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Executive Summary 

 With the recent decision of the American Heart Association to endorse CCR training over CPR 

training, we decided to investigate claims of efficiency and compare the two methods. CPR and CCR are 

two related techniques used to help oxygenate a person who has experienced cardiac arrest.  The 

significant difference between them is that CPR involves rescue breaths, which re-oxygenate the lungs 

but stop compressions which in turn, stop blood flow, while CCR consists of only chest compressions.  

There is much debate as to which method is more effective at delivering oxygen to the bloodstream.  We 

used COMSOL to model and study CPR and CCR and determine which method induces a greater 

oxygen flux through the alveolus and into the capillaries.  CPR was modeled with rescue breaths and no 

convective flow near the end of the cycle, while CCR involved constant convective flow past the 

alveolus-capillary boundary.  We found that while CPR creates a somewhat higher oxygen concentration 

in the blood, its oxygen flux drops to zero during rescue breaths.  CCR delivers a consistently larger 

oxygen flux to the lungs since it never drops to zero.  When the overall oxygen concentrations in the 

bloodstream over time are compared between the two methods, it is clear that CCR has the advantage 

over CPR. Therefore, we conclude that CCR is a more effective method of delivering oxygen to a 

person who has experienced cardiac arrest. 

 

Introduction 

 Cardiopulmonary Resuscitation (CPR) is a technique used around the world to help save the 

lives of people who have experienced sudden cardiac arrest. It is designed to prevent brain and tissue 

damage due to a lack of blood circulation and to prolong a person’s chance of survival until emergency 

personnel arrives.
1
It has been established as one of the most effective interventions for such medical 

crises and for increasing the chances of the return of spontaneous circulation. It was developed over five 

decades ago and the procedure remains generally unchanged to this day. The technique uses a cycle of 

thirty compressions of the heart followed by two “rescue breaths”.  Though the compression-breath 

method has been in use for quite some time, recently there has been a new recommendation for CPR, 

called cardiocerebral resuscitation (CCR) that involves only compressions and no rescue breaths.    

 When cardiac arrest occurs, the heart stops pumping blood and so, oxygen delivery is essentially 

halted. This would not be a problem for most tissue in the body because oxygen reserves and metabolic 

requirements allow them to survive even with oxygen deprivation for hours. However, for the heart and 

the brain, survival may be as short as only a few minutes. Brain damage occurs in varying time periods, 

depending on the person and circumstances, but is generally in the range of five to fifteen minutes. Also, 

to achieve the return of spontaneous circulation (ROSC) through subsequent ALS (advanced life 

support) procedures, such as an AED (Automated External Defibrillation), the ischemic myocardium 

tissue must have some level of oxygen replenishment; there must be some level of previous oxygen 

transport in the blood which can be provided by CPR.
 3
 

The attraction of CCR is two-fold. The first lies in the fact that rescue breaths, though a simple 

concept, can go disastrously wrong if performed incorrectly; this mostly concerns laypersons, people 

who have no medical training but have taken a CPR class. If the airway is not opened correctly, a 

layperson could breathe into the stomach, induce vomiting and cause a new host of problems; or their 



breaths might not go anywhere if both the trachea and esophagus remain closed. If this occurs, the 

layperson may try to fix their technique in the middle of performing CPR and stop performing chest 

compressions.
2
This is where the second advantage presents itself. An interruption to chest compressions 

will cause a decrease in blood pressure and blood flow as well as decrease the oxygen perfusion in the 

heart and brain, all factors that drastically diminish the chances of ROSC.
4 

By eliminating rescue breaths 

and therefore, any interruption of chest compressions, the chances of ROSC should increase. However, 

the problem with CCR is the question regarding whether there is enough oxygen present in the lungs to 

make CCR a viable and effective alternative to the traditional CPR procedure. Without rescue breathes, 

fresh air is not delivered to the lungs and so the oxygen in the alveoli is not replenished. The oxygen in 

the alveoli therefore decreases with each passing minute of CCR; there may not be enough to sustain life 

past a certain amount of time. 

 An important recent development regarding this matter is the change in policy of the American 

Heart Association. They have recently decided to endorse CCR training over CPR training. American 

Red Cross, on the other hand, has continued to endorse CPR training. This makes our experiment doubly 

important because the American Heart Association and the American Red Cross are the two largest 

providers of CPR/CCR training classes and most, if not all of those who are trained to perform CPR, 

including paramedics and EMTs, have been trained through one of these agencies. Therefore, this 

apparent disconnect between policies is a potential future problem. 

 Many studies have been done on this subject.
4,6-8 

One such study concludes that rescue breaths 

are not necessary in performing effective CPR. The researchers simulated a situation in which a single 

rescuer bystander performs an intervention on a pig in which cardiac arrest had been induced. After two 

minutes of untreated cardiac arrest and twelve minutes of bystander help, ALS intervention began, with 

administration of AED and epinephrine as though a paramedic had arrived. Forty three pigs were treated 

with CCR, CPR or no CPR. The concentration of oxygen and carbon dioxide as well as the pH in the 

blood was monitored. Five out of fourteen CCR, three out of fifteen CPR, and one out of fourteen no 

CPR pigs survived past twenty four hours. The myocardial oxygen delivery and consumption was the 

same for both CCR and CPR pigs.
8
 

However, another study concluded that CCR was not effective in inducing ROSC in cardiac 

arrest victims. In this study, researchers compared four different compression/ventilation ratios (30:2, 

100:5, 100:2, compression-only) on 32 pigs in which cardiac arrest had been induced. After three 

minutes of untreated cardiac arrest and ten minutes of one type of intervention, ALS intervention began 

with administration of an AED and adrenaline. ROSC was achieved in four out of eight 30:2, five out of 

eight 100:5, two out of eight 100:2 and zero out of eight compression-only pigs. The oxygen 

concentration in the blood was measured. There was a decrease in peripheral arterial oxygenation in the 

100:5 and compression-only pigs that possibly decreased the chances of ROSC. The concentration was 

about the same for 30:2 and 100:5 compression rate pigs.
4 

With so many differing opinions regarding this matter and the research reinforcing each position, 

it is certainly hard to make a conclusion about such an important procedure. Therefore, we will 

investigate for ourselves and model both types of CPR in COMSOL to determine which method is more 

effective in preserving life. 

 



Design Objectives 

 We plan to evaluate the effectiveness of traditional CPR (CPR #1) whereby the rescuer gives a 

cycle consisting of 30 compressions followed by 2 “rescue breathes”, in comparison to an alternative 

proposal where the cycle consists of only compressions and no “rescue breathes” (CPR #2/ CCR).  We 

will then determine whether claims that the second method saves more lives are true or not; this will be 

decided by whether the oxygen levels in the blood is enough to sustain brain activity, and whether it is 

different from that of traditional CPR.
 

• To model oxygen intake in the lungs with rescue breaths and with no rescue                                                

breathes 

• To determine how much oxygen is being delivered to the body 

• To find the amount of oxygen that is diffusing from an alveolus in the lungs into a capillary 

covering that alveolus in two different models (model with 2 “rescue breathes” and model with 

no “rescue breathes”) 

• To determine the blood flow resulting from chest compressions 

 

Simple Solution 

 For our simple solution we considered only the blood vessel area with a boundary shared with 

the alveolar wall and a constant oxygen concentration at boundary 1.  No blood is flowing. 

Schematic: 

The diagram of our model. 

 

Figure 1. Schematic drawing of a simplified version of the capillary/alveoli interaction for the simple solution 

Assumptions: 

The assumptions made to simplify a complex model into the one seen above. 

1. There is no air flow in the lungs. 

2. There is no blood flow in the capillary. 



3. The wall of the blood vessel and the wall of the alveoli are considered be thin enough to combine 

into one entity and, thus have the same diffusion constant.  

4. There is no degradation of oxygen in the lungs or the capillary. 

5. The flux across the wall is constant. 

6. The blood vessel is insulated at the other side (boundary 3) because there is no contact with alveoli 

on that side. 

7. The capillary is insulated at both ends (boundaries 2 and 4) because the capillary is very long and 

we are looking at only a small section of the alveoli-capillary contact.  

 

Governing Equation: 

 These are our governing equations for our model.  We started with the general equation for mass 

diffusion and eliminated the generation term, since we assumed that oxygen is neither generated nor 

degraded; and then eliminated the convection term, since we assumed no blood flow.  This leaves us 

with the transient and diffusive terms. 
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Boundary Conditions: 

Flux will be zero at the boundaries 2, 3 and 4. Flux at boundary 1 is a given value.  

 

Initial Conditions: 

The concentration of oxygen in the blood is initially zero. The concentration of oxygen in the lungs is a 

given value. 

 

Limitations: 

With a simplified model, the conclusion made will not be as realistic as one made with a more complex 

model with less assumptions. 

1. This model does not account for the convection in the lungs when a “rescue breath” is issued as part 

of CPR. 

2. This model does not account for the blood flow that the compressions of CPR induce. 

3. The blood vessel wall and the capillary wall do not have the same diffusion constant and the 

combination of the two will cause undesirable inaccuracies in the data. 

 

 



Mesh 

Scenario for Mesh and Complete Solution: 

 A person has just had a heart attack. We will be assuming that the person has an asystolic heart 

rhythm (the heart has stopped beating). Blood will not be flowing though the blood vessels and thus will 

be stagnant. The person took a full breath of air before he collapsed and his airway closed (preventing 

any transfer of air between the lungs and the atmosphere) so the oxygen concentration in his lungs is the 

same as the concentration of oxygen in the air.  

 The original mesh is included in the appendix.  We then performed a mesh convergence analysis 

on the problem using the average oxygen concentration in the blood vessel, and obtained the final graph 

shown below. 

 

Mesh Convergence: 

This is a table of our mesh convergence element values and the oxygen concentration values that 

resulted from the change. 

Table 1. Number of Elements in the mesh versus the oxygen concentration in the blood vessel for the purposes of mesh convergence 

Number of 

Elements 

Total Concentration 

of Oxygen in blood 

vessel (mol/m) 

2800 2.479608E-08 

11200 2.479673E-08 

25200 2.479733E-08 

36400 2.479725E-08 

44800 2.479735E-08 

 

Next is a graph of these values, showing where the solution converges and thus which mesh element is 

sufficient for our purposes. 



 

Figure 2. Plot of the oxygen concentration in the blood vessel against the number of elements in the mesh for the mesh convergence 

 Overall, the mesh converges to a final oxygen concentration around roughly 40000 to 50000 

elements.  There is a slight anomaly in the data at 37000 elements, however, since the rest of the data 

follows the same general pattern and the anomaly is so small, it is not considered significant to the 

problem.  The number of mesh elements that was used for the final solution was 45000. 

 

Complete Solution 

This is the schematic for our complete solution, with minimum assumptions made.  Oxygen 

diffuses through boundary 5 of the alveolus (top area) and then crosses into the capillary (bottom area).  

Blood is flowing from boundary 1 into boundary 6, producing convection. 
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Schematic:  

The diagram of our final model. 

 

       Air inside Pulmonary Alveoli                                                         Boundary#5 

 

 

    Boundary#1                                   Blood Flow                                        Boundary#6 

 

Figure 3. Schematic of the capillary/alveoli interaction for the complete solution. 

 

Assumptions: 

These are the assumptions made to simplify the model and make it more manageable and solvable. 

1. Blood and body temperature will stay the same – reasonable because the body is such a large 

mass the temperature will not change much from the initial 37 
o
C. 

2. Person took a full breath before collapsing. The airway is closed so no air escapes or enters. 

a. Oxygen concentration in lungs is same as oxygen concentration in air. 

3. The oxygen flux from the air to pulmonary alveoli wall is constant. 

4. The oxygen flux from the pulmonary alveoli wall to the capillary wall is constant. 

5. The oxygen flux from the capillary wall to the blood is constant. 

 

Dimensions:  

 We used the following dimensions for our model. 

Table 2. The dimensions of the blood vessel and wall that is to be modeled in COMSOL. 

 Width (um) Height (um) 

Blood-Air Barrier Tissue 300 1 

Capillary 300 15 

 

Governing Equations:  

 For our complete solution we once again started with the general equation for mass diffusion.  

However, this time the only term we remove is the generation term.  Since we now assume blood flow, 

the convection term remains, and we introduce a second governing equation for fluid flow in the 

capillary.  Since air is stagnant, this equation does not apply in the alveolar area. 
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Boundary Conditions: 

 These are the boundary conditions used for our model. 

At Boundary#1: [Oxygen]=5.50 mol/(m^3) (Assume to be the concentration of oxygen in de-oxygenated  

blood) 

At Boundary#5: [Oxygen]=8.25mol/(m^3) (Assume to be the concentration of oxygen in air) 

At Boundary#6: Convective flux determined by COMSOL 

 

Initial Conditions: 

 These are the initial conditions for our model. 

Capillary: [Oxygen]=5.50 mol/(m^3) (Constant for simplified solution, but is function for complex 

solution) 

Alveolus: [Oxygen]=8.25mol/(m^3) 

 

Material Properties and Constants 

            These are the constants that we found from literature that we used in our model. 

Diffusion of oxygen through the alveolus: 1.1e-12m
2
/s 

Diffusion of oxygen through the capillary: 3.24e-9m
2
/m·s 

 Blood Velocity through the capillary: 4.70e-6m/s 

 

Post-Processing Analysis 

 Once again, the average concentration of oxygen in the blood vessel is modeled at various points 

within the capillary and it can be seen that as one gets closer to the surface of the capillary and thus 

closer to the vessel-alveolus boundary, the concentration of oxygen increases.  The sharp dip in oxygen 

concentration present in our previous graph has been reduced significantly; while the oxygen 

concentration still decreases initially, it is not as drastic, hinting that the original spike in oxygen 

concentration was likely caused by an insufficient mesh. 

 The concentration profiles for both the initial and final meshes are very similar, with oxygen 

concentration slowly increasing in the capillary as the blood flows past the oxygen-rich alveolus; the 



final profile does not change significantly in terms of value or general appearance. The concentration 

profiles are attached in the Appendix. 

 There is also a graph comparing the flux of oxygen into the blood between CPR and CCR (figure 

7,8).  It can be seen that the two have almost identical oxygen flux until the final seconds of the second, 

at which point the CPR oxygen flux drops to zero.  This seems reasonable, since during the final stages 

of the model rescue breaths are performed; the flux of oxygen into the blood would then cease since no 

compressions are occurring. 

 We then compared the concentration of oxygen in the blood during various points in CPR and 

CCR (Figure 12.).  It can be seen that concentrations of oxygen are very similar for both methods at 

first.  In the beginning, CPR experiences a minor spike; both then follow the same curve, where the 

oxygen concentration spikes suddenly and then slowly decreases.  However, CPR then experiences a 

second spike near the end of the middle and end time runs; CCR continues to steadily decrease. 

 

Accuracy Analysis 

We performed an accuracy analysis for our final oxygen concentration profile by comparing the values 

we obtained through COMSOL with those calculated in literature.  We found a small paper where the 

blood concentration in the cerebral area of the brain was calculated to be 5.175mM
5
.  The values we 

calculated, however, are somewhat higher, at 7.15mM at the maximum and 6.90mM at the minimum for 

CPR, and 6.909mM and 6.900mM for CCR.  This is likely because the blood concentration in the brain 

is going to be much lower than that coming directly from the alveolus, since the oxygen is delivered to 

all of the body and thus only a fraction of itgoes directly to the brain.  Thus, the values we have obtained 

seem fairly reasonable thus far. 

 

Sensitivity Analysis 

We performed a sensitivity analysis on the blood velocity and oxygen diffusivity of our model, 

since these two values will greatly impact how well oxygen diffuses into the blood during CPR.  

Sensitivity towards either of these two variables may greatly affect our model and thus require us to 

obtain the most accurate data available for these two variables. 

This is a graph of our sensitivity analysis on blood velocity as it affects our solution.  We 

multiplied the original velocity by constant values and observed the change in total flux. 



 

Figure 5. Sensitivity analysis of our model in regards to blood velocity.  The graph is distinctly linear and thus we can conclude that our 

model is very sensitive to blood velocity. 

It can be seen that the relationship is linear, with the increase in velocity being almost perfectly 

matched by the same percent change in the flux.  Thus, we can see that our model is very sensitive to 

blood velocity, and we should search for the more accurate values available for the blood velocity 

around the capillaries. 

Next is a graph of our sensitivity analysis on oxygen diffusivity into the blood, generated using 

the same method for blood velocity above. 

 

Figure 6. Sensitivity analysis for our model in regards to oxygen diffusivity.  It can be seen that the final flux does not change with 

oxygen diffusivity and thus the model is not sensitive to this parameter. 
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 Unlike blood velocity, the final oxygen flux values hardly change as the diffusivity of oxygen 

into the blood is changed.Our model then appears to be completely independent of the oxygen 

diffusivity. 

 

Conclusion 

 We ran our model for two separate scenarios, CPR and CCR, and changed the appropriate 

settings for each.  We obtained the below graphs for each of our solutions, showing the oxygen flux into 

the bloodstream as a function of time (one CPR cycle of thirty seconds): 

 

Figure 7. Flux versus time inside the capillary for CPR for our final solution.  The flux stays relatively constant up until the rescue 

breaths are applied, at which point the flux drops rapidly to zero. 



 

Figure 8. Flux versus time inside the capillary for CCR for our final solution.  The flux reaches its maximum value early in the cycle and 

then slowly decays to a steady value.  Note that the scale on this graph is different from that in Figure 7. 

 A very important thing to note about the two graphs is that the CPR graph’s scale starts at zero 

flux but the CCR graphs starts at 3.24 mol/m
3
s, which is roughly where the CPR graph has begun to 

peak. 

 The shapes of the two graphs are drastically different; the flux of oxygen into the blood in CPR 

drops to zero at the end of the cycle, while that of CCR decays to a constant value.  This constant value 

is similar to the value recorded for CPR.  Were this cycle repeated, one could expect that the flux of 

oxygen in CPR would once again rise to a steady value, and then drop; the flux in CCR would not 

change for repeated cycles, since the chest compressions would be not be stopped.  This then implies 

that CCR is more effective at delivering oxygen to the blood, since the flux would not fluctuate to zero 

like in CPR. 

 We then obtained maximum and minimum values for CPR and CCR, which are as follows: 

Table 3. Maximum and minimum oxygen concentration values obtained for CPR and CCR.  There is a greater range in CPR, while CCR 

oxygen concentrations are constant. 

 CPR CCR 

Max. O2 Conc.  7.15mM 6.909 mM 

Min. O2 Conc.  6.90 mM 6.900 mM 

  



 Though it seems as though CPR provides more change in oxygen concentration in the 

bloodstream than CCR, and it does, we must take this finding in consideration with our findings 

regarding the oxygen flux. These concentration values only reflect a single cycle, which we have 

defined as 30 chest compressions and 2 rescue breathes (CPR) or 50 chest compressions (CCR). With 

the oxygen flux, we can see and predict future oxygen concentration trends and it shows that while CPR 

delivers burst of oxygen to brain and tissue, the CCR maintains a constant supply of oxygen and in the 

long run, this supply of oxygen will prove to be larger than that of the supply maintained by CPR. 

 Our sensitivity analysis provides further proof that CCR is more effective than CPR.  Our model 

is extremely sensitive to blood velocity; thus, if the blood is not moving, then the flux of oxygen into the 

blood will decrease drastically.  Therefore, during rescue breaths, the flux of oxygen will drop 

significantly as blood flow ceases and therefore convective transport is lost.  In CCR, chest 

compressions are constant and thus maintain a steady blood flow, thus preventing extreme fluctuations 

in oxygen flux.  Therefore, we conclude that CCR provides more oxygen to the blood and brain than 

CPR does. 

 

Plan for Future Study 

                 In future studies, we will examine the conditions under which air convection is present, 

oxygen concentration in the lung is non-constant, and blood flow is non-uniform throughout the 

capillary. In doing so we hope to observe the effects of blood flow and air flow to oxygen distribution 

within the capillary, and determine the effectiveness of CPR with breathing-tube and CPR without 

breathing tube in terms of their ability to deliver oxygen into blood stream.  

                We also plan to test our model on mesh independency and error analysis to check if our model 

is within the permit of error analysis. 
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Appendix 

 

Figure 10. The concentration profile of the COMSOL model of a cycle of CPR (with rescue breathes). 

 

Figure 11. The contour plot of the COMSOL model of a cycle of CPR (with rescue breathes). 



 

Figure 12. The concentration profile of the COMSOL model of a cycle of CCR (no rescue breathes). 

 

Figure 13. The contour plot of the COMSOL model of a cycle of CCR (no rescue breathes). 



 

Figure 14. The final mesh for the COMSOL model at mesh convergence. 

 

Figure 12. The comparison of the concentration of O2 between CPR and CCR at the beginning, middle and end of the blood vessel that 

is being modeled. 
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