconstruction from
64 experimental images. Column (b): The planes computed from the PDB which
would be used in a matched-FSC calculation.
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(a)

(b)

(c)
top view side view

Figure 16.7: Surface renderings by UCSF Chimera [4]. Row (a): The reconstruc-
tion from 64 experimental images. Row (b): The cube that results from the planes
computed from the PDB which would be used in a matched-FSC calculation.
Row (c): The cube that results from the planes computed from the PDB which
would be used in a direct-FSC calculation.
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16.4 Comparison with PDB for 64 images

Figures 16.6 and 16.7 compare the reconstruction from 64 experimental images with

the PDB structure. Figure 16.6 shows three of the layer planes while Figure 16.7

shows the real-space 3-D cubes.
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CHAPTER 17

FUTURE WORK

The current software does not support different CTFs for different images. The cur-

rent algorithm and software assume that c is a different and independent random

variable for each subimage. The current algorithm and software process nonover-

lapping subimages, while the usual approach is to use overlapping subimages. In

some objects, it may be appropriate to use radial basis functions where r1 = 0

and ρ(x = 0) 6= 0 and these need to be implemented in both real and reciprocal

space. Using different CTFs and overlapping subimages will require a parallel C

implementation of the software.
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APPENDIX A

CALCULATION OF THE NORMALIZER FOR THE RADIAL

BASIS FUNCTIONS

The calculation begins with Eq. 6.50 which is repeated here:

M2
n,p =

∫ b

a
[c1Jn(γn,pr) + c2Yn(γn,pr)]

2 rdr (A.1)

=
∫ b

a

[
c2
1J

2
n(γn,pr) + 2c1c2Jn(γn,pr)Yn(γn,pr) + c2

2Y
2
n (γn,pr)

]
rdr. (A.2)

Separate formulas for each of the three terms follow:

∫ b

a
J2

n(γn,pr)rdr =
r2

4
[2J2

n(γn,pr)− 2Jn+1(γn,pr)Jn−1(γn,pr)]

∣∣∣∣∣
b

a

(A.3)

∫ b

a
Y 2

n (γn,pr)rdr =
r2

4
[2Y 2

n (γn,pr)− 2Yn+1(γn,pr)Yn−1(γn,pr)]

∣∣∣∣∣
b

a

(A.4)

∫ b

a
Jn(γn,pr)Yn(γn,pr)rdr

=
r2

4
[2Jn(γn,pr)Yn(γn,pr)− Jn+1(γn,pr)Yn−1(γn,pr)− Jn−1(γn,pr)Yn+1(γn,pr)]

∣∣∣∣∣
b

a

.

(A.5)

Substitute these results into Eq. A.2 to get

M2
n,p

= c2
1

b2

4
[2J2

n(γn,pb)− 2Jn+1(γn,pb)Jn−1(γn,pb)]

−c2
1

a2

4
[2J2

n(γn,pa)− 2Jn+1(γn,pa)Jn−1(γn,pa)]

+2c1c2
b2

4
[2Jn(γn,pb)Yn(γn,pb)− Jn+1(γn,pb)Yn−1(γn,pb)− Jn−1(γn,pb)Yn+1(γn,pb)]

−2c1c2
a2

4
[2Jn(γn,pa)Yn(γn,pa)− Jn+1(γn,pa)Yn−1(γn,pa)− Jn−1(γn,pa)Yn+1(γn,pa)]

+c2
2

b2

4
[2Y 2

n (γn,pb)− 2Yn+1(γn,pb)Yn−1(γn,pb)]

−c2
2

a2

4
[2Y 2

n (γn,pa)− 2Yn+1(γn,pa)Yn−1(γn,pa)]. (A.6)

Assume

Jn(γn,pa) 6= 0. (A.7)
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Substitute Eq. 6.35 to get

4

c2
2

M2
n,p

=

[
Yn(γn,pa)

Jn(γn,pa)

]2

b2[2J2
n(γn,pb)− 2Jn+1(γn,pb)Jn−1(γn,pb)]

−
[
Yn(γn,pa)

Jn(γn,pa)

]2

a2[2J2
n(γn,pa)− 2Jn+1(γn,pa)Jn−1(γn,pa)]

−2

[
Yn(γn,pa)

Jn(γn,pa)

]
b2 ×

×[2Jn(γn,pb)Yn(γn,pb)− Jn+1(γn,pb)Yn−1(γn,pb)− Jn−1(γn,pb)Yn+1(γn,pb)]

+2

[
Yn(γn,pa)

Jn(γn,pa)

]
a2 ×

×[2Jn(γn,pa)Yn(γn,pa)− Jn+1(γn,pa)Yn−1(γn,pa)− Jn−1(γn,pa)Yn+1(γn,pa)]

+b2[2Y 2
n (γn,pb)− 2Yn+1(γn,pb)Yn−1(γn,pb)]

−a2[2Y 2
n (γn,pa)− 2Yn+1(γn,pa)Yn−1(γn,pa)]. (A.8)

Collect terms separately. Terms(1)+(5)+(11): 2b2 multiply the follows,

Y 2
n (γn,pa)

J2
n(γn,pa)

J2
n(γn,pb)− 2

Yn(γn,pa)

Jn(γn,pa)
Jn(γn,pb)Yn(γn,pb) + Y 2

n (γn,pb)

=
Y 2

n (γn,pa)

J2
n(γn,pa)

J2
n(γn,pb)− Yn(γn,pa)

J2
n(γn,pa)

Jn(γn,pa)Jn(γn,pb)Yn(γn,pb)

−Yn(γn,pa)

Jn(γn,pa)
Jn(γn,pb)Yn(γn,pb) +

Jn(γn,pa)

Jn(γn,pa)
Y 2

n (γn,pb) (A.9)

=
Yn(γn,pa)Jn(γn,pb)

J2
n(γn,pa)

[Yn(γn,pa)Jn(γn,pb)− Jn(γn,pa)Yn(γn,pb)]

+
Yn(γn,pb)

Jn(γn,pa)
[−Yn(γn,pa)Jn(γn,pb) + Jn(γn,pa)Yn(γn,pb)] (A.10)

=
Yn(γn,pa)Jn(γn,pb)

J2
n(γn,pa)

0 +
Yn(γn,pb)

Jn(γn,pa)
0 (A.11)

= 0. (A.12)

Similarly, terms(3)+(8)+(13): 2a2 multiply the follows,

−Y 2
n (γn,pa)

J2
n(γn,pa)

J2
n(γn,pa) + 2

Yn(γn,pa)

Jn(γn,pa)
Jn(γn,pa)Yn(γn,pa)− Y 2

n (γn,pa) = 0. (A.13)
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Substitute these results into Eq. A.8 to get,

4

c2
2

M2
n,p

=

[
Yn(γn,pa)

Jn(γn,pa)

]2

b2[−2Jn+1(γn,pb)Jn−1(γn,pb)]

−
[
Yn(γn,pa)

Jn(γn,pa)

]2

a2[−2Jn+1(γn,pa)Jn−1(γn,pa)]

−2

[
Yn(γn,pa)

Jn(γn,pa)

]
b2[−Jn+1(γn,pb)Yn−1(γn,pb)− Jn−1(γn,pb)Yn+1(γn,pb)]

+2

[
Yn(γn,pa)

Jn(γn,pa)

]
a2[−Jn+1(γn,pa)Yn−1(γn,pa)− Jn−1(γn,pa)Yn+1(γn,pa)]

+b2[−2Yn+1(γn,pb)Yn−1(γn,pb)]− a2[−2Yn+1(γn,pa)Yn−1(γn,pa)]. (A.14)

By Eq. 6.48 it follows that

−Jv−1(z)Jv+1(z) =
[
J ′v(z) +

v

z
Jv(z)

] [
J ′v(z)− v

z
Jv(z)

]
(A.15)

= [J ′v(z)]2 − (
v

z
)2[Jv(z)]2 (A.16)

−Yv−1(z)Yv+1(z) = [Y ′
v(z)]2 − (

v

z
)2[Yv(z)]2 (A.17)

−Jv+1(z)Yv−1(z)− Jv−1(z)Yv+1(z)

=
[
J ′v(z)− v

z
Jv(z)

] [
Y ′

v(z) +
v

z
Yv(z)

]

+
[
J ′v(z) +

v

z
Jv(z)

] [
Y ′

v(z)− v

z
Yv(z)

]
(A.18)

= 2J ′v(z)Y ′
v(z)− 2(

v

z
)2Jv(z)Yv(z). (A.19)

Substitute these results into Eq. A.14 to get

4

c2
2

M2
n,p

=

[
Yn(γn,pa)

Jn(γn,pa)

]2

2b2

[
[J ′n(γn,pb)]

2 − (
n

γn,pb
)2[Jn(γn,pb)]

2

]

−
[
Yn(γn,pa)

Jn(γn,pa)

]2

2a2

[
[J ′n(γn,pa)]2 − (

n

γn,pa
)2[Jn(γn,pa)]2

]

− 2

[
Yn(γn,pa)

Jn(γn,pa)

]
2b2

[
J ′n(γn,pb)Y

′
n(γn,pb)− (

n

γn,pb
)2Jn(γn,pb)Yn(γn,pb)

]
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+ 2

[
Yn(γn,pa)

Jn(γn,pa)

]
2a2

[
J ′n(γn,pa)Y ′

n(γn,pa)− (
n

γn,pa
)2Jn(γn,pa)Yn(γn,pa)

]

+ 2b2

[
[Y ′

n(γn,pb)]
2 − (

n

γn,pb
)2[Yn(γn,pb)]

2

]

− 2a2

[
[Y ′

n(γn,pa)]2 − (
n

γn,pa
)2[Yn(γn,pa)]2

]
. (A.20)

Collect all the terms that are multiplied by 2b2,

+

[
Yn(γn,pa)

Jn(γn,pa)

]2 [
[J ′n(γn,pb)]

2 − (
n

γn,pb
)2[Jn(γn,pb)]

2

]

−2

[
Yn(γn,pa)

Jn(γn,pa)

] [
J ′n(γn,pb)Y

′
n(γn,pb)− (

n

γn,pb
)2Jn(γn,pb)Yn(γn,pb)

]

+[Y ′
n(γn,pb)]

2 − (
n

γn,pb
)2[Yn(γn,pb)]

2 (A.21)

Simplify terms(2)+(4)+(6) in Eq. A.21 to get

(
n

γn,pb
)2

[
−Y 2

n (γn,pa)
J2

n(γn,pb)

J2
n(γn,pa)

+ 2Yn(γn,pa)Yn(γn,pb)
Jn(γn,pb)

Jn(γn,pa)
− Y 2

n (γn,pb)

]

= (
n

γn,pb
)2

[
Yn(γn,pa)Jn(γn,pb)

J2
n(γn,pa)

[−Yn(γn,pa)Jn(γn,pb) + Jn(γn,pa)Yn(γn,pb)]

+
Yn(γn,pb)

Jn(γn,pa)
[Yn(γn,pa)Jn(γn,pb)− Yn(γn,pb)Jn(γn,pa)]

]

= 0 (A.22)

Substitute Eq. A.22 into Eq. A.21 to get

[
Yn(γn,pa)

Jn(γn,pa)

]2

[J ′n(γn,pb)]
2 −

[
Yn(γn,pa)

Jn(γn,pa)

]
2J ′n(γn,pb)Y

′
n(γn,pb) + [Y ′

n(γn,pb)]
2

=
1

J2
n(γn,pa)

[Jn(γn,pa)Y ′
n(γn,pb)− J ′n(γn,pb)Yn(γn,pa)]2 (A.23)

Therefore, the total contribution of the b2 terms is

2b2

J2
n(γn,pa)

[Jn(γn,pa)Y ′
n(γn,pb)− J ′n(γn,pb)Yn(γn,pa)]2. (A.24)

Similarly, the total contribution of the a2 terms is

− 2a2

J2
n(γn,pa)

[Jn(γn,pa)Y ′
n(γn,pa)− J ′n(γn,pa)Yn(γn,pa)]2. (A.25)
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Substitute these results into Eq. A.20 to get

4

c2
2

M2
n,p =

2b2

J2
n(γn,pa)

[Jn(γn,pa)Y ′
n(γn,pb)− J ′n(γn,pb)Yn(γn,pa)]2

− 2a2

J2
n(γn,pa)

[Jn(γn,pa)Y ′
n(γn,pa)− J ′n(γn,pa)Yn(γn,pa)]2. (A.26)

Finally, substitute Eq. 6.36 to get

Mn,p =
[
1

2
{b2[Jn(γn,pa)Y ′

n(γn,pb)− J ′n(γn,pb)Yn(γn,pa)]2

−a2[Jn(γn,pa)Y ′
n(γn,pa)− J ′n(γn,pa)Yn(γn,pa)]2}

] 1
2

. (A.27)
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APPENDIX B

CYLINDRICAL HANKEL TRANSFORM OF THE RADIAL BASIS

FUNCTIONS

The function Hn,p(R) is the nth order cylindrical Hankel transform (Eqs. 3.3

and 3.4) of the function hn,p(r). The Hankel transform can be computed sym-

bolically as is demonstrated in this appendix. With the normalizer, Eq. 6.28

becomes

hn,p(r) =
1

Mn,p

[c1Jn(γn,pr) + c2Yn(γn,pr)]. (B.1)

The Hankel transform is

Hn,p(R) = 2π
∫ b

a
hn,p(r)Jn(2πRr)rdr

=
2π

Mn,p

[∫ b

a
c1Jn(γn,pr)Jn(2πRr)rdr +

∫ b

a
c2Yn(γn,pr)Jn(2πRr)rdr

]
.

(B.2)

Apply Eq. 6.39 to get

∫ b

a
Jn(γn,pr)Jn(2πRr)rdr

=
r

(2πR)2 − γ2
n,p

[2πRJn+1(2πRr)Jn(γn,pr)− γn,pJn(2πRr)Jn+1(γn,pr)]

∣∣∣∣∣
b

a

(B.3)

=
b

(2πR)2 − γ2
n,p

[2πRJn+1(2πRb)Jn(γn,pb)− γn,pJn(2πRb)Jn+1(γn,pb)]

− a

(2πR)2 − γ2
n,p

[2πRJn+1(2πRa)Jn(γn,pa)− γn,pJn(2πRa)Jn+1(γn,pa)].

(B.4)

Similarly,

∫ b

a
Yn(γn,pr)Jn(2πRr)rdr
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=
r

(2πR)2 − γ2
n,p

[2πRJn+1(2πRr)Yn(γn,pr)− γn,pJn(2πRr)Yn+1(γn,pr)]

∣∣∣∣∣
b

a

(B.5)

=
b

(2πR)2 − γ2
n,p

[2πRJn+1(2πRb)Yn(γn,pb)− γn,pJn(2πRb)Yn+1(γn,pb)]

− a

(2πR)2 − γ2
n,p

[2πRJn+1(2πRa)Yn(γn,pa)− γn,pJn(2πRa)Yn+1(γn,pa)].

(B.6)

Substitute these results into Eq. B.2 to get

Hn,p(R) =
−2πb

Mn,p((2πR)2 − γ2
n,p)

[2πRJn+1(2πRb)Jn(γn,pb)Yn(γn,pa)

−γn,pJn(2πRb)Jn+1(γn,pb)Yn(γn,pa)]

+
2πa

Mn,p((2πR)2 − γ2
n,p)

[2πRJn+1(2πRa)Jn(γn,pa)Yn(γn,pa)

−γn,pJn(2πRa)Jn+1(γn,pa)Yn(γn,pa)]

+
2πb

Mn,p((2πR)2 − γ2
n,p)

[2πRJn+1(2πRb)Yn(γn,pb)Jn(γn,pa)

−γn,pJn(2πRb)Yn+1(γn,pb)Jn(γn,pa)]

− 2πa

Mn,p((2πR)2 − γ2
n,p)

[2πRJn+1(2πRa)Yn(γn,pa)Jn(γn,pa)

−γn,pJn(2πRa)Yn+1(γn,pa)Jn(γn,pa)]. (B.7)

By Eqs. 6.30 and 6.31, in Eq. B.7, terms(1)+(5) = 0 and terms(3)+(7) = 0.

Terms(2)+(6) have value:

b

Mn,p((2πR)2 − γ2
n,p)

γn,pJn(2πRb)[Jn+1(γn,pb)Yn(γn,pa)− Yn+1(γn,pb)Jn(γn,pa)]

while terms(4)+(8) have value:

a

Mn,p((2πR)2 − γ2
n,p)

γn,pJn(2πRa)[Jn+1(γn,pa)Yn(γn,pa)− Yn+1(γn,pa)Jn(γn,pa)].

Simplify these results further by computing the follows,

Jn+1(γn,pb)Yn(γn,pa)− Yn+1(γn,pb)Jn(γn,pa)
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=

[
n

γn,pb
Jn(γn,pb)− J ′n(γn,pb)

]
Yn(γn,pa)

−
[

n

γn,pb
Yn(γn,pb)− Y ′

n(γn,pb)

]
Jn(γn,pa) (B.8)

=
n

γn,pb
[Jn(γn,pb)Yn(γn,pa)− Yn(γn,pb)Jn(γn,pa)]

+ [Y ′
n(γn,pb)Jn(γn,pa)− J ′n(γn,pb)Yn(γn,pa)] (B.9)

= Y ′
n(γn,pb)Jn(γn,pa)− J ′n(γn,pb)Yn(γn,pa). (B.10)

Similarly,

Jn+1(γn,pa)Yn(γn,pa)− Yn+1(γn,pa)Jn(γn,pa)

= Y ′
n(γn,pa)Jn(γn,pa)− J ′n(γn,pa)Yn(γn,pa). (B.11)

Compute the derivative of hn,p(r), with the result that

h′n,p(r)

=
d

dr

[−Yn(γn,pa)Jn(γn,pr) + Jn(γn,pa)Yn(γn,pr)

Mn,p

]
(B.12)

=
γn,p

Mn,p

[Y ′
n(γn,pr)Jn(γn,pa)− J ′n(γn,pr)Yn(γn,pa)] . (B.13)

Finally, substitute these results into Eq. B.7 to get

Hn,p(R) =
2πb

Mn,p((2πR)2 − γ2
n,p)

γn,pJn(2πRb)h′n,p(b)
Mn,p

γn,p

− 2πa

Mn,p((2πR)2 − γ2
n,p)

γn,pJn(2πRa)h′n,p(a)
Mn,p

γn,p

(B.14)

= 2π
bh′n,p(b)Jn(2πRb)− ah′n,p(a)Jn(2πRa)

(2πR)2 − γ2
n,p

(B.15)

where h′n,p(·) is the derivative of hn,p(·). If 2πR = γn,p, the numerator and denom-

inator are both zero. By L’Hospital’s Rule,

Hn,p(R) = 2π
2πb2h′n,p(b)J

′
n(2πRb)− 2πa2h′n,p(a)J ′n(2πRa)

2(2πR)(2π)
(B.16)

= π
b2h′n,p(b)J

′
n(γn,pb)− a2h′n,p(a)J ′n(γn,pa)

γn,p

. (B.17)

108



BIBLIOGRAPHY

[1] Seunghee Lee. Model-based statistical inverse problems for objects with helical
symmetry and applications to viral structural biology. PhD thesis, School
of Electrical and Computer Engineering, Purdue University, West Lafayette,
Indiana, USA, May 2009.

[2] D. J. DeRosier and P. B. Moore. Reconstruction of three-dimensional images
from electron micrographs of structures with helical symmetry. J. Mol. Bio.,
52:355–369, 1970.

[3] R. A. Crowther, D. J. DeRosier, A. Klug, and F. R. S. The reconstruction of
a three-dimensional structure from projections and its application to electron
microscopy. Proc. Roy. Soc. Lond., A317:319–340, 1970.

[4] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt,
E. C. Meng, and T. E. Ferrin. UCSF Chimera—A visualization system for
exploratory research and analysis. J. Comput. Chem., 25(13):1605–1612, 2004.

[5] A. Klug, F. H. C. Crick, and H. W. Wyckoff. Diffraction by helical structures.
Acta Cryst., 11:199–213, 1958.

[6] D. J. DeRosier and A. Klug. Reconstruction of three dimensional structures
from electron micrographs. Nature, 217:130–134, January 1968.

[7] W. Cochran, F. H. C. Crick, and V. Vand. The structure of synthetic polypep-
tides. I. the transform of atoms on a helix. Acta Cryst., 5:581–586, 1952.

[8] A. N. Barrett, J. B. Leigh, K. C. Holmes, R. Leberman, E. Mandelkow, P. von.
Sengbusch, and A. Klug. An electron-density map of tobacco mosaic virus
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