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ABSTRACT

Accounting for the chemical processes in large-scale Computational Fluid Dy-

namic (CFD) simulations is essential to understand industrial reacting flows.

The implementation of a detailed kinetic mechanism, involving a large num-

ber of chemical species and elementary reactions, can be challenging and may

require unrealistic computational resources. In addition, the level of detail pro-

vided by these comprehensive mechanisms might be excessive, especially when

accounting for the modeling uncertainties involved in the simulations. Pro-

posed below is a systematic strategy to reduce a detailed kinetic model into a

global model that will: (i) contain many fewer reaction steps, (ii) use lumped

variables that combine species of similar chemical nature, and (iii) maintain

the predictive capabilities of the detailed mechanism for the quantities of inter-

est. The approach is demonstrated here in the context of biomass gasification.

Partially stirred reactor (PaSR) models are used in conjunction with a detailed

chemical kinetic mechanism to generate a database of gas phase detailed com-

positions likely to occur in an actual reactor. From the analysis of this database,

representative lumped species are identified, for which effective elemental for-

mula, molecular weight, and thermodynamical properties are determined. An

appropriate set of global reactions describing the evolution of these lumped

species is then proposed, whose rate coefficients in Arrhenius format are fit-

ted to match production rates formed from the sampled detailed compositions

and detailed kinetic scheme. Validation is performed by comparing the PaSR

dynamics predicted using the detailed and global models.
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CHAPTER 1

INTRODUCTION

Thermal degradation of biomass is emerging as a promising option for produc-

ing liquid transportation fuels from renewable sources, but further research is

needed to identify optimal process conditions that will allow liquid fuel pro-

duction from biomass to become economically viable. Combined with empir-

ical expertise, computational tools can be used to better understand how reac-

tor conditions, pretreatment, or biomass characteristics can be chosen to either

maximize the production of bio-oils during pyrolysis, or limit undesirable tar

formation in synthesis gas production from gasification. Experiments show that

key properties of the conversion process, for instance, undesirable Polycyclic

Aromatic Hydrocarbon in gasification, are determined by subtle aspects of the

chemical processes and their interactions with the surrounding multiphase flow

environment [7]. Yet, those processes and interactions are seldom considered in

adequate detail in most modeling efforts due to their inherent complexity. In

this context, we propose a systematic strategy to generate, from knowledge ob-

tained using detailed kinetic chemical mechanisms, extremely compact schemes

suitable for use in CFD simulation of biomass thermochemical conversion reac-

tor.

Previous studies have hypothesized a general chemical mechanism for gasi-

fication [10]. During heating of biomass at low temperatures, primary volatiles

are released from the cellulose, hemicellulose, and lignin solid. Heating of the

primary volatiles will induce thermal cracking to small hydrocarbon and radical

species. Finally at higher temperatures during gasification, the small hydrocar-

bons will polymerize into high molecular weight Polycyclic Aromatic Hydro-

1



carbon molecules. This general mechanism is depicted in Fig 1.1.

There are a variety of global kinetic models that have been proposed for

biomass pyrolysis and gasification as reviewed by DiBlasi and Prakash [5, 16].

In general these models propose a mechanism (on the order of five reactions)

and fit the mechanism to various forms of empirical data. The models discussed

can be classified into: multicomponent devolatilization models that only pre-

dict solid mass loss (often contains three reactions for cellulose, hemicellulose,

lignin), single and multicomponent models for primary pyrolysis that predict

solid, tar, and gas yields, and models that further incorporate secondary gas re-

actions. For example, one of the most sophisticated of these global models con-

siders parallel reactions for cellulose, hemicellulose, and lignin volatilization as

well as secondary gas phase reaction of tar vapors to gas. The proposed mech-

anism is fit to TGA data to predict final yields of tar, gas and char [12]. While

this model and the others discussed by Prakash and DiBlasi may artificially pre-

dict the product distribution, they ignore inherent chemical mechanisms such

as thermal cracking and polymerization.

Additionally, most of the available global mechanisms lack information

about the volatile species produced: they cannot predict the amount of PAH

components produced (which add cost to processing the synthesis gas) or the

relative amounts of H2 and CO produced (which affects the process conditions

for producing fuel from synthesis gas). Those proposed mechanisms that have

attempted to describe detailed species are heavily parameterized [17, 22]. There-

fore, the available global models are not suitable because they: 1) do not provide

detail about species of interest and 2) ignore subtleties of the chemistry such as

polymerization that are believed to be key chemical features with the potential

2



to be optimized for industrial performance.
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Figure 1.1: General hypothesized mechanism for biomass thermal degra-
dation.

Recent progress in the understanding of the chemical reaction pathways oc-

curring during biomass thermochemical conversion have led to the develop-

ment of semi-detailed kinetic mechanisms combining a large number of elemen-

tary reaction steps. Ranzi et al. [6, 2, 3, 18] proposed a fairly detailed description

of the biomass devolatilization chemistry involving 15 solid species, and cou-

pled this solid-gas reaction set to a gas-phase kinetic scheme for hydrocarbon

oxidation. A similar approach was followed by Pepiot et al. [15], with a focus on

PAH formation during biomass gasification at relatively high temperature.

Such mechanisms can involve hundreds of molecular species and thousands

of reactions steps, which prohibits their direct use in CFD. However, assuming

that they provide an accurate description of the actual chemical kinetics in the

conversion process of interest, they can be used in lieu of experimental data in

the development of global models. While a large number of efficient chemistry

reduction techniques have been developed of this purpose in the context of hy-

drocarbon combustion, these techniques are ill-suited for biomass applications

due to the nature of the multiphase flows involved, and would not provide the

high degree of reduction we are looking for. Here, we propose to combine an

analysis of the reaction pathways described in the detailed model with a math-

ematical lumping approach and simple rate fitting procedure to automatically

3



generate a set of global reactions able to reproduce the relevant chemical fea-

tures of the detailed model.

The methodology to systematically derive a global model from a detailed

mechanism is first described in Chapter 2. Using biomass gasification as an

example, illustrations of the various steps and validation of the method are pro-

vided in Chapter 3.
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CHAPTER 2

METHODOLOGY

2.1 Overview

To provide a clear overview of the proposed strategy for global model develop-

ment, it is worthwhile to start by introducing some relevant definitions and

notations. The set of detailed species appearing in a given chemical kinetic

mechanism is denoted as ΦD, of cardinality nD. These species usually corre-

spond to actual molecular compounds. The elemental composition of detailed

species i, the number of atoms of carbon, hydrogen, oxygen and nitrogen in a

molecule of species i, is referred to as ND
i . We will designate the elements of this

set as φD
i,i=1..nD

. The set of elementary reactions included in the detailed model is

denoted as RD, of cardinality nRD . Any reaction in RD only involves species in

ΦD.

In a similar way, a global kinetic model is characterized by its set of global

species ΦG, of cardinality nG < nD. These species will be designated by φG
i,i=1..nG

.

The set of elementary reactions included in the global model is denoted as RG,

of cardinality nRG . Any reaction in RG only involves species in ΦG. We impose

that each φG
i be explicitly defined as a composite of one or more detailed species,

and therefore may not be associated with any single molecular compound. In

this case, we can further define for each global species i the subset of detailed

species involved in the definition of φG
i : ΦD,i. If we assume that the detailed

5



species can contribute to one single global species only, we can write:

�
ΦD,i, i = 1, nG

�
= ΦG

∩
�
ΦD,i,ΦD, j

�
= ∅ for any pair {i � j} (2.1)

Let the nD-vector CD denote the composition of the gas-phase mixture in

terms of the detailed species φD
i,i=1..nD

, and the nG-vector CG the composition in

terms of the global species φG
i,i=1..nG

. We also introduce the mapping of quantities

defined for detailed species, ZD, to the model species space as:

�ZG = BZD , (2.2)

where B is a nG × nD matrix defined as Bi, j = 1 if φD
j ∈ ΦD,i, 0 otherwise.

Finally, we will denote by D an ensemble of detailed compositions CD
i,i=1..nD ,

where nD is the cardinality of D, and their corresponding production rates,
�
dCD/dt

�
i,i=1..nD

.

The strategy proposed here for the development of global kinetic schemes

is based on the simple observation that if the ensembleD contains an adequate

sampling of compositions likely to be encountered in the application of interest,

the best global model would be one for which, for each sample composition in

D:

CG = �CG = BCD ,

�
dC
dt

�G
=
��dC
dt

�G
= B
�
dC
dt

�D
(2.3)

that is, the concentrations and production rates for the global species as pro-

vided by the set of global reactions are exactly equal to the concentrations and

production rates for the global species obtained by mapping of the detailed pro-

duction rates. This exact linear lumping situation being virtually impossible to

6



obtain in practice, the ability of a global model to reproduce the prediction of

the detailed mechanism is a direct function of how well Eq. 2.3 is satisfied on

average.

Our approach to construct a global model that closely satisfies Eq. 2.3 con-

sists in the following steps:

1. Create a database of a large number of compositions likely to be observed

in the reactor configuration of interest. This step will be done using the

computationally cheap Partially Stirred Reactor (PaSR) model;

2. Identify the set ΦG of global species and corresponding mapping matrix

B;

3. Determine thermochemical properties for the global species, including el-

emental composition, molar mass, heat capacity, and enthalpy;

4. Identify a set of balanced global reactions involving species φG
i,i=1..nG

that

provide appropriate consumption and reactions pathways for all global

species;

5. Determine rate coefficients in Arrhenius format (to maintain compatibility

with existing chemistry and CFD software) for each global reactions.

Each of these steps are described in more detailed in the following subsections,

note that except for the definition of the global species set and how they involve

the detailed species, which may require some chemistry knowledge, all steps

are systematic and automatic, require very limited user input, and do not involve

tuning or non-linear optimization procedure.

7



2.2 Sample compositions database

The first step in our global mechanism development is to build a set of compo-

sitions representative of the gas compositions relevant to the reactor conditions

of interest. A PaSR model is used for this purpose, the details of which are pro-

vided in Section 3.1 for biomass gasification. An entry n in the database consists

of the concentration vector for the detailed species, CD
n , the corresponding pro-

duction rate vector dC/dt|n as provided by the detailed kinetic mechanism, and

the temperature Tn.

2.3 Definition and thermochemical properties of global species

We assume that the global species ΦG and their definition in terms of the de-

tailed species, ΦD, the species sets ΦD,i, i = 1, nG are known. This uniquely de-

termines the mapping matrix B. The relative molar contribution of any detailed

species φD
j to a global species φG

i is defined for a given composition vector CD
n as:

Pi
j,n =

CD
j,n�nD

i=1 Bi, jCD
j,n
=

CD
i,n

�CG
i,n

(2.4)

Note that in the equation above and in the following, Einstein summation is

assumed. In general, this relative contribution is different for each sample com-

position. Therefore, we define the average global species composition as:

�
Pi

j

�
=

1
nD

�

n=1,nD

Pi
j,n . (2.5)

From this, we define the elemental composition of global species j as:

NG
j =
�
Pi

j

�
ND

i (2.6)

8



and the molar mass of global species j as

Wj = NG
j ·Wa , (2.7)

where the Wa vector contains the atomic mass of the involved atoms: carbon,

hydrogen, oxygen, and nitrogen.

For each sample n in the database, the molar heat capacity Cn
p,i and molar

enthalpy Hn
i of a global species i are evaluated from those of the detailed species

and the contribution vector Pi according to:

Cn
p,i(Tn) = Pi ·Cn

p, j(Tn)Hn
i (Tn) = Pi · Hn

j (Tn) (2.8)

The mean heat capacity and enthalpy conditioned on the temperature,
�
Cp,i|T

�
and �Hi|T �, are then evaluated. The molar heat capacity and enthalpy

of each global species are finally expressed as:

Cp,i

R
= a1 + a2T + a3T 2 (2.9)

H0
i

RT
= a1 +

a2

2
T +

a3

3
T 2 +

a4

T
(2.10)

where the coefficients a1, a2, a3, and a4 are obtained by fitting the conditional

means to a quadratic polynomial to conform to NASA standard format for ther-

modynamic data (additional coefficients in NASA format are simply set to zero).

2.4 Global reaction pathways

A major challenge when developing multi-steps global models is to identify ap-

propriate reaction pathways between global species. This is further complicated

by the fact that those pathways have to satisfy element conservation. Here, we

9



proceed in two successive steps. The first one analyzes the detailed reaction net-

work to provide an appropriate set of global reactions, the second adjusts the

stoichiometric coefficients to satisfy element conservation. Details are provided

for both steps in the following subsections.

2.4.1 Initial global reaction network

The detailed compositions database, coupled with the detailed kinetic mecha-

nism is used to quantify the coupling between global species (whose concen-

trations are estimated here from the detailed compositions and mapping equa-

tion (2.2)), and provide information on the most appropriate production and

consumption route of each global species. We apply the following rules to au-

tomatically generate a consistent set of global reactions:

1. Based on the ratio between species production and consumption rates,

separate the set of global species into a products set, which includes

species having negligible consumption rates, an exchange set, which in-

cludes species with large, but nearly equal production and consumption

rates, and a reactants set (all other species). One consumption reaction

will be written for each species in the reactants set, while species in the

products set will only appear as products in the global reactions. Species

in the exchange set are expected to contribute indifferently as reactant or

product in most reactions.

2. The consumption and production of global species i from a detailed reac-

10



tion j are defined respectively as:

Ci j = max
�
0,−Bikν

D
k jQj

�
(2.11)

Pi j = max
�
0, Bikν

D
k jQj

�
(2.12)

where B is the mapping matrix, νD
i j is the stoichiometric coefficient of de-

tailed species i in detailed reaction j, and Qj is the reaction rate of detailed

reaction j. C andP are therefore matrices of size nG×nRD . We further define

the corresponding normalized matrices δC and δP as:

δCi j = 1 if Ci j > 0, 0 otherwise, and (2.13)

δPi j = 1 if Pi j > 0, 0 otherwise. (2.14)

The relative consumption of a global species i in the intermediates species

set from detailed reactions producing global species j is then:

ηP
i j =

Cikδ
P
jk�nG

k=1 Cik
, (2.15)

which can be interpreted as the product distribution from the consump-

tion of global species i. A global species j is included as a product in the

consumption reaction of global species i if

ηP
i j > ε , (2.16)

with ε a small user-defined coefficient, usually of order 10−3. The corre-

sponding stoichiometric coefficient is initially set to ηP
i j.

3. In a similar way, we can compute the relative consumption of global

species i from detailed reactions also consuming global species j:

ηR
i j =

Cikδ
C
jk�nG

k=1 Cik
, (2.17)

11



which is used to identify the most likely reactant partner for species i. The

stoichiometric coefficient of this second reactant j is initially based on the

value of ηR
i j.

Note that at this stage, no guarantee exists that the constructed global reactions

satisfy element conservation.

2.4.2 Reaction balance

To ensure element balance, and therefore, mass conservation in the simulation,

the initial values of the stoichiometric coefficients chosen in Section 2.4.1 have

to be adjusted to account for the global species properties determined in Sec-

tion 2.3. Linear programming is used to find, for each global reaction r, the

smallest increment in the stoichiometric vector Sr, containing the stoichiometric

coefficients of each species, reactant or product, involved in reaction r, necessary

to obtain element balance across the reaction. The stoichiometric coefficient of

the main reactant, for which the consumption reaction was written, is imposed

equal to unity. Minimum bounds are imposed on the stoichiometric coefficient

increment to ensure that all species are retained in the reaction after linear pro-

gramming.

2.5 Global reactions rate coefficients

This subsection describes how rate coefficients in Arrhenius format are deter-

mined for each of the global reaction steps. In the current implementation, the

12



standard law of mass action is used to compute reaction rates to ensure compat-

ibility with chemistry and CFD software. However, it is important to note that

since global steps are not elementary reactions, their assigned rates do not carry

the same chemical meaning as elementary steps and could be taken to be any

general function of temperature and species composition. The steps followed to

determine a set of rate coefficients for each global reactions are outlined below:

1. All compositions included in the sample database D are binned based on

their temperature. The number and temperature range of each bin is deter-

mined so that it contains a large enough number of composition samples.

We denote by nB the number of bins. The median temperature of bin b is

Tb.

2. For each bin b, we want to find the reaction coefficient vector kb of size

nRG that minimizes over all sample compositions n included in bin b, the

distance between the global species production rates as evaluated from

the detailed composition and kinetic model:

�dC
dt

�������
n

= B
dCD

dt

������
n
, (2.18)

and those evaluated according to the global reaction steps defined above:

dCG

dt

������
n
=

nRG�

j=1

νGi jQ
G
j , (2.19)

with

QG
j = k j(Tb)

�

reactants n

�
CG

n

�νn j
. (2.20)

For each temperature bin b, this leads to an over-determined system of

equations for the unknowns kb(Tb), which is solved using a weighted least-

square approach.

13



3. Finally, the resulting kb(Tb), b = 1, nB are fitted to a 2-parameter Arrhenius

form to yield:

k j(T ) = Aje−
E j
RT , j = 1..nRG (2.21)

14



CHAPTER 3

APPLICATION TO BIOMASS GASIFICATION CHEMISTRY

The methodology outlined above is applied to the development of a global

mechanism for biomass gasification, starting from the semi-detailed mechanism

described in Pepiot et al. [15]. Illustrations for the main steps of the algorithm

are provided below.

3.1 Sample compositions database for biomass gasification at

high temperature

A partially stirred reactor (PaSR) model tailored for biomass devolatilization

and secondary gas phase chemistry is used to assemble a database of gas com-

positions likely to be observed in a realistic conversion reactor. A PaSR is a

statistical reactor in which notional particles carrying chemical compositions

evolve through reactions (according to a specified chemical mechanism), and

mixing (here, a pair-wise mixing model is employed). Computationally cheap

to run, it allows to conveniently handle the non-trivial gas phase source terms

arising from biomass devolatilization. The two inflow streams are pure nitro-

gen at high temperature, and appropriate biomass devolatilization products as

determined from Ranzi et al. [18] solid biomass chemistry model. The PaSR pa-

rameters used in this example are shown in Table 3.1. Once the PaSR reaches

steady-state, the compositions of the particles are collected over several resi-

dence times. The database consists of 5,000 distinct compositions, correspond-

ing production rate vectors, and temperature.
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Parameter Value
Number of particles in PaSR 100

Gas residence time 1s
Mixing time 0.1 s

Biomass particle heating rate 1000K/s
Temperature of raw biomass 300K

Temperature of pure nitrogen stream 1000K
Normalized mass flow rates of nitrogen and biomass streams 0.6, 0.4

Table 3.1: PaSR parameters used to build the sample compositions
database for biomass gasification.

3.2 Global species definition and thermochemical properties

The 187 detailed species contained in the detailed chemical model are grouped

into global species according to the following ad hoc approach. Species of partic-

ular interest and/or high concentration, such as methane and carbon monoxide,

are kept as individual species. Three groups are formed that represent the initial

biomass volatile products. Then, species containing linear chains of carbon are

grouped according to the number of carbon atoms they contain: C1-C2, C3-C4,

and C5-C6-C7. Then those molecular species in C3-C4 and C5-C6-C7 that contain

oxygen are further separated into groups C3-C4O and C5-C6-C7O. Finally, ring

species are categorized into two groups: the first one contains molecules with

one aromatic ring, and the second contains the heaviest species with two or

more aromatic rings. These global species are listed in Table 3.2, and their mean

concentrations and production rates as function of the temperature, computed

from the composition database and the mapping matrix B, are shown in Fig. 3.1

The elemental composition and molecular weight of each global species are

determined using the method described in Section 2.3, and the results are shown

in Table 3.2. Heat capacity and enthalpy for each global species are determined
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Global Species Formula W (kg/mol)
N2 N2 0.028

CO2 CO2 0.044
CO CO 0.028
CH4 CH4 0.016
H2O H2O 0.018
H2 H2 0.002

BV1 C2.271H4.256O1.728 0.0592
BV2 C5.936H6.126O3.063 0.1265
BV3 C7.059H10.366O4.673 0.1700
C1−2 C1.296H3.376O0.945 0.0341
C3−4 C2.207H5.855 0.0324

C3−4O C3.1124H4.709O2.510 0.0823
C5−7 C5.914H5.995 0.0771

C5−7O C5.170H4.679O2.339 0.1042
R1 C6.637H7.273O1.529 0.1115
R2 C10.000H8.000 0.1282

Table 3.2: List of global species used in the global mechanism, and corre-
sponding elemental composition and molar mass.

from their detailed species counterparts according to Section 2.3. Very good

fits are observed in general over the range of temperatures of interest, with the

largest scatter obtained for those global species involving the largest number

of detailed species. Examples of such fits for three global species are shown in

Fig 3.2.

3.3 Development of a set of global reactions and corresponding

rate coefficients

The relative consumption matrices ηP and ηR defined in Section 2.4.1 are gen-

erated from the database compositions, and are shown in Fig. 3.3. From the

analysis of these matrices, a set of global reactions is determined, each one de-
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Figure 3.1: Average concentration (left) and net rate (right) as a function of
temperature: data generated from detailed kinetic mechanism
and processed into lumped species

scribing the consumption of global species identified as reactants, , BV1, BV2,

BV3, C34, C34O, C57, C57O, R1, and R2. Linear programming is employed to en-

sure element balance for each reaction. The final set of global reactions is listed

in Fig. 3.3.

The rates for each global reaction were determined from a weighted least-

square to match as well as possible the production rates provided by the

detailed composition database, according to the procedure outlined in Sec-

tion 2.5. The resulting reaction rates are shown in Fig. 3.4, along with the best 2-
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Figure 3.2: Quadratic fitting of heat capacity and cubic fitting of the en-
thalpy as a function of temperature for three selected global
species.

parameter Arrhenius fit. Little scatter is observed, indicating that the global re-

actions are appropriate to describe the evolution of the specified global species.

Such good agreement is facilitated by the relatively slow chemistry involved in

the gas phase. Comparison between the mean production rates derived from

the database and those obtained from the global reaction scheme is shown in

Fig 3.5. While the agreement is far from perfect, trends are accurately captured

for all global species.
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Figure 3.3: Relative production (left) and consumption (right) matrices
used to systematically identify appropriate global chemical
pathways. Dark color indicates high level of coupling between
the two corresponding global species.

Table 3.3: Final lumped mechanism and associated rate constants

Reaction A [m3-mol-kg] E [kJ/mol]

BV1 + 0.3388C12
k1−−→ 0.9615CO + 0.04529CH4 + 0.0079H2O + 0.3775H2 4.03299 × 1014 251.449

+1.142C12 + 0.1012C34

BV2 + 0.0145C12
k2−−→ 0.5899CO + 0.0497CH4 + 0.0132H2O + 0.3769H2 1.88994 × 1010 169.769

+0.0112BV1 + 0.1365C12 + 0.0071C34 + 0.0165C34O + 0.9759C57O

BV3 + 0.0949C12
k3−−→ 0.3446CO + 0.0458CH4 + 0.0283H2O + 0.3462H2 + 0.1973BV1 1.68470 × 106 117.037

+0.4799C12 + 0.0064C34 + 1.2557C34O + 0.0479C57O + 0.0441R1 + 0.0535R2

C34 + 0.3660C12
k4−−→ 0.0688CO + 0.4761CH4 + 0.0008H2O + 1.3853H2 + 0.0043BV1 1.5875 × 107 106.231

+0.0870C12 + 0.0073C34O + 0.2163C57 + 0.0058C57O + 0.1011R1 + 0.0010R2

C34O + 0.0189C12
k5−−→ 1.2796CO + 0.0400CH4 + 0.1231H2O + 0.2674H2 1.7074 × 102 28.961

+0.5533BV1 + 0.1785C12 + 0.1492C34

C57 + 0.1319C12
k6−−→ 0.0481CH4 + 0.0003H2O + 0.1031H2 + 0.1256C12 1.14230 × 1010 157.296

+0.2228C34 + 0.0003C57O + 0.0032R1 + 0.5359R2

C57O + 1.744C12
k6−−→ 0.4875CO + 0.0558CH4 + 0.0107H2O + 0.3969H2 + 0.7283BV2 9.06770 × 108 136.516

+0.03772C12 + 0.4515C34 + 0.4875C34O

R1 + 0.0031C12
k7−−→ 0.6387CO + 0.0002CH4 + 0.0199H2O + 0.0900H2 2.8760 × 101 390.39

+0.9236C12 + 0.0790C57 + 0.4336R2

R2 + 3.9682C12
k8−−→ 0.0888H2O + 2.0495H2 + 0.2692C12 + 2.2292R1 1.33155 × 103 443.85

3.4 Validation of the global model in a PaSR

The final global mechanism is used in PaSR to obtain the evolution of the global

species mass fraction as function of time as predicted by the global model. Re-
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Figure 3.4: Fitting of the rate constants derived for the global model into
an Arrhenius type form

sults are shown in Fig. A.1. A very good agreement is obtained for most species,

with some discrepancy observed for the ring species, demonstrating that the

derived global mechanism, with 9 reaction steps involving 15 global species

only, is able to reproduce the dynamics of the detailed 187-species, 2200-reaction

model accurately.

Next we wished to see if the same procedure can be utilized for a more gen-

eral case. This time, many PaSR reactors were run ranging in temperature from

950 K to 1150 K. The same procedure was employed to get a global model for

this compositional database. Then the global mechanism was tested in multi-

ple reactors ranging again from 950K to 1150 K. In each case, the equilibrium

mass fraction data was acquired. The mean mass fraction as a function of PaSR

temperature obtained from applying the global and detailed model are shown

in Fig. A.1. Considering the large range of compositions and temperatures that

compose the database, most species are in quite good agreement, suggesting

that this method will be applicable in a more general case in the future.
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temperature (K) : global mechanism (dots) fitted to the detailed
database (lines)
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Figure 3.6: Evolution of species mass fractions in a PaSR reactor model
for biomass gasification: Comparison between detailed model
prediction (blue line) and global model predictions (red lines).
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CHAPTER 4

REACTIVE PSEUDO-2D BUBBLING FLUIDIZED BED SIMULATION

USING A GLOBAL MODEL

4.1 Numerical Approach

A pseudo-2D simulation of a reactive bubbling fluidized bed was carried out to

study the impact of feed-injection on granular mixing and chemical processes.

The Lagrangian particle tracking approach and its coupling with the LES/DNS

flow solver NGAis described in Pepiot and Desjardins [14, 4]. Solid phase chem-

istry has been implemented by augmenting each biomass particle to carry the

species mass fractions representing the particle composition. No intra-particle

processes are accounted for: each particle is treated as a single, homogeneous,

entity, which allows for an easy treatment of polydisperse mixtures of variable

density solid particles. The lumped chemistry model proposed by Miller and

Bellan is used here [12] . The mechanism includes three reactions for each solid

phase constituent:

virgin(s)→ active(s) R1,

active(s)→ tar(g) + gas(g) R2,

virgin(s)→ active(s) R3,

And one gas phase reaction:

tar(g)→ gas(g) R4.

The feedstock composition used at present is one of the compositions (Beech)

used by Miller and Bellan for validation purposes during the development of
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the mechanism [12].

4.2 Results

Results obtained for a 2” fluidized bed reactor are reviewed here. The geome-

try and the running conditions for these simulation are shown in Fig. 4.1 and

Table 4.1. Three cases were chosen to investigate how the injection strategy can

Figure 4.1: 2” fluidized bed geometry, with the two injection cases illus-
trated.

affect biomass mixing and reaction rates: one cold case with just sand, a second

case with injection of biomass at the bottom of the reactor, and a third case with

injection of biomass at the top of the bed. Snapshots of the sand location at the

start of biomass injection, and tar, gas and biomass location after a few ms are
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shown in Figs. 4.2(a), 4.2(b), and 4.2(c). It appears that after a short time, the

injected biomass particles are uniformly distributed in the bed. However, the

most reactive particles will tend to congregate in a specific region of the dense

bed, leading to locally high concentration in tar and gas.

To get a more quantitative perspective, statistics are gathered on the respec-

tive location of biomass and sand particles, now accounting for particle history

(e.g. through the size of the biomass particles). In Fig. 4.3, the particle size seg-

regation along the length of the reactor is shown. One can see that after about

3 seconds of simulation, the average particle diameter decreases slightly as we

approach the top of the bed, verifying particle segregation, a phenomenon often

observed in fluidized bed reactors. Another question of interest is how well the

fluidized bed is achieving mixing of the biomass. The average biomass volume

fraction along the reactor length for the top and bottom injection cases are com-

pared at early and later times in Figs. 4.4 and 4.5. One can see in Fig. 4.4 that

initially the biomass is concentrated in the region of injection. But after only a

few seconds of simulation (Fig. 4.5), there is a fairly uniform biomass volume

fraction along the bed in both the bottom and top injection cases, indicating that

both strategies for injection are achieving good mixing.
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Figure 4.2: Snapshots from 2” fluidized bed reactor simulation: a) Initial
sand particles distribution b) Sand and tar levels shortly after
injection c) Biomass distribution shortly after injection
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Table 4.1: Wood particle geometric parameters

Parameter Value (µm)

Gas and Sand Temperature 973K

Number of Particles 460, 000

Gas Inlet Pure Nitrogen

Gas inlet Velocity .292 m/s (3Um f )

Biomass Injection mass flow rate 1E-05 kg/s

Biomass injection Temperature 300 K

Figure 4.3: The average particle diameter across the length of the reactor.
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Figure 4.4: The initial biomass volume fraction along the length of the re-
actor for the top (left) and bottom (right) injection cases. Ini-
tially the biomass is concentrated in the respective injection re-
gions.

Figure 4.5: The biomass volume fraction along the reactor length for the
top (left) and bottom (right) injection cases. Both cases appear
to be achieving good mixing of the biomass after a short simu-
lation time
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APPENDIX A

CHARACTERIZATION AND MODELING OF WOOD

MICROSTRUCTURE AND CHEMICAL COMPOSITION DURING

CONVERSION.

A.1 Development of model geometry for wood microstructure

A.1.1 Introduction

There has recently been an interest in using modeling to study the thermo-

chemical degradation of biomass on the intra-particle scale. The microstruc-

ture as well as the chemical make up of wood is complex, and therefore with

a more fundamental understanding of their interaction, heating conditions

and/or chemical catalysts can be chosen to improve the overall product yields.

Previously in the literature, there have been a number of attempts to model

thermo-chemical degradation at the particle scale: the most complex systems

incorporate many coupled phenomena including heat transfer by convection

and diffusion, chemical reaction kinetics, convection and diffusion of gaseous

species through the porous material (defined by Darcys Law), and an internal

build up of pressure as the reaction generates gas. However, these models lack

a realistic representation of the biomass particle microstructure. Experimental

measurements have shown that wood can have a void volume fraction as high

as seventy-two percent [11]. It is clear that the microstructure will play a signifi-

cant role in the heat and transport properties of the particle. Therefore, a method

has been developed to generate a model geometry based on experimentally-

measured geometric parameters. With this tool, a realistic geometry can be
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generated for any biomass feedstock with known micro-structural properties

and utilized in thermo-fluid simulations to give a more realistic depiction of the

wood degradation process.

A.1.2 Method and results

A mathematical technique was developed to generate a realistic particle geome-

try based on a set of experimentally measured parameters. The major geometric

characteristics of a wood considered in this method are depicted in Fig. A.1.2.

The major components include: lumen, which are long cylindrical void spaces,

cell wall, made up of mixture of complex polymers separating lumen, and pits,

which are small holes in the cell wall connecting adjacent lumen. For example,

experimentally measured parameters for Spruce wood, a feedstock commonly

used in thermochemical conversion, were gathered from the literature in Table

A.1.2.

The developed method will utilize these geometric parameters to generate

a physically realistic model geometry for simulation as follows. Given a user

defined volume space, a three dimensional grid of nodes is initialized as solid

cell wall. Then, a possible set of lumen tangential and radial diameters is gen-

erated that represent a normal distribution based on the measured mean and

standard deviation values. The algorithm finds the maximum number of lu-

men in two dimensions that can fit in the specified volume space. Similarly, the

lumen lengths are normally distributed and start at random points in the z axis.

Any node found on or within a lumen is defined as void space. Lastly, pits are

randomly distributed in the cell wall structure in order to fit the measured pit
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density (again setting those nodes to void space).

Figure A.1: Evolution of species mass fractions in a PaSR reactor model
for biomass gasification: Comparison between detailed model
prediction (blue line) and global model predictions (red lines).

A volume of specified size .1 mm x .1 mm .1 mm was generated to fit the

geometric properties of spruce wood, the volume rendering of the geometry is

shown in Fig A.1.2 One should note that the Matlab method described was de-

veloped in a flexible way, so that it may be used to produce accurate physical

models for any wood strain with defined geometric properties. The geometry

shown above has been utlized in some preliminary computational thermo-fluid

simulation of wood degradation. The method as well as the results of the simu-

lation are documented in Grout et al [9], with the expectation that the generated
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Table A.1: Wood particle geometric parameters

Parameter Value (µm) Source

Lumen tangential diameter 35.3 ± 5.9 [21]

Lumen radial diameter 35.0 ± 6.4 [21]

Lumen length 2500 - 5000 [21]

Cell wall tangential thickness 2.99 ± 0.58 [21]

Cell wall radial thickness 3.16 ± 0.70 [21]

Pit Density 77 ± 35 [19]

geometry will be utilized in more comprehensive thermo-chemical simulations

in the near future [1] .

Figure A.2: Wood particle geometry
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Figure A.3: Comparison of model geometry (left) to TEM images (right)
from Trtik et al [21]

A.2 Chemical characterization of wood by Raman Spec-

troscopy

Methods have been developed to utilize Raman spectroscopy as a tool to chem-

ically characterize wood structure. While techniques already exist to quantify

the chemical composition of wood, Raman spectroscopy provides advantages

to the established techniques. In addition to Raman spectroscopy being a non-

invasive and quick method for chemical characterization, it provides the possi-

bility of visualizing chemical composition in the context of the biomass struc-

ture. In recent studies, the prominent peaks in Raman spectra taken from poplar

wood have been identified. Shown below is a Raman spectrum taken of a poplar

wood section with NREL’s 785 nm laser; the strongest signal peaks are labelled

as identified by Gierlinger et al [8].

Raman spectroscopy can also be used to create hyperspectral maps, which
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Figure A.4: Raman spectrum obtained with NREL’s 785 nm laser

will be most useful in correlating wood structure and composition. To create a

hyper spectral map, a set of Raman scans are taken across a grid of points as

shown in Fig. A.5A. The goal of our work is to develop a methodology to con-

vert this hyper spectral data into a chemical composition map. For example,

to visualize the relative lignin content as a function of space in wood, the aver-

age signal intensity in the range 1550 to 1640 cm −1 (a peak correlated to aryl

ring deformation in lignin) is plotted at each grid point, as shown in Fig. A.5B.

To extend this concept for more general compositional information the follow-

ing methodology has been outlined. Raman spectra were taken of poplar wood

samples of known varying composition (as determined by wet-lab techniques).

Then we employ a linear algebraic approach to determine which peak intensi-

ties can be used to predict the composition. For example, Fig. ??. shows Raman

spectra for four poplar wood samples of varying lignin content, and the peaks

associated with carbohydrates and lignin have been indicated in blue and red
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respectively. Using the known composition of each sample and the relative peak

intensities for each sample, the peaks that most significantly predict composi-

tion are identified. Then, with the correct mapping correlations one can predict

composition of a sample of unknown characteristics. While this method needs

to be developed further with a larger sample database, in order to display the

abilities of the method, the mapping matrix obtained with four samples was

used to map the composition of the Raman hyper spectra image as shown in

Fig. A.2.

Figure A.5: A: grid of points at which a Raman scan was taken. B: hyper
spectral map of lignin peak.
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Figure A.6: Four samples with known varying lignin contents

Figure A.7: Four samples with known varying lignin contents
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APPENDIX B

INCORPORATION OF GLOBAL KINETICS INTO TECHNO-ECONOMIC

ANALYSES

The developed global kinetic model for gasification has been transferred to a

group at NREL conducting techno-economic analyses. The group focuses their

studies in a software called Aspen. For the present, the focus of the group was

on defining the chemical reactions and mixing that is occurring in the fluidized

bed reactor unit. For this step, they have incorporated the global kinetic model

developed above, and will be presenting their results in the future [20].
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APPENDIX C

USE OF RAMAN SPECTROSCOPY TO ASSESS THE DEACTIVATION OF

ZSM-5 CATALYST DURING VAPOR PHASE UPGRADING

There is a recent interest in fast pyrolysis for the high production of bio-oils.

However, the bio-oils tend to be acidic and unstable, therefore an additional

step known as catalytic vapor phase upgrading has shown promise in trans-

forming the bio-oils into a product that can directly be incorporated as a drop in

fuel. There are a few catalysts which have preformed particularly well in vapor

phase upgrading, one of which is a ZSM-5 catalyst. In order to better define

how the catalyst should be utilized in the pyrolysis process, it is necessary to

characterize its deactivation properties. In this study, Raman spectroscopy was

used to analyze five samples of UPV2 at different stages of deactivation. It was

found that Raman spectroscopy is both an efficient and reliable tool to charac-

terize the said catalyst. These findings have been incorporated into a broader

study on vapor phase upgrading. [13]
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