A Design for Inter-Operable Secure Object Stores (ISOS)

Carl Lagoze Robert McGrath
Digital Library Research Group Computing and Communications Group
Cornell University NCSA
Ed Overly Nancy Yeager
CNRI Computing and Communications Group
NCSA

November 7, 1995

Abstract

We describe a distributed object-based design for repositories in a digital library infrastructure. This
design for Inter-operable Secure Object Stores, ISOS, defines the interfaces to secure repositories that
inter-operate with each other, clients, and other services in the infrastructure. We define the interfaces to
ISOS as class definitions in a distributed object system. We also define an extension to CORBA security
that is used by repositories to secure access to themselves and their contained objects.

1 Introduction

This paper describes a fundamental component of digital libraries, repositories for information in digital
form. The success of any such design will depend greatly on its fit with the existing social, economic, and
legal context. We define this context as follows.

e The legal framework for protecting intellectual property is strongly established in our existing infor-
mation infrastructure. The digital analogue will succeed only if it fits within this existing framework.

e The existing infrastructure consists of a large number of diverse and competitive parties. The digital
infrastructure will fail if it tries to impose centralized control or standardization on these parties, other
than that necessary for inter-operation with other services and protection of intellectual property.

e The use and protection of derivative works is a fundamental notion. The shift to the digital domain
opens up many new opportunities for deriving new content from existing content. The infrastructure
must exploit this capability, yet protect all parties from abuse of the technology.

The approach presented in this paper, a design for Inter-operating Secure Object Stores (ISOS), is based
on a framework for distributed digital information systems first articulated by Robert Kahn and Robert
Wilensky [19], as part of the CS-TR project[1], and further investigated in [22]. Kahn/Wilensky broadly
defines the components of an open system for storage, access, dissemination, and management of information
in the form of digital objects. A digital object i1s a content-independent package that includes the content of
a work, a unique identifier for the digital object (its handle), and other data about the object, such as the
terms and conditions for use of the object. Repositories logically store digital objects and are responsible
for protecting resident objects according to their respective terms and conditions. An access request on a
digital object produces a dissemination, which contains the results of the access request (determined by the
parameters in the request) and additional data specifying the origin of the dissemination and the specific
terms and conditions governing its use. It is important to note that Kahn/Wilensky does not restrict a
dissemination to have the same data as the source digital object. Nor does it specify that the dissemination
is necessarily some subset of the digital object’s data (e.g., a dissemination that is the result of an access

request for a single page of a book stored as a digital object). For example, a digital object may be an
executable program and disseminations may be produced by running the program using the parameters
in the access request as input. Finally, Kahn/Wilensky present the basic components of a protocol, the
Repository Access Protocol (RAP), which includes services for deposit of digital objects and access to digital
objects.

Kahn/Wilensky makes no assumptions about implementation details. This paper describes one possible
design approach to the Kahn/Wilensky framework; based on the distributed object model. We have cho-
sen this model because it allows us to define ISOS interfaces without linking them to specific transport or
session layer protocols. Within this object-oriented framework, ISOS makes two contributions. First, it pro-
vides class definitions (instance variables and methods) for the objects in Kahn/Wilensky: digital_object,
dissemination, repository, data, and terms_and conditions. The methods are semantically equivalent
to Kahn/Wilensky RAP. These class definitions are the basis for interoperability among individual ISOS
repositories and between these repositories and other digital library services. Second, ISOS defines a uni-
form and extensible method for securing access to repositories, to digital objects, and to operations on
digital objects. Because CORBA has a relatively well-defined security architecture, we use it as the basis
for defining security in ISOS. We define a new object class, terms_and _conditions, that is an encapsulation
of the stated terms and conditions that apply to access to repositories, digital objects, and disseminations.
This terms_and_conditions class interacts with the CORBA security architecture allowing a repository to
provide protection for the objects that it contains.

The remainder of this paper is structured as follows. We summarize the broader societal framework into
which TSOS fits. We then describe the primitive classes that are defined by ISOS and their context within a
distributed digital information system. We follow this with a description of the ISOS security architecture
and its enhancements to the CORBA security model. Finally, we list planned future work based on this

design.

2 The Social, Economic, and Legal Frameworks

The social, economic, and legal frameworks for dissemination of information on networks are still emerging.
Current information services, such as those currently available on the Internet, provide essentially no control
over the use of on-line information and are therefore most suitable for public access to open information.
This is an important class of information, but, more systematic control is a prerequisite for the dissemination
of items that are not in the public domain and for on-line commerce.

Following Kahn/Wilensky, ISOS makes no assumptions about what particular economic and legal frame-
works will eventually emerge. It provides a structure that can be used to manage a wide range of terms and
conditions associated with digital objects. To achieve this end, terms and conditions are associated with each
digital object, dissemination, and repository in the design. The repository stores these terms and conditions
and enforces them as a precondition to accessing stored digital objects. Repositories will necessarily need to
be consistent with the current and emerging legal framework.

The creator of a digital object and the party that stores the object in a repository are able to assign
terms and conditions to the object. These terms and conditions associated with digital objects may take
many forms. They might include, for example, access restrictions, claims of copyright, or payment terms.
For example, access to an object might be free to members of a certain community (e.g., university students)
but might require payment from others. Some objects might require a certain security clearance to be
disseminated. There are many permutations of different types of terms and conditions and the possibility
exists for very complex formulations. Frequently, however, most parties are interested in terms and conditions

Repositories must enforce access controls to the stored objects according to their respective terms and
conditions. They may keep a log that records fulfillment of terms and conditions and may be called upon
to produce records for certain transactions. The design of the repository provides a secure interface, which
ensures that these terms and conditions are observed in all interactions with the repository.

Clients must satisfy repositories that they meet the stated terms and conditions for the dissemination of
a particular digital object. This requires a means to request, present, and negotiate terms and conditions
via information networks. This includes specification of a method for codifying terms and conditions that is

portable and extensible, and which allows them to be inter-operable among different platforms and between
different clients and repositories. Tt also includes the procedures by which a client (which might be another
repository) can inquire about terms and conditions from a repository and obtain disseminations of the digital
objects.

3 ISOS Base Classes

ISOS, by itself, is not a digital library. It is the component of the infrastructure that provides secure storage
for the items in a digital library collection. A digital library infrastructure will include many other services.
ISOS is directly dependent on some of these such as naming services (in this paper and in our planned
implementation we use the CNRI handle service [12]), authentication services [26] [21], and payment services
[3] [25] [9]. Some higher level services that may use the services provided by ISOS are indexing and search
services [16] [4], browsing services [13], annotation services [27] [10], and link services [20].

terms and

conditions

access_digital_object

get_dissemination

dissemination

terms and

conditions

terms and

description of symbols conditions

[has

association

(numbers indicate cardinality)

Figure 1: Relationship of ISOS base classes.

In this section we describe the components of the infrastructure that ISOS provides. We do this by
describing® the five base classes in the ISOS class hierarchy. This class structure could be implemented in
any distributed object architecture; e.g. CORBA or OLE [7].

An overview of the class hierarchy is as follows (figure 1 - notation from Grady Booch [6]). The class
repository contains the method that allows clients to reference instances of class digital_object and
subsequently execute methods on those instances. The class digital_object is a content-independent
package for digital material, a unique identifier for the material, and additional items that enforce and
record access to the material. Instances of digital object are (repository) server resident and are only
accessible to clients as remote references (i.e., the digital object itself is not instantiated on client). The class
disseminationis a content-independent package for digital material and related data (including conditions of

1The included class descriptions are not complete. We describe the subset of instance variables and methods that are
essential for understanding the ISOS design.

use) that is instantiated at the client when the client invokes a digital object’s get_dissemination method. The
class data, which is a package for content, is contained within each instance of the classes digital object
and dissemination. . Finally, the class terms_and_conditions, which encapsulates access rules that secure
access, is contained within each instance of the classes repository, digital object, and dissemination.
The description of the class terms_and conditions is left to section 4, which describes the ISOS security
architecture in detail. These are the publically visible classes in ISOS, an implementation will define other
classes that are used internally.

We use the term nvocation throughout the class descriptions. Distributed object-oriented applications,
like their non-distributed counterparts, execute by invoking methods on objects, which are instances of
defined classes. The objects may reside on servers, rather than being in the same memory space as the caller
of the method. Clients refer to an object on a server using an object reference, the result of an invocation.
The distributed object system routes the method request to the server resident code for the object instance
and returns results to the client.

DIGITAL OBJECT A digital object is a content-independent container for instances of class data. In this
sense, any class hierarchy that descends from digital_object will be orthogonal to that for class data.
Expressed informally, there will not be different types of digital objects for video content, text, agents, etc.
In addition to data, the class digital_object contains a handle?, its unique identifier, and access_rules,
which are an instance of the class terms_and conditions. These access rules control invocation of the
digital object and access to its methods.

The important method for class digital object is get_dissemination which returns to the client an
instance of the class dissemination.

REPOSITORY The class repository has two notable instance variables. First, the handle of the repository is
the unique, persistent identifier for that repository. This identifier is registered with the name service. Second,
access_rules, which are an instance of the class terms_and conditions, are used to control invocation of
an instance of repository by a client. We assume that certain repositories might need this level of security,
separate from that provided for each digital object.

Clients use the repository method access_digital_object to obtain invocations of instances of class digital object
that are “contained” in the respective repository. The client supplies the handle of the digital object as the
method parameter. The repository method deposit_digital_objeci 1s called by a client to instantiate an in-
stance of digital object in the respective repository.

DISSEMINATION Instances of the class dissemination are created on a client as the result of a call on the
get_dissemination method for a digital object. Each dissemination instance contains an instance of the
class data. There i1s no requirement that the data in a dissemination is identical to or contained within
the data in the source digital object. In fact, it may be a completely different sub-class of the class data
than that in the source digital object. Some examples illustrate the scope of this relationship. There may
be a digital object which contains the fixed PostScript encoding of a computer science technical report. A
dissemination of this digital object may contain that same PostScript encoding, or a portion thereof. There
may also be a digital object that contains an program that is recording the current video image of a Senate
session. A dissemination of this digital object might be the MPEG clip of the ten minutes of that session
on September 1, 1995. Finally, there may be a digital object that contains an program, a dissemination of
which might contain another program that interacts with the user, external services, and the source digital
object in the repository.

A dissemination also contains access_rules, an instance of the class terms_and conditions. These
control access to the dissemination, and are derived from the rules in the source digital object. Note that
securing access to the dissemination (e.g., enforcing payment per access) is complex since the dissemination
is not contained in repository. We are exploring methods for doing this, such as encrypting the data in
the dissemination and including in the access rules the location of a network-accessible “applet” that would
decrypt the data only after enforcement of the access rules (e.g. interaction with a payment service).

2Note that handles, which are a general naming scheme outside the distributed object domain, are distinct from CORBA-type
object references. This requires mapping from the handle to the object reference throughout this design.

DATA Each instance of the classes digital object and dissemination contain an instance of the class
data. The primitive class data simply packages a bit stream, with a basic get method to access that bit
stream. Real use of the design, however, will depend on extensive sub-classing of this class to allow for new
content types. This makes client design difficult since new content types may be introduced that are not
recognized by clients. Dynamic object facilities such as the CORBA Interface Repository[29] and Dynamic In-
vocation Interface[8] will facilitate this sub-classing. Some sub-class examples of data are PostScript_data,
with a get method allowing specification of a page range, and MPEG_data with a get method allowing specfica-
tion of a time-slice. We define, as in Kahn/Wilensky, two sub-classes of data: contained digital object,
which contains an instance of digital object (thereby allowing a digital object to package another digital
object), and contained handle, which contains an instance of a handle (thereby allowing a digital object
to reference another digital object). Finally, we do not restrict each instance of data to be a singleton. For
example, a digital object might contain data that is a set of contained handle, effectively allowing a
digital object to reference a group of digital objects (e.g., a digital object for a computer science technical
report that contains the handles of the digital objects containing that report in different formats.

A Demonstration of ISOS interaction

A sample interaction of these ISOS objects with other objects in a digital library infrastructure is demon-
strated by the following brief example. The security issues of the example are discussed more completely in
4.

Lucy 1s a computer science graduate student who wants to find research papers on “functional program-
ming”. She knows that CS Research Associates (CSRA) has done an excellent job indexing computer science
research. CSRA has done this by getting permission (perhaps through licensing) from many computer sci-
ence research repositories to browse their collections and index them. Using her browser, Lucy searches the
CSRA index and sees a set of search “hits” on her screen. She chooses one of the hits, a paper in ACM
TOPLAS, and the following set of steps occur:

1. Resolve the handle. Using the name service, the browser resolves the handle to one or more
repository handles. The browser may then select one repository based on some user profile (cost
based, location based) or other decision process.

2. Resolve the repository handle. Again using the name service, the browser resolves the repository
handle to the object identifier of the repository.

3. Create a client invocation of the repository object. This invocation is, in effect, the initiation
of a session with the repository, and is the binding that the client can use for further method calls
on the repository object. This step allows the enforcement of any access_rules associated with the
repository. This might involve negotiations between the repository object and client and interaction
with payment and authentication services. The invocation has an associated security context.

4. Access the digital object. The client invokes the repository’s access_digital_object method with the
handle of the digital object as an argument. This returns to the client an invocation of the digital object
that it can use for further method calls on the object. The access rules associated with the object
may require interaction with outside services. This establishes an object-specific security context.

5. Check the type of the data of the object. The client invokes the digital object’s get_data method
to get a binding to the digital object data. This is again subject to access rules and associated
processing. Using this binding the client can check the type of the data and determine whether it
should present the user with access choices (e.g. which pages do you want?). If the type is unrecognized
by the client, this may require client interaction with a dynamic type service.

6. Get a dissemination. The browser invokes the get_dissemination method for the digital object. The
parameters to this may be a data specific method call (e.g. get_page(2)). This returns an instance
(not a binding) of the dissemination on Lucy’s workstation. At this point the interaction with the
repository is complete, since the dissemination is not contained in the repository.

7. View the document. Lucy can now use a view program, which may be the same as the browser,
to view the contents of the dissemination. If the dissemination is protected by access_rules and
encryption, this may require further interaction with other services (e.g. authentication service, type
service).

4 The ISOS Security Architecture

The enforcement of a digital object’s terms and conditions requires a range of security services: authenti-
cation, access control and secure associations. ISOS relies on the CORBA security framework[28] for these
standard security services. In Section 4.1 we summarize the existing security framework defined by CORBA.
Then, in section 4.2 we describe the motivation for terms_and_condition class, which we use as the uniform
device for enforcing secure access to digital objects, repositories, and disseminations and their respective
methods. We then proceed to explain proposed extensions to the CORBA security framework that permit
interaction between its facilities and instances of the terms_and_conditions class. Some of the specifications
in the latter two sections are the basis for long-term research, described in section 5.

4.1 The CORBA Security Architecture
The CORBA Security model is an extension to the standard CORBA framework [14, 28]. The CORBA

security model defines a secure object invocation, which includes:

e establishing a secure association between the client and the object. Authentication is typically
part of this process.

e enforcing the access control for each operation

e logging and auditing

e secure transmission

The key elements of the CORBA protection model are illustrated in Figure 2.

Objects in the CORBA object model and users who act on those objects each have attributes which define
their secure interaction. The client has privilege atiributes (pa) and the protected object on the server has
control attributes (ca). The standard CORBA Object Request Broker (ORB) implements security services
through interceptor objects. The interceptor objects are called by the ORB on each secure invocation. For
example, interceptors are responsible for setting up a secure association between the client and server and for
mediating authentication and access control services. Interceptors implement these basic security services
by creating security objects: the credential object (CO), the security context object (SCO), and the access
decision object (ADO).

Below we outline how security objects and attributes are supported in the CORBA object model.

Client-side attributes and security objects. The client’s privilege attributes (pa), or credentials, define
the principal’s access rights within the CORBA protection model. By definition the principal (client) has an
identity or role within the system, which is represented by his credential within the system. The principal
authenticates to establish his role; and his credentials define his rights to objects within the system. A
Kerberos [21] token is an example of a specific type of credential. A user may have several roles and
identities, which are represented by a set of credentials. A CORBA credential object (CO) encapsulates
(stores) the user’s credentials.

Server-side attributes and security objects. The server side stores and protects the target object.
The server side’s attributes and security objects are as follows.

The protected object’s control attributes (ca) define the level of protection required to access the target
object. Control attributes are set by the creator of the object through CORBA interfaces. For example, a
document’s creator may specify that a Kerberos token belonging to the group “team1” must be presented
to read the protected resource. “kerberos-token-teaml read” are that object’s control attributes.

Client Server

(ca)

Protected
Object #1

Access
Decision
Object

(pa)

Principal
(User)
.

¥
\

(ADO)

Context

(sco)
(binding) i
fo

r
Target
Object #1

ds

ORB and ORB Security Services

Figure 2: A sketch of the CORBA security architecture

The access decision object (ADO) is a security monitor that protects the object and enforces its defined
control attributes. At the time of a method invocation, the ADO is responsible for granting or denying
access to an object. The ADO is a generic representation of an access control system. It encapsulates
the management and enforcement of access control policies. In order for the principal to gain access to an
object, the principal must present credentials to the ADO to satisfy the control attributes of the object. The
ADOQO’s decision is based on the security context of the invocation: the privilege attributes of the principal
making the request and the operation to be performed are compared to the control attributes specified for
the object. An application may implement its own ADQO, which may be substituted for the default ADO.
The application ADO may enforce any access control policies required by the application.

Shared security context. The client and the object on the server communicate securely by setting up a
secure association. When a client attempts to access a protected object, the ORB and interceptors establish
a security context: a security context object (SCO) is created. This process typically requires authentication
and may produce additional credentials. The shared security context is represented by a pair of security
context objects, one at the client and one at the server. The security context is the vehicle by which the
principal’s credentials, stored in the credential object, are transferred and presented to the ADO. The ADO
uses these credentials to make an access control decision with respect to the object.

4.2 CORBA Security and ISOS

Our design is to use the CORBA security model to provide security services for repositories and digital objects
based upon the terms and conditions defined for them. Support for terms and conditions will require facilities
beyond current conventional access control mechanisms: mechanisms to express the terms and conditions,
mechanisms to convert them into the appropriate control attributes, and mechanisms to “explain” them to
clients. Also, when a dissemination of a digital object is created, there must be a mechanism by which

the terms and conditions of the dissemination are created. The terms_and_conditions object performs
these functions.

Every digital object in the repository has a terms_and conditions object. The terms_and conditions
object represents the stated terms and conditions. The rules in the terms_and_conditions object are trans-
lated into the appropriate control attributes. This translation could occur when the terms_and_conditions
object is created or modified, or at the time the object is accessed. This translation will often be very sim-
ple. In the simplest case the terms and conditions are essentially the object’s control attributes, or Boolean
combinations of control attributes expressed as conventional credential schemes. A terms and conditions for
an object, expressed in natural language may be:

Lucy owns “object1” and only she can read, modify, and delete it. Lucy will prove her identity
with a Kerberos token.

The terms_and_conditions object might translate this statement into the following control attributes:
“Kerberos-token-lucy read, modify, delete”.

A fundamental requirement for the ISOS security model is that ISOS must support multiple types of
credentials and access control mechanisms. This is necessary because the stated terms and conditions may
involve credentials of several kinds for a given access. For example, a user may need to have a Kerberos
token for “team1” and a RSA certificate for a member of the “gold card club” to access “object 17.

Security Context Access Decision Object
e N
r
l
| credential !
I object : get credentials
1
' |
1
T R (N puppeny pup P g
[S | |
ACL1 } y ! } v !
| |
:credential | : credential |
I’ -0 : : object : : object :
\ I I
|credemial: L ! L !
: object ! ACL 1 ACL 2
1
! 1
! 1
ACL2
- J

Figure 3: CORBA supports multiple types of credentials and access control schemes.

Figure 3 illustrates how the CORBA security framework is designed to support both multiple types
of credentials and multiple types of access control mechanisms [28]. The CORBA model has a generic
credential object , which may be sub-typed to implement a variety of credential schemes. These credentials
are transferred to the access decision object (ADO) via the security context. The ADO is a generic interface,
which may be sub-typed to implement a variety of access control schemes, such as access control list #1
(ACL 1) and access control list #2 (ACL 2). Each access control mechanism would have its own way for
expressing rights associated with an object. ACL #1, for instance, could express and understand “Kerberos
token for team1” while ACL #2 could express and understand “RSA certificate for a member of the gold
card club”.

The ADO would have to have a flexible language to express multiple types of credentials, multiple schemes
for expressing rights for an object, and combinations of types of rights for an object. For example, the ADO
would have to contain some form of boolean logic that could distinguish and enforce “Kerberos tokens AND
RSA certificates”.

The architecture and interfaces in Figure 3 are still under consideration for inclusion in the CORBA
standard, and the exact mechanisms for supporting multiple access control mechanisms is still under discus-
sion. To our knowledge, there is not yet an implementation of an ADO that would support multiple #ypes

of access control mechanisms. The CORBA security model specifically allows applications to enforce their
own access control policies by implementing their own ADO. So, until a CORBA ADO that supports the
necessary access control mechanisms is available, the ISOS repository will replace the ORB’s ADO with it’s
own (application) ADO.

Just as the ISOS server may have to accept multiple types of credentials, the ISOS client may have to
supply multiple types of credentials. The security context object (SCO) is the vehicle by which credentials
are presented to the ADO. The SCO may have to link to external authentication services, which generate
the credential necessary to satisfy the conditions for instantiating a protected object.

For this case, the CORBA security architecture recommends that Generic Security Services (GSS) [23]
be used as a generic interface through which these authentication services are accessed. An authentication
module, or library, which conforms to the GSS-APT is installed on the client. When the security context
object requires a credential the client invokes the correct routine in the authentication module wvia the
GSS-API. The authentication service supplies the correct credential or negotiates with external agents for
credentials on behalf of the client. For example, a Kerberos library on the client would negotiate with the
third party Kerberos authentication service to supply and hand back the Kerberos token to GSS-API and
consequently to the client’s SCO. Similarly, the GSS-API may invoke routines which talk to an agent of an
external payment protocol to negotiate payment tokens on behalf of the client.

4.3 How the terms_and _conditions Class is Used to Enforce Access Control

Stated terms and conditions may go beyond conventional credential schemes, which generally support in-
dividual and group membership. For instance, there may be a requirement for human intervention, either
by the user or some third party, such as a certificate authority or a payment service. There may also be
complicated algorithms required, such as arranging payment and acquiring multiple signatures. This may
involve a negotiation between the user or her client-side software, the repository, and/or other parties. There
may also be negative credentials of various kinds, such as, “the user must not be a felon”.

These relatively exotic terms and conditions require a more complex mechanism to express them, to con-
vert them into appropriate control attributes, and to “explain” them to clients. The terms_and_conditions
object is intended to meet these requirements for these more complex stated terms and conditions.

The terms_and _conditions object encapsulates the terms and conditions as suggested above, and other
behavior necessary to use multiple types of credentials and multiple access control mechanisms. As an
example, suppose the stated terms and conditions specify that the document is freely available, but the
user must acknowledge and abide by the conditions in the copyright statement. This is to be done by
displaying the copyright statement and requesting that the user agree to the terms by pressing “OK”.
(This is a level of protection similar to commonly used “shrinkwrap” licenses around software distributions.)
The get_dissemination method (step 6 in Section 3) requires that this procedure be satisfied before the
dissemination is created and returned to the user.

Assume a secure association has been created (steps 3 and 4 of section 3). Figure 4 shows how the object
would be protected using the terms_and conditions object. The numbers in the figure correspond to the
steps in the description below.

1. The client initiates a gei_dissemination request. (Step 6 of Section 3).
2. The request is passed through the client-side interface, across the ORB, to the server.

3. The Interceptor traps the request and calls access_query() method of the ADO. In this case, the decision
is made by an application ADQ, that is, the ADO of the repository.

4. The ADO gets the current credentials from the security contert to determine the principal’s privilege
attributes, which are compared to the control aitributes of the object. In this case, the ADO realizes
that the conirol atiributes are a special type which indicate that the ADO should invoke a method on
terms_and_conditions object of the stored digital object to acquire the necessary credentials.

5. The terms_and conditions object uses the facilities of the security context (SCO) to request the
“credentials” it needs. That is, it requests a “the user has seen and agreed” credential, and passes the
required copyright message to the SCO.

10.
11.
12.
13.
14.

5

Cclient Server
/ \
/
b
f
|

helper
|
L | Protected
Principal | Object #1
(User) i | Terms any
7 | Contitiol
| 14

program
(display),
"get_dissemination” (return the dissemination }fﬂ 12]
Decision

NN

/

N

Security

Context

(binding)
for

Target
Object #1

ORB and ORB Security Services

Figure 4: The Terms_and Conditions Object implements complex sets of credentials

. The SCO, using the GSS API, (securely) transmits the request for credentials, along with the accom-

panying copyright message, to the client.

. The client-side GSS invokes a module or helper program (possibly downloaded in a language such as

Java[24] or Python[2]) to display the copyright statement and collect the response.

. The helper program displays the message and collects the user’s assent.

. The helper program returns the user’s reply (“OK”), and synthesizes an appropriate “credential”.

GSS returns the “credential” to the server-side.

The server-side SCO returns the “credential” to the terms_and conditions object.
The terms_and_conditions object returns “allowed” (or “disallowed”) to the ADO.
Access is granted (or denied) by the ADO, and the method request proceeds (or fails).

The dissemination is created and returned to the user. (Not shown in the figure.)

Future Work

The completion of this paper represents the end of the initial design phase of ISOS. Over the next few months
we plan to prototype the design in an initial implementation that will permit simple terms and conditions.
Following this initial prototype, we plan to explore a number of issues.

Of primary concern is how well the design inter-operates with other digital library services, both object-
based and those based on other paradigms. Coordination with work being done by the six Digital Library
Initiative sites will be especially important. Furthermore, we will examine how well ISOS accommodates

10

complex and new data types. Finally, there are a number of issues related to the scalability of the design
that need to be examined; for example replication of digital objects and propagation of changes to digital
objects across replications.

In the longer term, there are a number of research issues related to security that we will explore. ISOS
requires that the stated terms and conditions for every object be translated from natural language into a
machine readable representation. The repository may be required to “explain” the terms and conditions
to other parties, including client software, user agents, and other cooperating repositories. This requires a
protocol for establishing a mutually intelligible “language”, and other suitable languages. This is an active
area of research. For instance, the Stanford DLI project [15], several ARPA projects (the KQML project
[11], the IIT project [17], the NIII project [5]) and the CADR group at Tllinois [18, 30] all address aspects of
this problem.

It is also desirable that the terms and conditions be maintained in a way that is understandable by
humans. It should always be possible for authorized parties to obtain a human readable version of the terms
and conditions in effect. This version should be an accurate reflection of the actual rules that are enforced.

A third desirable goal is for terms and conditions to be relatively permanent and portable. While the
actual enforcement mechanisms depend on the specific platform and architecture, the stated terms and
conditions should be portable to new platforms, and should carry forward as time passes.

References

[1] http://www.cnri.reston.va.us/home/cstr.html.

[2] http://www.python.org.

[3] Digicash brochure. http://www.digicash.com/publish/digibro.html.

[4] Lycos home page.

[5] NIIIP: National industrial information infrastructure. http://www.niiip.org.

[6] Grady Booch. Objeci-Oriented Analysis and Design. The Benjamin/Cummings Publishing Company,
Inc., 1994.

[7] Kraig Brockschmidt. Inside OLE 2, Second Edition. Microsoft Press, 1995.

[8] NEC Corporation. NEC dynamic invocation interface example. Technical Report 93-1-2, Object Man-
agement Group, 1993.

[9] Steve B. Cousins, Steven P Ketchpel, Andreas Paepcke, et al. Interpay: Managing multiple payment
mechanisms in digital libraries. Technical report, Stanford University, March 1995. to appear in Digital
Libraries '95.

[10] Jim Davis and Dan Huttenlocher. CoNote (annotation) homepage.
http://dri.cornell.edu/pub/davis/annotation.html.

[11] Tim Finin, Rich Fritsson, and Don McKay. A language and protocol to support intelligent agent
interoperability. In Proceedings of the CE & CALS Washington ‘92 Conference, June 1992.

[12] Corporation for National Research Initiatives. Handles and the handle system.
http://www.cnri.reston.va.us/home/cstr/handle-intro.html.

[13] Luis Gravano, Hector Garcia-Molina, and Anthony Tomasic. The effectiveness of GLOSS for the text-
database discovery problem. In SIGMOD ’94. 1994.

[14] Object Management Group. The Common Object Request Broker: Architecture and specification.
ftp://omg.org/pub/CORBA, December 1993.

11

[15] Stanford Digital Libraries Group. The Stanford Digital Libraries Project. Communications of the ACM,
April 1995.

[16] Darren R. Hardy and Michael F. Schwartz. Harvest user’s manual. Technical Report CU-CS-743-94,
University of Colorado at Boulder, October 1994.

[17] Richard Hull and Richard King. Reference architecture for the intelligent integration of information.
Program on Intelligent Integration of Information, Advanced Research Projects Agency, March 1995.
http://www.isse.gmu.edu/I3_Arch/index.html.

[18] E. Jones, N. Ching, and M. Winslett. Credentials for privacy and interoperation. In Proceedings of the
New Security Paradigms '95 Workshop. August 1995.

[19] Robert Kahn and Robert Wilensky. A framework for distributed digital object services.
http://www.cnri.reston.va.us/home/cstr/arch/k-w.html, May 1995. also accessible as cnri.dlib/tn95-
01.

[20] Frank Kappe. Hyper-G: A distributed hypermedia system. In Proceedings of INET 93. 1993.

[21] J. Kohl, B. Clifford Neuman, and J. Steiner. The Kerberos network authentication service. Technical
report, MIT Project Athena, November 1989. Version 5, Draft 2.

[22] Carl Lagoze and David Ely. Implementation issues in an open architectural framework for digital object
services. Technical Report TR95-1540, Cornell University, Department of Computer Science, 1995. also
accessible as CORNELL.CS/CORNELLCS:TR95-1540.

[23] J. Linn. Generic security service application program interface. RFC 1508, 1993.
http://ds.internic.net/rf/rfc1508.txt.

[24] Sun Microsystems Computer Company. The Java language environment. White Paper, May 1995.

[25] B. C. Neuman and G. Medvinsky. Requirements for network payment: The netcheque perspective. In
Proceedings of IEEE COMPCON’95, March 1995.

[26] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120-126, February 1978.

[27] M. Roscheisen, C. Mogensen, and T Winograd. Beyond browsing: Shared comments, SOAPs, trails and
on-line communities. In Proceedings of WWW’95. 1995.

[28] AT&T Global Information Solutions, Digital Equipment Corporation, et al. CORBA security. Technical
Report 95-3-3, Object Management Group, March 1995.

[29] Andrew Watson. Object Request Broker 2.0 extensions interface repository rfp. Technical Report
93-9-16, Object Management Group, 1993.

[30] M. Winslett, K. Smith, and K. Qian. Formal query languages for secure relational databases. ACM
Transactions on Database Systems, 19(4), December 1994.

Acknowledgments

The authors wish to thank Jim Davis from the Design Research Institute, Xerox Corporation, Cornell
University, and Bill Arms and David Ely from CNRI for their important contributions to this work. We also
wish to thank our reviewers for their help. Finally, we wish to thank Robert Kahn and Robert Wilensky,
whose initial work on the digital object framework has enabled this research. The findings discussed in this
paper were supported in part by the Advanced Research Projects Agency under Grant No. MDA972-92-
J-1029 with the Corporation for National Research Initiatives (CNRI), and in part by funding from the
National Science Foundation, the State of Illinois, and NASA Cooperative Agreement Notice (CAN) “Public
Use of Earth and Space Science Over the Internet”. Its content does not necessarily reflect the position or
policy of any of the sponsoring parties, and no official endorsement should be inferred.

12

