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Visuomotor Optimality and its Utility in
Parametrization of Response

Michael Sherback, Raffaello D’Andrea

Abstract— We present a method of characterizing visuomotor
response by inferring subject-specific physiologically meaningful
parameters within the framework of optimal control theory.
The characterization of visuomotor response is of interest in
the assessment of impairment and rehabilitation, the analysis
of man-machine systems, and sensorimotor research. We model
visuomotor response as a Linear Quadratic Gaussian (LQG)
controller, a Bayesian optimal state estimator in series with a
linear quadratic regulator. Subjects used a modified computer
mouse to attempt to keep a displayed cursor at a fixed desired
location despite a Gaussian random disturbance and simple
cursor dynamics. Nearly all subjects’ behavior was consistent
with the hypothesized optimality. Experimental data was used to
fit an LQG model whose assumptions are simple and consistent
with other sensorimotor work. The parametrization is parsi-
monious and yields quantities of clear physiological meaning:
noise intensity, level of exertion, delay, and noise bandwidth.
Inferred control cost and noise intensity varied significantly
across subjects. Response variations were consistent with changes
in exerted effort. This is a novel example of the role of optimal
control theory in explaining variance in human visuomotor
response. We also present technical improvements on the use
of LQG in human operator modeling.

Index Terms— Sensorimotor, visuomotor, human operator,
HITL, LQG.

I. I NTRODUCTION

We seek a parametric model of human visuomotor response
in a simple feedback task. Models of visuomotor behavior are
of value in the assessment of neuromuscular health during
rehabilitation, in human operator modeling, and in sensori-
motor research. In our experiment subjects used a modified
computer mouse to attempt to keep a displayed cursor at a
fixed desired location despite a Gaussian random disturbance
and simple cursor dynamics. We parametrized response in
terms of physiologically meaningful quantities by fitting a
subject specific optimal control model. Our parametrization
is parsimonious and rests on accepted priors and assumptions.
We demonstrate that optimality is invariant across nearly all
subjects despite variance in the criteria of optimality. The
methods of this paper are automated and subject-specific, and
thus potentially useful in clinical evaluation of neuromuscular
health.

This paper is organized as follows: Section I provides
background on theory and past work. The hypothesized model
is given in Sec. II. Experimental, spectral, and data fitting
methods follow in Sec. III. Results and analysis are in Sec. IV,
and discussion in Sec. V.

A. Assumptions, control theory background, and past work

The key hypothetical assumptions are quadratic optimality
and Gaussian endogenous noise. Optimality as an organizing

Fig. 1. Generalized Feedback Model. The plantP has control inputv,
measurement outputy, disturbance inputw, and performance outputz. It is
controlled byK.

principle for descriptions of animal behavior has proven useful
and robust [1], [2]. Gaussian noise is a standard assumption
with experimental justification [3]. The utility of quadratic
cost models has been demonstrated in related sensorimotor
contexts [4].

Linear Quadratic Gaussian (LQG) control is well known and
widely used. We omit details not relevant here (see textbooks,
e.g. [5]) and adapt notation. Given the following conditions:

1) a linear systemP to be controlled as shown in Fig. 1,
with a control inputv, disturbance inputw, measurement
output y, and performance measurez (all generally
vectors),

2) the objective of minimizing a quadratic form of the
expected performance,E(z(t)T z(t)) (in a simple scalar
case this is oftenE(y2(t)+ρv2(t)) with constantρ being
a design choice),

3) stationary white Gaussian disturbancesw,

then the optimal controlv is given by the LQG feedback
controller K. The LQG controller is the series combination
of a Kalman filter (a Bayesian optimal estimator of the state
of the system, see [5]) and a Linear Quadratic Regulator
that setsv to be a linear function of the estimated state. An
LQG controller operating at steady state to reject a stationary
Gaussian disturbance is a linear time invariant (LTI) system.
The Fourier transforms of input and output data of an LTI
system are related in relatively simple ways to the system
parameters (Sec. III), allowing for system identification.

Relevant past work for the purposes of this study is in
both the sensorimotor and early controls literature. Optimality
and Bayesian estimation in sensorimotor response are the
subject of much recent work [6], [7], [8]. Todorov’s 2004
survey of sensorimotor optimality [1] was exhaustive up to
that date and in particular includes LQG applications [9],
[10]. Past sensorimotor work has focused on invariant features
of sensorimotor response rather than development of subject
specific models, and on functionally relevant tasks rather than
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Fig. 2. Detailed view of the model described in Sec. II.

tasks design to elicit LTI response well suited to analysis. We
are also interested in existing tests of neuromuscular health and
skill, in particular those involving upper extremities. Among
these, the Fugl-Meyer [11], the MAS Motor Assessment
Scale [12], and the DASH [13] tests are prominent. Thirteen
scales measuring upper body function are compared in [13].
In the field of control engineering, through the 1950s and
1960s a large body of work was produced on the behavior of
pilots as surveyed in [14]. The most relevant work from this
field is [15], [16], clarified by [17], which proposes an LQG
model of pilot response. This is similar to the current paper
in that human behavior was compared to that of a controller
design based on LQG. However, the approach of [15], [16],
and [17] is suboptimal in that motor noise autocorrelation
is neglected during control synthesis. In addition, this paper
describes a method to automatically fit data using subject-
specific parameters, rather than presenting a single controller
and noting that it resembles the aggregate behavior of three
trained pilots.

II. H YPOTHESIZED MODEL

In this section we propose the model of the complete
experimental feedback loop shown in Fig. 2 and describe
its components. The plantP of Fig. 1 (the system to be
controlled) and its inputs and outputs are decomposed as
shown.

We turn first to partitioning the white disturbance vector
w into an exogenous disturbanceδ and endogenous vision
and motor noisesn and µ. The exogenous disturbanceδ is
a fixed sequence applied during the experiment. The vision
noise intensitySnn was set to yield noise with a standard
deviation of a pixel width, as all subjects demonstrated an
ability to read text small enough that visual acuity was not
relevant. This intensity is sufficiently small that results are
essentially insensitive to this value. Motor noise intensitySmm

is treated as a subject-specific parameter to be inferred. The
noises are modeled as additive, but there is evidence that motor
noise is multiplicative, that is, its amplitude scales with the
magnitude of the corrupted signal [18], [19]. It is shown in [20]
that optimal stationary control in the presence of multiplicative
noise results in an alteration to the control cost, and we neglect
non-stationary effects.

Two of the subsystems within the plantP are fixed by the
experimental design, the plantG and disturbance dynamics

Gd. The plantG discussed in this paper is a single integrator

ė(t) = u(t) + d(t) (1)

The disturbance filterGd is a first order filter at0.3 rad/sec.
Limited disturbance bandwidth is necessary in order to make
the task possible and this filter was chosen to yield reasonable
difficulty and to allow direct comparison with [15]. The trans-
fer functions for the subsystems ofP fixed by the experiment
are

G = 1/s, Gd = 0.3/(s + 0.3) (2)

Three subsystems ofP model processes within the subject,
and so must include assumed or inferred parameters. We have
a motor noise filterGm that shapes the spectrum of the motor
noise,Gτ implementing a lumped delay, andGzu implement-
ing differentiation of the control input for inclusion inz.
There is no filter on vision noisen because is hypothesized
to be white within the frequency range of interest. The motor
noise filter can be thought of as a musculoskeletal filter on
a white noise disturbance. Pilot modeling studies typically
represented musculoskeletal dynamics with first order lags at
approximately 12 rad/s [15], [21], but second order actuator
dynamics at approximately 17 rad/s are more consistent with
results in [22], [23]. We used a second order Butterworth filter
whose adjustable cutoff frequency in rad/s is denotedωm. This
avoids the addition of a quantitative assumption at the expense
of increased parametrization dimension. This approach yields
the transfer function

Gm =ω2
m/(s2 + ωm

√
2s + ω2

m) (3)

Delays of all sources are lumped into a single delayGτ at
the vision output without loss of generality. Delay cannot be
modeled by a finite dimensional linear system. In order to
avoid an intractable synthesis problem or an unnecessarily
complicated two-stage state estimator, we approximate the
delay with the well known Pad́e approximation [24]. For a
typical 200 ms delay a fourth order approximation is accurate
to < 1 degree of phase error at20 rad/s, sufficient for our
purposes. The value of the delay is a free parameter. The
transfer function for a given delayτ is obtained with the
standard formula given in Table 1 of [24]

Gτ =
1680− 840τs + 180(τs)2 − 20(τs)3 + (τs)4

1680 + 840τs + 180(τs)2 + 20(τs)3 + (τs)4

≈ eτs (4)

The performance vectorz includes the errore and an approx-
imation to ρu̇, the weighted derivative of the control signal
u.

z = [e, ρGzuu] ≈ [e, ρu̇] (5)

Differentiation across the frequency range of interest is ac-
complished byGzu. The value of the control weighting scalar
ρ is a free parameter. Weighting the derivative is reasonable in
the sense that we pay for movement, rather than for occupying
an off-center location, and has a straightforward energy inter-
pretation. This parameter reflects the level of exertion. The
constants in the following transfer function set the frequency
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range over which the differentiation is accomplished to be
0.01 to 100 rad/s, a sufficient range that results are completely
insensitive to changes in these constants. These constants are
required to avoid technical problems during LQG synthesis.

Gzu =
s + 0.01
0.01s + 1

(6)

Our approach avoids modeling the nonlinearities and inter-
nal feedback loops in the human by using the assumptions
of Sec. I-A to infer that the optimally performing central
nervous system (CNS) should emit signals that cause the
unified CNS/musculoskeletal system to have LTI input/output
characteristics when controlling a linear plant. Linear system
behavior throughout an operating range despite nonlinear
components is a common goal in engineering, for example
in the creation of linear amplifiers from nonlinear transistors
by appropriate internal feedback loops. Experiments designed
to isolate and identify delays and noise within these loops are
described in [25].

In summary, our assumptions are: Gaussian disturbances
with reasonable spectra, the existence of delay, and a control
strategy based on minimizing a weighted sum of squared
tracking errore and squared velocity at the handu̇. Model
subsystems and disturbances are fixed except for the motor
noise intensity, the control cost weighting scalar, the delay, and
the cutoff frequency of the motor noise spectrum, compactly
written as

γ := [Smm, ρ, τ, ωm] (7)

These are the parameters we used to characterize the subjects.

III. M ETHODS

In this section we describe the experimental procedure
and apparatus, the methods used to obtain spectral data, and
the methods used to fit models to the experimental spectral
data. Experimental data and the software used to execute the
methods of this section are available at [26].

A. Experimental method

Subjects used a computer mouse mounted on a low-friction
cart to provide inputu that altered the behavior of a displayed
cursor according to Eqn. (1). Their task was to minimize the
displayed errore relative to a fixed desired cursor location.

The equipment consisted of an optical mouse input whose
position was sensed asu, a hood, and a computer as shown
in Fig. 3. The screen was basically empty except for a 230
mm long region within which the 2 mm wide and 15 mm tall
rectangular cursor moved horizontally. The software sampled
user inputu, added disturbanced, and updated errore at
R = 100 samples/s. The display monitor had a hood to
ensure that subjects were undistracted and did not observe
their hands. The Windows pointing cursor was hidden during
the trial.The mouse was mounted on a custom ball-bearing
cart to reduce static friction effects, and cursor enhancement
nonlinearities in Windows were disabled. Subjects were
healthy students at Cornell University between 20 and 32
years of age. They completed consent forms approved by

Fig. 3. Experimental setup with display, hood, and mouse input.
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Fig. 4. Typical time series data: All subjects, trial 7. Note identicald(t).

the University Committee on Human Subjects, brief health
questionnaires, and Edinburgh handedness surveys. They then
read the instructions:

Moving the mouse from side to side will affect how
the error indicator moves. An unseen disturbance
will also cause the error to move. TRY TO KEEP
THE ERROR AS CLOSE TO ZERO AS POSSI-
BLE.

The subjects’ interpretation of these instructions is an un-
controllable part of the experiment. Subjects were allowed to
position themselves as they felt comfortable, as long as their
elbow rested on the table. There were twenty 60 second trials.
The first 9 seconds of data from each test were removed.
Tests started every two minutes to allow for an average of
60 seconds rest. The first ten trials used the plant dynamics
given in (1). Trials 11-14 used proportional dynamics in which
e(t) = u(t) + d(t), and 15-20 used a double integrator
ë(t) = u(t) + d(t). This paper analyzes the single integrator
results but the others are briefly qualitatively discussed in
Sec. V. Subjects all had the same disturbance sequence on
any given trial, as can be seen in Fig. 4. Each trial had a
different disturbance. The variance of the displayed error as
well as the values of the inferred parameters converged to
typical behavior within the first three trials with the exception
of subject 10.

The first five subjects received verbal cues and displayed
instructions, and the last 11 solely had displayed instructions.
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It became apparent that the presence or absence of a compet-
itive attitude due to unintentional cues from the experimenter
might alter the results. The data from the first five subjects
was removed for this reason. The remaining sample had nine
males and two females.

B. Obtaining spectral data

We obtain spectral data at discrete frequenciesωk from time
series d(ti=1:6000), u(ti=1:6000) using the Blackman-Tukey
procedure [27] with the first nine seconds of data removed.
For real valued signals the estimated correlation at lagk is
given by

r̂xy(k) :=
1
N

N−1−k∑

i=0

x(ti)y(ti+k) k = 0, 1, ...N − 1 (8)

and r̂xy(−k) := r̂xy(k). Estimated cross spectra are given by

P̂xy(ωk) :=
N−1∑

k=−(N−1)

W (k)r̂xy(k)e−jωkk (9)

where ωk is a vector of2N − 1 frequencies evenly spaced
from −π(N − 1)/N to π(N − 1)/N rad, andW (k) is the
smoothing window. We used a Parzen smoothing window of
width N/5 [27]. Smoothing is a standard technique in spectral
estimation used to reduce the effect of noise on the data. It
yields an empirical estimate of the component of the response
attributable to an LTI system.

The resolution ofP̂xy scaled to continuous frequencies is
approximately2πR/(N/5) ≈ 0.5 rad/s [27]. This introduces
a small amount of bias for a wide-band signal such as we
encounter.

Un-smoothed data is denoted with bars and defined by
simply removing the window as follows

P̄xy(ωk) :=
N−1∑

k=−(N−1)

r̂xy(k)e−jωkk (10)

This has one-fifth the bias but much higher variance due to
noise.

For the purpose of comparing predicted and experimental
closed loop behavior it is useful to define the following:

T̄ (ωk) := P̄ud(ωk)/P̄dd(ωk) (11)

T̂ (ωk) := P̂ud(ωk)/P̂dd(ωk) (12)

C. LQG parameter inference method

In this subsection we show how to obtain the optimal
controllerK for a parameter setγ from Eqn. (7), how to use
this K to make predictions that may be compared to spectral
data, and how this is iteratively used to infer a parameter set
that fits the observed data.

For a given parameter setγ, the plantP and the statistics
of the disturbancew of Fig. 1 are fully defined. Therefore,
given LQG optimality andγ, K is fully defined [5]. The LQG
synthesis process is automated in commercial software [28]
and briefly presented here for completeness. By the separation
principle [5] LQG synthesis can be treated as two separate

problems, a deterministic Linear Quadratic Regulator (LQR)
problem and a Kalman filter state estimation problem. We
solve the “output weighted cost function” steady state Linear
Quadratic Regulator problem [29] and the Kalman Filter
synthesis problem, each of which involves the solution of an
Algebraic Riccati Equation (ARE). We thereby obtain the state
equation of the LQG optimal controllerK corresponding to
the parameter setγ.

After K is defined the entire system is defined and expected
spectral properties may be computed. We work in contin-
uous time and frequency and derive asymptotic results for
infinite duration experiments. Operators characterizing input-
output behavior are assumed to be LTI and are Laplace
transformed [5]. Without loss of generality, we will only be
interested in behavior along the imaginary axis and therefore
to simplify notation all transfer functions and variables are
assumed to be functions ofjω. Asterisks denote complex
conjugates. LetKH := KGτ and define the sensitivity gain
S := 1/(1 + GKH) and complex sensitivityT := 1 − S. It
can be shown that

u = S
[
Gmµ−KHGd−KHn

]
(13)

e = S
[
GGmµ + Gd−GKHn

]
(14)

For infinite time the periodogram estimate of the cross
spectra is unbiased [27] and we can express the expected
power spectrum ofu asPuu := E(uu∗). The variablesµ and
n are zero mean, Gaussian, and uncorrelated and therefore all
cross terms have an expected value of zero. The quantities
E(µµ∗) andE(nn∗) are the white noise intensitiesSmm and
Snn, yielding

Puu := |S|2[|Gm|2Smm + |GKH |2dd∗ + |KH |2Snn

]
(15)

We can similarly compute the expected cross spectrum ofu
andd, normalized by−dd∗ in order that its expectation will
conveniently beT .

−E(ud∗)
dd∗

= SGKH = T (16)

For comparison to experimental data we evaluate the expected
Puu from Eqn. (15) andT from (16) at the experimental fre-
quenciesRωk whereR is the sample rate of100 samples/sec.

The above technique was applied iteratively in order to
obtain our estimate ofγ. We started by guessing a parameter
setγ, computingK, and finding expected spectral data. These
expected quantities were compared to the experimentally ob-
servedT̂ (ωk) := −P̂ud/P̂dd andP̄uu(ωk) from Sec. III-B. We
used a commercially available [28] Nelder-Mead optimization
function to repeat this process systematically to find a para-
meter setγ that minimized the following objective function.

min
γ

B∑

k=A

(|ωkT (Rωk, γ)− ωkT̂ (ωk)|2

+10|ω2
kPuu(Rωk, γ)− ω2

kP̄uu(ωk)|) (17)

We used the smoothed̂T because it reduced the variance of
the inferred parameters. No advantage was found to using
smoothedP̂uu, and in fact data is actually better fit without
smoothing due to precise knowledge of the disturbanced. The
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Fig. 5. The observed and fitted closed loop transfer functionT for one
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the predicted spectrum is due to the jagged spectrum of the known excitation
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summation limitsA andB were chosen to limit the frequency
range of interest to be0.3 to 20 rad/s. This range was chosen
because lower frequency cross spectral data is unreliable, and
above this frequency range the response is dominated by noise.
The frequency weight emphasizes higher frequencies where
the effects of the parameters to be estimatedγ are strongly
expressed, reducing intra-subject variance. The factor of10
is used to avoid over-fittingT at the expense ofPuu. This
constant may be varied from3 to 30 without substantially
altering the results. In particular, mean inferred properties are
insensitive to this constant. At low values of this constant, the
variance of the inferred motor noise properties increases, and
at higher values outlying inferred delays are observed.

IV. RESULTS AND ANALYSIS

In this section we show the results of the fitting process,
verify the presumed optimality, benchmark our method against
a standard linear system ID method, and analyze the inferred

parameters. Performance in trials repeated eight months later
is used to demonstrate the that subjects exercised their ability
to alter the level of effort.

A. Results of the fitting process

Figs. 5 and 6 are the result of the fitting process on a
subject trial. The method is able to fit behavior well despite
using only four parameters. When the response is dominated
by the effects of the known disturbance, the power spectrum
of Fig. 6 can be fit with great accuracy. The majority of fits
were of similar quality, with poor fits often seen with subject
1 and 10. The agreement of the empirically obtained cross-
spectral estimates with the LQG fitted model confirms that
the component of the response due tod is well modeled.

Typical inferred loop gain magnitudes for all subjects are
shown in Fig. 9. The inferred loop gain phases are in excellent
agreement with results based only on empirical smoothing per
Eqn. (9), with an example given in Fig. 9. The change in the
slope of the loop gain magnitude as one progresses from low
to high frequency can be understood as an optimal response
to delay and is in agreement with classical approaches to the
control of plants with delay [30]. Accurately modeling this
aspect of response requires high order models. With the LQG
parametrization this is accomplished without loss of parsimony
in the parametrization.

B. Evidence for optimality in most subjects

The most basic prediction of the hypothesized optimality
is that subjects will have the freedom to trade effort against
performance. Under the assumption that all young subjects
are in similar condition, they should therefore fall along a
Pareto front in a plot of performance against exertion, with
the location on the front parametrized by control costρ. This
was observed for all but subject 10. The RMS tracking error
e normalized by the RMS perturbationd is plotted against
RMS input velocitydu/dt in Fig. 7. In conjunction with good
agreement between the spectral properties of the fitted LQG
controllers and the observed behaviors, these results support
the hypothesis that LQG optimality is an invariant feature
of typical healthy proficient human visuomotor response in
a simple feedback task. This occurs despite the absence of
any instructions regardingu.

The hypothesized optimality is also supported for all but
subjects 1 and 10 by comparing the fitted models’ predicted
RMS tracking errore with experimental observations as shown
in Fig. 8. This quantity is meaningful in that the fitting method
makes no use ofe, but given a fitted model, the RMSe may be
predicted. We interpret this quantity as follows: If the power
spectrum ofu and the cross spectrum ofu and d are well
fit, the response has been separated into that attributed to the
effects of endogenous noises and that attributed to an optimal
response to the known disturbanced in the presence of these
endogenous noises. That is, the best fit to an optimal model is
obtained, and the remaining components ofu are attributed to
noise. Under the hypothesized model the effects of noisesm
andn should increase RMSe by a predictable amount. If the
response not attributed to an optimal model serves to reduce
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e and is thus not well described as noise, the model will over-
predict the RMSe. In this case, the component of response not
fit to an optimal control model is systematic and functional. If
the response not attributed to an optimal model increasese by
more than the amount expected for the hypothesized noise,
the model will under-predict the RMSe. In this case, the
component of response not fit to an optimal control model is
systematically dysfunctional. Recall that these interpretations
of the data are contingent on a good fit to the power spectrum
of u.

Observed RMSe was generally consistent with that pre-
dicted, supporting the hypothesized optimality. Experimental
data was noisy because low frequency (< 2 rad/s) components
dominatee, and tests were limited to 60 seconds to avoid
fatigue. Unusual behavior by subjects 1 and 10 highlight
behaviors not consistent with the optimal control model, and
the criterion of a good fit to the power spectrum ofu was
violated. In the case of subject 10, the RMSe was over-
predicted. The model did not fit power spectrum ofu well
in the neighborhood of 1-3 rad/s. In the case of subject 1,
experimental power spectra ofu had large components in the
2-10 rad/s range that could not be fit to an optimal model.

C. Comparison to N4sid

In this subsection we assess the quality of fit of our tech-
nique in the class of system identification techniques yielding
linear models. We benchmark our method against a current
standard, N4sid [32]. N4sid is a well regarded general purpose
black box system ID method. We establish that our technique
is as good or better than this standard technique because it
suggests the non-existence of linear models substantially better
than those of this paper.

We obtained N4sid estimates ofT of order 1, 2, 4, and 7
for each data set’su andd. A seventh order model was used
because the result of our method can be shown to have at most
seven significant states (see Sec. V). The following cost was
evaluated within each trial:

B∑

k=A

(|T (Rωk)− T̂ (ωk)|2) (18)

Our method had mean decreases in cost of65%, 44%, 45%,
and 30% relative to N4sid. This was accomplished despite a
25, 63, and 79% reduction in the dimension of the parame-
trization for orders2, 4, and7, and a50% increase for the first
order fit. We also tried using un-smoothed dataT̄ in the cost
function

B∑

k=A

(|T (Rωk)− T̄ (ωk)|2) (19)

In this case the results are dominated by noise, so that the
improvements due to our fit are only6%, 3%, 3%, and1%.
We conclude that if the user only seeks a model of closed loop
behavior such that noise is the principal source of un-modeled
response, our methods offer slight advantage. Our method
is advantageous when one seeks to infer physiologically
meaningful quantities. This calls for precise and structured
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identification of the deterministic component of the response
regardless of the relative amount of noise.

The similarity of Eqn. (18) to the Eqn. (17) used during
fitting may be questioned. We fit the model using smoothed
data in order to reduce the variance of inferred parameters. If
we use un-smoothed data during the fitting process and then
evaluate Eqn. (18) we still obtain mean decreases in cost of
58%, 32%, 32%, and13% relative to N4sid.

D. Inferred properties

The technique yields three inferred quantities that are
repeatable across trials 3-10 for most subjects, and vary
significantly across subjects as shown in Figs. 10, 11, and 12.
Inferred motor noise bandwidths varied widely and no sensible
interpretation is apparent.

In two subjects, significant anomalies in inferred or ob-
served quantities were coincident. Mean inferred noise levels
were large in subject 10. Subject 10 is also off the Pareto
optimality front in Fig. 7. The highly variable delays inferred
for subject 1 are believed to result from abnormally low
bandwidth creating a lack of information at higher frequencies
where delay is salient. The low bandwidth is associated with
low RMS control input velocitiesu̇ and high mean control
costsρ.

E. Repeated testing

Repeated testing was performed on eight of the eleven
subjects including outlier subjects 1 and 10. Both outlier
subjects behaved in less unusual ways during repeated testing,
and results were better fit. We determined whether the subjects
had significantly changed their behavior using multivariate
ANOVA [31] with two data groups per subject, where each
data group contains the inferred properties inγ. Four out of
eleven total subjects and three out of nine optimal subjects
exhibited significant differences in their inferred parameters
with a false alarm level of0.05. The most salient difference
was in the inferred control costρ, as plotted in Fig. 13.
Performing t-tests on each subject’s two sets of inferredρ,
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Fig. 11. Inferred control cost. Lateral displacement of markers within a
subject indicates chronological order. Squares indicate the last trial. All but
subject 7 had minimal control cost on their last trial, often to a degree
that makes the trial an outlier. However, because all subjects had the same
disturbance sequence on any given trial, no conclusions can be drawn.
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Fig. 12. Normalized inferred motor noise power levels. Lateral displacement
of markers within a subject indicates chronological order.

the same three out of nine optimal subjects have significantly
differentρ at a false alarm rate of0.05. This indicates that an
altered willingness to expend effort is common and detectable.
Differences in delay were negligible. Differences in motor
noise intensity were small with the exception of subjects 1,
4, and 10, which shifted towards typical levels.

The two significantly suboptimal subjects behaved in a way
more consistent with optimality during the repeated test as
shown in Fig. 14.

V. D ISCUSSION

Results were consistent with the LQG model for nine of
eleven subjects, and outlying behavior decreased in repeated
testing. The accuracy of the LQG model is demonstrated by
comparing the fit to that obtained by model-free empirical
fitting of spectral data in Figs. 5 and 6, and to established
model fitting techniques in Sec. IV-C. We demonstrated that
fitting a model with four LQG parameters instead of fourteen
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Fig. 13. Inferred control cost for repeated trials.
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Fig. 14. This boxplot [31] gives the ratio of the predicted RMS displayed
error e from the fitted model to the observed value in the repeated trials.
Values near one are consistent with a well modeled trial. Sec. IV-B gives an
explanation of the meaning of this ratio.

parameters carries no loss of accuracy, and gives a large gain
in parsimony.

Variance in sensorimotor control has traditionally been
approached in terms of variability in time histories for repet-
itive tasks. Optimal response to noise has been proposed
as a means of explaining its origins and expression [33],
[18]. In the traditional approach, the control strategy itself
is treated as invariant. We differ significantly with [15], [16]
in that we do not find the control strategies themselves to be
invariant. We also do not assign musculoskeletal meaning to
control costρ, something tentatively proposed in [15], [16]. In
contrast, our method addresses variations in control strategies
that correspond to altered levels of expended effort, that is,
variance in the objective function of the optimality. From
this perspective it is optimality itself that is invariant. Indeed
optimality was found to be an invariant feature of response
for nine of eleven young healthy subjects, while significant
variance in the objective function was observed in four of the
nine optimal subjects upon repeated testing. We conclude that
the invariant features of response by nearly all subjects in this

task are delay and optimality itself.
Inferred parameters were significantly subject specific and

physiologically reasonable. The inferred delays are typically
somewhat larger than delays found in simple reaction time
studies [34]. This experiment differs from those studies in
that the task is more complex and delay is inferred as a
separate phenomenon from musculoskeletal lag. The spectral
techniques of [35] are able to separate lag and delay in
continuously perturbed postural control, and inferred delays
are comparable to ours.

All subjects with all plants had a “dead band”, that is,
a preference for remaining motionless that is not predicted
by the hypothesized optimality. The relative significance of
this effect can be assessed by inspecting time domain data
in Fig. 4. Our method effectively treats this tendency as a
source of noise, that is, an aspect of behavior that can not
be fit to an optimal control strategy. Thus it is assumed to not
contribute to disturbance rejection. The utility of this approach
is demonstrated through prediction of the RMS displayed error
e in Sec. IV-B.

The method was also applied to other plantsG. The method
was able to fit data withG altered toe(t) = u(t) + d(t) and
similar noise powers and delay were observed. It was not able
to consistently fiẗe(t) = u(t) + d(t), and inferred parameters
for the ë plant were erratic and unrealistic. Additional non-
Gaussian data inconsistent with linear models of behavior with
the ë plant is found in [21]. Dead band behavior was more
pronounced. All of this is consistent with the time-optimal
bang-bang behavior observed by [36]. It cannot be ruled out
that with more practice and possibly coaching people might
come to resemble LQG. The results of [15] and [16] with
the double integrator do not include the full frequency range
given for other plants and are given for fewer subjects. Another
abnormality with thëe plant was that before becoming skilled,
subjects entered into input-saturating limit cycles resembling
category II pilot induced oscillation (PIO) as described in [37].

A key measure of parametrization quality is parsimony, the
ability to characterize processes of large order or dimension
with few parameters. We claim that parsimony is a matter
of parametrization dimension rather than state dimension. For
example, parsimonious and precise models of beams, heat
conduction, fluid mechanics, gas dynamics, radiation, etc. are
of infinite order and perfectly parametrized by small sets
of constants. Methods of modeling such systems in lumped
parameter form can be of arbitrary order, and the problems as-
sociated with order are computational and do not reflect a lack
of parsimony. We are far from model orders that would cause
computational problems. The optimal control parametrization
allows us to fit a model with only four parameters, far fewer
than a general linear model of similar accuracy. Alternatively,
the advantage can be exploited by fitting the data better than
a general purpose method yielding equal or greater parameter
dimension. Both advantages were demonstrated by comparison
to N4sid in Sec. IV-C.

The large number of states used to represent the system in
Fig. 2 may be reduced. This is of computational interest but
is irrelevant to parsimony as discussed previously. Inspection
of the Hankel Singular Values (HSVs) [5] of the estimate
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of KH shows a mean normalized sixth HSV of0.19 and a
negligible seventh HSV. This indicates that despite the large
order of the model used in the fitting method, its input-output
characteristics are almost perfectly approximated by a sixth
order system.

A. Engineering context

The methods of this paper perform closed loop identifi-
cation of systems hypothesized to contain optimal feedback
controllers. The advantage is parsimony.

For the purpose of modeling operator behavior the LQG
feedback model works well except for the case of a dou-
ble integrator with untrained novice subjects. The large and
statistically significant inferred parameter variations observed
across subjects caution against generalizations from studies
based on pilots. Technical improvements are made within
the process of LQG controller synthesis as compared to the
approach described in [15], [16], and [17]. First, the frequency
weighting technique presented here avoids observability [5]
problems. Second, the approach in [15], [16], and [17] is not
truly optimal in that LQR synthesis is performed in a way that
neglects dynamics later attributed tom.

B. Future work and acknowledgements

Having demonstrated the methods on healthy young sub-
jects, a follow-on study comparing them to healthy aged
subjects is underway. We are also interested in analyzing the
effects of Parkinson’s disease. In particular, we seek to provide
a quantitative assessment of the bradykinesthesia (sluggish-
ness) currently used to diagnose incipient Parkinson’s.

We thank Francisco Valero-Cuevas, Madhu Venkadesan,
Oliver Purwin, and Simone Bortolami, as well as the reviewers
for helpful comments. This work was supported by an NSF
Graduate Student Fellowship.

All data and code used to generate the results of this paper
is available to reviewers [26].
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