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Over the past decade, the number of genome-wide association studies (GWAS) carried out has 

increased exponentially. These studies, mostly by investigating single nucleotide polymorphisms 

(SNPs), have discovered thousands of new loci associated to numerous complex diseases and 

traits, such as Crohn’s Disease, Type-1 and Type-2 diabetes, height and body mass index. 

Unfortunately, there are several limitations to current GWAS. Firstly these newly discovered 

associations fail to explain all of the observed phenotypic variability attributed to genetic 

sources. This issue of missing heritability can be attributed to multiple sources such as rare 

variants, epigenetics and gene-gene interactions. Secondly, the majority of GWAS have not 

investigated the contribution of the sex chromosomes to complex disease. And thirdly, though 

comorbidity studies have well-established the overlap between some diseases, many initial 

GWAS focused on single phenotypes, and are only recently investigating the genetic overlap 

between various complex diseases (and traits). Here, we investigate and extend various aspects 

of GWAS to address these issues. First, we investigate the implication of rare or low frequency 

causal variants (SNPs with a minor allele frequency <5%) for GWAS and find that when 

diseases are caused by (unassayed) rare variants, the associated SNPs tend to lie further away 

than expected when diseases are caused by common variants. Second, we investigate the role of 

chromosome X in complex disease. The X chromosome was routinely ignored and mishandled in 

many GWAS, thus possibly explaining the lack of X-linked associations. Hence, we developed 



an X-tailored pipeline and applied it to 16 datasets of autoimmune and immune-mediated 

disorders. We found several genes implicated in disease risk, some of which have sex-

differentiated function. Finally, we developed a novel method, disPCA, that uses principal 

component analysis to investigate the shared genetics between various complex diseases and 

traits. Applying disPCA to 31 GWAS datasets, we found several pathways that may underlie 

shared pathogenesis between distinct diseases and traits. Though genotyping-based GWAS are 

being quickly replaced with sequencing-based association studies, the conclusions and tools 

developed here can also be applied to this new generation of data.  
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Chapter 1：  Introduction 
 
 
The rapid decline in cost of assaying genetic information ushered in the era of genome-wide 

association studies (GWAS). In its simplest form, GWAS consists of comparing genetic 

information at different loci between individuals with a disease (cases) and those without 

(controls). Usually assayed at single nucleotide polymorphisms (SNPs), associated SNPs 

represent a significant correlation between case or control status and the SNP itself. GWAS are 

also carried out on quantitative phenotypes, such as height, in a similar fashion. Associations do 

not necessarily point to causality though, as SNPs assayed by genotyping arrays serve as tag 

markers for other SNPs or different types of variants that they are correlated with, i.e. within the 

same linkage disequilibrium (LD) block. Thus other untyped variants within the same LD block 

as an associated SNP may be the true underlying genetic variant/s.  

 

Over the past decade, over 1350 studies have been reported (Hindorff, MacArthur et al. 2013) 

with over 11,000 associated SNPs (Welter, MacArthur et al. 2014). Each association holds 

promise for narrowing the search field for disease mechanisms and options for treatment. For 

example, the association of complement factor H to age-related macular degeneration is now 

being investigated as a therapeutic target for the disease (Troutbeck, Al-Qureshi et al. 2012). In 

essence, GWAS serve as one possible initial step to understanding the biology of diseases that 

can further advance medicine and eventually lead to effective measures of healthcare (Green and 

Guyer 2011).  

 

Despite this aforementioned promise and projected success, early GWAS were limited and were 

expanded to address the following issues: 1) the case of missing heritability 2) exploring the 
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contribution of chromosome X and 3) the focus on single phenotypes. Firstly it was surprising to 

find that discovered associations had yet to explain a significant portion of genetic variability for 

many traits and disease risks (the problem of missing heritability) (Manolio, Collins et al. 2009). 

It was postulated that there were genetic variants and types of associations that conventional 

GWAS data and methods missed. These included epigenetics, genetic interactions, structural 

variants and low frequency variants (variants with minor allele frequency –MAF<0.05). The case 

of rare or low frequency variants was particularly troublesome as one study suggested that if rare 

variants underlay signals of association (the case of “synthetic associations”), then the actual 

causal variants could be much further away from an association signal than expected given 

common causal variants (Dickson, Wang et al. 2010). This in turn could suggest that fine 

mapping studies (studies following up GWAS to narrow down the causal locus behind an 

association signal) needed to explore a larger genomic area to find the actual causal variant 

underlying an association. While the results presented in Dickson et al. suggested reevaluating 

fine mapping strategies, the study based their results on simulated data. In order to better 

understand the phenomenon of synthetic associations though, one would need to explore the 

phenomenon in human genetic data with actual patterns of LD between common and rare 

variants. Thus, using such data I refined our expectations regarding synthetic associations 

(Chapter 2).  

 

Another potential source of missing heritability is the X chromosome. In humans, females have 

two copies of the X chromosome, while males have one. It has been suggested that chromosome 

X may play a role in sex-specific disorders and diseases such as many autoimmune disorders 

(Ober, Loisel et al. 2008; Libert, Dejager et al. 2010; Bianchi, Lleo et al. 2011; Quintero, 
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Amador-Patarroyo et al. 2012; Selmi, Brunetta et al. 2012), and it is also implicated in some 

Mendelian disorders (Hamosh, Scott et al. 2002; Hamosh, Scott et al. 2005). Surprisingly, little 

evidence for a role of the X chromosome in complex diseases exists from GWAS. As of 2013, 

less than 50 associations exist on the X chromosome (Hindorff, MacArthur et al. 2013). While 

this may reflect a biological phenomenon (e.g. few mutations on chromosome X are risk variants 

for complex diseases and traits), a review of the literature suggests otherwise. Namely, 67% of 

GWAS during 2011 alone neglected to analyze chromosome X (Wise, Gyi et al. 2013). This 

itself was likely due to differences in statistical tests needed for chromosome X than the 

autosomes (non-sex chromosomes). Given this apparent gap in the field of GWAS and vast 

amount of unanalyzed data, we have developed a statistical package to carry out X-wide 

association analysis (XWAS) and further applied it to a number of autoimmune disorders 

(Chapter 3). 

 

In addition to cracking the case of missing heritability, the plain vanilla model of GWAS was 

also extended to explore the genetic overlap between phenotypes. As more GWAS were 

published, the overlapping associations between phenotypes became apparent, many of which 

supported known comorbidities and pleiotropies (Sirota, Schaub et al. 2009; Cotsapas, Voight et 

al. 2011; Sivakumaran, Agakov et al. 2011; Solovieff, Cotsapas et al. 2013). For example, type-1 

diabetes and rheumatoid arthritis, two diseases with known comorbidity (Somers, Thomas et al. 

2009), share 12 associations (Hindorff, MacArthur et al. 2013). Thus as increasing evidence 

came to light regarding the genetic overlap between phenotypes, many have extended GWAS to 

be carried out on more than one phenotype (Klei, Luca et al. 2008; Hartley, Monti et al. 2012; 

Andreassen, Thompson et al. 2013; Solovieff, Cotsapas et al. 2013; Andreassen, Harbo et al. 
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2014). Various methods exist –some aim to identify shared genetic loci, while others aim to 

identify the pairs or sets of diseases that share pathogenesis. Here, I have developed a principal 

component based method that elucidates sets of diseases sharing genetic pathogenesis and 

highlights pathways that may be enriched for genes underlying shared pathogenesis. I have 

further applied this method to a number of GWAS datasets spanning autoimmune, neurological, 

psychiatric and other disorders and traits (Chapter 4).  
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Chapter 2: Predicting signatures of “synthetic associations” and 

“natural associations” from empirical patterns of human genetic 
variation  

 
(Chang and Keinan 2012) 

2.1 Introduction 

Recent years have seen a plethora of Genome-wide association studies (GWAS) finding 

thousands of common markers that are associated with hundreds of diseases and other traits. 

GWAS were initially founded on the Common Disease-Common Variant hypothesis (Reich and 

Lander 2001; Pritchard and Cox 2002; Iles 2008), which predicted that common complex 

diseases are most likely caused by a few common variants. As a consequence, the design of most 

GWAS consisted of genotyping common tag single nucleotide polymorphisms (SNPs) and 

comparing their allele frequencies between cases and controls. Some limitations of this design 

have been the topic of much recent discussion, with the gap between association and causality 

and the relatively small portion of heritable variation explained by associated markers drawing 

the most concern (Maher 2008; Frazer, Murray et al. 2009; Manolio, Collins et al. 2009; Eichler, 

Flint et al. 2010). Several hypotheses aiming to explain the missing heritability have been 

proposed, including the roles of structural variants, gene-gene interactions, gene-environment 

interactions, epigenetics, and complex inheritance (Maher 2008; Frazer, Murray et al. 2009; 

Manolio, Collins et al. 2009; Eichler, Flint et al. 2010). In addition, rare variants of relatively 

high penetrance contributing to disease risk (Pritchard 2001; Bodmer and Bonilla 2008) has also 

been suggested as a source of missing heritability since rare variants have not been directly 

observed in most GWAS, and they might be differently tagged by common markers (McCarthy, 

Abecasis et al. 2008; Cirulli and Goldstein 2010; Wang, Dickson et al. 2010).  
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Given this renewed interest in such variants, an investigation into their effect on GWAS 

association signals is warranted. A recent simulation-based study showed that rare causal 

variants can often create “synthetic associations,” namely significant associations of common 

markers induced by the combined effect of one or more rare causal variants (Dickson, Wang et 

al. 2010). Dickson et al. further showed that a synthetically associated common marker could be 

substantially further away than expected had the underlying causal variant been common, and 

that synthetic associations are expected to be on average of lower minor allele frequency (MAF) 

than associations due to underlying common causal variants (Dickson, Wang et al. 2010). These 

predictions may partially explain why resequencing fine-mapping efforts, which are based on 

patterns of linkage disequilibrium (LD) of common variants, have often been unsuccessful in 

uncovering causal variants (McCarthy, Abecasis et al. 2008; McCarthy and Hirschhorn 2008; 

Dickson, Wang et al. 2010). While the development of new methods and study designs for 

associating rare causal variants is underway (Madsen and Browning 2009; Bansal, Libiger et al. 

2010; Cirulli and Goldstein 2010; Han and Pan 2010; Hoffmann, Marini et al. 2010; Longmate, 

Larson et al. 2010; Oksenberg and Baranzini 2010; Price, Kryukov et al. 2010; Rosenberg, 

Huang et al. 2010; Takeuchi, Kobayashi et al. 2011; Wu, Lee et al. 2011), the predictions of 

Dickson et al. are influencing analyses of such studies, as well as the interpretation of traditional, 

genotyping-based GWAS (e.g. (Fellay, Thompson et al. 2010; Shatunov, Mok et al. 2010)).  

 

A few instances of rare causal variants have already been well established (Cohen, Boerwinkle et 

al. 2006; Romeo, Pennacchio et al. 2007; Kathiresan, Willer et al. 2009), including the recently 

discovered, potentially rare causal variants in NOD2 that contribute to Crohn’s disease risk 
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(Hugot, Chamaillard et al. 2001; Ogura, Bonen et al. 2001; Bonen and Cho 2003; !The Wellcome 

Trust Case Control Consortium 2007). In this example, since an associated common marker in 

the same gene is in LD with at least two of the rare variants, it is possible that they contribute to 

the marker's association signal ( !The Wellcome Trust Case Control Consortium 2007), thus 

inducing a synthetic association. As only a few examples of rare causal variants contributing to 

complex disease are well established, the jury is still out on their prevalence and on how often 

they lead to synthetic associations, with several recent studies arguing that the phenomenon is 

not necessarily widespread (Orozco, Barrett et al. 2010; Anderson, Soranzo et al. 2011; Wray, 

Purcell et al. 2011). In light of this uncertainty, a detailed investigation of the signatures of 

synthetic associations and their implications is crucial for interpreting the results of genotyping-

based GWAS and for considering the alternative of association studies based on whole-genome 

or whole-exome sequencing. 

 

Two of the key questions with regards to “synthetic associations” are (1) what are the 

implications for the resequencing distance for fine-mapping of significant associations? and (2) 

how different is the MAF of synthetic associations from that of “natural associations” (i.e. 

associations where the underlying causal variants are common)? While these questions have 

been addressed in studies of simulated data (Dickson, Wang et al. 2010; Wray, Purcell et al. 

2011), those simulations did not account for the nature of disease loci and risk variants, nor did 

they account for the specific nature of human genetic variation. In the former, it has been shown 

that the effect size and frequency of the disease variants can alter the power of the test 

(Chapman, Cooper et al. 2003). While, in the latter, the mark left by human evolutionary history 

on patterns of genetic variation can greatly influence the nature of significant association signals, 
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which we address in the present study. For example, when considering samples from European 

populations, which have been the populations of choice of most GWAS, it is crucial to account 

for their recent explosive population growth that has led to an inflation in the proportion of rare 

variants and to an altered haplotype and LD structure, as well as to account for the well-

established effects of the earlier Out-of-Africa event on these genetic patterns (Tishkoff, 

Dietzsch et al. 1996; Dunning, Durocher et al. 2000; Reich, Cargill et al. 2001; Adams and 

Hudson 2004; Marth, Czabarka et al. 2004; Keinan, Mullikin et al. 2007; Keinan, Mullikin et al. 

2009; Keinan and Clark 2012).  

 

Here, we focus on the question of how empirical LD patterns can affect signals of “synthetic 

association” by investigating them in real human population genetic data. Through this, we aim 

to derive a better understanding of synthetic associations and their practical implications. Using 

empirical resequencing data, we randomly assume certain variants as increasing disease risk, 

determine cases and controls accordingly, and conduct an association study using genotyping 

data of the same individuals from arrays that have been employed in most GWAS. To illuminate 

and quantify signatures that are specific to “synthetic associations”, we repeat the process for 

rare and common causal variants and contrast the characteristics of synthetic associations with 

those of natural associations.  

 

We aim to elucidate how far associations are from the underlying causal variants, how their 

frequencies are distributed and, more importantly, how these different signatures alter the design 

of fine-mapping studies. To examine possible heterogeneity in these signatures across the 

genome and across populations with different evolutionary histories, we repeat the analysis for 
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several resequencing loci on different chromosomes and for two populations, one West African 

and one North European. The novelty of this study is in elucidating implications of synthetic 

associations and how they may affect fine-mapping strategies with the use of data that maintains 

LD patterns observed in human populations.   

 

2.2 Results  

 
To empirically investigate the signatures of “synthetic associations”, we needed to examine 

scenarios in human genetic data where the presumed disease risk variants—rare or common—are 

known. Thus, we considered “disease loci” in the ENCODE regions that were sequenced as part 

of HapMap 3 (Altshuler, Gibbs et al. 2010). The advantage of using these resequencing data is 

that we could observe variants of much lower allele frequency that are also free of ascertainment 

biases, which plague genotyping arrays (Clark, Hubisz et al. 2005; Frazer, Ballinger et al. 2007; 

Keinan, Mullikin et al. 2007; Albrechtsen, Nielsen et al. 2010). Equipped with resequencing data 

for over 110 individuals in each population, we studied variants that were of frequency as low as 

0.9% (after exclusion of singletons). We randomly assigned variants within each disease locus as 

being causal and considered individuals carrying any one of these variants to have elevated 

disease risk. We then probabilistically assigned individuals to be either cases or controls based 

on their assigned risk. To mimic the case of many rare variants of large effect size underlying 

synthetic associations, and to contrast it with that of a few common variants of moderately low 

effect sizes underlying natural associations, we investigated three scenarios: (i) 2 common causal 

variants with a genotypic relative risk (GRR) of 1.5, (ii) 5 and (iii) 9 rare causal variants with a 

genotypic relative risk of 3. We verified that our results are not an artifact of the number of 
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causal variants, as illustrated in the following, by comparing with a less realistic scenario of 5 

common causal variants. We also considered a random assignment of cases and controls, which 

provides a null distribution in the absence of any risk alleles. 

 

After obtaining a set of cases and a set of controls, we performed an association study using the 

genotyping array data for the same individuals from HapMap 3 (Altshuler, Gibbs et al. 2010), 

without considering any of the resequencing data in which disease loci have been emulated 

(Materials and Methods). This mimics the conditions and variant-type of actual genotyping-

based GWAS, which typically utilize array data of mainly common markers, most often using 

the same or similar arrays to those we have used for our analyses (Affymetrix Human SNP array 

6.0 and Illumina Human1M). We report results for association testing of all genotyped markers 

located within 3 cM of the resequenced disease locus, after verifying that the vast majority of 

significant associations are within those bounds (Materials and Methods). Similar to the 

requirement of genome-wide significance in a GWAS, we required significance following 

multiple-hypothesis correction for the entire region tested, such that our results can be 

extrapolated to genome-wide studies. We repeated the association testing for 5 different disease 

loci (Table 2.1) and for 50 sets of random assignments of causal variants in each locus. For each 

of these sets, we repeated the association testing in 10 replicates, varying between them only the 

stochastic assignment of cases and controls, for a total of 500 association tests in each locus for 

each of the three scenarios of causal variants. We also considered separately both a European 

(CEU) and a West African (YRI) population. Because of the relatively small sample size of ~110 

individuals, we simulated a larger sample using HAPGEN (Spencer, Su et al. 2009), which 

maintains the genetic variation observed in the original data, including patterns of LD and MAF 
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(Materials and Methods).  

 

All scenarios show significant associations much more often than the false discovery rate of 5% 

(Table 2.S1). To determine whether “synthetic associations” due to underlying rare variants tend 

to be further away than “natural associations” due to underlying common variants, we considered 

for each association test the distance between any association and the causal variant with which 

it is in strongest LD (Materials and Methods). We found that the median distance, over the many 

hundreds of associations found across the 500 tests, is variable across the five loci and—to some 

extent—between the two populations (Figure 2.1). Synthetic associations tend to be much further 

than natural associations, as previously predicted (Dickson, Wang et al. 2010), though for one 

region (disease locus #1) both synthetic and natural associations are in close proximity to the 

causal variants (Figure 2.1). Alternatively, when considering the distance between an association 

and the closest causal variant (rather than the one in strongest LD), the distance of synthetic 

associations is reduced, yet generally remains greater than that of natural associations (Figure 

2.S1). Taken together, these results lead us to ask what factors contribute to this increased 

distance, and, more importantly, does this increased distance impact the choice of fine-mapping 

strategies?   

 

We explored several plausible explanations for this increased distance. Firstly, we ensured that 

the increased distance of rare causal variants is not due to more variants in those scenarios (5 and 

9) than in the scenario of common causal variants (2) by repeating our analysis for cases with 5 

common causal variants. We observed no increase in association distance of resultant natural 

associations (Figure 2.S2), revealing that the increased distance is not due to the increased 
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number of causal variants. Secondly, we investigated the hypothesis that increased marker effect 

size can cause greater association distances as effect size, in addition to the correlation between 

the causal variant and the marker, is proportional to the power of an association test (Chapman, 

Cooper et al. 2003). We investigated this hypothesis by increasing the effect size of common 

causal variants to equal that in the scenario of rare causal variants, though such an effect size 

might be considered unrealistic for common variants. The median association distance of the 

resulting natural associations indeed increases for all regions and populations, but is still 

considerably lower than synthetic associations in most cases (Figure 2.1).  

 

We next tested whether the age of the mutation played a role in increasing association distances 

for synthetic associations. As rare variants are, on average, resultant of more recent mutations 

compared to common variants, recombination would have had less time to operate, thus resulting 

in diminished decay of LD and haplotype structure around rare variants. To test whether the age 

of the mutation plays a part in explaining our results, we partitioned rare causal variants in two 

age groups: i) variants due to relatively more recent mutations and ii) variants due to relatively 

older mutations. Variants with minor alleles present in only a single population fell into the 

former category, while those with minor alleles present in more than one population fell into the 

latter (Materials and Methods). We observed a larger distance between an associated marker and 

the causal variant with which it is in highest LD for more recent mutations than for older 

mutations (Figure 2.2). Out of the 4 disease loci for which enough data was available to perform 

this analysis, 3 in YRI and 2 in CEU exhibit a median distance from older rare causal variants 

that is at least 41% less than the median distance from more recent causal variants. Combined, 

these results suggest that the increased distance of synthetic associations compared to natural 
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associations is partially due to the young age of the mutations that give rise to rare risk alleles, as 

well as due to the higher effect size that is likely to be implicated for rare risk alleles.  

  

The main concern regarding synthetic associations is how its signatures alter the search for the 

actual causal variant(s). Specifically, how far should one sequence around an association in order 

to capture causal variants? We addressed this question using two approaches. We first computed 

for each scenario of causal variants the fraction of tests (out of all tests with any significant 

association) that had at least one associated marker within any given distance of the causal 

variant with which it is in highest LD (Materials and Method). We found that for common causal 

variants, a shorter resequencing distance of 0.01 cM is enough to capture a causal variant in 90% 

of the tests in CEU and 77% for YRI (Figure 2.3). For rare causal variants, combined over all 

disease loci, at least 90% of tests discovered an association within 0.1 cM of a causal variant 

(Figure 2.3). Secondly, we investigated a scenario in which fine-mapping consists of sequencing 

the LD block of associations as observed in the data. Hence, we estimated the probability that an 

associated marker is in the same LD block as any of the causal variants, with the definition of 

LD blocks being based only on markers from the genotyping arrays, which are relatively 

common (Materials and Method). On average, the LD blocks spanned 0.007 cM for CEU and 

0.005 cM for YRI, including the addition of a flanking region of 0.0005 cM to be inclusive. We 

found that in CEU, 94% of associated markers were in the same LD block as a common causal 

variant, while the same was true for only 78% of associated markers in the rare causal variant 

case. A similar trend was observed for YRI, albeit less marked, where 79% of natural 

associations captured a causal variant, but only 73% of synthetic associations captured a causal 

variant.  
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Finally, we explored the minor allele frequency (MAF) of associated markers. Summing over all 

disease loci and populations, <1% of natural associations had MAF below 0.1, while this 

proportion increased to 15-28% for synthetic associations (Figure 2.4). Dissecting the signal 

further by region and population, we found that while some regions display less than 2.4% 

difference between the median MAF of natural associations and synthetic associations (disease 

locus #1 in YRI, #2 in CEU), others display an almost 200% difference (#4 in CEU). Synthetic 

associations also display a larger standard deviation in associated MAF as compared to natural 

associations, with all but one region displaying a difference ranging from 17%- 70% (Table 2.2).  

 

2.3 Discussion 

 
With the use of HapMap 3 resequencing and genotyping data from five different genomic 

regions and two populations (Altshuler, Gibbs et al. 2010), we considered several scenarios of 

disease risk loci, and performed association tests to investigate the signatures of synthetic 

associations and how they alter one’s approach for studying them. We found that the median 

distance of synthetic associations, while greater than that of natural associations, still never 

exceeds 0.15 cM (~150 kb) for any of the 10 locus-by-population settings. Even if we instead 

consider the worst-case scenario of the largest distance between any association and any causal 

variant, its median still never exceeds 0.41 cM (~410 kb). These results are in clear contrast to 

the results of a previous simulation-based study that showed the median of the largest distance to 

be 5 cM (5 Mb) (Dickson, Wang et al. 2010). The difference between the two studies may be 

attributed to differences in the frequencies of rare causal variants. We considered rare alleles of 
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frequency in the range 0.005-0.04 (average across all variants of 0.019), while Dickson et al. 

simulated allele frequencies in the range 0.005-0.02 (Dickson, Wang et al. 2010) (average of 

0.0125 assuming uniform sampling). However, when we restricted to a narrower range of 

frequencies up to 0.02 (average of 0.012), we still observed no locus for which the median 

distance of synthetic association exceeds 0.5cM (‘All variants’ in Figure 2.2). It is unlikely that 

any remaining slight difference in risk allele frequency would result in over an order of 

magnitude difference in association distance.  

 

A more substantial difference between the two studies lies in the data analyzed. Dickson et al. 

conducted simulations of constant effective population size, uniform recombination rate, and 

purely neutral disease loci, with association testing based on a simulated “genotyping array” that 

follows a uniform ascertainment bias (Dickson, Wang et al. 2010). Here, we have analyzed data 

with empirically observed LD patterns, and have based association testing on data from real 

genotyping arrays as designed for GWAS. Put together, while theory posits that a median 

distance of synthetic associations of 5cM is possible, characteristics of empirical data suggests 

that such cases will not be common, and that even under the worst-case scenario the vast 

majority of synthetic associations are at least an order of magnitude closer.  

 

By considering which of the rare polymorphisms are population-specific, and hence likely to be 

more recent, we illustrated that the increase in association distance can partially be due to the age 

of the mutation. This is likely a result of recombination having had less time to break down the 

haplotype surrounding more recent mutations. We also considered common causal variants with 

a higher effect size and showed that an increased effect size can lead to an increased association 
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distance. As rare causal variants contributing to an association signal are likely to have higher 

effect sizes than common causal variants, the increased distance for synthetic associations can 

thus partially be due to the larger effect size. Our findings thus suggest that synthetic associations 

do not necessarily entail further causal variants. While these explanations apply in scenarios 

where single causal variants contribute to an association signal, the increased distance for 

synthetic associations can also result from the contribution of multiple causal variants to a single 

signal of association, thus exceeding the expectations of distance given two variants in LD. 

 

To assess the impact of this increased association distance, we explored the probability that an 

association test had at least one association where the causal variant with which it was in highest 

LD lay within a given distance from the association. We found that for rare causal variants a 

window size of 0.1 cM was sufficient to capture at least one causal variant in such a manner in at 

least 90% of the tests for all regions and populations (Figure 2.3). Alternatively, by following an 

LD block based approach for fine-mapping, 73-79% of associations capture at least one of the 

rare causal variants within the same LD block. This suggests that traditional LD block-based 

fine-mapping also offers a surprisingly high probability of discovering some of the causal 

variants, though there could still be added benefit from sequencing a larger region. Thus, given a 

resequenced region, one is almost as likely to capture a rare causal variant as one is to capture a 

common causal variant. Preliminary analysis suggests that it is difficult to predict the optimal 

region to resequence given a specific disease locus, as no single factor such (i.e. pair-wise LD 

decay) can sufficiently predict this distance (data not shown). Further work is thus necessary in 

order to determine which factors that influence synthetic associations, such as the age of 

mutation, causal variant effect size, haplotype structure and the stochastic coupling of multiple 
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rare variants on the background of a common marker, play a role in a given association signal. 

 

In a further analysis, we found that rare causal variants underlying synthetic associations entail 

that the associated markers will themselves be of lower frequency compared with natural 

associations (Figure 2.4), a result consistent with previous simulation studies (Dickson, Wang et 

al. 2010; Wray, Purcell et al. 2011). When narrowing the number of associations to only the most 

significant, we found that this further reduced the allele frequency of synthetic associations 

(Figure 2.S3). In addition, we found that the frequency of synthetic associations often had a 

larger standard deviation than natural associations (Table 2.2). These results have two 

implications. Firstly, it suggests that synthetic associations as compared to natural associations 

are likely to have underestimated effect sizes of the causal variant due to reduced associated 

allele frequencies (Spencer, Hechter et al. 2011) (especially when analyzing the most significant 

association) and from incomplete LD with the causal variant. Secondly, this suggests that the 

standard deviation of the associated minor allele frequency can offer a way to flag for underlying 

rare causal variants that induce potential synthetic associations; given a larger standard deviation 

of associated frequencies, it would be advised to follow a fine-mapping study design for 

synthetic associations.  

 

With the >1000-fold human population growth in the last hundreds of generations, the amount of 

rare variation is much greater than expected (Coventry, Bull-Otterson et al. 2010; Keinan and 

Clark 2012). This explosive addition of rare variation entails an LD structure that is yet to be 

quantified, but certainly disparate than the LD structure of common variants that have been 

extensively studied. In addition, the earlier founder events as modern humans migrated out of 
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Africa and settled across the globe have been shown to greatly alter patterns of genetic variation 

(Tishkoff, Dietzsch et al. 1996; Dunning, Durocher et al. 2000; Reich, Cargill et al. 2001; 

Ramachandran, Deshpande et al. 2005; Keinan, Mullikin et al. 2007). For this reason we studied 

both a West African population and a population of European ancestry, with differences between 

the two reinforcing the importance of taking demographic history into consideration by studying 

empirical data. Signatures of synthetic and natural associations are shaped by demographic 

history, as well as by different selective pressures. This assertion is supported by the highly 

variable behavior—across genomic regions and across the two populations—of all the signatures 

we observed.  

 

In conclusion, this study delivered a characterization of several signatures of synthetic 

associations and assessed their impact on the search for the causal variant(s) underlying the 

signal. While our study does not participate in the debate on how frequently synthetic 

associations occur, it is relevant in any situation they do. In this study, we illustrated that because 

synthetic associations are likely to be more distant from causal variants, fine-mapping studies 

should look further than when searching for common causal variants, but to a much lesser extent 

than previously suggested. We also propose the larger standard deviation of associated allele 

frequencies as a way to detect potential rare causal variants at play. Additional analysis is 

warranted though, to elucidate the quantitative relationship between genetic architecture, 

demographic history, allele frequency and association signals. Finally, although the debate 

remains open as to the contribution of rare risk alleles to human complex diseases and to the 

ensuing abundance of synthetic associations (Orozco, Barrett et al. 2010; Anderson, Soranzo et 

al. 2011; Goldstein 2011; Wray, Purcell et al. 2011), our results offer new guiding principles for 



 19 

determining a length of a region to fine map, and for considering the alternative of an association 

study based on whole-genome sequencing. 

 

2.4 Materials and Methods  

2.4.1 Data 

We obtained from HapMap 3 (Altshuler, Gibbs et al. 2010) genotyping array data for YRI 

(Yoruba in Ibadan, Nigeria) and CEU (individuals in Utah with Northern and Western European 

ancestry from the Centre d’Etude du Polymorphisme Humain collection) and resequencing data 

of five ENCODE regions, each 100kb in length (Table 2.1), for 115 YRI and 111 CEU 

individuals. We also obtained resequencing data for 60 TSI (Toscani in Italia) samples and 60 

LWK (Luhya in Webuye, Kenya), which we used for the variant age analysis (below). We 

considered each resequencing region as a disease locus from which to select causal variants. 

Using resequencing data facilitates higher concentration of rare variants and is free of the 

ascertainment biases associated with genotyping arrays (Clark, Hubisz et al. 2005; Frazer, 

Ballinger et al. 2007; Keinan, Mullikin et al. 2007; Albrechtsen, Nielsen et al. 2010).  

 

2.4.2 Simulated Data 

 
Due to the low sample size, we employed HAPGEN (Spencer, Su et al. 2009) to simulate 10,000 

individuals for each population –a strategy previously employed to investigate the estimation of 

relative risks (Spencer, Hechter et al. 2011). HAPGEN simulates additional haplotypes by 

treating each new haplotype as a mosaic of already present haplotypes. We refer readers to 

(Spencer, Su et al. 2009) for additional details on HAPGEN.  
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We first phased and imputed missing data with BEAGLE v3.3 (Browning and Browning 2007). 

We then simulated additional data for each resequencing region and the 3 cM-flanking window 

for each region using HAPGEN with a recombination map from the March 2006 human 

reference sequence (NCBI Build 36, hg18) and a null mutation rate as input parameters. We 

ensured that the LD patterns of the original data (for rare and common variants) were maintained 

(Figure 2.S4). We also ensured that allele frequencies in the simulated data do not change 

drastically from the original data as no variants were observed that were initially of very low 

frequency and attained a much higher frequency and vice versa in the simulated dataset (Figure 

2.S5-2.S6).  

 

Association tests were performed using the simulated data from the HapMap 3 genotyping array 

data, excluding any causal variants that happen to be in the genotyping array data. We report 

results for an association study for SNPs located in the disease locus and in flanking regions of 3 

cM on each side (from which no causal variants are chosen), as almost no associations were 

observed to fall beyond that distance (data not shown). In our study, rare causal variants have 

risk allele frequencies in the simulated data between 0.005 and 0.04 (we note that a portion of 

this range is defined as “low frequency”, rather than rare, by some studies), and common causal 

variants have risk allele frequencies in the simulated data between 0.1 and 0.3. In testing for 

association, we considered all SNPs of all allele frequencies from the genotyping data. All 

coordinates and genetic distances in this paper are according to the March 2006 human reference 

sequence (NCBI Build 36, hg18). 
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2.4.3 Disease model & association study design 

 
We considered each individual as a case or a control with a probability proportional to the 

individual’s assigned risk, which is elevated if the individual has one or more risk alleles. We set 

the baseline risk as 0.15 and the genotypic relative risk to 1.5 for the scenario of common causal 

variants. We also explored an unrealistic genotypic relative risk of 3 for common causal variants 

to investigate the influence of effect size on association distance. For rare causal variants, we 

assigned a higher genotypic relative risk of 3. While the use of a fixed GRR for variants of 

differing allele frequencies results in differing portions of variance explained by each variant, it 

is a more realistic disease model. By fixing variance explained, rarer variants would tend to have 

higher, and perhaps somewhat unrealistic, GRRs. Because we have fixed GRR and allowed the 

proportion of variance explained to vary, an association test will have more power in detecting 

variants of higher allele frequency given a fixed GRR. 

 

For the common causal variants scenario, we randomly assigned 2 SNPs from the resequencing 

data as causal, while we assigned either 5 or 9 for the rare causal variants scenario. To ensure 

that the number of causal variants did not affect our results, we also studied a scenario with 5 

common causal variants in loci where this was feasible. For each scenario of a certain type and 

number of causal variants, 50 sets of causal variants were randomly selected, with replacement 

between groups. Each of these 50 sets allows for a possibly different risk for each individual. For 

each of these 50 sets, we repeated 10 replicates of randomly assigning cases and controls 

according to the same individual assigned risk.  

 

In each of the 500 association tests (50 different variant groups and their 10 phenotypic 
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replicates), we randomly chose 1000 cases and 1000 controls according to the individual’s 

assigned risk. This ensures that the same number of cases and controls were shared across all 

analyses, thereby having comparable statistical power. For each scenario of type and number of 

causal variants, we pooled together the results from these 500 tests for the statistics and figures 

presented in this study. Similarly, we generated 500 tests for each disease locus with randomly 

assigned case/control status to serve as a control. 

 

All association tests were done with PLINK's logistic regression function (Purcell, Neale et al. 

2007). Significance thresholds were determined with a region-wide Bonferroni correction. For 

the control scenario of random assignment of cases and controls, 2.12% of the association tests 

showed a significant association as compared with the expectation of 5%. 

 

2.4.4 Distance analysis 

 

We determined genetic distances based on the Oxford genetic map based on HapMap2 data 

(Myers, Bottolo et al. 2005; Frazer, Ballinger et al. 2007). For SNPs missing from HapMap2, we 

estimated the position as the linear interpolation of the genetic positions of the two closest SNPs. 

The association distances were determined by computing the genetic distance between an 

associated SNP and the causal variant with which it was in highest LD, measured in r2. Pairwise 

r2 values were calculated in pLINK (Purcell, Neale et al. 2007). 

 

2.4.5 Age of mutation analysis 
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To partition rare variants based on the age of the mutation, we first narrowed the range of the 

risk allele frequency in the simulated data to 0.005 and 0.02 in order to ensure a roughly equal 

partition into the two age groups. We discarded disease locus #1 from this analysis because it 

had too few rare variants to allow their portioning into two groups (Table 2.1). Rare variants in 

the 111 CEU individuals were defined to be relatively more recent if only the major allele was 

observed in the resequencing of 115 YRI individuals and 60 TSI individuals in the original data; 

the variant was defined as relatively older otherwise. We repeated the above analyses for each of 

these groups separately, such that in each association testing either all causal variants are older or 

all are more recent. We repeated the same analysis in YRI with CEU and 60 LWK as out groups. 

We duly note that polymorphisms absent from the limited number of samples may not be 

monomorphic in the population as a whole, hence not all mutations leading to relatively older 

variants precede those leading to variants in the relatively more recent class. Yet, this represents 

only a small fraction of variants and variants in the relatively older class are expected to be older 

on average than those belonging to the more recent class. It is also important to note that false 

positive variant calls are added to the more recent group despite the erroneous call. This scenario 

is highly unlikely in our analyses due to the stringent quality control measures taken in HapMap 

3 [45] and the exclusion of singletons in our study. For each of these two scenarios of causal 

variants, we similarly chose 50 sets of causal variant groups with 10 phenotypic replicates each 

and obtained maximal distances as above. For comparison, we repeated the analysis for random 

rare causal variants in the narrowed range of frequency of 0.005-0.02 used here, irrespective of 

mutation age. 
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2.4.6 Resequencing distance analysis 

 
For each association test we explored whether a causal variant with which an association is in 

highest LD (measured in r2) is within a given genetic distance from the association. For each 

simulated scenario and resequencing window size ranging from 0 cM to 10 cM, we calculated 

the proportion of tests that have at least one such association.  

 

For the second analysis, we observed over all significant associations if any causal variant was in 

the same LD block as an association. LD blocks were estimated in pLINK with the genotyping 

data (Purcell, Neale et al. 2007) and 0.0005 cM was added to the start and end coordinates in 

order to compensate for the uncertainty in these estimates.  
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2.5  Figures 

 
 
Figure 2.1. Distance of synthetic and natural associations from the causal variant it is in 
greatest LD with.  
Box plot of the distance between any associated SNP and causal variant it is in highest LD with, 
measured in r2, for (a) YRI and (b) CEU in four scenarios: 2 common causal variants with a 
GRR of 1.5 (dark blue), 2 common causal variants with an unrealistic GRR of 3 (light blue), 5 
and 9 rare causal variants with a GRR of 3 (red and gold respectively). Distances vary greatly 
between the different disease loci (x-axis) as well as between populations, but in all regions the 
median (line within each box) is larger for rare causal variants than for common causal variants 
of lower effect size. Increasing the effect size can result in higher association distance as is 
observed most notably in region #5.  
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Figure 2.2: Distance of causal variant from “synthetic associations” partitioned by the age 
of the mutation.  
Box plot similar to Figure 2.1, while separating rare variants in CEU and YRI into a more recent 
and an older class (Materials and Methods). Variants due to more recent mutations result in 
much increased distance between the associated SNP and the causal variant with highest LD in 3 
regions in YRI and 2 regions in CEU. Results are presented for only 4 of the disease loci due to 
lack of relevant data in locus #1. Note that the risk allele frequency range for rare variants is 
narrower compared to Figure 2.2 (Materials and Methods) and that the y-axis scale is different 
between the two populations.  
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Figure 2.3: Resequence window size necessary to capture at least one causal variant.  
The figure presents for a given window size, the fraction of tests combined over all regions with 
significant associations where at least one association is within the given distance from the 
causal variant it is in highest LD with. The colors correspond to the same scenarios as in Figure 
2.1. Resequencing need not extend much further than in the common causal variant case, as a 
window of size of 0.1 cM has at least one association tagging a rare causal variant in >90% of 
the tests between both populations and all regions.  
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Figure 2.4. Minor allele frequency of associated variants.  
Box plot of the minor allele frequency for all associated variants in the different scenarios. 
Although synthetic associations have median MAF lower than that of natural associations, the 
range of MAF for synthetic associations varies across the different loci and populations. The 
median MAF is similar between the natural and synthetic associations for a few loci (disease 
locus #2 in CEU and #1 in YRI).  
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Figure 2.S1: Distance between association and closest causal variant.  
The figure mirrors Figure 2.1, but plots instead the distance between an association and the 
closest causal variant. The distance of synthetic associations is reduced, yet generally remains 
greater than that of natural associations. 
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Figure 2.S2: Distance of common causal variant is not sensitive to the number of causal  
variants.  
The figure mirrors Figure 2.1, but to the inclusion of results for 5 common causal variants 
(“Common (5)”) in loci where this was feasible (all for CEU). All other results are reproduced 
from Figure 2.1. The difference in distance between common and rare causal variants remains 
even with 5 common causal variants.  
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Figure 2.S3: Minor allele frequency of most significant association.  
The figure mirrors Figure 2.4, but displays the minor allele frequency of only the most 
significant association across each test. The median frequency of the most significant association 
is reduced for synthetic associations. 
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Figure 2.S4: Empirical LD patterns are preserved in HAPGEN simulations.  
Plotted above is data for region 1 in CEU. For each 0.01 cM bin, the figure presents the mean 
pair-wise LD (measured in r2) between variants from the resequencing and genotyping data for a) 
common markers (minor allele frequency > 0.04) or b) common and rare markers (minor allele 
frequency < 0.04). We observe that HapMap 3 LD patterns (blue) are largely preserved in 
HAPGEN simulations (green). Missing points reflect lack of data for certain distance bins. 
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Figure 2.S5: Minor allele frequency in HapMap3 compared to minor allele frequency in 
HAPGEN simulations.  
Plotted are minor allele frequencies in HapMap 3 (x-axis) compared to minor allele frequencies 
in HAPGEN simulations (y-axis) for a) YRI and b) CEU. Each row represents a separate region. 
No drastic departures from the original minor allele frequencies are observed in the simulated 
data.   
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Figure 2.S6: Minor allele frequency in HapMap3 compared to minor allele frequency in 
HAPGEN simulations for frequencies below 0.08.  
Same plot as in Figure 2.S5 showing only variants with frequencies below 0.08. As in Figure 
2.S5, no drastic departures from the original minor allele frequencies are observed in the 
simulated data 
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2.6. Tables 

 
Table 2.1: List of ENCODE regions used as disease loci [45]. 

Locus # 
ENCODE 

 name Chromosome Location (bp) 

# Common  
variants*  

(YRI/CEU) 

# Rare  
variants* 

(YRI/CEU) 

1 ENr221 5 
56071684 
-56170943 57/36 59/20 

2 ENm010 7 
27124056 
-27223436 58/40 117/57 

3 ENr321 8 
119082399 
-119182123 72/20 108/45 

4 ENr123 12 
38827200 
-38925373 43/62 72/50 

5 ENr213 18 
23920590 
-24019175 60/54 108/41 

*Variants with MAF of either between 0.1 - 0.3 or between 0.005 – 0.04 after resampling of haplotypes using 
HAPGEN.   
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Table 2.2: Standard deviation of minor allele frequency for associated variants. 
Locus # Common (2) Rare (5) Rare (9) 

YRI    
1 0.086 0.134 0.131 
2 0.117 0.154 0.150 
3 0.114 0.131 0.124 
4 0.124 0.151 0.145 
5 0.113 0.121 0.126 

CEU    
1 0.084 0.113 0.116 
2 0.056 0.118 0.121 
3 0.064 0.152 0.143 
4 0.121 0.121 0.126 
5 0.073 0.133 0.136 
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Table 2.S1: Percentage of tests with significant associations.  
 

  YRI 

Locus # 
Common 
(2,1.5)^ Common(2,3)^ Rare (5)^  Rare (9)^ Random* 

1 31.4 100 93.8 97.2 2 
2 19.8 99.8 98 97.6 2.8 
3 38 100 95.8 99.6 3.2 
4 31.8 99.8 86.4 94.4 2 
5 28.6 100 94 97.2 1.8 

Mean 29.92 99.92 93.6 97.2 2.36 
CEU 

Locus # 
Common 
(2,1.5)^ Common(2,3)^ Rare (5)^  Rare (9)^ Random* 

1 67.6 100 91.6 95.6 2.2 
2 58 100 95 99.6 2.4 
3 37.6 100 80 84.6 1.2 
4 54.2 100 89.6 96.8 2.2 
5 36 100 87.6 97 1.4 

Mean 50.68 100 88.76 94.72 1.88 
 
 
^ Corresponds to the notation of Figure 2.1.  
*  Corresponds to random phenotypic assignment.  
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Chapter 3: Accounting for eXentricities: Analysis of the X chromosome in 
GWAS reveals X-linked genes implicated in autoimmune diseases 

 
(Chang, Gao et al. 2014) 

3.1 Introduction 

Over the past decade, genome-wide association studies (GWAS) have contributed to our 

understanding of the genetic basis of complex human disease. The role of the X chromosome (X) 

in such diseases remains largely unknown because the vast majority of GWAS have omitted or 

incorrectly analyzed X-linked data (Wise, Gyi et al. 2013). As a consequence, though X 

constitutes 5% of the nuclear genome and underlies almost 10% of Mendelian disorders 

(Hamosh, Scott et al. 2002; Hamosh, Scott et al. 2005; Amberger, Bocchini et al. 2009; 

Amberger, Bocchini et al. 2011), it harbors only 15 out of the 2,800 (0.5%) total significant 

associations for nearly 300 traits (Green and Guyer 2011; Hindorff, MacArthur et al. 2013; Wise, 

Gyi et al. 2013). Even this 0.5% of associations contains a higher proportion of false positives 

than autosomal associations, as indicated by the occurrence of fewer X-linked than autosomal 

associations in putatively functional loci (<40%) (Hindorff, Sethupathy et al. 2009; Green and 

Guyer 2011). This phenomenon is likely due to the application of tools designed for the 

autosomes to X. We hypothesize that X explains a portion of “missing heritability” (Maher 2008; 

Manolio, Collins et al. 2009), especially for the many complex human diseases that exhibit 

gender disparity in risk, age of onset, or symptoms. This hypothesis is motivated by the 

importance of X in sexually dimorphic traits in both model organisms and human Mendelian 

disorders. The complex human diseases most extensively studied in GWAS are highly sexually 

dimorphic, including autoimmune diseases (Schuurs and Verheul 1990; Beeson 1994; Chataway, 

Feakes et al. 1998; Whitacre, Reingold et al. 1999; Bellamy, Beyers et al. 2000; Whitacre 2001; 
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Lockshin 2006; Fish 2008; Sawalha, Webb et al. 2008; Shen, Fu et al. 2010; Selmi, Brunetta et 

al. 2012), neurological and psychiatric disorders (Harper 1984; Gater, Tansella et al. 1998; 

Andersen, Launer et al. 1999; Lai, Kammann et al. 1999; Goldstein, Seidman et al. 2001; 

Aleman, Kahn et al. 2003; Wooten, Currie et al. 2004; Pike, Carroll et al. 2009; Jazin and Cahill 

2010; Baron-Cohen, Lombardo et al. 2011), cardiovascular disease (Lerner and Kannel 1986; 

Anderson, Odell et al. 1991; Mendelsohn and Karas 2005; Choi and McLaughlin 2007; 

Teslovich, Musunuru et al. 2010), and cancer (Muscat, Richie et al. 1996; Zang and Wynder 

1996; Matanoski, Tao et al. 2006; Naugler, Sakurai et al. 2007). Several mechanisms underlying 

sexual dimorphism have been suggested (Nelson and Ostensen 1997; Confavreux, Hutchinson et 

al. 1998; Whitacre 2001; Ellegren and Parsch 2007; Patsopoulos, Tatsioni et al. 2007; Fish 2008; 

Ober, Loisel et al. 2008), including the contribution of the X chromosome (Carrel and Willard 

2005; Ropers and Hamel 2005; Ross, Grafham et al. 2005; Ober, Loisel et al. 2008; Tarpey, 

Smith et al. 2009).  Variants on chromosome X may also be more likely to show sexually 

dimorphic traits as compared to the autosomes. Moreover, characterizing the role of X in 

complex diseases can provide insight into etiological differences between males and females, as 

well as a unique biological perspective on disease etiology because X carries a set of genes with 

unique functions (Saifi and Chandra 1999; Kemkemer, Kohn et al. 2009).  

 

X-specific problems that should be taken into consideration include, but are not limited to: 1) 

correlation between X-linked genotype calling error rate and the sex composition of a plate, 

which can lead to plate effects that correlate with sex and, hence, with any sexually dimorphic 

trait; 2) X-linked variants being more likely to exhibit different effects between males and 

females (Dobyns, Filauro et al. 2004), suggesting enhanced power of sex-stratified statistical 
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tests; 3) power of the analyses being affected by the smaller allelic sample size, the reduced 

diversity on X and other unique population genetic patterns (Keinan, Mullikin et al. 2007; 

Hammer, Mendez et al. 2008; Keinan, Mullikin et al. 2009; Hammer, Woerner et al. 2010; 

Keinan and Reich 2010; Lohmueller, Degenhardt et al. 2010; Gottipati, Arbiza et al. 2011); 4) 

quality control (QC) criteria that account for sex information to prevent filtering the entirety or a 

large fraction of the chromosome (Wise, Gyi et al. 2013); 5) sex-specific population structure 

leading to differential effects of population stratification (which could inflate the type I error rate 

(Patterson, Price et al. 2006; Price, Patterson et al. 2006; Novembre, Johnson et al. 2008)) 

between X and the autosomes; and 6) application of association tests designed for the autosomes, 

which leads to statistical inaccuracy.  

 

In this study, we take into account several of the above problems and apply X-aware strategies to 

investigate the role of X in complex diseases. Recent advancements of association test statistics 

for X have been made (Purcell, Neale et al. 2007; Zheng, Joo et al. 2007; Clayton 2008; Clayton 

2009; Thornton, Zhang et al. 2012; Tukiainen, Pirinen et al. 2014), with one study discovering 

new loci associated to height and fasting insulin (Tukiainen, Pirinen et al. 2014). These 

improvements account for some of the aforementioned problems, but are not extensively applied, 

and have never been applied in the context of gene-based tests of association. Here, we 

demonstrate that unutilized X data from hundreds of studies can be re-analyzed to uncover X-

linked disease etiology. We introduce methods and software for carrying out XWAS, which 

include X-specific QC, imputation, association methods, tests of sex-specific effects, and gene-

based tests (Materials and Methods). Though variants displaying dominance are readily exposed 

in males, overall hemizygosity in males reduces the effective sample size for X. We thus 
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increase statistical power by focusing on whole genes as functional units and combining tests of 

individual SNPs into gene-based tests (Neale and Sham 2004; Jorgenson and Witte 2006; 

Beyene, Tritchler et al. 2009; Liu, McRae et al. 2010; Li, Gui et al. 2011). This approach also 

surmounts issues of replication across studies with different sets of SNPs that arise from 

differing genotyping arrays and quality control filtering (Neale and Sham 2004; Beyene, 

Tritchler et al. 2009).  

 

A promising case study for investigating the role of X in disease risk involves autoimmune 

diseases (AID) and other diseases with a potential autoimmune component. Most AID are 

sexually dimorphic with many diseases more prevalent in one sex than the other (most in 

females) (Whitacre, Reingold et al. 1999; Whitacre 2001; Lockshin 2006; Gleicher and Barad 

2007).  Furthermore, they often show sex-specific symptoms, age of onset, and progression 

(Schuurs and Verheul 1990; Beeson 1994; Chataway, Feakes et al. 1998; Whitacre, Reingold et 

al. 1999; Bellamy, Beyers et al. 2000; Whitacre 2001; Lockshin 2006; Fish 2008; Sawalha, 

Webb et al. 2008; Shen, Fu et al. 2010; Selmi, Brunetta et al. 2012). While pregnancy (Nelson 

and Ostensen 1997; Confavreux, Hutchinson et al. 1998; Whitacre 2001) and other 

environmental factors (Tiniakou, Costenbader et al. 2013), as well as sex hormones (Nelson and 

Ostensen 1997; Confavreux, Hutchinson et al. 1998; Whitacre 2001; Fish 2008),  can contribute 

to sexually dimorphic characteristics, a role for X-linked genes has also been suggested (Ober, 

Loisel et al. 2008; Libert, Dejager et al. 2010; Bianchi, Lleo et al. 2011; Quintero, Amador-

Patarroyo et al. 2012; Selmi, Brunetta et al. 2012), with many having immune-related functions. 

Though AID have been extensively studied by GWAS, the majority of previously discovered 

loci have a small effect size and the combined effect of all associated loci only explains a 
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fraction of heritable variation in disease susceptibility (Tysk, Lindberg et al. 1988; Sofaer 1993; 

Jostins, Ripke et al. 2012). Despite the dozens of GWAS in AID, few have studied the 

contribution of X and, to date, little evidence of its role in AD has been provided (Green and 

Guyer 2011; Hindorff, MacArthur et al. 2013; Wise, Gyi et al. 2013), though X-linked loci 

overall may contribute to the heritability for some complex diseases (Yang, Manolio et al. 2011). 

Hence, we applied the X-specific analytical methods and software developed as part of this study 

to conduct an extensive XWAS of a number of AID and other diseases with a potential 

autoimmune component (DPACs) (Pagani, Gonzalez et al. 2011; Itariu and Stulnig 2014), for a 

total of 16 different datasets (Table 3.1).  

 

Our findings illuminate the potential importance of X in autoimmune disease, show that X-based 

analysis can be used to fruitfully mine existing datasets, and provide the tools and incentive for 

others to do the same. Additional XWAS can further elucidate the role of sex chromosomes in 

disease etiology, explore the role of sexual dimorphism and gender disparity in disease, and 

introduce gender-specific diagnosis and gender-specific treatment of complex disease. 
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3.2 Results and Discussion 

3.2.1 Associations of individual X-linked genes with autoimmune disease risk 

We assembled 16 datasets of AID and DPACs for analysis (Table 3.1). For each dataset, we first 

carried out QC that we developed expressly for the X chromosome (Materials and Methods), and 

excluded the pseudoautosomal regions (PARs). We then imputed SNPs across X based on 

whole-genome and whole-exome haplotype data from the 1000 Genomes Project (Materials and 

Methods). Of the 16 datasets, none of the original GWAS published had imputed variants in an 

X-specific manner, and only the Wellcome Trust Case Control Consortium 1 (WT1) datasets 

were analyzed with an X-aware strategy ( !The Wellcome Trust Case Control Consortium 2007). 

We applied three statistical methods to measure disease association for each SNP in each of the 

16 datasets. The 16 datasets can be considered as independent as we ensured none had 

overlapping data (Materials and Methods). First, we utilized logistic regression as commonly 

applied in GWAS, where X-inactivation is accounted for by considering hemizygous males as 

equivalent to female homozygotes (FM02 test) (Materials and Methods). Second, we employed 

two similar sex-stratified (i.e. separately for each sex) regression analyses and combined them 

into a single test of association using Fisher’s method (FMF.comb test) or Stouffer’s method 

(FMS.comb). FMF.comb accommodates the possibility of differential effect size and direction 

between males and females and is not affected by the allele coding in males, while FMS.comb takes 

in account both the sample size of males versus females and the direction of effect (Materials and 

Methods). We employed EIGENSOFT (Patterson, Price et al. 2006) to remove individuals of 

non-European descent and correct for potential population stratification. Following this 

correction, QQ (quantile-quantile) plots of the two tests across all SNPs in each dataset revealed 

no systematic bias though a couple studies display reduced power than expected (Supplementary 
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Fig. 3.S1).  

 

We combined all SNP-level test statistics spanning individual genes to obtain gene-level test 

statistics (gene-based tests) in each of the 16 datasets for the FM02, FMF.comb and FMS.comb tests. 

We considered genes by unique transcripts and—to also consider cis-regulatory elements—

included a flanking 15 kilobase (kb) window on each side of the transcribed region. This test 

aggregates signals across all SNPs in each of these genes, while accounting for the structure of 

linkage disequilibrium (LD) within each gene (Liu, McRae et al. 2010). We combined SNP 

statistics with the truncated tail strength (Jiang, Zhang et al. 2011) and truncated product 

(Zaykin, Zhivotovsky et al. 2002) methods. Rather than consider only the single SNP with the 

strongest signal, these methods combine signals from the most significant SNPs, thus improving 

statistical power. This is particularly true for cases where a gene contains multiple risk alleles or 

where the causal SNP cannot itself be tested (Materials and Methods) (Huang, Chanda et al. 

2011; Ma, Clark et al. 2013). Detailed results based on the SNP-level tests before combination 

into gene-based tests, are provided in Supplementary Text, Supplementary Figure 3.S2, and 

Supplementary Table 3.S1. We considered for replication genes with significance of P < 10-3 as 

no gene was significant based upon a strict Bonferroni correction for the number of genes tested 

in each dataset (Table 3.1). We first attempted replication in a different dataset of the same or 

related disease, if such a dataset was available for our analysis (Table 3.1). Otherwise, motivated 

by the shared pathogenicity of different AID (Sirota, Schaub et al. 2009; Cotsapas, Voight et al. 

2011; Sivakumaran, Agakov et al. 2011) (which is also supported by our following results), we 

attempted replication in all other datasets considered herein (Table 3.1).  
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We detected 54 unique genes that passed the initial criteria for discovery (P < 10-3) in one or 

more of the 16 datasets, using the three types of tests, FM02, FMF.comb and FMS.comb. Of these, 38 

genes passed the threshold in the FM02 test, 22 in FMF.comb test and 34 in the FMS.comb test 

(Supplementary Tables S2-S3), with overlap between the three sets. Of the 54 genes, we 

successfully replicated 5 in a different dataset of the same or related disease (Fig. 3.1a-c, 

Supplementary Table 3.S4) following a Bonferroni correction for the number of genes we 

attempted to replicate within each dataset (Supplementary Tables 3.S2-3.S3). These include 3 

genes (FOXP3, PPP1R3F and GAGE10) in LD for the FM02 test and 3 genes (PPP1R3F, 

GAGE12H and GAGE10) in LD for the FMS.comb test that are associated with vitiligo, a common 

autoimmune disorder that is manifested in patches of depigmented skin due to abnormal 

destruction of melanocytes. All genes still successfully replicated when we repeated the gene-

based analysis without the flanking region of 15 kb around each gene, though it remains unclear 

whether these represent independent signals or are still in LD with the same, potentially causal, 

variant(s). FOXP3 has also been previously associated to vitiligo in a candidate gene approach 

(Birlea, Jin et al. 2011) and may be of particular interest as it is involved with leukocyte 

homeostasis, which includes negative regulation of T-cell-mediated immunity and regulation of 

leukocyte proliferation (Fontenot, Gavin et al. 2003; Tang and Bluestone 2008). Defects in the 

gene are also a known cause for an X-linked Mendelian autoimmunity-immunodeficiency 

syndrome (IPEX - immunodysregulation polyendocrinopathy enteropathy X-linked syndrome) 

(Bennett, Christie et al. 2001).  

 

In CD, an inflammatory bowel disorder with inflammation in the ileum and some regions of the 

colon, we discovered an association of the gene ARHGEF6 and further replicated the signal in 
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the Wellcome Trust Case Control Consortium 2 ulcerative colitis (WT2 UC) dataset. ARHGEF6 

binds to a major surface protein of H. pylori (Baek, Lim et al. 2007), which is a gastric bacterium 

that may play a role in inflammatory bowel diseases (Luther, Dave et al. 2010; Jin, Chen et al. 

2013).  

 

Another gene, CENPI, has been independently associated with three diseases (amyotrophic 

lateral sclerosis (ALS), celiac disease, and vitiligo) (Supplementary Table 3.S5), with a 

combined p-value of 2.13x10-7 (Fisher’s method). The association of CENPI when combining 

across all 16 datasets is still significant following a conservative Bonferroni correction for the 

number of genes we tested (P = 2.71x10-5). CENPI is a member of a protein complex that is 

recruited to the centromeres to participate in the assembly of kinetochore proteins, as well as 

generate spindle assembly checkpoint signals required for cell progression through mitosis 

(Matson, Demirel et al. 2012). A previous study demonstrated that it is targeted by the immune 

system in some scleroderma patients (Hamdouch, Rodriguez et al. 2011). Additionally, other 

genes in the same family have been previously associated with immune-related diseases, such as 

multiple sclerosis (CENPC1) (Baranzini, Wang et al. 2009) and ALS (CENPV) (Ahmeti, Ajroud-

Driss et al. 2013).  These findings combined, suggest a possible general role for CENPI in 

autoimmunity. Motivated by this association of CENPI in multiple AID and DPACs, as well as 

previous evidence of shared pathogenicity across different AID87,88, we sought to replicate genes 

in diseases different than the ones in which they had been discovered. We successfully replicated 

17 additional genes in this fashion, which we present here as suggestive evidence of these genes 

having a role in autoimmunity or immune-response (Fig. 3.1a-c, Supplementary Table 3.S6).  
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3.2.2 The sex-specific nature of X-linked genes implicated in autoimmune disease risk 

 If X underlies part of the sexual dimorphism in complex diseases, then we would expect some 

genes to have significantly different effect sizes between males and females. We tested this 

expectation across all SNPs and datasets (Materials and Methods). QQ-plots revealed no 

systematic inflation (Supplementary Fig. 3.S3). As with our analysis above, we combined these 

p-values to obtain gene-based tests of sex-differentiated effect size. This aims to capture a 

scenario whereby SNPs within the tested gene display different effects in males and females, 

with no constraint on a consistent direction of effect differences. We discovered and replicated 

C1GALT1C1 as exhibiting sex-differentiated effect size in risk of IBD (Fig. 3.1d, Supplementary 

Table 3.S4; Supplementary Table 3.S7). C1GALT1C1 (also known as Cosmc) is necessary for 

the synthesis of many O-glycan proteins (Ju and Cummings 2005), which are components of 

several antigents. Defects of C1GALT1C1 may cause Tn Syndrome (a hematological disorder) 

(Thurnher, Clausen et al. 1992). When considering replication in datasets of other diseases, we 

found that both CENPI and MCF2, which we previously associated to risk of AID in our 

analyses above, also showed significant sex-differentiated effect sizes (Fig. 3.1d, Supplementary 

Table 3.S6). 

 

We further found that some X-linked genes associated to AID exhibit differences in expression 

between males and females. Using a comprehensive dataset of whole blood gene expression 

from 881 individuals (409 males and 472 females; Materials and Methods), we assayed gene 

expression in males and females separately. Overall, X-linked genes that we analyzed exhibit a 

2.55-fold enrichment for differential expression between males and females as compared to all 

genes in the human genome (P=6.29x10-8), with XIST, the gene responsible for X-inactivation in 
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females, displaying the most significant difference between males and females among all X-

linked genes (P<<10-16). Within the associated genes, four have significant sex-differential gene 

expression: ITM2A (4.54x10-9), EFHC2 (4.86x10-5), PPP1R3F (7.06x10-5) and BEND2 

(4.17x10-4) (Materials and Methods). Importantly, as described above, we discovered that two of 

these genes (EFHC2 and BEND2) exhibit sex-differentiated effect sizes, with the results herein 

proposing these to potentially be related to sex-differential expression patterns.   

 

3.2.3 Biological relevance of disease risk genes 

As the X chromosome carries on it a set of unique genes, we set out to explore the biological 

function of our associated disease risk genes. By investigating the gene expression patterns of 13 

genes for which we could obtain tissue-specific expression data, (Materials and Methods), we 

found that three genes show the highest expression in cells and organs directly involved in the 

immune system (Fig. 3.3): ARHGEF6 is expressed in T-cells, IL13RA1 in CD14+ monocytes, 

and ITM2A in the thymus (in which T-cells develop). In addition, three other genes, MCF2 

(associated with vitiligo), NAPL12 and TMEM35 (associated with ALS) exhibit the highest 

expression levels in the pineal gland (a four-fold enrichment relative to all X-linked genes we 

tested, P=3.35x10-3). The pineal gland produces and secretes melatonin, which interacts with the 

immune system (Calvo, Gonzalez-Yanes et al. 2013; Pohanka 2013) and has been implicated in 

the diseases we associated these genes to (Slominski, Paus et al. 1989; Jacob, Poeggeler et al. 

2002; Sospedra and Martin 2005; Terry, Villinger et al. 2009; Dibner, Schibler et al. 2010; 

Calvo, Gonzalez-Yanes et al. 2013), as well as suggested as a possible treatment for ALS 

(Weishaupt, Bartels et al. 2006). In addition to these genes, NLGNX4, which is associated with 

psoriasis in the current study, is primarily expressed in the amygdala. Although the amygdala is 
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not known to affect the immune system, it mediates many physiological responses to stress 

(Roozendaal, McEwen et al. 2009; Mahan and Ressler 2012), which is believed to play a 

significant role in susceptibility to psoriasis (Heller, Lee et al. 2011). 

 

The nature of the diseases we analyzed and the uniqueness of X led us to an a priori hypothesis 

that genes of a specific biological nature contribute to X-linked AD disease risk. Hence, we 

tested for association of whole gene sets with each AD or DPAC (Materials and Methods). The 

first two sets include X-linked genes with immune-related function as defined by the KEGG/GO 

or Panther databases (Materials and Methods). The third set includes the 19 non-

pseudoautosomal X genes with functional Y homologs. While analysis of the immune-related 

gene sets was motivated by the nature of the diseases, our test of the latter set was motivated by 

an evolutionary perspective. X genes with functional Y homologs are more likely to be under 

functional constraint (Wilson Sayres and Makova 2013) and thus, may be more likely to play a 

part in disease etiology. We associated the Panther immunity gene set to vitiligo risk in both 

vitiligo studies (Vitiligo GWAS1 and GWAS2) and one type-2 diabetes study (T2D GENEVA), 

and the KEGG/GO set in Vitiligo GWAS1 (Table 3.2). Furthermore, genes with functional Y 

homologs contribute to psoriasis (CASP dataset) and vitiligo (Vitiligo GWAS1) disease risk 

(Table 3.2). These genes are likely to encode biologically conserved functions, as their Y 

homologs have retained function despite loss of recombination with X (which has led to 

progressive degeneration of the Y chromosome over the course of the evolution of the 

supercohort Theria) (Wilson Sayres and Makova 2013) 
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3.2.4 Relation between associated disease risk genes 

Investigating the co-expression of associated disease-risk genes across the 881 individuals 

(Materials and Methods) we found that 3.9% of all X-linked gene pairs exhibit significant 

positively correlated gene expression patterns. Pairs of genes associated with any AID or DPAC 

exhibit significant positively correlated expression in 8% of the cases - a significantly higher 

fraction relative to X-linked genes overall (P=1.53x10-3). This suggests that these genes are more 

likely to work in concert and perhaps interact in the same pathways or cellular networks. Indeed, 

using data from protein-protein or genetic interactions (Materials and Methods), we found that 

all but four are included in the same interaction network  (Fig. 3.4). Perhaps not surprisingly, we 

found several of the significantly enriched pathways relate to immune response or specific 

immune-related disorders or diseases (Table 3.3). Of the remaining pathways, the regulation of 

actin cytoskeleton has also been found to influence the developing morphology and movement of 

T-cells, while the TGF-beta signaling pathway and the ECF-receptor interaction pathway can 

both mediate apoptosis (Lukashev and Werb 1998; Schuster and Krieglstein 2002). Finally, the 

Wnt signaling pathway is generally involved in cell development processes, such as cell-fate 

determination and cell differentiation (Logan and Nusse 2004). It also plays a role in immature 

T-cell and B-cell proliferation, migration of peripheral T-cells, and modulation of antigen 

presenting cells such as dendritic cells (Staal, Luis et al. 2008). 

 

3.2.5 Concluding remarks 

In this study, we applied an X-tailored analysis pipeline to 16 different GWAS datasets (Table 

3.1), discovered and replicated several genes associated with autoimmune disease risk. Multiple 

additional lines of evidence point to some of these genes having immune-related functions, 
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including expression in immune-related tissues (Figs. 3.2-3.3), in addition to enrichment for 

these genes and their interacting partners in immune related pathways (Table 3.3). Beyond 

immune function, several of the genes we associated with disease risk (IL13RA1, ARHGEF6, 

MCF2) are also involved in regulation of apoptosis. Apoptosis has long been suspected of 

playing a role in AID (Eguchi 2001; Kawakami and Eguchi 2002; Mason, Lin et al. 2013) and 

shows strong evidence for involvement in the etiology of vitiligo90, psoriasis (Weatherhead, Farr 

et al. 2011) and rheumatoid arthritis (Li, Ma et al. 2014). Our analyses also highlight the sex 

specific nature of associated disease risk genes shedding light on the sexual dimorphism of some 

autoimmune and immune-mediated diseases.  

 

The X chromosome has received special attention in GWAS during the past year (Conde, Foo et 

al. 2013; Wise, Gyi et al. 2013; Konig, Loley et al. 2014; Tukiainen, Pirinen et al. 2014). Our 

results highlight chromosome X’s contribution to sex-differences in disease risk and yield new 

avenues for potential functional follow-up. More generally, our study illustrates that with the 

right tools and methodology, new discoveries regarding the role of X in complex disease and 

sexual dimorphism can be made, even with existing, array-based GWAS datasets. To enable 

researchers to make many additional such discoveries by analyzing this unique chromosome in 

the context of existing and emerging genome-wide association studies, we have released our 

software for handling chromosome X (Chang, Gao et al.), which we provide as an extension of 

PLINK (Purcell, Neale et al. 2007). Further expansions of this initial software can take unique X-

related features to further develop X-tailored methods such as methods that rely on X-

inactivation and on the availability of phased X haplotypes in males. 
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3.3 Materials and Methods 

3.3.1 Datasets 

We obtained the following datasets from dbGaP: ALS Finland (Laaksovirta, Peuralinna et al. 

2010) (phs000344), ALS Irish (Cronin, Berger et al. 2008) (phs000127), CIDR Celiac disease 

(Ahn, Ding et al. 2012) (phs000274), MScc (Baranzini, Wang et al. 2009) (phs000171), Vitiligo 

GWAS1 (Jin, Birlea et al. 2010) (phs000224), NIDDK CD (Duerr, Taylor et al. 2006) 

(phs000130), CASP (Nair, Duffin et al. 2009) (phs000019), and GENEVA T2D (Qi, Cornelis et 

al. 2010) (phs000091). The Vitiligo GWAS2 (Jin, Birlea et al. 2012) dataset was provided by 

R.S. Both vitiligo datasets contained case data only. Therefore, we obtained the following 

additional control datasets from dbGaP: PanScan (Amundadottir, Kraft et al. 2009; Petersen, 

Amundadottir et al. 2010) (phs000206), National Institute on Aging Alzheimer’s study (Lee, 

Cheng et al. 2008) (phs000168), CIDR bone fragility (Estrada, Styrkarsdottir et al. 2012) 

(phs000138), COGA (Bierut, Saccone et al. 2002) (phs000125), and SAGE (Bierut, Saccone et 

al. 2002; Bierut 2007; Bierut, Strickland et al. 2008) (phs000092). Only samples with the 

“general research consent” designation in the control datasets were used as controls for studying 

vitiligo. These samples were randomly distributed between the two vitiligo datasets.  

 

Additional datasets were obtained from the Wellcome Trust Case Control Consortium (WT): all 

WT1 ( !The Wellcome Trust Case Control Consortium 2007) datasets, WT2 ankyolosing 

spondylitis (AS) (Evans, Spencer et al. 2011), WT2 ulcerative colitis (UC) (Barrett, Lee et al. 

2009) and WT2 multiple sclerosis (MS) (Sawcer, Hellenthal et al. 2011). In order to run meta-

analysis and independently replicate signals, we ensured that none of these datasets had 

overlapping controls. To accomplish this, we recruited additional control data from the WT1 
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hypertension (HT), bipolar (BP), and cardiovascular disease (CAD) case data. These samples 

were randomly distributed to the four WT1 datasets, though only BP samples were used as 

controls for WT1 T2D due to potential shared disease etiology between T2D, CAD and HT. The 

WT1 National Birth Registry (NBS) control data was also randomly distributed to the four WT1 

datasets.  We randomly distributed the 58 Birth Cohort (58BC) control samples, along with any 

new NBS samples not present in the WT1 data, between WT2 datasets.  

 

3.3.2 Quality Control (QC) 

Our pipeline for X-wide association studies (XWAS) begins with a number of quality control 

steps, some of which are specific to the X chromosome. First, we removed samples that we 

inferred to be related, had > 10% missing genotypes, and those with reported sex that did not 

match the heterozygosity rates observed on chromosome X. We additionally filtered variants 

with >10% missingness, variants with a minor allele frequency (MAF) < 0.005, variants for 

which missingness was significantly correlated with phenotype (P<1x10-4). X-specific QC steps 

included filtering variants not in Hardy-Weinberg equilibrium in females (P<1x10-4), removing 

variants that had significantly different MAF between males and females in control individuals; 

and removal of the pseudoautosomal regions (PARs). 

 

3.3.3 Correction for population stratification 

To assess and adjust for potential population stratification we ran principal component analysis 

(PCA) using EIGENSOFT (Patterson, Price et al. 2006) after pruning for linkage disequilibrium 

(LD) and removing large LD blocks (Novembre, Johnson et al. 2008). Individuals inferred to be 

of non-European ancestry were removed from all subsequent analysis. For the datasets analyzed 
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here (of European ancestry), we found that correction for population stratification is more 

accurate when based on the autosomes than on X alone due to the smaller number SNPs used to 

infer structure based on X. This observation holds as long as enough autosomal principal 

components (PCs) are considered. Thus, in our subsequent analyses, only the first ten autosomal 

derived PCs were used to assess and correct for population stratification. Sex-biased 

demographic events though, including sex-differential population structure of males and females, 

such as events proposed for human populations (Hammer, Mendez et al. 2008; Keinan and Reich 

2010; Heyer, Chaix et al. 2012), are expected to lead to differential population structure on X 

and the autosomes. Hence, the problem of population stratification can be different between the 

two genomic compartments. In theory, this suggests that correction for population stratification 

in XWAS should be based on inference of population structure utilizing the X chromosome 

alone. Given this, we anticipate cases—in other populations or where more data is available for 

X—in which correction for population stratification based on X alone could potentially be more 

accurate for XWAS. 

 

3.3.4 Imputation 

Imputation was carried out with IMPUTE2 (Howie, Donnelly et al. 2009) version 2.2.2 based on 

1000 Genomes Project (Abecasis, Auton et al. 2012) whole-genome and whole-exome (October 

2011 release) haplotype data. One of the features added in the second version of impute 

(IMPUTE2) is the assumption of a 25% reduction in the effective population size (Ne) when 

imputing variants on the X chromosome. As recommended by the authors IMPUTE2, Ne was set 

to 20,000 and variants with MAF in Europeans < 0.005 were not imputed. Based on the output of 

IMPUTE2, we excluded variants with an imputation quality < 0.5 and variants that did not pass 
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the above QC criteria (see Quality Control). Table 3.1 displays the number of SNPs we 

considered in each dataset following imputation and these additional QC steps. 

 

3.3.5 Single marker association analysis 

In the first test we assume complete X-inactivation and similar effect size between males and 

females. While females are considered to have 0, 1, or 2 copies of an allele (as in the autosomes), 

males are considered to have 0 or 2 copies of the same allele.  Thus, male hemizygotes are 

equivalent to female homozygous states. This test is currently implemented in PLINK (Purcell, 

Neale et al. 2007) as the –xchr-model 2 option, termed FM02 in this study. In the second test, 

male and female data are analyzed separately (with males coded as either having 0 or 2 copies of 

an allele as above). The female only and male only measures of significance are then combined 

using either Fisher’s (Fisher 1925) method or a weighted Stouffer’s method (Stouffer, Suchman 

et al. 1949), with weighting determined by sample size (Willer, Li et al. 2010) to obtain the 

FMF.comb and the FMS.comb test association p-values. Fisher’s method combines the p-values 

themselves, while Stouffer’s method combines test statistics, taking into account both the sample 

size and direction of effect for males and females. Ten PCs were added as covariates to account 

for potential population stratification. Principal component covariates were not added to the 

regression model for the amyotrophic lateral sclerosis (ALS) Finland, ALS Irish, and CASP 

datasets as no inflated p-values were observed in these studies (Supplementary Fig. 3.S1).   

 

3.3.6 Gene-based analysis 

Gene-based association analysis was carried out in the general framework of VEGAS (Liu, 

McRae et al. 2010). We briefly summarize the method here, though a more detailed description 
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can be found in (Liu, McRae et al. 2010). As SNPs in a gene are in closer proximity with each 

other, they are likely to be in LD and thus have correlated test statistics. VEGAS accounts for 

this correlation by utilizing the LD between SNPs in a gene to derive the distribution of test 

statistics (Liu, McRae et al. 2010). More specifically, n statistics are then randomly drawn from a 

multivariate normal distribution with a mean of 0 and a n x n covariance matrix corresponding to 

the pairwise LD between SNPs mapped to the gene, where n represents the number of SNPs in a 

gene. These n statistics are then combined via summation. Here, we have implemented a slight 

modification to this procedure. In this study, we combined p-values derived from the simulated 

test statistics with either the truncated tail strength (Jiang, Zhang et al. 2011) or the truncated 

product (Zaykin, Zhivotovsky et al. 2002) method, which have been suggested to be more 

powerful than other tests in some scenarios (Huang, Chanda et al. 2011; Ma, Clark et al. 2013). 

The gene-based p-value was calculated as the proportion of simulated statistics that were as 

extreme or more extreme than the observed statistic. To increase time efficiency of the 

simulation procedure, adaptive simulations were implemented as in VEGAS (Liu, McRae et al. 

2010). A list of X-linked genes and their positions was obtained from UCSC “knownCanonical” 

transcript ID track (http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=knownGene). SNPs 

were mapped to a gene if they were within 15 kilobases (kb) of a gene’s start or end positions.  

 

3.3.7 Sex-difference analysis 

The difference in the effect size between males and females at each SNP was assayed using a t-

statistic as calculated below (Randall, Winkler et al. 2013): 
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SE is in the standard error in males or females, and r is the Spearman rank correlation coefficient 

between log(ORmale) and log(ORfemale) across all X-linked SNPs. The odds ratio in males is 

estimated with 02 coding for male genotypes as in the FM02 test. This test is most powered to 

detect variants with opposing effects in males versus females, though it will also capture cases 

where the effects are in the same direction though significantly different in magnitude.  

 

3.3.8 Gene expression analysis 

Whole blood gene expression data for 881 samples (409 males, 472 females) from the Rotterdam 

Study III (Hofman, Breteler et al. 2009) was downloaded from Gene Expression Omnibus 

(Barrett, Wilhite et al. 2013) (accession GSE33828). Expression data was available for 802 of 

the genes studied in our XWAS. For each gene, we tested for differential expression between 

males and females using the Wilcoxon rank sum test across individuals and applied Bonferroni 

correction to its p-values. Using a hypergeometric test, we also assayed whether the 802 X-

linked genes analyzed in our study are more often differentially expressed between males and 

females as compared to all genes genome-wide. In addition, we assessed how many of the genes 

that were associated and replicated (20 genes with expression data) showed significant 

differential expression between males and females (after Bonferroni correction for the number of 

associated and replicated genes). To assess co-expression between X-linked genes, we calculated 

the non-parametric Spearman correlation coefficient between the expression of each pair of 

genes across the set of 881 individuals. Enrichment of significant co-expression within the set of 

20 associated genes as compared to all 802 genes was tested using a hypergeometric test.  

 

For analysis of tissue-specific gene expression, we obtained the Human GNF1H tissue-specific 
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expression dataset (Su, Wiltshire et al. 2004) via the BioGPS website (Wu, Macleod et al. 2013). 

After excluding fetal and cancer tissues, we were left with expression data across 74 tissues for 

504 of the genes studied in our XWAS, including 14 of the genes with evidence of association 

(Fig. 3.1). For each gene, we obtained a normalized z-score value for its expression in each tissue 

by normalizing its expression by the average and standard deviation of the expression of that 

gene across all tissues. 

 

3.3.9 Network analysis 

A network of interacting genes was assembled in GeneMANIA using confirmed and predicted 

genetic and protein interactions (Warde-Farley, Donaldson et al. 2010) with a seed list of the 22 

protein-coding genes within the list of associated genes (Fig. 3.1). Up to 100 genes were added 

with a maximum of 20 attributes. Scores for interactions were weighted equally by network. This 

scoring allows for querying interactions between genes while minimizing bias from obtaining 

more hits in well-studied pathways. A list of unique genes within this interactome was extracted 

as input to WebGestalt (Zhang, Kirov et al. 2005; Wang, Duncan et al. 2013) to discover the ten 

most significantly enriched pathways in the KEGG (Kanehisa and Goto 2000) database. 

Enrichment was assessed with the hypergeometric test (Wang, Duncan et al. 2013) and reported 

p-values were adjusted for multiple testing using the Benjamini-Hochberg correction. Pathways 

were required to have a minimum of two genes.   

 

3.3.10 Gene-set analysis 

We additionally tested whether SNPs in a set of genes were collectively associated with disease. 

To accomplish this, we modified the gene-based analysis above to draw from multiple 
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multivariate normal (MVN) distributions, each with their own covariance matrix corresponding 

to the LD between SNPs in each gene within the gene-set. Comparing p-values derived from 100 

phenotypic permutations to this simulation procedure revealed highly correlated significance 

values (Supplementary Fig. 3.S4-3.S5). We thus only present results from our simulation 

procedure.  

 

We manually curated a set of immune-related genes from the KEGG (Kanehisa and Goto 2000) 

pathways and Gene Ontology (GO) (Ashburner, Ball et al. 2000) Biological Function categories.  

To do this we mined the KEGG and GO databases using 15 and 14 categories, respectively, that 

are particularly relevant for autoimmune response.  We subsequently removed eight genes from 

this list that we felt were either too generalized (e.g. cell cycle genes) or too specific (e.g. F8 and 

F9 blood coagulation genes) to obtain a final list of 27 genes (Supplementary Table 3.S9). The 

Panther immune gene set was obtained by including genes in the category of “immune system 

processes” in the Panther database (Thomas, Campbell et al. 2003). The XY homolog gene set 

was obtained from Wilson-Sayres and Makova (Wilson Sayres and Makova 2013). 
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3.4 Supplementary Text 

 
The single nucleotide polymorphism (SNP) association analysis, including imputed SNPs, 

identified 42 SNPs significantly associated with their respective disease following a conservative 

Bonferroni correction for the number of tests (Supplementary Fig. 3.S2a, Table 3.S1). Of these, 

14 SNPs in the same locus form a clear peak (Supplementary Fig. 3.S2b) in their association 

with vitiligo (Vitiligo GWAS1 dataset). Vitiligo is a common autoimmune disorder in which the 

destruction of melanocytes (pigment producing cells located in the basal epidermis) results in 

depigmented skin. The associated locus is 17 kilobases (kb) away from a weakly expressed 

retrotransposed gene (retro-HSPA8) that is of 98% similarity to its parent gene, HSPA8, on 

chromosome 11. HSPA8 encodes a member of the heat shock protein 70 family and functions as 

a chaperone to bind nascent polypeptides and enable correct folding. Heat shock proteins have 

been previously implicated in autoimmune disease(Winfield and Jarjour 1991; Rauch, San 

Martin et al. 1995; Ludwig, Stahl et al. 1999; Naumann, Hempel et al. 2001; Routsias and 

Tzioufas 2006). In particular, a role for inducible heat shock protein 70 has been suggested in 

vitiligo(Mosenson, Zloza et al. 2012; Abdou, Maraee et al. 2013; Mosenson, Eby et al. 2013). 

Though this region did not replicate in our second vitiligo dataset, the biological relevance of this 

region warrants further investigation in a larger, better powered replication study. Another clear 

association peak was observed for the Wellcome Trust Case Control Consortium 2 ulcerative 

colitis (WT2 UC) (Supplementary Fig. 3.S1c) for intronic variants of BCOR. BCOR encodes a 

co-repressor of BCL-6, which regulates apoptosis(Huynh, Fischle et al. 2000). However, none of 

these candidate associations replicated in other GWAS datasets for the same or related diseases, 
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possibly due to small sample sizes and thus insufficient power (Table 3.1).  

 

There is abundant evidence that many autoimmune and immune-related disorders share some 

genetic etiology(Sirota, Schaub et al. 2009; Cotsapas, Voight et al. 2011; Solovieff, Cotsapas et 

al. 2013; Chang and Keinan 2014). While these studies have focused on autosomal variants, this 

may also be the case for chromosome X. We therefore used PLINK(Purcell, Neale et al. 2007) to 

perform a fixed-effects meta-analysis on several subsets of our diseases.  We performed these 

analyses using the p-values generated from the FM02 test.  Specifically, we applied this analysis 

to the following disease sets (see Table 3.1 for dataset designations): (i) all classic autoimmune 

diseases: CIDR celiac disease, WT1 CD, WT1 RA, WT1 T1D, WT2 UC, WT2AS, WT2 MS, 

CASP; (ii) WT2 AS, WT1 RA, WT1 T1D, CIDR celiac disease(Sirota, Schaub et al. 2009); (iii) 

classical neurological disorders: ALS Finland, ALS Irish, WT2 MS, MS case control (iv) 

diabetes: WT1 T1D, WT1 T2D; (v) irritable bowel disease: WT1 CD, NIDDK CD, WT2 UC; 

(vi) and skin related disorders: Vitiligo GWAS1 and CASP.   

  

We found 4 regions containing SNPs with P < 1x10-4 in three of the disease groups 

(Supplementary Table 3.10a-c). While not significant after a conservative Bonferroni correction 

for the number of SNPs tested on X, the most significant SNP in the inflammatory bowel 

disorder disease group (P= 1.73x10-5) is located ~38 kb from CD40LG, which encodes a protein 

expressed on the surface of T-cells (Supplementary Table 3.10a-c). Furthermore, one of the most 

significant SNPs in the psoriasis and vitiligo meta-analysis (rs11797576, P = 7.13x10-5) is 

located 50 kb from EGFL6, which encodes an epidermal growth factor (Supplementary Table 

3.10a-c).  
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We further tested for a significant difference in effect size between males and females (see 

Methods in the main text). We found one significant SNP (rs200718, P = 1.51x10-7) in Vitiligo 

GWAS1. Association of this SNP was not replicated in Vitiligo GWAS2 due to its very low 

minor allele frequency (MAF < 0.003). We thus assayed whether the nearby SNP rs5976539, in 

moderate LD with rs200718 (D’ = 0.306), was associated in Vitiligo GWAS2, but did not find 

evidence for a significant difference in effect size between males and females (P = 0.920). 
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3.5 Figures 

 
Figure 3.1. X-linked genes associated with autoimmune disease risk.  
All genes that showed evidence of association in a gene-based test (P<10-3), and replicated in 
another dataset are shown for the a) FMS.comb b) FMF.comb c) FM02 and d) sex-differentiated effect 
size tests (Materials and Methods). Dataset names, as described in Table 3.1, are displayed on 
the x-axis and gene names on the y-axis. For each gene, the more significant p-value of the 
truncated tail strength and truncated product methods is displayed on a –log10 scale according to 
the enclosed color scale. A “*” represents the discovery dataset, while “**” indicates the 
replication dataset/s. These appear in grey when the discovery and replication are in datasets of 
the same disease (or across the related Crohn’s disease and ulcerative colitis). Numerical values 
corresponding to this table are presented in Table 3.S4 and 3.S6.
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Figure 3.2. X-linked disease risk genes are differentially expressed between tissues. 
X-axis presents 13 out of the associated X-linked genes for which gene expression data was available for analysis. For each, a z-score 
is presented for the deviation of expression in each of 74 tissues (y-axis) from the average expression of that gene across all tissues 
(Materials and Methods). For comparison, the last column shows average expression in each tissue across all X-linked genes that were 
tested as part of our analyses. Several associated genes exhibit significantly higher expression in immune-related tissues (see main 
text). 
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Figure 3.3. Three X-linked disease risk genes show high expression in immune-related 
tissues and cells.  
ARHGEF6, IL13RA1, and ITM2A show expression greater than 4 standard deviations above the 
average expression of these genes in T-cells (highest in CD4+), CD14+ monocytes, and the 
thymus, respectively (Fig. 3.2). Y-axis follows the respective tissues from Figure 3.2 and x-axis 
denotes a z-score for the deviation of expression in each tissue from the average expression of 
that gene. The title of each panel includes the name of the gene and the tissue with the highest 
expression for that gene. 
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Figure 3.4. Interactome of X-linked disease risk genes.  
All 22 associated X-linked protein-coding genes (Fig. 3.1), denoted by black diamonds, together 
with genes that interact with them. Physical interactions refer to documented protein-protein 
interactions. Genetic interactions represent genes where perturbations to one gene affect another. 
Predicted interactions were obtained from orthology to interactions present in other organisms 
(Warde-Farley, Donaldson et al. 2010). All but three genes associated with AID and DPACs 
share interacting partners according to known and predicted interactions (Materials and 
Methods).  
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Figure 3.S1. QQ-plots for single marker association tests.  
Blue triangles denote association p-values for the FMF.comb test, red crosses denote p-values for 
the FMS.comb, while the black points denote association p-values for the FM02 test. P-values are 
plotted in log scale.  
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Figure 3.S2. Significant SNP associations.  
(a) A Manhattan plot of the nominal p-values for the FM02 (upper), FMF.comb (middle), and 
FMS.comb (lower) tests of association for chromosome X SNPs in the 16 datasets. The dotted 
purple lines correspond to the significance threshold for each dataset. The significant 
associations are shown as red diamonds. (b-c) Regional association plots of the association 
results and LD for (b) Vitiligo GWAS1 data set and (c) WT2 UC data set.  Upper: the purple 
dotted line corresponds to the significance threshold, and the significant results are shown as red 
diamonds. Lower: LD structure was plotted using a revised version of the snp.plotter software 
(Luna and Nicodemus 2007). Due to the large number of SNPs in the associated region of 
Vitiligo GWAS1, only every 1 in 10 of the non-significantly associated SNPs are shown. 
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Figure 3.S3. QQ-plots for test of sex-differentiated effect size.  
Similar to Figure 3.S1, where p-values are now displayed for the test of differential effect size 
between males and females.  
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Figure 3.S4. Comparison between simulation derived and permutation derived p-values for 
the gene-set association analysis using the FM02 test statistic.  
r represents Pearson’s correlation coefficient and the significance of the correlation is indicated 
in the parentheses in scientific notation.  
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Figure 3.S5. Comparison between simulation derived and permutation derived p-values for 
the gene-set association analysis using the FMF.comb test statistic. 
Similar to Figure 3.S5 where test statistics for the FMF.comb test are now displayed.  
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3.6 Tables 

Dataset Disease # SNPs # Genes # Cases # Controls 

ALS Finland  

Amyotrophic 
Lateral Sclerosis 
(ALS) 207,947 

 
970 

400 490 

ALS Irish  

Amyotrophic 
Lateral Sclerosis 
(ALS) 219,300 

 
967 

221 210 
Psoriasis CASP  Psoriasis 184,246 953 1,209 1,271 
Celiac Disease 
CIDR  Celiac Disease 187,284 

 
962 1,576 504 

CD NIDDK  
Crohn's Disease 
(CD) 176,072 

 
837 791 922 

CD WT1* 
Crohn's Disease 
(CD) 150,275 

 
930 1,592 1,701 

UC WT2*  
Ulcerative Colitis 
(UC) 196,781 

 
963 2,341 1,699 

MS case control  
Multiple Sclerosis 
(MS) 183,954 

 
842 943 851 

MS WT2*  
Multiple Sclerosis 
(MS) 169,707 

 
962 2,666 1389 

Vitiligo GWAS1  Vitiligo 157,676 958 1,391 4,521 
Vitiligo GWAS2  Vitiligo 187,688 962 415 2,552 

T2D GENEVA  
Type-2 Diabetes 
(T2D) 220,752 

 
971 2,515 2,850 

T2D WT1*  
Type-2 Diabetes 
(T2D) 152,996 

 
927 1,811 1,668 

T1D WT1*  
Type-1 Diabetes 
(T1D) 152,304 

 
926 1,867 1,714 

RA WT1*  
Rheumatoid 
Arthritis (RA) 146,907 

 
925 1,772 1,709 

AS WT2* 
Ankyolosing 
Spondylitis (AS) 200,042 

 
966 1,472 1,260 

 

Table 3.1. GWAS datasets.  
For each of the case-control datasets analyzed in this study, the table lists its name, the disease 
considered, the number of X-linked SNPs (# SNPs), which include imputed SNPs, and the 
number of genes tested in the gene-based test (# Genes). The number of individuals (# Cases and 
# Controls) represents the number of samples following QC. All datasets consist of individuals 
of European ancestry. Though ALS and T2D are not conventionally considered as autoimmune 
diseases, we have included datasets of these diseases due to recent studies pointing to an 
autoimmune component to their etiology (Pagani, Gonzalez et al. 2011; Itariu and Stulnig 2014).  
*As control individuals overlap across these datasets, we only considered non-overlapping 
subsets of them for each of the diseases studied here (Materials and Methods). The size of these 
subsets is indicated under # Controls. 
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Dataset Statistic P-value 
XY homologs gene set 
Psoriasis CASP FMF.comb 0.0088 
Celiac disease CIDR FMF.comb 0.0467 
Vitiligo GWAS1 FMF.comb 0.0063 
Vitiligo GWAS1 FM02 0.0329 
Vitiligo GWAS2 FMF.comb 0.0346 
CD NIDDK FM02 0.017 
CD WT1 FM02 0.0234 
T1D WT1 FMS.comb 0.0302 
Panther immune gene set 
Vitiligo GWAS1 FM02 0.0154 
Vitiligo GWAS1 FMF.comb 0.0387 
Vitiligo GWAS1 FMS.comb 0.0081 
Vitiligo GWAS2 FM02 0.0142 
Vitiligo GWAS2 FMF.comb 0.0448 
Vitiligo GWAS2 FMS.comb 0.0127 
T2D GENEVA FMS.comb 0.0073 
KEGG/GO immune gene set 
Vitiligo GWAS1 FMF.comb 0.002 
Vitiligo GWAS1 FMs.comb 1.64x10-4 

 

Table 3.2. Gene-set associations.  
Three curated gene sets were tested for association to diseases. Datasets with p-values < 0.05 are 
displayed, with bold p-values indicating significant association after multiple testing correction. 
The minimum of the truncated tail strength method and the truncated product method are 
displayed.  
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Pathway Genes P-value 

Regulation of actin 
cytoskeleton 

PAK1, RHOA, PAK3, CDC42, ARHGEF6, 
SOS1, ARHGEF7, PAK2, RDX, GIT1, GNA13, 
TIAM1, ROCK2, FGD1 5.55x10-14 

T-cell receptor 
signaling pathway 

PAK1, RHOA, PAK3, CDC42, SOS1, PAK2, 
IL4, NFATC2, NFATC1, ICOS, NFAT5 2.75x10-13 

Axon guidance 
PAK1, RHOA, PAK3, EPHB2, CDC42, 
NFATC2, NFATC1, NFAT5, ROCK2 4.97x10-11 

Wnt signaling  
SMAD3, SMAD2, RHOA, FZD4, LRP5, 
NFATC2, NFATC1, NFAT5, ROCK2 4.74x10-9 

Systemic lupus 
erythematosus 

H2AFZ, H2AFJ, HIST1H2AH, HIST2H2AB, 
HIST1H2AJ, HIST3H2A, HIST1H2AD 4.34x10-8 

Chemokine signaling 
PAK1, RHOA, CDC42, SOS1, GNB1, TIAM1, 
DOCK2, ROCK2 4.52x10-7 

Focal adhesion 
PAK1, PARVB, RHOA, PAK3, CDC42, SOS1, 
PAK2, ROCK2 6.28x10-7 

TGF-beta signaling 
SMAD3, SMAD2, RHOA, TGFBR2, ROCK2, 
BMPR1B 7.87x10-7 

Pathways in cancer 
SMAD3, SMAD2, RHOA, MDM2, CDC42, 
FZD4, SOS1, RUNX1, TGFBR2 1.74x10-6 

Pancreatic cancer SMAD3, SMAD2, CDC42, ARHGEF6, TGFBR2 6.17X10-6 
 
 
Table 3.3. Gene-enrichment analysis of the interactome.  
Genes associated to AID and DPACs, and their interacting partners (Fig. 3.4) were enriched for 
several immune related pathways. We display the ten most significantly enriched pathways. 
Genes within each pathway that were also within our query set are listed. Displayed p-values are 
adjusted for multiple testing (Materials and Methods).  
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 Dataset SNP FM02 adjusted 
FMF.comb 
adjusted 

FMS.comb 
adjusted 

Vitiligo 
GWAS1 rs2007899 8.24x10-02 1.42x10-01 2.90x10-02 
  rs12852381 3.72x10-02 6.51x10-02 1.34x10-02 
  rs143231802 2.58x10-02 3.62x10-02 6.47x10-03 
  rs4271099 2.99x10-02 5.27x10-02 1.09x10-02 
  rs4335270 6.52x10-02 1.23x10-01 2.67x10-02 
  rs4480250 6.52x10-02 1.23x10-01 2.67x10-02 
  rs17258266 4.90x10-02 7.55x10-02 1.38x10-02 
  rs4300122 8.14x10-02 1.61x10-01 3.62x10-02 
  rs5957594 3.77x10-02 7.27x10-02 1.46x10-02 
  rs34320000 7.87x10-02 1.59x10-01 3.24x10-02 
  rs5957596 1.14x10-01 2.01x10-01 3.92x10-02 
  rs10217856 4.06x10-02 6.84x10-02 1.31x10-02 
  rs5956287 2.71x10-01 2.51x10-01 4.63x10-02 
  rs12834182 2.71x10-01 2.51x10-01 4.63x10-02 
  rs1121546 1.27x10-02 2.79x10-02 6.42x10-03 
  rs5957620 2.17x10-02 3.51x10-02 6.95x10-03 
  rs9887587 2.06x10-02 2.97x10-02 5.71x10-03 
  rs150986507 1.66x10-02 3.31x10-02 6.63x10-03 
  rs12839589 5.00x10-02 8.37x10-02 1.73x10-02 
  rs33977652 2.56x10-01 2.66x10-01 4.86x10-02 
  rs138347087 2.26x10-01 2.39x10-01 4.38x10-02 
  rs35046609 2.91x10-02 4.81x10-02 9.59x10-03 
  rs60669023 2.83x10-01 2.43x10-01 4.50x10-02 
  rs16996189 2.97x10-01 2.60x10-01 4.82x10-02 
  rs5957651 2.98x10-02 5.49x10-02 1.11x10-02 
  rs148797601 6.88x10-03 1.94x10-02 4.33x10-03 
  rs148097246 7.20x10-03 2.04x10-02 4.58x10-03 
          
WT2 AS rs7057428 2.04x10-02 1.0 1.0 
  rs5977756 7.21x10-03 9.05x10-02 2.78x10-01 
          
WT2 UC rs5916435 1.80x10-03 1.22x10-03 2.19x10-04 
  rs5973636 1.15x10-01 4.76x10-02 8.74x10-03 
  rs6610386 3.72x10-02 3.76x10-02 2.24x10-02 
  rs59269143 2.36x10-02 2.26x10-02 1.19x10-02 
  rs5963157 2.73x10-02 2.66x10-02 1.47x10-02 
  rs7060409 7.16x10-03 6.50x10-03 2.64x10-03 
  rs62626573 1.81x10-02 1.63x10-02 4.70x10-03 
  rs35764713 6.96x10-07 3.31x10-09 7.72x10-10 
  rs5969304 7.58x10-05 1.0 1.0 
  rs6643227 3.05x10-03 1.0 1.0 
  rs6655215 2.04x10-04 5.75x10-03 1.03x10-01 
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  rs12008980 8.74x10-05 5.73x10-02 5.85x10-01 
 
Table 3.S1. Significant SNP associations.  
This table lists all significant associations (adjusted P < 0.05) in either the FM02 or FMcomb test. 
P-values are Bonferroni adjusted for the number of SNPs tested as listed in Table 3.1.   
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FMF.comb 

Dataset Gene symbol 
Truncated tail  p-
value 

Truncated 
product p-value 

ALS Finland TAF7L 0.000389 0.0018 
ALS Finland MAGEE2 0.00028 0.0012 
ALS Finland NAP1L2 0.00091 0.00034 
ALS Finland TTC3P1 0.000859 0.0013 
ALS Finland ZDHHC15 0.000413 0.0089 
CASP NLGN4X 0.000887 0.0166 
Celiac disease CIDR CENPI 0.0029 0.000523 
Vitiligo GWAS1 PPP1R3F 0.000114 0.000496 
Vitiligo GWAS1 LINC00632 0.0057 0.000772 
Vitiligo GWAS1 FOXP3 0.000698 0.0015 
Vitiligo GWAS1 BEND2 0.0018 0.000079 
Vitiligo GWAS1 CENPI 0.000155 0.0026 
Vitiligo GWAS2 IL13RA2 0.0021 0.000758 
Vitiligo GWAS2 MCF2 0.00017 0.000576 
CD WT1 CD40LG 0.009 0.000322 
CD WT1 LINC00892 0.0013 0.000088 
T2D WT1 MAGEC1 0.0275 0.000181 
UC WT2 CASK 0.000138 0.0215 
UC WT2 PRPS1 0.000133 0.000194 
UC WT2 PAGE2B 0.0039 0.000012 
UC WT2 SPANXN5 0.00091 0.0013 
MS WT2 MAGEE1 0.000706 0.0023 

FMS.Comb 
ALS Finland TAF7L 0.000547 0.000644 
ALS Finland NAP1L2 0.00057 0.000115 
ALS Finland ITM2A 0.000843 0.000307 
ALS Finland CENPI 0.001271 0.000175 
ALS Finland TMEM35 0.002775 0.000345 
CASP MIR505 <1x10-6 0.001932 
CASP DCX 0.000757 0.00608 
Celiac CIDR IQSEC2 0.00053 0.00071 
CD WT1 Y RNA <1x10-6 0.000052 
CD WT1 LINC00892 0.001739 0.000529 
UC WT2 PRPS1 0.000005 0.000005 
UC WT2 CASK 0.000157 0.021124 
UC WT2 GPR82 0.000209 0.001885 
UC WT2 GPR34 0.000262 0.000162 
UC WT2 PAGE2B 0.000482 0.000002 
UC WT2 NAP1L6 0.001192 0.000429 
MS Case Control RP11-265P11.2 0.00303 0.000855 
Vitiligo GWAS1 PPP1R3F 0.000006 0.000076 
Vitiligo GWAS1 FOXP3 0.000022 0.000149 
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Vitiligo GWAS1 XRCC6P5 0.000081 0.001846 
Vitiligo GWAS1 HUWE1 0.000362 0.001298 
Vitiligo GWAS1 GAGE12H 0.000634 0.000634 
Vitiligo GWAS1 GAGE10 0.001848 0.000266 
Vitiligo GWAS2 MCF2 0.000078 0.000131 
Vitiligo GWAS2 IL13RA2 0.000942 0.000354 
Vitiligo GWAS2 RBMXL3 0.002653 0.000321 
T2D GENEVA ZCCHC12 0.001209 0.000653 
T2D GENEVA  SNORA35 0.002123 0.000454 
T2D GENEVA IL13RA1 0.00635 0.000859 
T2D WT1 MAGEC1 0.026251 0.000068 
T1D WT1 ARX 0.000192 0.000489 
T1D WT1 SRPK3 0.000469 0.008982 
T1D WT1 PLXNB3 0.000487 0.007309 
T1D WT1 RNU6-98P 0.000803 0.001921 

 

Table 3.S2. All genes with either truncated tail or truncated product p-values  < 1x10-3 for 
the FMF.comb and the FMS.comb test. 
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Dataset Gene symbol 
Truncated tail p-
value 

Truncated 
product p-value 

ALS Finland TAF7L 0.000126 0.000332 
ALS Finland NAP1L2 0.000451 0.000038 
ALS Finland ITM2A 0.0021 0.00041 
CASP PGRMC1 <1x10-6 0.0046 
CASP ATP11C 0.000011 0.0092 
CASP DCX 0.000752 0.0048 
CASP MIR505 <1x10-6 0.0039 
MS case control FANCB 0.000052 0.0013 
MS case control RP11-265P11.2 0.0025 0.000423 
Vitiligo GWAS1 PPP1R3F 0.000066 0.000139 
Vitiligo GWAS1 HUWE1 0.000822 0.0027 
Vitiligo GWAS1 LINC00632 0.0137 0.000453 
Vitiligo GWAS1 FOXP3 0.000111 0.000276 
Vitiligo GWAS1 GAGE10 0.0016 0.000403 
Vitiligo GWAS1 CENPI 0.000217 0.001 
Vitiligo GWAS1 MPC1L <1x10-6 <1x10-6 
Vitiligo GWAS1 NAA10 0.00087 0.0028 
Vitiligo GWAS2 IL13RA2 0.001014 0.000526 
Vitiligo GWAS2 MCF2 0.000224 0.000559 
Vitiligo GWAS2 RBMXL3 0.0019 0.000418 
GENEVA T2D RP4-562J12.2 0.000489 0.0013 
CD WT1 ARHGEF6 0.0017 0.000366 
CD WT1 CD40LG 0.0123 0.000223 
CD WT1 LINC00892 0.001572 0.000048 
T1D WT1 SRPK3 0.000327 0.0071 
T1D WT1 ARX 0.000837 0.000565 
T1D WT1 RNU6-98P 0.000716 0.0018 
T1D WT1 PLXNB3 0.000522 0.0076 
T2D WT1 MAGEC1 0.0264 0.000534 
T2D WT1 SASH3 <1x10-6 <1x10-6 
T2D WT1 DUSP9 0.0022 0.000553 
UC WT2 CASK 0.000357 0.0199 
UC WT2 PRPS1 0.000003 0.00001 
UC WT2 NAP1L6 0.001063 0.000057 
UC WT2 PAGE2B 0.012 0.000072 
UC WT2 GPR34 0.0011 0.00061 

 

Table 3.S3. All genes with either truncated tail or truncated product p-values  < 1x10-3 for 
the FM02 test. 
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Table 3.S4. Gene-based associations replicating in similar diseases.  
Table of genes with nominal P < 1x10-3 that replicated in a dataset of the same or similar disease. 
Combined p-values were calculated using Fisher’s method.  

Dataset Gene 
p-value  
(tail, product) Replication dataset 

p-value  
(tail, product) 

combined  
p-value  
(tail, product) 

FM02 

Vitiligo GWAS1 PPP1R3F 
6.60x10-5, 
1.39x10-4 Vitiligo GWAS2 

8.10x10-3, 
2.70x10-3 

8.26x10-6, 
5.93x10-6 

Vitiligo GWAS1 FOXP3 
1.11x10-4, 
2.76x10-4 Vitiligo GWAS2 

5.60x10-3,  
5.40x10-3 

9.50x10-6, 
2.15x10-5 

Vitiligo GWAS1 GAGE10 
1.60x10-3, 
4.03x10-4 Vitiligo GWAS2 

2.80x10-3, 
3.80x10-3 

5.97x10-5, 
2.20x10-5 

CD WT1 ARHGEF6 
1.70x10-3, 
3.66x10-4 UC WT2 

2.30x10-3, 
3.10x10-3 

5.26x10-5, 
1.67x10-5 

FMF.comb 

Vitiligo GWAS1 PPP1R3F 
1.14x10-4, 
4.96x10-4 Vitiligo GWAS2 

3.70x10-3, 
5.80x10-3 

6.61x10-6, 
3.96x10-5 

FMS.comb 

Vitiligo GWAS1 PPP1R3F 
6.0x10-6, 
7.60x10-5 Vitiligo GWAS2 

4.80x10-3, 
1.30x10-3 

5.29x10-7, 
1.69x10-6 

 GAGE12H 
6.34x10-4, 
6.34x10-4 Vitiligo GWAS2 

4.60x10-3, 
4.60x10-3  

4.01x10-5, 
4.01x10-5 

 GAGE10 
1.85x10-3, 
2.66x10-4 Vitiligo GWAS2 

2.90x10-3, 
2.80x10-3 

7.05x10-5, 
1.13x10-5 

Sex Difference  

CD WT1 C1GALT1C1 
1.97x10-3, 
2.63x10-4 UC WT2 

1.39x10-2, 
1.14x10-2 

3.15x10-4, 
4.11x10-5 
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Dataset p-value (tail, product) 
ALS Finland 1.10x10-2, 1.00x10-3 
ALS Irish 2.70x10-2, 1.60x10-2 
CASP 0.91, 0.64 
CIDR Celiac 2.9x10-3, 5.23x10-4 
NIDDK CD 0.17, 0.16 
MS case control 0.91, 0.38 
Vitiligo GWAS1 1.55x10-4, 2.6x10-3 
Vitiligo GWAS2 0.827, 0.65 
Geneva T2D 0.17, 0.19 
WT1 CD 0.83, 0.20 
WT1 T1D 0.85, 0.49 
WT1 RA 0.83, 0.29 
WT1 T2D 0.93, 0.54 
WT2 UC 0.88, 0.45 
WT2 MS 0.81, 0.67 
WT2 AS 0.11, 0.11 

 
Table 3.S5. CENPI association p-values for the FMF.comb test across the 16 datasets.  
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Dataset Gene 
p-value (tail, 
product) Alternate dataset 

p-value (tail, 
product) 

combined  
p-value  
(tail, product) 

FM02 

ALS Finland NAP1L2 
4.51x10-4, 
3.80x10-5 UC WT2 

5.70x10-3, 
3.70x10-3 

3.57x10-5, 
2.36x10-6 

   Vitiligo GWAS1 
1.0x10-2, 
1.40x10-2 

6.00x10-5, 
8.22x10-6 

ALS Finland ITM2A 
2.10x10-3, 
4.10x10-4 Celiac Disease CIDR 

7.90x10-3, 
1.06x10-2 

1.99x10-4, 
5.80x10-5 

MS case control FANCB 
5.20x10-5, 
1.30x10-3 RA WT1 

3.80x10-3, 
1.10x10-2 

3.25x10-6, 
1.74x10-4 

Vitiligo GWAS1 CENPI 
2.17x10-4, 
1.00x10-3 ALS Finland 

2.40x10-3, 
2.00x10-3 

8.06x10-6, 
2.82x10-5 

T2D GENEVA  RP4-562J12.2 
4.89x10-4, 
1.30x10-4 CD NIDDK 

3.41x10-2, 
3.93x10-2 

2.00x10-4, 
5.56x10-4 

   WT2 AS 
5.60x10-2, 
4.30x10-2 

3.15x10-4, 
7.32x10-5 

T2D WT1 MAGEC1 
2.64x10-2, 
5.34x10-4 MS case control 

6.70x10-3, 
8.50x10-3 

1.71x10-3, 
6.04x10-5 

UC WT21  NAP1L6 
1.06x10-3, 
5.70x10-5 ALS Finland 

3.10x10-3, 
5.50x10-3 

4.49x10-5, 
5.01x10-6 

FMF.comb 

CASP NLGN4X 
8.87x10-4, 
1.66x10-2 Vitiligo GWAS2 

1.21x10-2, 
1.31x10-2 

1.34x10-4, 
2.05x10-3 

   CIDR Celiac Disease 
5.10x10-2, 
4.90x10-2 

4.98x10-4, 
6.66x10-3 

Vitiligo GWAS1 BEND2 
1.80x10-3, 
7.90x10-5 T2D WT1 

9.30x20-3, 
1.29x10-2 

2.01x10-4, 
1.51x10-5 

Vitiligo GWAS1 CENPI 
1.55x10-4, 
2.60x10-3 ALS Finland 

1.12x10-2, 
1.00x10-3 

2.48x10-5, 
3.60x10-5 

      Celiac CIDR 
2.90x10-3, 
5.23x10-4 

7.02x10-6, 
1.97x10-5 

Vitiligo GWAS2 MCF2 
1.70x10-4, 
5.76x10-4 MS WT2 

2.31x10-2, 
2.50x10-2 

5.28x10-5, 
1.75x10-4 

CD WT1 LINC00892 
1.30x10-3, 
8.80x10-5 MS WT2 

2.42x10-2, 
1.99x10-2 

3.58x10-4, 
2.50x10-5 

T2D WT1  MAGEC1 
2.75x10-2, 
1.81x10-4 MS case control 

1.42x10-2,  
1.50x10-2 

3.46x10-3, 
3.75x10-5 

MS WT2  MAGEE1 
7.06x10-4, 
2.30x10-3 ALS Finland 

3.23x10-2, 
2.36x10-2 

2.67x10-4, 
5.87x10-4 

FMS.comb 

ALS Finland NAP1L2 
5.7x10-4, 
1.15x10-4 UC WT2 

8.30x10-3, 
7.1x10-3 

6.27x10-5, 
1.23x10-5 

 ITM2A 
8.43x10-4, 
3.07x10-4 Celiac CIDR 

6.5x10-3, 
1.13x10-2 

7.19x10-5, 
4.71x10-5 

 CENPI 
1.27x10-3, 
1.75x10-4 Vitiligo GWAS1 

1.60x10-3, 
5.90x10-3 

2.89x10-5, 
1.53x10-5 

 TMEM35 
2.78x10-3, 
3.45x10-4 Vitiligo GWAS1 

3.80x10-3, 
6.20x10-3 

1.31x10-4, 
3.01x10-5 

CD WT1 LINC00892 
1.73x10-3, 
5.29x10-4 MS WT2 

6.30x10-3, 
6.40x10-3 

1.35x10-4, 
4.60x10-5 

   Vitiligo GWAS1 
2.30x10-2, 
2.89x10-2 

4.41x10-4, 
1.85x10-4 

UC WT2 GPR34 
2.62x10-4, 
1.62x10-4 MS WT2 

5.60x10-3, 
1.10x10-2 

2.12x10-5, 
2.54x10-5 

 NAP1L6 
1.19x10-3, 
4.29x10-4 ALS Finland 

4.00x10-3, 
1.06x10-2  

6.31x10-5, 
6.05x10-5 
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MS case control RP11-265P11.2 
3.03x10-3, 
8.55x10-4 T2D WT1 

4.42x10-2, 
4.68x10-2 

1.32x10-3, 
4.45x10-4 

T2D GENEVA SNORA35 
2.12x10-3, 
4.54x10-4 AS WT2 

2.40x10-3, 
6.70x10-3 

6.71x10-5, 
4.17x10-5 

 IL13RA1 
6.35x10-3, 
8.59x10-4  AS WT2 

6.20x10-3, 
7.20x10-3 

4.39x10-4, 
8.04x10-5 

T2D WT1 MAGEC1 
2.63x10-2, 
6.80x10-5 MS case control 

1.00x10-2, 
1.54x10-2 

2.43x10-3, 
1.55x10-5 

Sex difference  

ALS Finland MAGEE2 
6.5x10-4, 
1.94x10-3 Vitiligo GWAS1 

3.08x10-2, 
1.64x10-2 

2.37x10-4, 
3.61x10-4 

 NDP 
1.41x10-3, 
9.34x10-4 CD WT1 

8.60x10-3, 
1.33x10-2 

1.49x10-4, 
1.53x10-4 

CASP NLGN4X 
2.34x10-4, 
1.65x10-2 Vitiligo GWAS1 

4.52x10-2, 
4.33x10-2 

1.32x10-4, 
5.89x10-3 

Celiac CIDR CENPI 
4.4x10-3, 
2.08x10-4 ALS Finland 

2.03x10-2, 
1.78x10-2 

9.22x10-4, 
5.00x10-5 

   ALS Irish 
9.80x10-3, 
4.40x10-3 

4.88x10-4, 
1.36x10-5 

Vitiligo GWAS1 BEND2 
3.99x10-3, 
1.28x10-4 MS case control 

4.60x10-2, 
5.20x10-2 

1.76x10-3, 
8.60x10-5 

Vitiligo GWAS2 MCF2 
7.00x10-4, 
1.93x10-3 MS WT2 

2.38x10-2, 
2.12x10-2 

2.00x10-4, 
4.54x10-4 

T2D GENEVA EFHC2 
6.09x10-4, 
1.12x10-3 RA WT1 

1.58x10-2, 
1.40x10-3 

1.21x10-4, 
2.42x10-5 

RA WT1 MIR320D2 
8.69x10-3, 
5.68x10-4 ALS Irish 

2.39x10-2, 
2.64x10-2 

1.97x10-3, 
1.82x10-4 

 
Table 3.S6. Gene-based associations replicating in other diseases.  
This table lists genes with nominal P < 1x10-3 that replicated in a disease of a different 
phenotype (Methods). Combined p-values were calculated using Fisher’s method. *We assumed 
a p-value = 1x10-6 in the truncated tail p-value for WT CD when calculating the combined p-
value.
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Dataset Gene symbol 
Truncated tail p-
value 

Truncated product 
p-value 

ALS Finland MAGEE2 6.50x10-4 1.93x10-3 
ALS Finland NDP 1.41x10-3 9.34x10-4 
CASP NLGN4X 2.34x10-4 0.017 
CIDR Celiac CENPI 4.42x10-3 2.08x10-4 
CD WT1 C1GALT1C1 1.97x10-3 2.63x10-4 
UC WT2 SPANXN5 2.72x10-4 3.45x10-4 
UC WT2 XAGE5 2.21x10-3 3.45x10-4 
MS case control ZNF449 7.22x10-4 3.11x10-3 
MS case control BMX 9.91x10-4 2.49x10-3 
Vitiligo GWAS1 BEND2 3.99x10-3 1.28x10-4 
Vitiligo GWAS2 MCF2 7.00x10-4 1.93x10-3 
T2D GENEVA EFHC2 6.09x10-4 1.1x10-3 
T2D WT1 SASH3 <1x10-6 <1x10-6 
T2D WT1 CSTF2 1.63x10-3 8.17x10-4 
T2D WT1 SNORA9 1.63x10-3 8.43x10-4 
T2D WT1 SYTL4 2.27x10-3 3.27x10-4 
RA WT1 MIR320D2 8.69x10-3 5.68x10-4 

 
Table 3.S7. All genes with either the truncated tail or truncated product p-values  < 1x10-3 

for the sex difference test. 
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Gene1 Gene2 r P-value 
ARHGEF6 EFHC2 0.208 4.44x10-10 
ARHGEF6 IL13RA1 0.267 7.46x10-16 
ARHGEF6 PPP1R3F 0.302 4.41x10-20 
BEND2 EFHC2 0.185 3.39x10-8 
C1GALT1C1 EFHC2 0.449 6.80x10-45 
C1GALT1C1 FANCB 0.178 1.12x10-7 
C1GALT1C1 IL13RA1 0.221 3.31x10-11 
C1GALT1C1 ITM2A 0.226 1.27x10-11 
C1GALT1C1 PPP1R3F 0.278 4.57x10-17 
EFHC2 FANCB 0.192 8.49x10-9 
EFHC2 IL13RA1 0.2 2.17x10-9 
EFHC2 ITM2A 0.291 1.13x10-18 
EFHC2 PPP1R3F 0.496 6.03x10-56 
FANCB PPP1R3F 0.183 4.33x10-8 
ITM2A PPP1R3F 0.276 7.89x10-17 
NLGN4X TMEM35 0.193 8.31x10-9 

 
Table 3.S8. Pairs of X-linked genes that are significantly co-expressed.  
We assayed whether associated X-linked genes were significantly co-expressed in samples of 
healthy individuals (see methods in main text). “r” denotes the spearman’s rank correlation 
coefficient, with the p-value listed in the adjacent column (“P-value”).  
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Gene symbol 
OTUD5 
TLR8 
CFP 
RNF128 
PRKX 
APLN 
BTK 
IL3RA 
IKBKG 
IRAK1 
CD40LG 
SH2D1A 
XIAP 
NOX1 
CXCR3 
IL2RG 
EDA 
FOXP3 
WAS 
CYBB 
TAB3 
TLR7 
CD99 
DDX3X 
CSF2RA 
IL9R 
BCAP31 

 
Table 3.S9. List of genes in the KEGG/GO immune gene set.  
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WT2 UC, WT1 CD 
   Original p-value 

Basepair SNP meta-analysis p-value WT2 UC WT1 CD 
135670593 rs2518886 0.00005669 0.005774 0.00003564 
135670824 rs12852548 0.00008458 0.008264 0.0000392 
135671221 rs2807259 0.0000702 0.007347 0.00003564 
135673225 rs5930965 0.00006327 0.00631 0.00003968 
135673610 rs7890404 0.0000173 0.003203 0.00001065 
135674044 rs2807260 0.00004705 0.005757 0.00002743 
135674388 rs2518888 0.00007253 0.007565 0.00003758 
135674543 rs2518889 0.00007253 0.007565 0.00003758 
135675755 rs2518891 0.00006978 0.007508 0.00003558 
135676896 rs2518892 0.00007248 0.007453 0.00003758 
135677559 rs2518893 0.00008051 0.008385 0.00003758 
135677710 rs2518894 0.00006895 0.006859 0.00003758 
135678840 rs2518895 0.00007248 0.007453 0.00003758 
135679053 rs2518896 0.00007248 0.007453 0.00003758 
135679059 rs2518897 0.00007248 0.007453 0.00003758 
135679631 rs2518899 0.00007248 0.007453 0.00003758 
135679960 rs2518900 0.00007248 0.007453 0.00003758 
135680078 rs2518901 0.00006039 0.00753 0.00002765 
135680774 rs2518902 0.00007248 0.007453 0.00003758 
135680970 rs12556398 0.00007972 0.007776 0.00004124 
135681823 rs2518904 0.00007611 0.007371 0.00004155 
135681929 rs73242348 0.00008436 0.008296 0.00004057 
135682887 rs12007112 0.00003256 0.002824 0.00004155 
135683500 rs12012314 0.00007501 0.007918 0.00003735 
135683508 rs73228703 0.00007501 0.007918 0.00003735 
135684162 rs12848318 0.00007801 0.007726 0.00003891 
135685169 rs12559890 0.00007801 0.007726 0.00003891 
135685563 rs12014670 0.00007801 0.007726 0.00003891 
135687540 rs12559116 0.0000454 0.005664 0.00002597 
135689560 rs12558063 0.00006444 0.01388 0.00001018 
 
Table 3.S10a. All SNPs with a meta-analysis p-value < 1x10-4 for the IBD disease set.  
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CASP, Vitiligo GWAS1 
   Original p-value 

BP SNP meta-analysis p-value Vitiligo GWAS1 CASP 
13539543 rs11797576 0.00007132 0.00001217 0.113 
120356233 rs12852381 0.00003984 2.358x10-07 0.7948 
120361243 rs143231802 0.00005031 1.635x10-07 0.5694 
120363815 rs4271099 0.00002333 1.899x10-07 0.7179 
120363833 rs4335270 0.0000365 4.137x10-07 0.7179 
120364808 rs4480250 0.00003571 4.137x10-07 0.7179 
120372902 rs17258266 0.00004401 3.107x10-07 0.4317 
120377156 rs4300122 0.0000176 5.165x10-07 0.384 
120377239 rs5957593 0.00001991 6.505x10-07 0.3878 
120377928 rs5957594 0.00002138 2.392x10-07 0.4953 
120384209 rs34320000 0.00001928 4.989x10-07 0.3873 
120385628 rs5957596 0.00002515 7.216x10-07 0.3929 
120397795 rs10217856 0.00001654 2.575x10-07 0.4652 
120399965 rs188743539 0.00001312 0.000001017 0.2152 
120402522 rs5956287 0.00005116 0.00000172 0.5429 
120403437 rs12834182 0.00005116 0.00000172 0.5429 
120412794 rs1121546 0.00000699 8.043x10-08 0.4616 
120414055 rs5957620 0.000007265 1.376x10-07 0.408 
120417125 rs9887587 0.000006633 1.304x10-07 0.381 
120422623 rs150986507 0.00001451 1.051x10-07 0.3113 
120423853 rs12839589 0.00001188 3.173x10-07 0.3853 
120428148 rs33977652 0.00004402 0.000001621 0.4982 
120432609 rs138347087 0.00009268 0.000001435 0.4011 
120440791 rs35046609 0.00001107 1.843x10-07 0.423 
120449026 rs60669023 0.000059 0.000001795 0.5376 
120456282 rs16996189 0.00006177 0.000001882 0.5376 
120457727 rs5957651 0.00001094 1.892x10-07 0.4186 
120506286 rs148797601 0.00001516 4.363x10-08 0.3956 
120514199 rs148097246 0.00001568 4.568x10-08 0.3956 
120581955 rs139713212 0.00006601 0.000003853 0.1313 
120615789 rs12387331 0.00006826 0.000005681 0.2252 
120671167 rs111852695 0.00003387 8.647x10-07 0.1378 
120706195 rs140636073 0.00006317 0.000003378 0.1218 
 
Table 3.S10b. All SNPs with a meta-analysis p-value < 1x10-4 for the skin-related disease 
set.  
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Classic Autoimmune (CASP, CIDR celiac disease, WT2 AS, WT2 MS, WT2 UC, WT1 CD, WT1 RA, WT1 T1D) 
      Original p-values 

BP SNP 
meta-analysis 
p-value CASP CIDR AS MS UC CD RA T1D 

135867861 rs6635322 0.00007194 0.1086 0.2043 0.08659 0.06399 0.001849 0.0007687 0.05755 0.3813 
135876353 rs5930994 0.00009651 0.1087 0.1314 0.06854 0.05932 0.003505 0.0003842 0.09112 0.3001 
135879166 rs5930995 0.00005965 0.1093 0.1251 0.06154 0.07357 0.002276 0.0009112 0.03484 0.2871 
135883888 rs5930998 0.00006352 0.1135 0.1161 0.06302 0.07474 0.00133 0.0009793 0.04361 0.2696 

 
Table 3.S10c. All SNPs with a meta-analysis p-value < 1x10-4 for the classic autoimmune disease set 
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Chapter 4 Principal component analysis characterizes shared pathogenetics 

from genome-wide association studies 
(Chang and Keinan 2014) 

 

4.1 Introduction 

 
Comorbidity studies show that some distinct diseases tend to co-occur in the same individuals 

(Sowers 1998; Broadley, Deans et al. 2000; Somers, Thomas et al. 2009; Zaccara 2009; Marrie, 

Horwitz et al. 2011; Sardu, Cocco et al. 2012), pointing to a shared genetic and/or environmental 

component. In the era of genome-wide association studies (GWASs), direct evidence of shared 

genetic risk factors of diseases comes to light (Solovieff, Cotsapas et al. 2013). For example, 

while it has been previously shown that rheumatoid arthritis and type-1 diabetes co-occur 

(Somers, Thomas et al. 2009), GWASs have identified 12 genes associated with both diseases 

(Hakonarson, Grant et al. 2007; !The Wellcome Trust Case Control Consortium 2007; Todd, 

Walker et al. 2007; Barrett, Clayton et al. 2009; Hindorff, Sethupathy et al. 2009; Stahl, 

Raychaudhuri et al. 2010; Festen, Goyette et al. 2011; Okada, Terao et al. 2012; Hindorff, 

MacArthur et al. 2013). More broadly, disease genes obtained from the Online Mendelian 

Inheritance in Man (Hamosh, Scott et al. 2005) were used to assemble the Human Disease 

Network (HDN) (Goh, Cusick et al. 2007; Darabos, Desai et al. 2013), a visual representation of 

genetic similarity between diseases. Pleiotropy of complex diseases and traits has also been 

explored by searching genome-wide for variants implicated in more than one disease (Festen, 

Goyette et al. 2011; Zhernakova, Stahl et al. 2011; Ellinghaus, Ellinghaus et al. 2012). Such 
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studies promise to reveal shared genes and offer an expanded understanding from a genetic 

standpoint of why some diseases tend to co-occur. 

 

Methods for exploring shared genetic risk variants between diseases belong to two main 

categories and have been recently reviewed (Solovieff, Cotsapas et al. 2013). In the first category 

of methods, variants are tested for association to a pair or more of diseases being investigated. In 

one set of methods, a GWAS is carried out on individuals with different diseases pooled together 

( !The Wellcome Trust Case Control Consortium 2007; Festen, Goyette et al. 2011; Zhernakova, 

Stahl et al. 2011; Ellinghaus, Ellinghaus et al. 2012) or by analyzing information for multiple 

diseases available for the same individuals (Lee, Bergen et al. 2011; Hartley, Monti et al. 2012). 

Alternatively, and based only on summary statistics of the association test for each single 

nucleotide polymorphism (SNP), one can simply combine p-values from several GWASs using 

Fisher’s method (Fisher 1925). The CPMA (cross-phenotype meta-analysis) statistic (Cotsapas, 

Voight et al. 2011) is another statistic that tests whether a SNP is associated to more than one 

phenotype. In addition, methods such as the conditional false discovery rate or mixed-models for 

multiple traits have used known pleiotropy between diseases or traits to increase power (Korte, 

Vilhjalmsson et al. 2012; Andreassen, Thompson et al. 2013). Studies employing these methods 

have found shared associations between pairs of diseases such as Crohn’s disease and celiac 

disease (Festen, Goyette et al. 2011), other autoimmune disease pairs (Zhernakova, Stahl et al. 

2011; Ellinghaus, Ellinghaus et al. 2012), bipolar and schizophrenia (Andreassen, Thompson et 

al. 2013) and multiple sclerosis and schizophrenia (Andreassen, Harbo et al. 2014). They have 

additionally shown that SNPs associated with one autoimmune disease are likely to be associated 

to other (though not all) autoimmune phenotypes (Cotsapas, Voight et al. 2011).  



 
 

 
 

92 

 

The second category of methods focuses on using shared variants to learn about the genetic 

similarity between diseases. One method employed by Sirota et al. utilizes the correlation 

between association signals across many SNPs to assess the similarity between pairs of diseases 

and showed that there are likely two distinct autoimmune classes where a risk allele for one class 

may be protective in another (Sirota, Schaub et al. 2009). While another method uses a classifier 

approach to identify diseases that are similar (Schaub, Kaplow et al. 2009). A linear mixed 

model approach can also be applied to assess the shared genetic variation between two diseases 

(Korte, Vilhjalmsson et al. 2012; Lee, Ripke et al. 2013). 

 

These exciting new methods are powerful for studying shared genetic risk variants between 

diseases. At the same time, overcoming some of their limitations can improve the study of shared 

pathogenesis using data from multiple GWASs. First, some methods have focused on analysis of 

individual SNPs. Though this is well suited for scenarios of a single causal SNP in a locus, they 

would lose power when several causal SNPs exist or if different SNPs tag the same underlying 

causal variant, which is especially relevant for diseases with rare causal variants (Wang, Dickson 

et al. 2010; Chang and Keinan 2012) and when the different GWASs are across different 

populations (Marigorta and Navarro 2013) or have used different genotyping arrays. Second, in 

one study where the correlation between association statistics of different studies is used to 

determine shared disease etiology, the correlation statistic weighs all variants equally, whether or 

not they play a role in disease susceptibility (Sirota, Schaub et al. 2009). Third, most methods 

assume as known which diseases share pathogenesis, and while the shared pathogenesis of 

autoimmune disease has been well established (Sirota, Schaub et al. 2009; Cotsapas, Voight et al. 
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2011), it is worthwhile to study shared pathogenesis of other disease classes (Yancik, Havlik et 

al. 1996; McElroy 2004; Zaccara 2009). And fourth, while some approaches perform well for 

two correlated traits or diseases, extending the analysis to more than two traits can become 

difficult (Korte, Vilhjalmsson et al. 2012).   

 

In this study, we present a novel method, disPCA, which uses principal component analysis 

(PCA) to learn about the shared genetic risk of distinct diseases. PCA maps data from the 

original axes into new axes in principal component (PC) space via a stretch and rotation of the 

original axes. Each new axis or PC captures the maximal level of variation in the data not 

captured by previous PCs. Thus, each PC can potentially tell a different, orthogonal story 

regarding the data. Our method is based on summary level statistics from GWASs of different 

diseases. We combine data from individual SNPs into gene-based statistics via several p-value 

combination methods. PCA is applied to a matrix across genes and GWAS datasets, with entries 

representing the strength of association (p-value) between a gene and the disease studied in a 

dataset. This method is gene-centric, with the PCA weighing genes by their role in differentiating 

between different GWAS, and can be applied to study multiple diseases without prior knowledge 

of their shared pathogenesis, thereby overcoming all the limitations of existing methods outlined 

above. disPCA also accounts for potential confounders due to methodological differences 

between studies, such as in genotyping array, which can otherwise lead to these differences being 

captured by the PCA.  

 

Equipped with this novel method and with data from 31 GWAS datasets, we considered the level 

of shared pathogenesis between diseases and classes of diseases from all genes, which we term 
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shared pathogenetics. Diseases with more similar underlying genetics are more likely to be 

located closer together in PC space. As PCA is a non-parametric method, it makes no 

assumptions regarding which diseases are more similar and does not aim to model it, thereby 

allowing discovery of new relationships between diseases by examining the top PCs. Each PC is 

a linear combination of genes, with the leading PCs expected to give more weight to genes that 

distinguish well between diseases. Diseases with no separation along any PC indicate that they 

tend to share the pathogenetics underlying that PC. By studying the set of genes underlying a PC 

for enrichment in specific pathways, we can further assess the function and relationship of genes 

that separate different disease clusters in PC space. 
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4.2 Materials and Methods 

4.2.1 disPCA  

 
We developed a method, disPCA, for studying the relationship between diseases based on their 

level of disease risk genes shared. The method works on the gene-level by first combining 

information from all SNPs in and around each gene. Considering gene-level statistics 

compensates for different tag SNPs being associated in different datasets even in cases where 

they capture the same causal variant. It also aggregates information across multiple tag SNPs in 

each dataset, as well as allows for different underlying causal variants in the same gene being 

associated with the risk of different diseases. To be widely applicable, disPCA is based solely on 

the p-values of association of each SNP with the disease under study. Importantly, all SNPs and 

consequently all genes are considered, rather than focusing on genes that meet a genome-wide 

significance level of association with a disease. We apply PCA to many different GWASs to 

axiomatically find and assign importance to genes based on their contribution to distinguishing 

between diseases and disease classes. The ensuing distance between different disease datasets in 

PC space inversely corresponds to their level of shared pathogenetics. 

 

4.2.2 Gene-level significance levels  

 
For each protein-coding gene from the HGNC database (Gray, Daugherty et al. 2013), we 

mapped all SNPs that are in the gene or within 0.01cM from it (genetic distances were 

determined via the Oxford genetic map based on HapMap2 data (Myers, Bottolo et al. 2005; 

Frazer, Ballinger et al. 2007)). We discarded all SNPs that were not mapped to within 0.01cM of 
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any gene. If a SNP lay between two genes, it was assigned to the closer gene. For each GWAS 

dataset, we determined the significance of association of each gene with the assayed disease 

using the following simulation procedure. Let the observed p-value of a gene be the minimum p-

value of the n SNPs mapped to the gene. We compared the observed p-value to that of 100,000 

groups of n consecutive SNPs chosen in random. Based on these groups, we assign a new p-

value to each gene as the proportion of groups for which the observed minimum p-value for that 

gene is less significant than that of the group. This random sampling procedure may be biased in 

regions of high linkage disequilibrium (LD) when mapping SNPs to genes using genetic distance 

(e.g. consecutive SNPs in regions of high LD will be more correlated than those in regions of 

lower LD). However, for any given gene, these will equally affect each of the datasets. To 

validate this, we also applied disPCA to p-values obtained from mapping SNPs to genes using 

physical distance: a SNP was mapped to a gene if it was in the gene or within 10kb of it. 

Comparing these results to results based on mapping via genetic coordinates revealed the same 

clustering of diseases (Figure 4.S1). Furthermore, average loading of genes with the top 50 

loadings on the first two PCs were significantly correlated (r>0.67, p-value < 8.4x10-8, Table 

4.S1). Thus, in the main text we present results based on mapping by genetic distance as 

described above. 

 

To consider information from beyond only the most significant SNP in a gene, we also 

implemented truncated tail strength (Jiang, Zhang et al. 2011) and truncated product (Zaykin, 

Zhivotovsky et al. 2002) to combine p-values in each gene in replacement of the minimum p-

value, and followed a similar procedure for assigning new gene-level p-values. For the analyses 

presented in the following, results from all methods were similar though results with the 
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minimum p-value approach clusters similar diseases better (Figure 4.S2-S3). We thus only report 

in the main text results from the minimum p-value approach. Code to carry out this procedure is 

publicly available at http://keinanlab.cb.bscb.cornell.edu/content/tools-data. 

 

4.2.3 PCA implementation and confounders 

Assume a matrix Z, a d x g matrix of the –log10 gene-level p-values, where d is the number of 

GWAS datasets, and g is the number of genes present in all datasets. We center the matrix by 

subtracting the column means from each column. Thus the centered matrix B has entries: 

  (1)
 

To obtain the PCs of matrix B, we must find the eigenvectors and eigenvalues of its covariance 

matrix BBT. Let vi be a vector of length d and let  be a scalar. vi is the eigenvector and  the 

eigenvalue of BBT if the following is satisfied: 

   (2) 

The principal components of B are the normalized eigenvectors of its covariance matrix, BBT, 

where the eigenvectors are ordered such that the largest eigenvalue corresponds to the first 

principal component. Each eigenvector is additionally orthogonal to all other eigenvectors. Thus, 

from (2), we can decompose BBT as follows: 

  (3) 

Where the columns of U contain the principal components and " is a diagonal matrix with 

entries equal to the eigenvalues of B’s covariance matrix. One can similarly construct the 

singular value decomposition (SVD) of B. The SVD of B can be written as: 
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  (4) 

where V is a d x d matrix, D is a d x g diagonal matrix, and W is a g x g matrix. V and W contain 

the left and right singular vectors of B, respectively, and D contains the singular values of B in its 

diagonal. Substituting equation (4) for B in equation (3), we find that  

  (5) 

Thus, the principal components of B, the eigenvectors of its covariance matrix, are equivalent to 

the left singular vectors of B. In addition, the eigenvalues of B are equivalent to the square of its 

singular values.  

 

We applied SVD to the matrix B using the R (R Core Team 2013) implementation of PCA/SVD 

(prcomp), with no scaling of the data. Due to the heterogeneity of the GWAS datasets (Table 

4.S2), variation uncovered by PCA can also reflect differences in features such as genotyping 

array, association method, and sample size, rather than underlying disease risk genes. To ensure 

that these features did not influence our results, we first tested each gene for association with 

each of these features. Let zi=Zi,! be the vector corresponding to the association statistic for gene 

i across the d datasets. We considered a linear regression of zi as a function of the covariates: 

, where C1, C2, C3 are vectors of length d that represent the 

genotyping array, association method and the log10 of the sample size respectively, in each of the 

studies (Table 4.S2). Testing the significance of regression coefficients can reveal genes that are 

associated with any of these potential confounders. In our following analysis, 19 genes were 

significantly associated with association method. However, genes not significantly associated to 

the above confounders may similarly have an effect. Hence, we also applied SVD (as described 

above) to the residualized matrix, namely matrix R with rows
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. We found that applying SVD to R results in the top PCs 

capturing a higher fraction of the variance of the data than when applied to the original matrix Z, 

though results are qualitatively similar between the two. We thus present results derived from the 

residualized matrix R. Resulting distances between datasets were assessed visually by plotting 

datasets in PC space. To quantify the clustering of datasets, we additionally applied hierarchical 

clustering in R (R Core Team 2013) (hclust) to the Euclidean distance between pairs of datasets 

across the first two PCs. 

 

4.2.4 Simulation study 

We simulated a matrix Z for two disease classes, each with 5 diseases (A1,A2,A-

3,A4,A5,B1,B2,B3,B4,B5) and 10,000 genes. In general, under the null hypothesis of a region 

containing no risk variant and assuming no confounding factors (e.g. population stratification), 

p-values should be uniformly distributed between 0 and 1. On the other hand, associated risk 

variants should be enriched for smaller p-values. We thus considered three sets of genes. The p-

values for the first set of genes was drawn from the U(0,1) distribution for all diseases, thus no 

pleiotropy was captured in this set of genes. The second set of genes was distributed U(0,0.05) 

for the first disease class (A1,…,A5) and distributed U(0,1) for the second disease class (B1,…,B5). 

Finally the third set of genes was distributed U(0,0.05) for the following diseases: A1, A2, B1, B2 

and distributed U(0,1) for all other diseases. Thus the second set of genes simulates pleiotropy 

between diseases in disease class A, while the last set of genes simulates pleiotropy between 

diseases in both disease classes.  
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4.2.5 Disease and pathway enrichment analysis 

Disease enrichment analysis was completed using the online tool WebGestalt (Zhang, Kirov et 

al. 2005; Wang, Duncan et al. 2013) to query the PharmGKB (Whirl-Carrillo, McDonagh et al. 

2012) database. WebGestalt tests for enrichment of a category of genes in the observed set of 

genes using the hypergeometric test (Zhang, Kirov et al. 2005). Bonferroni correction for 

multiple tests was applied and all reported p-values are following this correction. We restricted 

analysis to categories that contained a minimum of 5 genes in our analysis with the largest 50 

weightings in the top two PCs. For gene categories with overlapping or the same set of genes, we 

list the most significant category. To reduce biases introduced by the clustering of genes with 

similar function, we filtered our list of genes with the top 50 loadings on the top two PCs by 

removing the latter gene out of a pair of genes within 0.1cM of each other. We then applied 

WebGestalt to this filtered subset of genes. 

 

Pathway enrichment analysis was completed using the Gene Set Enrichment Analysis (GSEA) 

tool (Subramanian, Tamayo et al. 2005). GSEA sorts genes according to a score, which here is 

the weighting of a gene in the PC under study. It then assesses whether genes belonging to a 

certain category (e.g. pathway) are non-randomly distributed in the sorted list. As input to 

GSEA, we utilized the weights of genes in the top two PCs. GSEA carried out 10,000 gene-set 

permutations to determine FDR (false discovery rate) q-values. We queried the BioCarta and 

KEGG pathway databases. We restricted analysis to categories that contained a minimum of 5 

genes in our analysis. Throughout we present enrichment analysis only for the top two PCs, 

though other PCs are available and can be assayed for further insight into the diseases studied. 

As above, to reduce biases introduced by the clustering of genes with similar function, we 
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filtered our full list of genes by removing the latter gene out of a pair of genes within 0.1cM of 

each other and reanalyzed this subset of genes (n=5,298) with GSEA.  

 

4.2.6 Testing for non-random distribution of p-values 

We followed a similar approach to that implemented in Zhernakova et al. 2011 (Zhernakova, 

Stahl et al. 2011) while applying it to genes instead of individual SNPs to test for non-random 

distribution of association values. For each disease pair we retained all k genes that were 

nominally significant in one disease (p-value < 0.01). We then tested the null hypothesis of a 

uniform distribution of p-values in the second disease using Fisher’s method for combining p-

values: , where pi is the p-value for association of gene i in the second disease. 

Nearby genes in linkage disequilibrium may violate the independency assumption in Fisher’s 

method. We thus performed a separate analysis after removing the latter of the two genes that 

were within 0.1cM of each other and nominally significant in one disease.  

 

4.2.7 Application of disPCA to 31 GWAS datasets 

We analyzed a total of 31 GWAS datasets (Helms, Cao et al. 2003; Karamohamed, Golbe et al. 

2005; Nichols, Pankratz et al. 2005; Duerr, Taylor et al. 2006; Nair, Stuart et al. 2006; Suarez, 

Duan et al. 2006; Hunter, Kraft et al. 2007; Matarin, Brown et al. 2007; Saxena, Voight et al. 

2007; Scott, Mohlke et al. 2007; Scuteri, Sanna et al. 2007; !The Wellcome Trust Case Control 

Consortium 2007; Boomsma, Willemsen et al. 2008; Cronin, Berger et al. 2008; Harley, 

Alarcon-Riquelme et al. 2008; Hom, Graham et al. 2008; Li, Wetten et al. 2008; Baranzini, 

Wang et al. 2009; Barrett, Lee et al. 2009; Nair, Duffin et al. 2009; Sabatti, Service et al. 2009; 
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Heinzen, Need et al. 2010; Jin, Birlea et al. 2010; Laaksovirta, Peuralinna et al. 2010; Neale, 

Medland et al. 2010; Remmers, Cosan et al. 2010; Evans, Spencer et al. 2011; Sawcer, 

Hellenthal et al. 2011; Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) 

Consortium 2011; Ahn, Ding et al. 2012; Jin, Birlea et al. 2012) that spanned different types of 

cancers, autoimmune diseases, neurological disorders, psychiatric disorders, type-2 diabetes 

(T2D), ischemic stroke and body mass index (BMI) (Table 4.S2). Datasets were publicly 

available, obtained from dbGaP or obtained via collaborations. These datasets had non-

overlapping samples and were of European ancestry only. For Wellcome Trust Case Control 

(WT) related datasets, we distributed controls between the five datasets such that none had 

overlapping samples. For WT type-1 diabetes, rheumatoid arthritis and Crohn’s disease, we 

obtained further controls from the WT hypertension, cardiovascular disease and bipolar case data 

( !The Wellcome Trust Case Control Consortium 2007). After obtaining gene-level association 

statistics for 14,018-17,438 autosomal genes for each dataset, we limited our analysis to the 

11,927 genes that overlapped all studies. Nineteen of these genes were significantly associated 

with association method after multiple-testing correction (see above).  

 

4.2.8 Replication of disPCA 

We tested the replicability of disPCA when applied to real GWASs using six datasets for which 

we had access to the original data (Duerr, Taylor et al. 2006; !The Wellcome Trust Case Control 

Consortium 2007; Baranzini, Wang et al. 2009; Jin, Birlea et al. 2010; Sawcer, Hellenthal et al. 

2011; Jin, Birlea et al. 2012). Each dataset was split into independent subsets of equal size (+/- 

two samples). We then used PLINK’s logistic regression (Purcell, Neale et al. 2007) to evaluate 

association of each SNP to disease risk. We additionally incorporated covariates derived from 



 
 

 
 

103 

EIGENSOFT into the regression analysis (Patterson, Price et al. 2006) to control for population 

structure. We randomly chose one subset of each of the six datasets for one disPCA analysis, and 

the rest for another. Hence, these two analyses consist of independent samples. 
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4.3 Results 

We first applied disPCA to a simulated dataset (Materials and Methods). We varied the number 

of genes belonging to each category, thereby varying how much power there was to detect 

pleiotropy between the simulated diseases. disPCA was unable to clearly cluster pleiotropic 

diseases when diseases shared fewer than 40 genes that had p-values below 0.05 (Figure 4.1a-b, 

4.S4-4.S6). This can be seen both visually via PCA plots, and via hierarchical clustering based 

on the Euclidean distance between datasets in the presented space of the first two principal 

components (PCs) (Figure 4.1, 4.S4-4.S6). When diseases are indeed clustered by their simulated 

pleiotropy according to disPCA (Figure 4.1b), the first two PCs explain a similar fraction of the 

variance (Figure 4.1c), which may increase or decrease depending on the number of genes 

contributing to pleiotropy (Figure 4.S7). Genes with p-values < 0.05 (Materials and Methods), 

which contribute to the simulated pleiotropy between diseases, are also enriched for larger 

loadings (Figure 4.1d-e).  

 

We next applied disPCA to diseases for which we had two datasets. We utilized autoimmune 

diseases (for which we had the most pairs of datasets) and a pair of schizophrenia datasets (as 

schizophrenia has a high heritability (Kendler and Diehl 1993)). We observed that datasets of the 

same diseases were generally clustered together (Figure 4.2-4.3). We additionally observed that 

Crohn’s disease is separated from other autoimmune diseases. This result is consistent with 

previous reports that inflammatory bowel disorders (IBDs) are distinct from other autoimmune 

disorders (Sirota, Schaub et al. 2009). As in the simulated scenarios, the variance explained by 

each PC was similar and suggests that less than a hundred genes contribute to the similarity 

between each dataset.  
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To test the replicability of the results, we further divided each of the six datasets, for which we 

had the raw data, into two subsets consisting of the same or similar samples of cases and controls 

(Materials and Methods). We then performed two disPCA analyses, one on a randomly chosen 

subset of each of the six datasets and another on the remaining subsets. We found that both 

independent sets produced the same clustering of diseases (Figure 4.S8-4.S9). Loadings for 50 

genes with the largest average loading of PC1 and PC2 in each set were also significantly 

correlated across the replication sets (r>0.44, p-value < 1.2x10-3, Table 4.S3).  

 

We applied disPCA to a final set of 31 datasets, including autoimmune diseases, cancers, obesity 

related diseases and traits, psychiatric disorders and neurological disorders. As before, the top 

PCs explain a similar portion of the variance, with the first two PCs capturing interpretable 

separation of diseases. PC1 splits systemic lupus erythematosus (SLE), celiac disease and one 

schizophrenia dataset from all other diseases (Figure 4.4). Alternatively, PC2 splits autoimmune 

diseases from other diseases, and within autoimmune diseases, inflammatory bowel disorders are 

clustered together (Figure 4.5). Schizophrenia, major depressive disorder, cancers, T2D and 

neurological disorders lie on the negative end of PC2, while attention deficit hyperactivity 

disorder (ADHD) and some autoimmune diseases lie near the origin.  

 

As disPCA teases out the important genes of shared and distinct pathogenetics across disease 

datasets, we next investigated which genes strongly contribute to each PC. The result of applying 

PCA on a matrix of association values (Materials and Methods) is that each resulting PC is 

simply a linear combination of genes, whereby each gene is assigned a weight for its contribution 
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to that PC. We retrieved the genes with the top 50 absolute weights for each of the top two PCs 

underlying Figure 4.4 and tested their disease enrichment (Materials and Methods). The top 

genes underlying the first PC were significantly enriched for genes associated with lupus and 

autoimmune related diseases, while genes underlying the second PC were mostly enriched for 

association to IBD (Table 4.1). These enrichment results are consistent with the separation of 

studies across each of these 2 PCs with PC1 separating studies of SLE and other autoimmune 

diseases, and PC2 separating studies of IBD from other diseases. The results were largely 

unchanged even after filtering genes that were within 0.1cM of each other (Table 4.1) (Materials 

and Methods).  

 

Though the results of the disease enrichment analysis support that disPCA extracts biologically 

relevant signals, the arbitrary cutoff of the 50 top genes goes against the potential of PCs being 

linear combinations of all genes. We thus used GSEA (Subramanian, Tamayo et al. 2005), which 

supports analyzing a pre-ranked list of all genes, to perform pathway enrichment of each PC. 

GSEA assesses whether genes belonging to a certain pathway are non-randomly distributed in 

the list of pre-ranked genes. We ranked all genes by the weight in the PC under study. Results of 

this pathway analysis revealed enrichment for immune related pathways on the first 2 PCs (Table 

4.2) at an FDR of 0.25, as suggested by GSEA (Subramanian, Tamayo et al. 2005) (GSEA 

manual online), though this entails that 1 in 4 of our results are false positives on average. The 

top two pathways enriched on PC1 were the antigen processing and presentation and the 

intestinal immune network IgA production pathways, which are crucial immune-related 

pathways. In particular, intestinal IgA antibodies may have a role in inflammatory bowel disease 

(Macpherson, Khoo et al. 1996; Bouvet and Fischetti 1999) and celiac disease (Cunningham-
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Rundles 2001). On PC2, the most significant pathway was the NOD-like receptor signaling 

pathway. NOD-like receptors have been associated to CD, while other immune-related genes 

likely interacting with NOD2 have been associated to UC (Rubino, Selvanantham et al. 2012).  

Overall, a majority of the pathways are related to the immune systems. For example, the Fc 

epsilon RI signaling pathway is related to the antibody IgE, which induces inflammatory 

response (Pearlman 1999). Other pathways are related to neurons (i.e. the neurotrophin signaling 

pathway and the Trk-A pathway). In particular, the neurotrophic factor BDNF (brain-derived 

neurotrophic factor), which is a part of the neurotrophin pathway, has been previously associated 

to Alzheimer’s, Parkinson’s disease and depression (Momose, Murata et al. 2002; Ventriglia, 

Bocchio Chiavetto et al. 2002; Sen, Nesse et al. 2003). More recently, an intronic variant in this 

gene has also been associated to BMI (Berndt, Gustafsson et al. 2013). These associations may 

explain the separation of neurological, psychiatric and BMI studies on PC2. Because similar 

genes are sometimes also physically located closer together, we reran GSEA after filtering genes 

that were within 0.1cM of each other (Materials and Methods). The top two pathways on the first 

PC remained significant, while only the top pathway in PC2 remained significant (Table 4.S4).  

 

Many autoimmune diseases share associations from the HLA region. We thus reran disPCA after 

removing all genes in and around the HLA region, and found a slightly different visual PCA map 

(Figure 4.6). SLE and celiac disease were no longer distinguished from other autoimmune 

diseases and instead lay near the origin. PC1 now differentiated IBD from other diseases, and 

PC2 distinguished vitiligo from schizophrenia. This was further supported by clustering results 

on the first two PCs (Figure 4.S10). A GSEA analysis of the PC loadings retained the NOD-like 

receptor signaling pathway on PC1 instead of PC2 (Table 4.3). Analysis of PC2 loadings 
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revealed additional immune related pathways that were not enriched in our previous analysis 

including the HLA region.  

 

Our findings that PC1 splits some autoimmune diseases, and a schizophrenia study from studies 

of other diseases prompted us to further explore the shared pathogenetics between diseases by 

testing for the non-random distribution of gene-based p-values in one disease based on their 

nominal significance in another disease (Materials and Methods). Generally, association statistics 

are non-randomly distributed when considering most pairs of autoimmune diseases, i.e. testing 

for non-random distribution in one autoimmune disease dataset based on significance in another 

autoimmune disease dataset (Figure 4.7). As a control, we tested for non-random distribution for 

a random set of genes and found that no disease pair was significant for non-random distribution 

(Figure 4.S11). Our results reported a similar story as observed via disPCA. Genes nominally 

significant in rheumatoid arthritis, type-1 diabetes and ankyolosing spondylitis were non-

randomly distributed in SLE and vice versa. We also found that genes nominally significant for 

one schizophrenia study were non-randomly distributed in a number of autoimmune diseases 

(Figure 4.7). These signals remained even after genes within 0.1cM of another gene were 

removed (Figure 4.S12) (Materials and Methods).  
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4.4 Discussion 

In this study we introduced a new method, disPCA, to explore the shared pathogenetics of 

various diseases and disease classes based on GWAS data. PCA has been widely used in 

population and medical genetics. Applied to genome-wide genotyping data, it can recapitulate 

European geography (Novembre, Johnson et al. 2008), has been used as a tool to assess and 

correct for population stratification in GWAS (Patterson, Price et al. 2006; Price, Patterson et al. 

2006) and has also been proposed as a tool for reducing the dimensionality of multiple 

phenotypes for association analysis (Klei, Luca et al. 2008). Our disPCA method considers PCA 

on a different type of matrix, whereby different GWASs are studied in the space of all genes. It 

can group GWASs of different diseases together based on gene-level association statistics, while 

accounting for biases due to heterogeneity in sample size, association method, genotyping array 

and other confounders between studies. This implementation of PCA weighs genes differently on 

each PC in a manner that distinguishes between diseases. Hence, the higher the level of shared 

pathogenetics between diseases, the closer they will be in PC space. This is in contrast to a 

previous method that weights all SNPs equally (Sirota, Schaub et al. 2009). In general, a 

correlation-based method is less powerful since the correlation between studies across all genes 

is low, even when the same disease is studied. For example, the correlation coefficient between 

the –log10 p-values of the two CD studies is 0.048, and it is 0.063 and 0.031 between ulcerative 

colitis and each of the two CD studies. Furthermore, the highest correlation between pairs of 

datasets was obtained for schizophrenia (0.13, p-value=2.2x10-16) while the lowest was obtained 

for type-2 diabetes (0.0031, p-value=0.73). These results show that there is less power when 

aggregating information across all genes and that disPCA is able to tease out and weigh the 

suitable set of genes underlying shared pathogenetics. 
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Though disPCA is designed to uncover shared disease etiology between diseases, other sources 

of correlation between datasets can also contribute to disPCA. Potential confounders include 

population structure, shared samples between datasets and technical artifacts. To minimize the 

impact of these confounders disPCA was only applied to studies of individuals with European 

ancestry and datasets that had no overlapping case or control data. We additionally accounted for 

technical artifacts introduced by the genotyping array, association method and sample size by 

regressing out variation in the data attributed to these sources (Materials and Methods). Though 

we cannot account for other potential confounders that are unknown, the remaining correlation 

between studies is likely to be due to a shared disease etiology. 

 

We applied disPCA to data from 31 GWAS that cover a range of diseases in four main classes: 

autoimmune diseases, cancers, neurological disorders and psychiatric disorders. We additionally 

analyzed GWASs on T2D, BMI and ischemic stroke. We first observed that different studies of 

the same diseases tend to lie closer together on the lead PCs (Figure 4.2). This is in support of 

studies of the same disease replicating many of the same signals of associations when samples 

are of similar ancestry. We additionally find that disPCA positions diseases within the same class 

closer together (Figure 4.4). This was especially the case for the major types of IBDs (i.e. 

Crohn’s disease and ulcerative colitis), which clustered close together (Figure 4.5). Between the 

different disease classes, disPCA found overlap between non-autoimmune diseases and traits, 

and suggests a connection between schizophrenia and some autoimmune diseases.   

 

Using the weightings of genes on each of the leading PCs, we performed disease and pathway 
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enrichment analysis. We found that PC1, which mainly splits autoimmune disorders from each 

other, is significantly enriched for genes associated to immune and autoimmune disorders. PC2, 

which splits IBD studies from studies of other diseases, is significantly enriched for genes in 

some inflammatory related pathways and genes associated with IBD. Furthermore, some neuron-

related pathways were associated to loadings on PC2. In particular, abnormal neurotrophins 

levels in the brain have been associated to schizophrenia (Durany, Michel et al. 2001; Buckley, 

Mahadik et al. 2007). Excluding the HLA region revealed significant enrichment for genes in 

other immune-related pathways. Though the specific analysis presented in this paper focused on 

the top two PCs, further PCs estimated by disPCA can be examined. For example, PC4 of 

disPCA on all GWASs distinguishes rheumatoid arthritis from other diseases (Figure 4.S13). 

Pathway enrichment analysis highlighted the calcineurin pathway (FDR = 0.182), which 

involves t-cell activation. Additionally, though schizophrenia and vitiligo datasets are further 

apart on the first two PCs, each pair of datasets is clustered closer together on PC3 and PC4. 

Altogether these results support the validity of the enrichment analysis based on disPCA. The 

analysis in turn also raises new hypotheses of disease etiology by pointing to additional pathways 

and enrichment for other diseases that were not previously observed. 

 

Prompted by the results of disPCA, we further explored shared pathogenetics by testing for the 

non-random distribution of association statistics between pairs of disease studies (Figure 4.7). 

Autoimmune diseases show non-random distribution of association statistics with one another. 

Interestingly, genes nominally associated with one of the schizophrenia studies were non-

randomly distributed in studies of several autoimmune diseases (i.e. ankyolosing spondylitis, 

systemic lupus erythematosus, and T1D). This supports our disPCA results above and is in 
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agreement with epidemiological evidence for a relationship between autoimmune diseases and 

schizophrenia (Benros, Eaton et al. 2013). This relationship was not observed in the other 

schizophrenia study, which may be due to a number of factors such as a lack of power. Though, 

if indeed autoimmune diseases and schizophrenia share disease etiology, then just as one would 

not include individuals with ulcerative colitis as controls for a Crohn’s disease GWAS since they 

both are IBDs, one should also be wary of including individuals with schizophrenia as controls in 

an autoimmune GWAS (and vice versa) as doing so may decrease power in loci implicated in 

both diseases.  

 

Finally, we make a few recommendations for future applications of disPCA to additional studies: 

(1) Biases can be introduced when studies share sample data; (2) As disPCA maximizes variance 

across diseases, genes that are implicated in all analyzed diseases will not contribute to the lead 

PC as they do not distinguish diseases from each other; (3) While here we only focused on using 

the strength of association and on gene-level signals, the method itself is highly flexible. One can 

further utilize the direction of association (protective versus deleterious), the heritability at each 

locus (Gusev, Bhatia et al. 2013), an analysis at the pathway-level or in linkage-disequilibrium 

blocks, and/or include other non-genic functional elements; (4) disPCA can be used to generate 

new hypotheses, which can then be tested by conducting more focused association studies in 

independent data or by using its output to better combine different diseases in an independent 

meta-analysis. In conclusion, disPCA offers users a unique general overview of the disease 

landscape by studying their distinct and shared pathogenetics and flagging pathways and genes 

for further investigation. disPCA’s flexibility and computational efficiency proves itself as an 

excellent tool to be applied to additional diseases and disease classes to further our knowledge of 



 
 

 
 

113 

shared pathogenetics.  
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4.5 Figures 

 
Figure 4.1. disPCA of ten simulated diseases.  
The p-values for ten diseases were simulated for 10,000 genes (Materials and Methods). Class A 
diseases had p-values uniformly distributed between 0 and 0.05 for 40 genes, while two diseases 
from class A (A_1, A_2) and two diseases from class B (B_1, B_2) had p-values similarly 
distributed for a separate 40 genes (Materials and Methods). All other diseases had p-values that 
were randomly distributed between 0 and 1. A) The simulated data is displayed on PC1 and PC2. 
PC1 separates (A_1, A_2, B_1, B_2) from all other diseases, while PC2 separates class A diseases 
from class B diseases. B) Dendrogram derived from a clustering analysis based on the Euclidean 
distance between datasets in the space of the first two PCs (represented as the height of the 
branches). C) PC1 and PC2 account for a similar amount of variance. D) Loadings for each gene 
are displayed sequentially for PC1. The 40 genes contributing to pleiotropy between the two 
diseases in each class are enriched for larger absolute loadings. E) Similar to (D), with loadings 
for PC2 displayed. The 40 genes contributing to correlation between diseases in each class and 
are also enriched for larger loadings.  
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Figure 4.2. disPCA of datasets of the same disease. 
A) Pairs of datasets of the same autoimmune diseases and schizophrenia are displayed on PC1 
and PC2. Dataset labels are indicated in the form of disease-type_ study-name. The size of points 
is proportional to the sample size of the original study (Table 4.S2). Diseases include systemic 
lupus erythematosus (SLE), vitiligo (Vit), multiple sclerosis (MS), schizophrenia (Schizo) and 
Crohn’s disease (CD). Datasets of the same diseases tend to lie closer together on PC1 and PC2. 
B) The portion of variance explained by each PC is displayed. Three additional PCs explain 0% 
of the variance corresponding to the number of confounders we accounted for (Materials and 
Methods). C) The weightings for genes on PC1 are displayed and ordered according to their 
weights. D) Similar to (C) where loadings are for PC2.  
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Figure 4.3. Dendrogram of datasets of the same disease.  
Hierarchical clustering was applied to the Euclidean distance between datasets in the first two 
PCs presented in Figure 4.2 (Materials and Methods). The height of the branches represents the 
Euclidean distance between datasets in the space of the first two PCs. Datasets of the same 
diseases are clustered together.    
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Figure 4.4. disPCA of all diseases and traits.  
A) Autoimmune diseases (purple), cancers (pink), psychiatric disorders (yellow), neurological 
disorders (green), and other diseases and traits (grey) are shown on PC1 and PC2. PC1 accounts 
for 4.48% of the variance, while PC2 accounts for 4.21%. Additional diseases include 
Alzheimer’s disease (Alz), amyotrophic lateral sclerosis (ALS), ankyolosing spondylitis (AS), 
attention deficit hyperactivity disorder (ADHD), Behcet’s disease (Behcets), body mass index 
(BMI), breast cancer (BreastC), celiac disease (CeliacD), ischemic stroke (IscStroke), major 
depression (MajDep), Parkinson’s disease (Parkin), prostate cancer (ProstateC), psoriasis (Psor), 
rheumatoid arthritis (RA), type-1 diabetes (T1D), type-2 diabetes (T2D), ulcerative colitis (UC). 
PC1 clusters celiac disease and SLE together, while PC2 separates inflammatory bowel diseases 
from other diseases and traits. B) The portion of variance explained by each PC is displayed. 
Three additional PCs explain 0% of the variance corresponding to the number of confounders we 
accounted for (Materials and Methods). C) The weightings for genes on PC1 are displayed and 
ordered according to their weights. D) Similar to (C) where loadings are for PC2. 
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Figure 4.5. Dendrogram of datasets of all diseases and traits.  
Dendrogram derived from hierarchical clustering analysis applied to distance (in PC space) 
between datasets presented in Figure 4.4. Inflammatory bowel diseases are clustered together, in 
addition to SLE and celiac disease. 
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Figure 4.6. disPCA of all diseases and traits excluding the HLA and surrounding region.  
A) Similar to Figure 4.4 where genes in the HLA and surrounding region (Materials and 
Methods) were removed. Though IBD remains separated as in the original disPCA, the clustering 
of T1D and SLE is no longer captured by the top two PC’s. B) The portion of variance explained 
by each PC is displayed. C) The weightings for genes on PC1 are displayed and ordered 
according to their weights. D) Similar to (C) where loadings are for PC2.  
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Figure 4.7. Non-random distribution of genes for all analyzed datasets from Figure 4.  
Genes nominally significant for diseases on the y-axis were tested for non-random distribution in 
diseases on the x-axis (Materials and Methods), with –log10 presented on the color scale on the 
right. White entries denote p-values < 1x10-17. The most significant results are for pairs of 
similar diseases and between pairs of autoimmune diseases. In addition, pairs between some 
autoimmune diseases and schizophrenia also display significant results.  
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Figure 4.S1. Dendrogram derived from clustering analysis of datasets of the same diseases 
using physical distance mapping.  
SNPs were mapped to genes if they were within 10kb of the gene. Clustering analysis of 
resulting disPCA revealed the same clusters as disPCA with genetic coordinates (Figure 4.3).  
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Figure 4.S2. Dendrogram of clustering analysis of datasets of the same diseases with the 
truncated product method.  
Similar to Figure 4.3, with the truncated product method used to combine SNP p-values per 
gene.  
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Figure 4.S3. Dendrogram of clustering analysis of datasets of the same diseases with 
truncated tail strength method.  
Similar to Figure 4.3, with the truncated tail strength method used to combine SNP p-values per 
gene. 
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Figure 4.S4. Simulated diseases with ten nominally significant genes.  
A) Similar to Figure 4.1 in main text with only ten nominally significant genes for each set of 
pleiotropic diseases (Materials and Methods). Clustering of the diseases sets is not observed. B) 
Dendrogram derived from clustering analysis as similarly presented in Figure 4.1b. C) The 
portion of variance explained by each PC is displayed. D-E) The loadings for PC1 and PC2 are 
displayed after sorting genes according to their loadings. 
 



 
 

 
 

125 

 
Figure 4.S5. Simulated diseases with twenty nominally significant genes.  
A) Similar to Figure 4.1 with twenty nominally significant genes for each set of pleiotropic 
diseases. As in Figure 4.S2, diseases are not clustering according to the sets though nominally 
significant genes are enriched for larger absolute loadings (Materials and Methods). B) 
Dendrogram derived from clustering analysis as similarly presented in Figure 4.1b. C) The 
portion of variance explained by each PC is displayed. D-E) The loadings for PC1 and PC2 are 
displayed after sorting genes according to their loadings. 
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Figure 4.S6. Simulated diseases with thirty nominally significant genes.  
A) Similar to Figure 4.1 with thirty nominally significant genes for each set of pleiotropic 
diseases. The proper clustering of diseases is beginning to emerge. B) Dendrogram derived 
clustering analysis as similarly presented in Figure 4.1b. C) The portion of variance explained by 
each PC is displayed. D-E) The loadings for PC1 and PC2 are displayed after sorting genes 
according to their loadings. Genes with nominally significant p-values are enriched for larger 
absolute loadings. 
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Figure 4.S7. Simulated diseases with 100 and 200 nominally significant genes.  
A) Similar to Figure 4.1 with 100 and 200 nominally significant genes for the two sets of 
pleiotropic diseases. Disease sets are tightly clustered and the first two PCs explain a larger 
portion of the variance compared to other PCs. B) Dendrogram derived from clustering analysis 
as similarly presented in Figure 4.1b. C) The portion of variance explained by each PC is 
displayed. D-E) The loadings for PC1 and PC2 are displayed after sorting genes according to 
their loadings.  
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Figure 4.S8. Dendrogram of clustering analysis of Replication Set 1 datasets.  
Clustering of the distance in PC space between datasets in Replication Set 1. Diseases include 
vitiligo (Vit), multiple sclerosis (MS), schizophrenia (Schizo) and Crohn’s disease (CD). 
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Figure 4.S9. Dendrogram of clustering analysis of Replication Set 2 datasets.  
Similar to Figure 4.S8 with datasets from Replication Set 2.   
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Figure 4.S10. Dendrogram of clustering analysis of all diseases and traits excluding the 
HLA and surrounding regions.  
Figure is similar to Figure 4.5, with clustering analysis of distance between datasets based on the 
disPCA between all diseases and traits presented in Table 4.S2 after removing the HLA and 
surrounding regions. 
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Figure 4.S11. Non-random distribution of randomly chosen genes.  
A random subset of genes were chosen to be tested for non-random distribution in diseases on 
the x-axis, with –log10 presented on the color scale on the right. White entries denote p-values < 
1x10-17.  
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Figure 4.S12. Non-random distribution for distance pruned set of genes.  
Genes were filtered such that no two genes were within 0.1cM of another. The remaining subset 
of genes was then tested for non-random distribution in diseases on the x-axis. The –log10 of the 
p-value is presented on the color scale and white entries denote p-values < 1x10-17. Results are 
largely similar to the original without filtering of nearby genes.  
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Figure 4.S13. PC3 and PC4 of all diseases disPCA.  
Similar to Figure 4.4 with data being presented for PC3 and PC4. A) PC1 accounts for 4.18% of 
the variance, while PC2 accounts for 4.08%. PC1 clusters celiac disease and SLE together, while 
PC2 separates inflammatory bowel diseases from other diseases and traits. B) The portion of 
variance explained by each PC is displayed. C) The weightings for genes on PC1 are displayed 
and ordered according to their weights. D) Similar to (C) where loadings are for PC2.  
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4.6 Tables  

PC Disease P-value* 

P-value 
(distance 
pruned)* 

1 Lupus erythematosus 1.59x10-6 3.0x10-8 
  Arthritis 1.72x10-6 >0.01 
  Connective tissue diseases 5.00x10-4 >0.01 
  Autoimmune diseases 2.6x10-3 2.05x10-6 
  Rheumatic Diseases 2.6x10-3 >0.01 
  Immune system diseases 6.5x10-3 2.2x10-5 

    
2 Gastroenteritis 5.79x10-13 2.92x10-9 

  Crohn's Disease 2.12x10-12 1.73x10-8 

  
Inflammatory bowel 
diseases 1.65x10-11 7.53x10-8 

  Fistula 4.00x10-9 1.37x10-7 
  Gastrointestinal diseases 3.49x10-8 7.16x10-8 
  Celiac disease 2.75x10-5 7.8x10-6 
  Multiple sclerosis 2x10-3 7x10-4 
  Skin diseases, genetic 2.3x10-3 8.1x10-3 
  Rheumatic diseases 6.4x10-3 2.3x10-3 
  Autoimune diseases 9.6x10-3 2.7x10-3 

* Bonferroni adjusted for multiple testing 
 
Table 4.1. Disease enrichment analysis for disPCA (Figure 4.1).  
Table shows disease enrichment results for all diseases significantly enriched with an adjusted p-
value < 0.01. The distance pruned p-values refers to disease enrichment after removing the latter 
out of a pair of genes that were within 0.1cM of each other.  
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PC Pathway FDR (q-value) 

1 Antigen processing and presentation 0.034 

  
Intestinal immune network for IgA 
production 0.042 

  Trk-A pathway 0.169 
  CK1 pathway 0.213 
  DREAM pathway 0.228 

  
Valine leucine and isoleucine 
biosynthesis 0.228 

  O-glycan biosynthesis 0.243 
  Folate biosynthesis 0.246 

   
2 NOD-like receptor signaling pathway <1x10-4 

  
Intestinal immune network for IgA 
production 0.074 

  Neurotrophin signaling pathway 0.165 
  Chemokine signaling pathway 0.195 
  Fc epsilon RI signaling pathway 0.232 
  Terpenoid backbone biosynthesis 0.232 
  JAK-STAT signaling pathway 0.238 

 
Table 4.2. Gene enrichment analysis for disPCA.  
Table shows pathways that are enriched in the disPCA analysis based on the GSEA analysis.  
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PC Pathway FDR q-value 

1 NOD-like receptor signaling pathway 0.006 

  
Local acute inflammatory response 
pathway 0.143 

   
2 Proteasome pathway 0.077 

  Th1-Th2 pathway 0.102 
  Proximal tubule bicarbonate reclamation 0.135 
  Adherens junction 0.142 
  RNA polymerase 0.171 
  CTLA-4 pathway 0.173 

 
Table 4.3. Gene enrichment analysis for disPCA without the HLA region.  
Table shows pathways that are enriched in the disPCA analysis based on the GSEA analysis after 
removing genes in the HLA and surrounding region.  
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Pairs of datasets of the same disease 

PC Ranked by Correlation p-value 
1 Physical 0.62 1.7x10-6 

  Genetic 0.69 3.6x10-8 
2 Physical 0.51 1.0x10-4 

  Genetic 0.31 0.0287 
mean(PC1,PC2) Physical 0.74 1.1x10-9 
  Genetic 0.67 8.4x10-8 

 
Table 4.S1. Comparison of loadings between disPCA with mapping based on physical or 
genetic coordinates.  
Loadings for the top 50 genes ranked by either a physical or genetic coordinates based disPCA 
were compared. ‘Correlation’ denotes the Pearson’s correlation coefficient with its significance 
denoted in the ‘p-value’ column. Rows denoted by ‘mean(PC1,PC2)’ indicate the correlation 
between the 50 genes with the largest average loading of PC1 and PC2.  
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Study Name Disease Obtained via 

Association 
Method Array 

Sample 
Size 

ALS 
Finland(Laaksovirta, 
Peuralinna et al. 2010) 
(ALS_Fin) ALS dbGaP Logistic regression 

Overlap 
between 
Illumina 
1M and 
CNV 370 973 

ALS Irish(Cronin, 
Berger et al. 
2008)(ALS_Irish) ALS dbGaP Logistic regression 

Illumina 
550k 432 

Duke 
Alzheimer's(Heinzen, 
Need et al. 2010) 
(Alz_Duke) 

Alzheimer's 
Disease 

http://humangeno
me.duke.edu/avail
able-datasets Logistic regression 

Illumina 
550 699 

GenADA (Li, Wetten et 
al. 2008)(Alz_GenADA) 

Alzheimer's 
Disease dbGaP Logistic regression 

Affymetrix 
400 1588 

WTCCC2 AS(Evans, 
Spencer et al. 2011) 
(AS_WT) 

Ankyolosing 
Spondylitis WTCCC Logistic regression 

Illumina 
1M 2732 

ADHD PGC(Neale, 
Medland et al. 2010) 
(ADHD_PGC) ADHD PGC Meta-analysis Imputation 5415 
Behcet's 
GWAS(Remmers, 
Cosan et al. 2010) 
(Behcets_GWAS) Bechet's dbGaP Chis-sq 

Illumina 
CNV 370 2493 

BMI Stampeed (Sabatti, 
Service et al. 
2009)(BMI_Stampeed) BMI dbGaP Linear regression 

Illumina  
CNV 370 5415 

BMI Sardinia(Scuteri, 
Sanna et al. 2007) 
(BMI_Sardin) BMI dbGaP Merlin 

Affymetrix 
500 1412 

CGEMS Breast 
Cancer(Hunter, Kraft et 
al. 2007) 
(BreastC_CGEMS) Breast Cancer dbGaP Logistic regression 

Illumina 
550 2287 

CIDR Celiac(Ahn, Ding 
et al. 2012) 
(CeliacD_CIDR) Celiac disease dbGaP Logistic regression 

Illumina 
660 2246 

NIDDK IBD(Duerr, 
Taylor et al. 2006) 
(CD_NIDDK) 

Crohn's 
disease dbGaP Chis-sq 

Illumina 
300 1028 

WTCCC CD( !The 
Wellcome Trust Case 
Control Consortium 
2007) (CD_WTCCC) 

Crohn's 
disease WTCCC Logistic regression 

Affymetrix 
500 3293 

Ischemic 
Stroke(Matarin, Brown 
et al. 2007) (IscStroke) 

Ischemic 
Stroke dbGaP Logistic regression 

Illumina 
300 485 

Major Depression 
GWAS(Boomsma, 

Major 
depression dbGaP Logistic regression 

Perlgen 
600k 3741 
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Willemsen et al. 2008) 
(MajDep) 
WTCCC2 MS(Sawcer, 
Hellenthal et al. 2011) 
(MS_WT) 

Multiple 
Sclerosis WTCCC Logistic regression 

Illumina 
1M 4055 

GeneMSA(Baranzini, 
Wang et al. 2009) 
(MS_GeneMSA) 

Multiple 
Sclerosis dbGaP Logistic Regression 

Illumina 
550 2000 

CIDR 
Parkinson's(Karamoham
ed, Golbe et al. 2005; 
Nichols, Pankratz et al. 
2005) (Parkin_CIDR) Parkinson's dbGaP Logistic regression 

Illumina 
CNV 370 1991 

CASP(Helms, Cao et al. 
2003; Nair, Stuart et al. 
2006; Nair, Duffin et al. 
2009) (Psor_CASP) Psoriasis dbGaP Chi-sq 

Perlgen 
600k 2825 

WTCCC RA ( !The 
Wellcome Trust Case 
Control Consortium 
2007) (RA_WTCCC) 

Rheumatoid 
arthritis WTCCC Logistic regression  

Affymetrix 
500 3481 

Schizophrenia 
GWAS(Suarez, Duan et 
al. 2006) 
(Schizo_GWAS) Schizophrenia dbGaP Chi-sq 

Affymetrix 
6.0 2659 

PGC 
Schizophrenia(Schizoph
renia Psychiatric 
Genome-Wide 
Association Study 
(GWAS) Consortium 
2011) (Schizo_PGC) Schizophrenia PGC Meta-analysis Imputation 21,856 
SLEGEN(Harley, 
Alarcon-Riquelme et al. 
2008) (SLE_SLEGEN) SLE dbGaP additive model 

Illumina 
300 297 

SLE GWAS(Hom, 
Graham et al. 2008) 
(SLE_GWAS) SLE dbGaP Chi-sq 

Illumina 
550 4651 

T2D Fusion(Scott, 
Mohlke et al. 2007) 
(T2D_Fusion) T2D dbGaP Logistic regression 

Illumina 
300 1706 

T2D 
Scandinavia(Saxena, 
Voight et al. 2007) 
(T2D_Scandinavia) T2D 

http://www.broad
institute.org/diabe
tes/scandinavs/typ
e2.html 

Cochran-Mantel-
Haenszel 

Affymetrix 
500 3000 

WTCCC2 UC(Barrett, 
Lee et al. 2009) 
(UC_WT) 

Ulcerative 
colitis WTCCC Logistic regression 

Affymetrix 
6.0 404 

VitGene(Jin, Birlea et 
al. 2010) (Vit_GWAS1) Vitiligo dbGaP Logistic regression 

Illumina 
610 4327 

Vitiligo GWAS2(Jin, 
Birlea et al. 2012) 
(Vit_GWAS2) Vitiligo Collaboration Logistic regression 

Illumina 
660 3632 
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Table 4.S2. Dataset attributes.  
Various attributes of datasets utilized in this study.  
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Replication 

PC Ranked by 
Correlatio
n p-value 

1 Replication 1 -0.056 0.7 
  Replication 2 0.28 0.049 

2 Replication 1  0.479 4.3x10-4 
  Replication 2 0.634 7.7x10-7 
mean(PC1,PC2) Replication 1  0.444 1.2x10-3 
  Replication 2 0.652 7.7x10-7 

 
Table 4.S3. Comparison of loadings between Replication Sets 1 and 2.  
Loadings for the top 50 genes ranked by either Replication Set 1 or Replication Set 2 were 
compared. ‘Correlation’ denotes the Pearson’s correlation coefficient with its significance 
denoted in the ‘p-value’ column. Rows denoted by ‘mean(PC1,PC2)’ indicate the correlation 
between the 50 genes with the largest average loading of PC1 and PC2. 
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PC Pathway FDR (q-value) 

1 
Intestinal immune network for IgA 
production 0.028 

  Antigen processing and presentation 0.057 
  Spliceosome 0.141 
  Inositol phosphate metabolism 0.156 
  Cell adhesion molecules 0.19 
  

2 NOD-like receptor signaling pathway 0.152 
  GH pathway 0.207 
  Insulin pathway 0.211 
  CardiacEGF pathway 0.213 
  IL2 pathway 0.226 
  NFAT pathway 0.236 
  Dorso ventral axis formation 0.236 
  IL2RB pathway 0.245 
  IGF-1 pathway 0.246 

 
Table 4.S4. Pathway enrichment after filtering nearby genes.  
Pathway enrichment was applied to a subset of genes that were located greater than 0.1cM from 
each other 
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