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Word problems are difficult. Although children eventually master 

computational skills, problem solving skills remain poor through adulthood. 

Two different types of manipulations were attempted to affect rates of 

successful word problem solution. First we made changes to the word 

problems themselves to make them more comprehensible for students, and 

therefore easier to solve. Second, students were given one of two types of 

arithmetic practice and were compared with a third group of students who 

received no additional practice to determine whether such practice could 

assist students with solving arithmetic word problems.  

First- and second-grade students were tested on three different types of 

single-step arithmetic word problems: a set of Compare problems, a set of six 

typically worded Change problems and a set of six Change problems whose 

wording was clarified with simple temporal, semantic and referential 

clarifications. These changes were intended to make the action in the problem 

easier to follow so students could model the problems more successfully. The 

percentage of students answering correctly on different problems was 

compared. 

Students were then randomly assigned to one of two different 

arithmetic worksheet conditions or to a third no practice condition. 

Worksheets consisted of either standard arithmetic practice or computational 



 

practice requiring students to solve for something other than the result. After 

completing all of the worksheets, students were tested on a set of word 

problems arithmetically identical to those presented five months earlier. 

Results of clarification were mixed. Students had somewhat more 

difficulty with solve-for-result problems which are traditionally the type of 

word problems at which students perform best. Students were more 

successful at solving clarified solve-for-start-set problems. There was also a 

curious trend for students to be more successful at subtraction problems than 

addition problems of the same type. This was more pronounced with clarified 

problems. 

Second-grade students showed no effect of worksheet condition. First-

grade students who were assigned to the non-canonical worksheet condition 

demonstrated a marked improvement on typically worded change problems. 

Reasons why the arithmetic practice did not also have an effect on clarified 

problems need to be explored further. 
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CHAPTER ONE:  

INTRODUCTION (BACKGROUND) 

 

It is commonly held belief that the mathematical abilities of children in 

the United States lags behind that of their age-matched peers in many other 

industrialized nations, especially Asian countries such as Japan. This 

impression is supported by the results of recent international assessments of 

mathematical achievement which tested 13- and 17-year-olds in several 

countries (Robitaille & Travers, 1992). Why? What is so difficult about 

mathematics? What sorts of things do children make errors on? Are there 

systematic patterns to those errors? 

Informal conversations with elementary school teachers about which 

mathematical concepts children find difficult seem to indicate just about 

everything: fractions; decimals; long division; multi-digit multiplication; word 

problems; and multi-digit arithmetic, especially when regrouping (i.e., 

borrowing and/or carrying) is involved (Sherwood, 1997; Blanco, 1997). 

Single-digit addition and subtraction facts take months to memorize and 

multi-digit addition and subtraction cause difficulty if regrouping is involved. 

This difficulty continues to manifest itself when multiplication and division, 

especially long division, are introduced. When arithmetic moves beyond 

integers to decimals, fractions and percentages, many children seem to 

become hopelessly confused. Children also have difficulty with word 

problems from the time they are introduced into the curriculum through every 

level of mathematics instruction.  

What sorts of errors do children make? The results of the Fourth 

National Assessment of Educational Progress (NAEP) suggest that children 
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eventually become relatively good at low-level skills such as computation, but 

remain relatively poor at high-level skills such as problem solving (Mayer & 

Hegarty, 1996; Kouba, Brown, Carpenter, Lindquist, Silver & Swafford, 1988). 

Kouba et. al., (1988) attribute the difficulty that young children (third grade 

students) have with arithmetic to a lack of place value skills. It is easy to see 

that an incomplete or fragile understanding of how the various digits of a 

multi-digit numeral relate to one another could lead to errors in regrouping 

and to understanding decimals later on. Eventually, American children seem 

to overcome this difficulty; the results of the 4th NAEP indicate that high 

school students (seventh and eleventh graders) display increasing 

computational competence. Difficulties with word problems, however, seem 

to plague children up to and through their college years (Mayer & Hegarty, 

1996), and one would presume, into adulthood. Since everyday problems 

generally are not set out in symbolic form, one must determine the formula 

necessary prior to solution; this has very real consequences. 

This dissertation focuses upon the difficulties young children have 

understanding word problems, specifically addition and subtraction word 

problems, for which there is a broad literature. Although children certainly 

have difficulty with more advanced mathematical concepts such as fractions, 

algebra, and geometry, there is sufficient evidence that their mastery of basic 

mathematical concepts is fragile enough that it seems logical to focus on why 

those basic abilities are difficult and what might be done to improve 

competence on those tasks. If one tries to build upon a faulty foundation, one 

can expect to have problems with the building later. Knowledge is no 

different. 
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This dissertation discusses reasons that addition and subtraction word 

problems may be difficult for children to master. The advantage for Asian 

students has generally been attributed to social and cultural factors, family 

and culture more supportive and more demanding of academic excellence. 

Other cross-national studies document that this differential in mathematical 

ability between American and Asian children exists as early as first-grade or 

kindergarten (Stevenson, Lee & Stigler, 1986) too early for formalized 

schooling to be the cause, leading to the suggestion that Japanese students 

might have an innate cognitive superiority (Lynn, 1982, as cited by Miura, 

1987) but Miura and colleagues suggest that the regular structure of number 

words in many Asian languages may result in a difference in the structure of 

numerical understanding, in particular, understanding of place value. The 

ramifications of place value understanding may affect the acquisition of more 

advanced mathematical concepts later. 

Difficulty with word problems probably has other bases. The structure 

of addition and subtraction word problems has been studied extensively. 

Models of children’s solutions of addition and subtraction word problems 

have attempted to account for children’s difficulties in terms of the surface 

characteristics or underlying semantic structure of the problem. Experiments 

involving college students suggest that as the wording of problems becomes 

more complex (i.e., as the arithmetic solution needed to solve the problem 

becomes less obvious from a direct reading), solution accuracy decreases. This 

might be the result of text comprehension difficulties and/or a lack of practice.  
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Why study word problems? 

What makes word problems interesting to study? Word problems are 

interesting because so many people think word problems are difficult. If one 

asks a group of people “what’s the hardest thing about math?” two answers 

emerge with frequency: fractions and word problems. Furthermore, people 

who cite fractions as being the most difficult thing about math will frequently 

change their minds and agree that word problems are the most difficult thing 

if they hear them suggested. 

It is not just that people think that word problems are hard. There is a 

considerable body of evidence to support the conclusion that word problems 

actually are difficult. The results of recent national and international 

assessments of mathematics achievement (e.g., Dossey, Mullis, Lindquist & 

Chambers, 1988; LaPointe, Meade & Phillips, 1989; Robitaille & Garden, 1989; 

Stevenson & Stigler, 1992; Stigler, Lee & Stevenson, 1990) make it clear that 

although many students perform well on tests of low-level skills such as 

arithmetic computation, in general, students in the United States tend to 

perform poorly on tests of high-level skills such as mathematical problem 

solving. For example, nearly all of the 17-year-olds tested in the 4th NAEP 

were able to solve basic arithmetic computation problems such as 604-207=?, 

but nearly all failed to solve multi-step word problems such as (Dossey et. al., 

1988): 

Christine borrowed $850 for one year.  

If she paid 12% simple interest on the loan, 

what was the total amount she repaid? 

Although many students are able to carry out basic mathematical 

procedures when problems are presented in symbolic form, they appear to 
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have difficulty applying these procedures when problems are presented in 

words. In short, these assessments suggest that the difficulty appears to be in 

understanding word problems rather than in executing arithmetic procedures.  

So, what makes word problems so difficult? It’s difficult to extract the 

math (the arithmetic) from the words. Problem wording is often terse. The 

concise language in which math problems tend to be worded can be 

somewhat cryptic until one learns the language of them. The correct math 

problem necessary for solution is not always obvious. Extensive practice at 

simpler problem types may reinforce solution practices that are not as flexible 

or general as needed for solving more complex problems 

Why should we care? Word problems are important because the real 

world does not often hand us arithmetic, except perhaps in the case of 

balancing a checkbook. For the most part, real world problems are story 

problems. In order to solve them, one must first figure out what the problem is 

asking and translate that into a mathematical sentence or formula which then 

needs to be solved. Only after the problem has been identified can we then  go 

about actually solving the resulting arithmetic problem. 

What can we do about it? In order to solve the problem we have to 

understand why children fail to solve problems correctly. Since the difficulty 

with word problem solution begins early, we will focus on children. Apart 

from difficulties with computation, which young elementary school children 

still have, understandably, what are the difficulties they have with the 

problems? Is it a failure to apply the necessary arithmetic? Do students 

misunderstand what the problem is asking and if so, how are they 

interpreting the problem? What do they think the problems say? 
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What is mathematical problem solving? 

A problem exists when a problem solver has a goal but does not know 

how to reach that goal (Duncker, 1945, as cited in Mayer & Hegarty, 1996). 

There are three elements involved in the description of a problem – the given 

state, the goal state, and the allowable operations. Problem solving, or 

thinking, occurs as the problem solver figures out how to get from the given 

state to the goal state (i.e., figures out how to solve the problem). Problem 

solving refers to the processes enabling a problem solver from a state of not 

knowing how to solve a problem to a state of knowing how to solve it. A 

problem may be categorized as a mathematical problem whenever a 

mathematical procedure (i.e., an arithmetic or algebraic procedure) is needed 

to solve the problem. Thus mathematical problem solving is the cognitive 

process of figuring out how to solve a mathematical problem that one does not 

already know how to solve.  

According to Riley, Greeno and Heller (1983), a word problem 

identifies some quantities and describes a relationship among them. Although 

as adults, we tend to think of word problems as text based problems 

describing a situation requiring solution, problems vary a great deal in 

elementary school textbooks from problems displayed entirely with pictures 

to problems described entirely in words and many intermediary forms 

combining words and pictures to varying degrees (Stigler, Fuson, Ham & 

Kim, 1986). Since we are discussing the difficulties that young children have 

with word problems, we should define word problems in an appropriately 

broad manner. For the purposes of their analysis, Stigler et. al., (1986) defined 

a word problem as consisting of 2 or more premises and a question, each 

presented in verbal form or in an iconic form isomeric to a verbal form.  
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Word problems seem to be difficult throughout life. Although students 

for the most part seem to eventually master simpler ones, multi-step problems 

and problems with difficult language or inconsistent wording are problematic 

even for college students (Mayer & Hegarty, 1996). On the other hand, 

students are reasonably good at solving the corresponding equation. This is of 

concern because life generally doesn’t hand us formulas to be solved; we have 

to determine what the formula is that needs to be solved and then we need to 

solve it.  

In the problem solving literature it is customary to distinguish between 

two major kinds of problem-solving processes - representation and solution. 

Representation occurs when a problem solver seeks to understand the 

problem and solution occurs when a problem solver actually carries out 

actions needed to solve the problem. There is growing evidence that most 

problem solvers have more difficulty constructing a useful problem 

representation than executing a problem solution (Cardelle-Elawar, 1992; 

Cummins, Kintsch, Reisser & Weimer, 1988; DeCorte, Verschaffel & DeWin, 

1985). Mayer (1985, 1992, 1994) has proposed four main component processes 

in mathematical problem solving: translating, integrating, planning, and 

executing. Translating involves constructing a mental representation of each 

statement in the problem. Integrating involves constructing a mental 

representation of the situation described in the problem. Planning involves 

devising a plan for how to solve the problem. Executing involves carrying out 

the plan, including computations. The first two processes, translation and 

integration, are involved in problem representation. Planning is a natural 

product of problem representation. Students frequently correctly devise and 

carry out computational plans based on an incorrect representation of the 
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problem. Mayer and Hegarty (1996) maintain that an important key to 

mathematical problem solving rests in the processes by which students seek to 

understand math problems. They contend that the major creative work in 

solving word problems rests in understanding what the problem means; 

carrying out a solution plan follows naturally from the problem solver’s 

representation of the problem.  

This dissertation concentrates on addition and subtraction word 

problems for several reasons. First, there is a generally accepted categorization 

schema that has been worked out. Next, it is generally accepted that 

competence in addition and subtraction skills is necessary before attempting 

to teach multiplication and division. Multiplication and division word 

problems have also been studied, but not to the extent of addition and 

subtraction word problems. It also seems logical to study the most basic 

mathematical concepts children have difficulty with as understanding these 

difficulties may shed light on what is difficult about concepts introduced later, 

or more hopefully, a better grounding in those basics may improve 

performance on other skills.  

Most current research attempts to examine the processes that children 

use to solve arithmetic problems (Carpenter & Moser, 1982). The development 

of basic addition and subtraction concepts is described in terms of levels of 

increasingly sophisticated and efficient problem solving strategies. Attempts 

to characterize word problems have focused either on syntactic variables, the 

semantic structure of the problem, or some combination of the two. Syntactic 

variables such as the number of words in a problem, the sequence of 

information, and the presence of words that cue a particular operation do 

significantly affect problem difficulty (see Carpenter & Moser, 1982 for a 
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review of the research on problem difficulty), but most of the evidence 

available suggests that the semantic structure of a problem is much more 

important than syntax in determining the processes that children use in their 

solutions (Carpenter, 1985; Carpenter, Ansell, Franke, Fennema & Weisbeck, 

1993). The semantic structure of addition and subtraction word problems has 

been classified and described in a number of different ways. Many different 

terms have been given to identified situations, but there is considerable 

overlap in the situations used in most category systems. Riley et al., (1983) 

introduced a classification scheme for simple addition and subtraction word 

problems that distinguishes four broad categories of problems based on the 

semantic structure of the problems: Change, Combine, Compare and Equalize 

problems (see Table 1.1).  

Change problems refer to dynamic situations in which some event 

changes the value of a quantity. Combine problems refer to situations 

involving two quantities that are considered either separately or in 

combination. Compare problems involve two quantities that are compared 

and the difference between them. Equalize problems are a hybrid of Compare 

and Change problems (Carpenter & Moser, 1992).  

Fuson (1992a, b) notes that although most category systems collapse the 

static/dynamic distinction into the binary/unary distinction, yielding only 

static binary Combine and Compare problems and dynamic Change 

problems, dynamic binary forms of Combine and Compare problems can be 

constructed and are frequently easier to solve than static forms because the 

actions in the problems cue solution procedures. Equalize problems are active 

binary Compare problems in which the difference between two quantities is 

expressed as unary change actions rather than as a static state as in Compare 
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problems. Dynamic Combine problems can be created by making the 

combining explicit rather than implicit using class inclusion terms or with 

words such as “altogether.” 

 

Table 1.1 Classification of whole number addition and subtraction word 
problems 

 CHANGE 
Join or Add To Separate or Take From  

Result Unknown Result Unknown  
Pete had 3 apples. Ann gave 
him 5 more apples. How 
many apples does Pete have 
now? 

Joe had 8 marbles. Then he 
gave 5 marbles to Tom. How 
many marbles does Joe have 
now? 

 

Change Unknown Change Unknown  
Kathy had 5 pencils. How 
many more pencils does she 
need so she has 7 pencils 
altogether? 

Fred had 11 pieces of candy. 
He lost some of the pieces. 
Now he has 4 pieces of candy. 
How many pieces of candy 
did Fred lose? 

 

Start Unknown Start Unknown  
Bob got 2 cookies. Now he 
has 5 cookies. How many 
cookies did Bob have in the 
beginning? 

Karen had some word 
problems. She used 22 of 
them in this table. She still has 
79 word problems. How 
many word problems did she 
have to start with? 

 

COMBINE physically  EQUALIZE 
 Join Separate 
Combine value Unknown 
(Join) 

Difference Unknown Difference Unknown 

Sara has 6 sugar donuts and 9 
plain donuts. Then she puts 
them all on a plate. How 
many donuts are there on the 
plate? 

Susan has 8 marbles. Fred has 
5 marbles. 
How many more marbles 
does Fred have to get to have 
as many marbles as Susan 
has? 

Jane has 7 dolls. Ann has 3 
dolls. How many dolls does 
Jane have to lose to have as 
many as Ann? 

Subset Unknown (Separate) Compared Quantity 
Unknown 

Compared Quantity 
Unknown 

Joe and Tom have 8 marbles 
when they put all their 
marbles together. 
Joe has 3 marbles. How many 
marbles does Tom have? 

There were 6 boys on the 
soccer team. Two more boys 
joined the team. Now there is 
the same number of boys as 
girls on the team. How many 
girls are on the team? 

There were 11 glasses on the 
table. I put 4 of them away so 
there would be the same 
number of glasses as plates 
on the table. How many 
plates were on the table? 
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Table 1.1 (Continued) 
 Referent Unknown Referent Unknown 
 Connie has 13 marbles. If Jim 

wins 5 marbles, he will have 
the same number of marbles 
as Connie. How many 
marbles does Jim have? 

There were some girls in the 
dancing group. Four of them 
sat down so each boy would 
have a partner. There are 7 
boys in the dancing group. 
How many girls are in the 
dancing group? 

COMBINE conceptually  COMPARE 
 Join Separate 
Combine value Unknown 
(Join) 

Difference Unknown Difference Unknown 

There are 6 boys and 8 girls 
on the soccer team. How 
many children are on the 
team? 

Joe has 3 balloons. His sister 
Connie has 5 balloons. How 
many more balloons does 
Connie have than Joe? 

Janice has 8 sticks of gum. 
Tom has 2 sticks of gum. Tom 
has how many sticks less than 
Janice? 

Subset Unknown (Separate) Compared Quantity 
Unknown 

Compared Quantity 
Unknown 

Brian has 14 flowers. Eight of 
them are red and the rest are 
yellow. How many yellow 
flowers does Brian have? 

Luis has 6 pet fish. Carla has 2 
more fish than Luis. How 
many fish does Carla have? 

The milkman brought on 
Sunday 11 bottles of milk and 
on Monday he brought 4 
bottles less. How many 
bottles did he bring on 
Sunday? 

 Referent Unknown Referent Unknown 
 Maxine has 9 sweaters. She 

has 5 sweaters more than Sue. 
How many sweaters does Sue 
have? 

Jim has 5 marbles. He has 8 
fewer marbles than Connie. 
How many marbles does 
Connie have? 

 
Note: This table is adapted from Fuson (1992a). The problems are taken from a 

variety of sources and are presented in order of difficulty with problems becoming more 
difficult from left to right and from top to bottom. The easiest problems are thus at the top left 
of the table and most difficult problems at the bottom right. 

 

Each of these categories can be further subdivided into distinct problem 

types depending on the identity of the unknown. In each category there are 

three types of information. In change problems, the unknown may be the start, 

result or change set. Similarly for Compare problems, the unknown quantity 

may be the difference, the compared quantity or the referent. The unknown 

quantity in Equalize problems can be varied to produce three distinct types 
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although Equalize problems are not commonly found in the research literature 

or in most mathematics programs (Carpenter & Moser, 1982, Stigler, Fuson, 

Ham & Kim 1986). In combine problems the unknown is either the combined 

set or one of the subsets.  

For Change, Equalize, and Compare problems, further distinctions can 

be made depending on the direction of the event (i.e., increase or decrease) or 

the relationship (i.e., more or less). In their research, Carpenter and Moser 

often refer to additive and subtractive Change problems as Join and Separate 

problems, respectively.  

Robust research evidence is now available which shows the 

psychological significance of the semantic classification of word problems. 

Word problems that can be solved by the same arithmetic operation but differ 

with respect to their underlying semantic structure have very different 

degrees of difficulty (DeCorte & Verschaffel, 1991). 

A number of models have been developed to simulate young children’s 

understanding and solution of simple word problems concerned with the 

exchange, combination, and comparison of sets (Briars & Larkin, 1984; 

Cummins et al., 1986; Kintsch & Greeno, 1985; Reusser, 1989, 1990; Riley & 

Greeno, 1988; Riley et al., 1983). Stern and Lehrndorfer (1992) point out that a 

common feature of all of these models is that the fit between the model 

predictions and the empirical data is better for Change and Combine problems 

than for Compare problems. None of the models can explain why Compare 

problems are so difficult, nor why different kinds of Compare problems differ 

in difficulty. Evidence points to non-mathematical factors such as language 

understanding, text comprehension and situational understanding factors.  
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Mayer and Hegarty (1996) suggest that there are two strategies for 

dealing with mathematical story problems. When confronted with a 

mathematical story problem, some people use a direct translation strategy – 

they seem to begin by selecting numbers from the problem and preparing to 

perform arithmetic operations on them. Other people use what Mayer and 

Hegarty call a problem model strategy – they try to understand the situation 

being described in the problem and devise a solution plan based on their 

representation of the situation. Mayer and Hegarty characterize the direct 

translation strategy as a short-cut heuristic approach that emphasizes 

computation, in contrast with the problem model approach as an in-depth 

rational approach based on problem understanding. The direct translation 

strategy emphasizes quantitative reasoning - computing a numerical answer - 

whereas the problem model strategy emphasizes qualitative reasoning, 

understanding the relations among the variables in the problem. Stigler, Lee 

and Stevenson (1990, p. 15) summarize this short-cut approach as “compute 

first and think later” because the problem solver engages in quantitative 

reasoning prior to qualitative reasoning (Mayer, Lewis & Hegarty 1992). 

The direct translation strategy is familiar as the method of choice for 

less successful problem solvers in several research literatures. Cross-national 

research on mathematical problem solving reveals that American children are 

more likely than Japanese children to engage in short cut approaches to story 

problems and that instruction in US schools is more likely than instruction in 

Japanese schools to emphasize computing correct numerical answers at the 

expense of understanding the problem (Stevenson & Stigler, 1992; Stigler et al., 

1990). Similarly, research on expertise reveals that novices are more likely to 

focus on computing a quantitative answer to a story problem than experts 
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who are more likely initially to rely on a qualitative understanding of the 

problem before seeking a solution in quantitative terms (Chi, Glaser & Farr, 

1988, Smith 1991, Sternberg & Frensch, 1991). The direct translation strategy 

does make minimal demands on memory and does not depend on extensive 

knowledge of problem types, but it frequently leads to incorrect answers 

(Hegarty, Mayer & Green 1992; Lewis & Mayer, 1987; Mayer, Lewis & 

Hegarty 1992; Verschaffel, DeCorte & Pauwels 1992). 

In contrast to the direct translation strategy, the problem model 

strategy consists of constructing a qualitative understanding of the problem 

situation before attempting to carry out arithmetic computations. The problem 

solver begins by constructing an internal representation of each of the 

individual statements in the problem and seeks to understand the general 

situation described in the problem before constructing a plan for solving the 

problem. These three components – local understanding of the problem 

statements, global understanding of the problem situation, and construction of 

a solution plan – constitute three major components of mathematical problem 

solving according to Mayer (1985, 1992).  

Understanding of a problem has long been recognized as one of the 

premier skills required for successful mathematical problem solving 

(Cummins, Kintsch, Reisser & Weimer, 1988; Greeno, 1987; Mayer, 1985, 1991; 

Mayer, Larkin & Kadane, 1984; Polya, 1965; Wertheimer, 1959). Problem 

understanding occurs when a problem solver converts the words of the 

problem into an internal mental representation of the problem situation.  
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Studies with Children 

Given the difficulty that college students have with word problems, it 

seems reasonable to suggest that perhaps young children are simply missing 

the cognitive competence necessary to deal with them. Constructing a model 

or representation of a problem situation is one of the most fundamental 

processes of problem solving. Many problems can be solved by representing 

directly the critical features of the problem situation. Modeling, it turns out, is 

also a relatively natural process for young children. An extensive body of 

research documents that even prior to receiving formal instruction in 

arithmetic (maybe especially before) young children are able to solve a variety 

of different types of addition and subtraction word problems by directly 

modeling the different actions and relationships described in the problems 

with counters (Carpenter, 1985; Fuson, 1992a, b).  

On the other hand, some of the most compelling exhibitions of problem 

solving deficiencies in older children appear to have occurred because the 

students did not attend to what appear to be obvious features of the problem 

situations. For example, in one frequently cited item from the third national 

mathematics assessment of the NAEP (1983), students were asked to find the 

number of buses required to transport 1128 soldiers if 36 soldiers could ride in 

each bus. Although nearly three quarters of the 13-year-olds tested recognized 

that division was required to solve the problem, only about one third of them 

rounded the quotient up to the next largest whole number to account for the 

fact that the answer must be a whole number of buses. Most students either 

reported a fractional number of buses or rounded down, leaving 12 soldiers 

stranded without transportation. This is one of many examples suggesting 

that many students abandon a fundamentally sound and powerful general 
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problem-solving approach for the mechanical application of arithmetic and 

algebraic skills. It appears that if older children would simply apply some of 

the intuitive analytical modeling skills exhibited by young children to analyze 

problem situations, they would avoid some of their more glaring problem 

solving errors. A fundamental issue would seem to be how to help children 

build upon and extend the intuitive modeling skills that they apply to basic 

problems as young children.  

Carpenter et. al. (1993) focused not on instruction but on the problem 

solving processes of children. They did not address exactly how instruction 

should be designed to accomplish this task as they claimed to be particularly 

concerned with how an analytical framework based on the notion of problem 

solving as modeling explained children’s strategies for solving problems. 

Although there is some variability in children’s performance depending on 

the nature of the action or relationships in different problems, by the first 

grade, most children can solve a variety of problems by directly modeling the 

action or relationships described in them. There are two accounts of the 

cognitive mechanisms involved in these situations that differ in fundamental 

ways. Riley et al., (1983; Riley & Greeno, 1988) propose that children’s ability 

to solve simple addition and subtraction problems depends on the availability 

of specific problem schemata for understanding the various semantic 

relationships in the problems. Briars and Larkin (1984), on the other hand, 

propose an analysis that, at the most basic level, does not include separate 

schemata for representing different classes of problems. Problems are mapped 

directly onto the action schemata required to solve the problem. In other 

words, Riley and her associates hypothesize that specific knowledge about 

additive structures is required to solve basic addition and subtraction 
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problems, whereas Briars and Larkin propose that children’s initial solutions 

can be accounted for essentially in terms of the actions required to model the 

action in the problem. Other accounts of the processes involved in solving 

word problems such as the linguistic analysis of children’s difficulty in 

translating natural language statements into action on and relationships 

among sets (e.g., Cummins, 1991; Cummins, Kintsch, Reisser & Weimer, 1988) 

generally build on the basic semantic analyses and must ultimately deal with 

the issue of whether or not it is necessary to hypothesize specific knowledge of 

additive structures to account for children’s behavior.  

Studies have shown that giving children experience with addition and 

subtraction problem types that are not typically a part of the primary 

mathematics curriculum can significantly improve performance and reduce 

the discrepancy between problems that are considered relatively easy and 

certain problems that are generally considered more difficult.  

Seventy Kindergarten children who had spent the year solving a 

variety of basic word problems were individually interviewed as they solved 

addition, subtraction, multiplication, division, multi-step and non-routine 

word problems. Counters and paper and pencil were available and children 

were told that they could use any of those materials to help them solve the 

problems. Problems were reread as many times as the child wished. The 

kindergarten children tested showed a remarkable degree of success in 

solving word problems. Nearly half of the children used a valid strategy for all 

of the problems administered, and almost two-thirds correctly solved at least 

seven of the nine problems. Almost all of the children used a valid strategy for 

the most basic subtraction and multiplication problems and over half of the 

children were successful even on the most difficult (non-routine) problem. It is 
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interesting to compare the result of the division with remainder problem in 

which the kindergarten children were asked to determine the number of cars 

needed to take 19 children to the circus if 5 children could ride in each car 

with the related National Assessment item. Although the numbers used in the 

two problems were vastly different, most of the kindergarten children had no 

difficulty deciding how to deal with the remainder, unlike the 13-year-olds. In 

fact, almost as many children correctly solved the division with remainder 

problem as solved the division problem without remainder.  

Children can solve a wide range of word problems, including problems 

involving multiplication and division, much earlier than has generally been 

presumed. American textbooks typically include a narrow range of addition 

and subtraction problems in the primary grades (Stigler, Fuson, Ham & Kim, 

1986), and multiplication and division problems are not introduced until late 

in the second grade. The results of this study suggest that much more 

challenging problems involving a range of operations can be introduced in the 

early primary grades.  

With only a few exceptions, the children’s strategies for solving the 

problems could be characterized as directly representing or modeling the 

action or relationships described in the problems. Although instruction did 

encourage the use of modeling to solve problems, the children in this study 

successfully model problems that differed from the problems they had seen in 

class, suggesting they can apply this ability to a reasonably broad range of 

problems.  

Although these findings are more consistent with the more general 

analysis of problem solving proposed by Briars and Larkin (1984), they do not 

conclusively demonstrate that specific multiplication and division schemata 
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are not required for successful solving of multiplication and division problems 

as hypothesized by Riley, Greeno and Heller (1983). The results do suggest 

however that if such specific schemata are required, they are already 

sufficiently well developed in many kindergarten children that they can solve 

multiplication and division problems by representing the action and 

relationships in the problems. Perhaps at a more fine grained level of analysis, 

specific schemata are necessary in order to account for children’s performance, 

but describing performance in terms of modeling provides a parsimonious 

and coherent way of thinking about children’s mathematical problem solving 

that is relatively straightforward and accessible to students and teachers alike 

(Carpenter, Fennema & Franke, 1992 as cited in Carpenter, Ansell, Franke, 

Fennema & Weisbeck, 1993). This conception of problem solving as modeling 

could provide a unifying framework for thinking about problem solving in the 

primary grades. It seems to be a basic process that comes relatively naturally 

to most primary grade children, If we could help children build upon and 

extend the intuitive modeling skills that they apply to basic problems as 

young children we would have accomplished a great deal by way of 

developing problem solving abilities in children in the primary grade. 

Modeling provides a framework in which problem solving becomes a sense 

making activity and may have an impact on children’s conceptions of problem 

solving and of themselves as problem solvers (need citation for Frank’s 

example of groups doing better or worse depending on whether they are told 

that the group of which they are a member generally does well or poorly in 

such tasks). 

Verschaffel (1984, as reported in DeCorte & Verschaffel, 1991) observed 

a tendency among first-grade children given a series of addition and 
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subtraction word problems to solve the subtraction problems by applying the 

solution strategy corresponding most closely to the semantic structure of the 

problem.  

So what happens to this powerful general problem solving ability? It 

goes away. Why? That hasn’t been clearly answered. I believe it is because we 

present children with simple problems that don’t require such a general 

solution procedure and they learn to extract a simpler process of extracting a 

number sentence (usually canonical) from the text. Since canonical sentences 

are over learned from their sheer volume, children do not get practice at 

solving more complex problem forms until it either does not occur to them to 

try, or they become much more likely to make errors because such problems 

are infrequent and unpracticed.  

The relationship between the semantic structure of simple addition and 

subtraction word problems on the one hand, and children’s solution strategies 

on the other, holds not only for children solving problems with the help of 

concrete objects such as fingers or blocks, but also for those applying counting 

strategies, whether verbal, based on counting forward or backward, or mental, 

based on recalled number facts (DeCorte & Verschaffel, 1987). 

Simplifying word problems 

Although semantic structure does appear to be a major factor 

determining problem solution, recent research has made it clear that other task 

characteristics can also significantly alter children’s performance and 

strategies on verbal problems. Two that have been investigated include the 

degree to which the underlying semantic structure is made explicit in the 

problem text, and the order of presentation of the given numbers.  
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When conducting individual interviews with first-grade children, 

Verschaffel (1984, as cited in DeCorte & Verschaffel, 1991) observed that some 

children who could not solve a standard Combine 2 problem (e.g., Ann and 

Tom have 8 books altogether; Ann has 5 books, how many books does Tom 

have?), were able to solve a reworded version of the problem in which the 

surface structure made the semantic relations more obvious (e.g., Ann and 

Tom have 8 books altogether; 5 of these books belong to Ann and the rest 

belong to Tom; How many books does Tom have?). Carpenter (1985) also 

showed that subtle aspects of the formulation of the problem, such as the 

tenses of the verbs in the problem text, may be responsible for observed 

differences in difficulty between variants of Change problems.  

Hudson (1983) demonstrated that kindergarten children are much 

better at simplified Compare problems than standard ones. Young children 

presented with a picture of 5 birds and 4 worms performed much worse when 

asked the more standard question “How many more bird than worms are 

there?” than the alternative “Suppose the birds all race over and try to get a 

worm; how many birds won’t get a worm?”. In the latter case, most of the 

children appeared to use a matching strategy to solve the problem. Compare 

problems have been broadly found to be the most difficult type of word 

problem, but Hudson’s data suggest that childrens’ difficulties on Compare 

problems are influenced by the formulation of the problem.  

Based on these findings, DeCorte, Verschaffel and DeWin (1985) 

systematically tested the hypothesis that rewording simple addition and 

subtraction word problems in such a way that the semantic relations are made 

more explicit without affecting the semantic structure of the problem would 

facilitate the solution of these problems by young elementary school children. 
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Two sets of six rather difficult word problems were formulated - two each of 

Combine 2, Change 5, and Compare 1 problems - were administered near the 

end of the school year to a group of 89 first- and 84 second- graders. In one set, 

the problems were stated in the usual ‘condensed’ form; in the other set, they 

were reformulated to make the semantic relations more explicit. The reworded 

problems were solved significantly better than the standard problems. 

DeCorte and Verschaffel (1991) hypothesize that the process of 

constructing a representation of the problem is a complex interaction of top 

down and bottom up processes - that is, the processing of verbal (textual) 

input as well as the problem solvers semantic schemes both contribute to the 

construction of a representation. For less able and inexperienced children, 

semantic schemes are not very well developed, so they depend more on text 

driven processing to construct an appropriate problem representation.  

The sequence of the numbers (and information) in the problem text also 

affects children’s solution processes. Verschaffel (1984) found that children 

solved Combine 2 problems either by adding on (when using concrete objects) 

or by counting up (when using verbal counting strategies) from the smaller 

given number. On the other hand, Carpenter and Moser (1984) reported that 

children in their study tended to either separate from or counting down from 

the larger given number. A closer examination of the problems used in both 

studies reveals that in the Verschaffel problem, the larger number was 

mentioned first (e.g., Pete has 3 apples; Ann also has some apples; Pete and 

Ann have 9 apples altogether; how many apples does Ann have?), and in the 

Carpenter and Moser problem, the larger number was given first (e.g., There 

are 6 children on the playground; 4 are boys and the rest are girls; how many 

girls are on the playground?), suggesting that the strategies young children 
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use to solve addition and subtraction word problems depend not only on the 

semantic structure of the problem, but also on the sequence of the given 

numbers in the task. 

While rewording problems to make the semantic structure more 

explicit may assist younger children in solving a greater range of problems, 

we must not forget that in the long run, children must learn to solve more 

tersely worded problems and problems with more complicated wording.  

One wonders if problems can also be made more difficult by altering 

their wording. For example, one would expect that changing the order of 

information in a Change 1 problem to “Joe gave Stephanie 4 books. Before that 

Stephanie had 7 books. How many books does Stephanie have now?” should 

increase the difficulty of the problem for young children.  

Textbook content analysis 

Fuson, Stigler & Bartsch (1988) studied the grade placement of addition 

and subtraction topics in elementary school textbooks in mainland China, 

Japan, the Soviet Union, Taiwan and the United States. Mainland China, the 

Soviet Union and Taiwan all had a national curriculum which used a single 

textbook series for the entire country. In Japan, the math curriculum is set by 

the Ministry of Education (Mombusho) and although there are several 

textbook series, they all adhere to the placement of topics specified by the 

ministry (Stevenson, Lummis, Lee & Stigler, 1990). There is a high degree of 

uniformity in the grade placement of these topics in China, Japan, the Soviet 

Union and Taiwan, and substantial difference between the placements for 

those countries and for the United States. Single-digit addition and subtraction 

problems (i.e., the addition of single digits or the subtraction of single digits 



 

 

24

yielding single digit answers) appear and disappear earlier in the textbooks of 

other countries than in those of the US. Both the simplest and the most 

difficult multi-digit addition and subtraction appear from one to three years 

earlier in those textbooks than in US textbooks.  

Stevenson et at. (1990) and Fuson et al. (1986) found that the only topics 

that appeared earlier in US textbooks than in Japanese textbooks were ratio 

and proportion, problem solving, fractions, and weight. 

Sugiyama (1987, as cited in Robitaille & Travers, 1992) concluded that 

the word problems in Japanese textbooks were more difficult than those found 

in American textbooks. Problems for grades 7 and 8 in the US were found in 

grade 5 in Japan. Both Stevenson et al. (1990) and Bartsch et al. (1986) found 

that concepts tended to be introduced up to a year earlier in secondary school 

textbooks in Japan than they were in US textbooks. Furthermore, there was 

much more repetition in American books. Over 70% of concepts were 

repeated at least once after their initial introduction, almost 25% were 

repeated twice and 10% were repeated 3 times. In Japan, 38% of the topics 

were reviewed once and only 6% more than once. 

Secondary textbooks in the US all tend to be much longer than those 

used in Japan. American textbooks ranged from 400 to 856 pages with an 

average of 540 pages while Japanese textbooks were no longer than 230 pages 

and averaged 178. In addition, more of the problems in Japanese textbooks 

tended to be complex.  

Stigler, Lee, Lucker and Stevenson (1982) provide the only attempt I am 

aware of to analyze the mathematical performance of children relative to what 

they have been taught. They concluded that Taiwanese children performed 

more effectively than their American counterparts. 
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There are really two questions that need to be answered. The first is 

whether children in the US lag behind their grade mates in other countries on 

tests of mathematical skill. The cross-national studies done thus far suggest 

that this is indeed the case. Another question that has yet to be answered is 

whether American children are as effective at learning what they are taught as 

other children. Stigler, Fuson, Ham and Kim (1986) attempted to answer this 

but their conclusion that Taiwanese children are more effective at learning 

than American children was based partly on a conclusion that the textbooks 

used by the two countries were similar. If anything, the Taiwanese textbook 

presented material more slowly. However, only one US textbook was 

analyzed and in a subsequent study by Fuson, Stigler and Bartsch (1986) 

which examined five popular US textbook series, American textbooks were 

found on average to present material later than the Taiwanese national 

textbook series.  

The research on children’s solutions of simple addition and subtraction 

word problems have made it clear that the ease with which children solve a 

particular problem varies according to the semantic structure of the problem, 

the position of the unknown quantity, and the precise way in which the 

problem is worded. Although it is also logical to expect that the frequency 

with which children are exposed to problems of different types should relate 

to the ease with which problems are solved, surprisingly little research has 

addressed the question of how problems are distributed throughout the 

elementary mathematics curriculum or the effect that this distribution might 

have on children’s performance on these problems (Stigler et al., 1986).  

Stigler et al., (1986) analyzed the word problems in grades one through 

three of four widely used textbook series in the United States, and compared 
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the number, range, and organization of problems with those in the textbook 

series mandated by the Soviet government. They found that the Soviet series 

had more problems (493) across all three grade levels than any of the 

American texts (which ranged from 328 to 430). The Soviet series also included 

more two-step problems than any of the American series. Across all four of 

the American textbook series, only 7% of the problems were two-step 

problems while 44% of the problems in the Soviet series were two-step 

problems. Furthermore, many of the few two-step problems in the American 

textbooks were designated as special “challenge” problems not necessarily 

targeted to all children. The distribution of problems also varied considerably 

from series to series. The number of both one- and two-step problems rises 

precipitously after first grade in three of the American texts, and gradually in 

the fourth. The number of both types of problems drops precipitously in the 

Soviet series. In the third grade, the bulk of the word problems in the Soviet 

series involve multiplication and division. Overall, the Soviet first-grade text 

contained between three and ten times as many addition and subtraction 

word problems as the American series.  

In general, Stigler et al., (1986) found that Soviet textbooks presented a 

fairly even distribution of problem types averaged over the three grades, 

while the American textbooks showed a marked irregularity in the frequency 

of occurrence of different problems types. Only one type of compare problem 

(type 1) is presented with any frequency in the American textbooks while the 

Soviet textbook presents approximately equal numbers of all 6 types. 

Likewise, the Soviet textbook presents a fairly equal distribution of all 6 kinds 

of change problems while the American texts present predominately 2 of the 6 

types (Change 1 and Change 2). Of the 2 different types of combine problems, 
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American texts present, at best, twice as many missing whole problems as 

missing part problems (and at worst, ten times as many). As one might guess 

by now, the Soviet text presents equal numbers of both types of Combine 

problems.  

In the Soviet texts, the most frequent problem type comprised only 9% 

of the total, while in the American series, the most frequent type comprised 

nearly a third of the problems. In addition, the three most numerous problem 

types in the Soviet text were all two-step problems. In the American textbooks, 

the three most numerous problems types are all one-step problems.  

All of the high frequency problems in the American textbooks have 

semantic structure equations that are identical to their solution procedure 

equations, what Mayer and his colleagues would call consistently worded 

problems. The vast bulk of all problems in the American texts are of this 

simplest form: ones in which the arithmetic solution procedure directly 

parallels the semantic structure of the problem. These most frequent examples 

are by far the easiest for American children to solve according to the literature 

(Carpenter & Moser, 1983, 1984; Riley et al., 1983). Stigler, Fuson, Ham and 

Kim (1986) conclude that there is a clear bias in the American textbooks 

toward presenting the problems that American children find easiest to solve, 

but it is equally possible that American children find these types of problems 

easiest to solve because they have had the most practice solving them.  

In addition to the frequency with which different types of problems 

were presented, Stigler, Fuson, Ham and Kim (1986) also examined the way in 

which problems were sequenced. They found that the Soviet textbook series 

presented far more variability, presenting both a larger variety of problems 

types in any given group of 10 problems, and greater variability in the 
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ordering of the problems. American textbooks had a tendency to group like 

problems together. Finally, word problems tended to be distributed quite 

evenly throughout the Soviet texts while they tended to be grouped together 

in the American series. 

It seems clear that the frequency of exposure might impact the relative 

difficulty of problems of different types. DeCorte, Verschaffel, Janssens, & 

Joillet (1984, as cited in DeCorte & Verschaffel, 1991) report that an analysis of 

the addition and subtraction word problems found in six first-grade Belgian 

textbooks reveals a similar restrictedness in the range and type of problems 

presented to that found in the American texts. There was a preponderance of 

Change 1 and 2 and Combine 1 problems. Only one of the texts presented a 

variety of Compare problems; in three of the texts there were no Compare 

problems, and in two there were very few. There is evidence that exposure to 

uncommon problem types improves performance (see Carpenter, Ansell, 

Franke, Fennema & Weisbeck, 1993). DeCorte, Verschaffel and DeWin (1985) 

observed that the word problems in Flemish elementary math textbooks are 

usually stated very briefly, sometimes even ambiguously, for someone 

unfamiliar with the standard problem situations such as a young child.  

Children spontaneously use a wide variety of informal solution 

strategies to solve word problems (DeCorte & Verschaffel, 1987, Carpenter & 

Moser, 1982, 1984). Effective instruction builds on existing knowledge and 

skills. The errors children make on word problems are remarkably systematic. 

Like the difficulties adults exhibit, they result from misconceptions of the 

problem situation. Most researchers argue that such misconceptions are due to 

an insufficient mastery of the semantic schemes underlying the problem. Both 

the syntactic structure and the mathematical structure of the problem 
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contribute to understanding difficulties. For example, DeCorte and Verschaffel 

(1985) found that some children misinterpreted the sentence “Pete and Ann 

have 9 apples altogether” to mean “Pete and Ann each possess 9 apples” (see 

DeCorte & Verschaffel, 1985 and Riley et al., 1983 for additional examples). 

Too often researchers interpret errors as being the result of trial and error 

behavior or sloppiness, or they ignore errors as ‘uninterpretable. ” Findings 

like the above strongly suggest that children make the errors they do because 

they interpret the problem differently than the adult who wrote it intended. In 

my own research on preschool children’s concepts of numbers, I asked 

children to count a number of objects and observed on several occasions 

children making comments to the effect of “What number is this ?” while 

indicating a particular object, suggesting that at that age, they still seemed to 

think of numbers as an alternative label for an object, and had not yet fully 

grasped then flexible nature of numerosity.  

Children clearly begin with a variety of flexible strategies for solving a 

variety of arithmetic problems. Carpenter et al. (1993) have demonstrated that 

even kindergarten children are able to apply these strategies to multiplication 

and division problems, and even two-step and irregular word problems. Why 

they abandon these strategies is not entirely clear, although evidence points 

toward the fact that such strategies are unnecessary for solving the vast 

majority of problems that children encounter in the elementary mathematics 

curriculum. What is clear from the systematic errors made by most children 

on simple addition and subtraction problems is that they misinterpret these 

problems. While simplifying problems for very young children in order to 

make the semantic structure of the problem more obvious, it does not solve 

the problem. Analyses of textbooks have demonstrated that American 
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textbooks are populated to an overwhelming degree by the simplest types of 

problems, which are in turn the problems that American children find easiest 

to solve. Although empirical research has yet to demonstrate the efficacy of 

presenting a broad range of problems, and such research should be done, 

there are sufficient hints from international assessments of mathematics 

achievement and variability in textbooks that teaching experiments in the 

United States are warranted.  

Social and cultural factors 

Differences in the amount of class time spent on math, variations in 

teaching practices and personal characteristics of the students have all been 

proposed as factors contributing to differences in performance. Stevenson et. 

al. (1990) reported that Japanese and Taiwanese first-grade students spend 

more hours per week on math than do US children. Teachers in Japan may 

spend an entire 40-45 minute class period on just one or two arithmetic 

problems and they often use student errors as examples for analysis in their 

teaching (Stigler & Perry, 1988, as cited in Miura, Okamoto, Kim, Steere and 

Fayol, 1993). Hess and Azuma (1991) have suggested that Japanese children 

bring personal characteristics to the classroom learning situation that make the 

particularly receptive to learning.  

Stevenson, Lee and Stigler (1986) attempted to address the complaint 

that comparative studies of children’s scholastic achievement have been 

hindered by the lack of culturally fair, interesting and psychometrically sound 

tests and research materials. In order to test children in Taiwan, Japan and the 

United States, a team of bilingual researchers from each culture constructed 

tests and other research instruments with the aim of eliminating as much of 
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the cultural bias as possible. Mathematics tests were based on the content of 

the textbooks. The test for kindergarten children contained items assessing 

basic concepts and operations included in the curricula from kindergarten 

through third grade, that for elementary school children (first and fifth 

graders) contained items derived from the concepts and skills appearing in the 

curricula through grade 6.  

American children scored lower on the mathematics achievement tests 

than Japanese children at all three grades, and lower than Chinese children at 

grades 1 and 5. Among the 100 top scoring individuals on the math test at the 

first grade level, there were only 15 American children and only one American 

child appeared in the top 100 scorers at the fifth grade level. More than half 

the children scoring in the lowest 100 scores at the first and fifth grade levels 

were American children (58 in grade 1 and 67 in grade 5). The low level of 

performance of American children was not due to a few exceptionally low 

scoring classrooms nor to a particular area of weakness; they were as 

ineffective in calculating as in solving word problems. 

Based on extensive observations, American first-grade children were 

engaged in academic activities a smaller percentage of the time (69.8) than 

were Chinese (85.1%) and Japanese (79.2%) children. By the fifth grade, these 

differences were even greater than at lower grades: American children spent 

64.5 percent of their classroom time involved in academic activities where 

Chinese children spent 91.5% and Japanese children spent 87.4 percent. They 

estimate this to mean 19.6 hours per week (64.5 percent of the 30.4 hours the 

American children spent in school, less than half of the estimated 40.4 hours 

(91.5 percent of the 44.1 hours that Chinese children spent in school), and less 
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than two-thirds of the 32.6 hours (87.4 percent of 37.3 hours Japanese children 

attend school). 

In both grades 1 and 5, American children spent less than 20% of their 

time studying mathematics, less than the percentage for either Chinese or 

Japanese children. In the fifth grade, language arts (including reading) and 

mathematics occupied approximately equal amounts of time in both Chinese 

and Japanese classrooms. American children spent more than twice as much 

time (40%) on language arts as they did on mathematics (17%). American 

teachers spent proportionately much less time imparting information (21%) 

than did the Chinese (58%) or Japanese (33) teachers. This means American 

fifth graders were receiving information approximately 6 hours per week (0.21 

times 30 hours) compare with estimates of 26 hours for Chinese children and 

12 hours for Japanese children. American children were also absent from the 

classroom more frequently than their counterparts when a child was know to 

be at school. This almost never occurred (0.2%) in Japanese and Taiwanese 

classrooms. 

These differences become even more profound when extended over the 

course of the school year. Chinese and Japanese children have fewer holidays 

and a longer school year (240 days) than do American children (178 days). 

There are enormous differences in the amount of schooling young children 

receive in the three countries.  

At the time the data were collected, both Chinese and Japanese children 

spent a half day at school on Saturdays as well. This was reduced at least in 

the Japanese schools to every other Saturday in the mid-80s, and has recently 

been discontinued altogether. Since it is unlikely that the Japanese school year 

has been extended to compensate, it will be interesting to see if this reduction 
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in schooling will affect the mathematics achievement scores of Japanese 

students. Of course, it is possible that Japanese students will simply spend 

compensatory time at Juku or cram school and no differences may be noted.  

Neither American parents nor teachers of elementary school in the US 

tend to believe that homework is of much value. American children spend less 

time on homework than do Japanese children and both groups spend much 

less time on homework than do Chinese children. American first-grade 

students spent an average of 14 minutes a day (as estimated by their mothers) 

on homework while Chinese first-grade students spent an average of 77 

minutes per day and Japanese children spent 37. This increased to 46, 114, and 

57 minutes per day respectively for American, Chinese and Japanese fifth-

grade students. On weekends American children studied even less (7 minutes 

on Saturday and 11 on Sunday) while Chinese and Japanese children studied a 

comparable amount to weekdays (83 minutes on Saturdays and 73 minutes on 

Sundays for Chinese students, 37 and 29 minutes respectively for Japanese 

students in addition to a half day of school on Saturday). Nearly all of the 

Japanese (98%) and Chinese (95%) fifth grade students had a desk at home but 

only 63 percent of American first-grade children had a desk, a statistic Stigler 

et al. (1982) believe to be indicative of parental concern about schoolwork. 

Less than a third of the parents of American fifth graders bought 

workbooks in mathematics for their children, half as many as the Chinese and 

Japanese parents. Most American children indicated that they disliked doing 

homework. Most Chinese children indicated that they enjoyed doing 

homework; the reaction of the Japanese children were mixed. Most American 

mothers thought that the amount of homework assigned to their children was 

“just right”, as did the Chinese and Japanese mothers whose children were 
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assigned far greater amounts of homework (Hess, Chang & McDevitt, 1987). 

American mothers were overwhelmingly pleased with the job the school was 

doing teaching their children. Over 90% of the American mothers thought that 

the school was doing a good or excellent job. Less than half of the Chinese or 

Japanese mothers rated the school their child was attending so highly.  

Supporting Adult Findings 

Mayer and Hegarty and associates have been carrying out a program of 

research that uses a variety of approaches to examine how experienced 

students read (Hegarty, Mayer & Monk, 1995; Hegarty, Mayer & Green, 1992), 

remember (Hegarty, et. al., 1995; Mayer, 1982), and learn to solve (Lewis & 

Mayer, 1987, Lewis, 1989) word problems. Much of their work involves two-

step compare problems in which the first step requires addition or subtraction 

and the second step involves multiplication or division. The relational term is 

either consistent or inconsistent with the operation required for correct 

solution. In consistent language problems, the required operation for the first 

step is primed by the key word (e.g., if the required operation was addition, 

the key word was “more,” or if the required operation was subtraction, the 

key word was “less”). In inconsistent language problems, the required 

operation for the first step was the reverse of the operation primed by the key 

word (e.g., if the required operation was addition, the key words was “less,” 

or if the required operation was subtraction, the key word was “more”). 

Examples of this type of problem are in Figure 1.1.  
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Consistent-Less 
At Lucky, butter costs 65 cents per stick.  
Butter at Vons costs 2 cents less per stick than butter at Lucky.  
If you need to buy 4 sticks of butter, 
how much will you pay at Vons? 

Consistent-More 
At Lucky, butter costs 65 cents per stick.  
Butter at Vons costs 2 cents more per stick than butter at Lucky.  
If you need to buy 4 sticks of butter, 
how much will you pay at Vons? 

Inconsistent-Less 
At Lucky, butter costs 65 cents per stick.  
This is 2 cents less per stick than butter at Vons.  
If you need to buy 4 sticks of butter, 
how much will you pay at Vons? 

Inconsistent-More 
At Lucky, butter costs 65 cents per stick.  
This is 2 cents more per stick than butter at Vons.  
If you need to buy 4 sticks of butter, 
how much will you pay at Vons? 

Figure 1.1 Consistent and inconsistent language versions of the butter 
problem (from Mayer and Hegarty, 1996).  

 

The most common mistake is known as reversal error, because problem 

solvers perform the opposite operation of what is actually required (i.e., in the 

Inconsistent-more version of the butter problem in Figure 1.1, students would 

add 2 cents to 65 cents instead of subtracting).  

Recall and Recognition of word problems 

Mayer (1981) analyzed nearly 1100 algebra story problems collected 

from 10 standard algebra textbooks in common use in California junior high 

schools at the time. He identified approximately 24 families of problems based 

on the nature of the source formula involved (e.g., “time rate” problems were 
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based on the formula “distance or output = rate x time”) and on the general 

form of the story line (see Mayer, 1981, 1982). Each family was divided into 

templates based on the specific propositional structure of the problem, 

yielding a total of approximately 100 templates or problem types. Some 

problem types were very rare, occurring only once or twice out of 1100 

problems (which actually means the problem only appeared at all in one or 

two of the textbooks). Other problem types were much more common, 

occurring anywhere from 9 to 40 times per 1100 problems.  

When college students were asked to recall a series of eight algebra 

story problems, Mayer (1982) found that relational statements were 

approximately three times more likely to be mis-recalled than assignment 

statements, and that problem types commonly found in mathematics 

textbooks were more easily recalled than uncommon problem types. Students 

were much more likely to mis-recall relational statements as assignment 

statements than to mis-recall assignment statements as relational statements, 

and although students sometimes converted a less common problem type into 

a more common one, the reverse never occurred. Cummins, Kintsch, Reisser, 

and Weimer (1988) also found that students tended to miscomprehend 

difficult word problems by converting them into simpler problems.  

Hegarty, Mayer and Monk (1995) asked college students to solve a 

series of 12 word problems which included 4 target two-step problems with 

relational statements described earlier. Students were then asked to recall the 

4 target problems (by asking them to write down the problem about “butter,” 

etc. ), and to take a recognition test where they were asked to identify which of 

the four possible forms (see Figure 1.1) each of the four target problems had 

taken.  
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Unsuccessful problem solvers were more likely to make semantic errors 

(i.e., to remember the exact wording of the relational key word but not the 

actual relation between the variables) in recalling and recognizing problems 

than successful problem solvers, who were more likely to make literal errors 

(i.e., to remember the correct relationship between the variables but not the 

actual key word, thus retaining the correct meaning of the problem), such as 

in Figure 1.2.  

 

Original Problem 
At Lucky, butter costs 65 cents per stick.  
This is 2 cents less per stick than butter at Vons.  
If you need to buy 4 sticks of butter, 
how much will you pay at Vons? 

Semantic Error 
At Lucky, butter costs 65 cents per stick.  
Butter at Vons costs 2 cents less per stick than butter at Lucky.  
If you need to buy 4 sticks of butter, 
how much will you pay at Vons? 

Literal Error 
At Lucky, butter costs 65 cents per stick.  
Butter at Vons costs 2 cents more per stick than butter at Lucky.  
If you need to buy 4 sticks of butter 
how much will you pay at Vons? 

Figure 1.2 Semantic and literal errors in remembering the butter 
problem, (Mayer and Hegarty, 1996).  

Learning to Solve Word Problems 

A review of mathematics textbooks shows that most of the word 

problems can be solved by using a direct translation strategy and that in some 

cases, a direct translation strategy is even taught (Briars & Larkin, 1984). Lewis 

and Mayer (1987) examined the errors that college students made as they 
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solved a series of word problems containing both consistent and inconsistent 

language problems. The overwhelming majority of errors made were reversal 

errors rather than computational errors. In follow-up studies, students were 5 

to 10 times more likely to make reversal errors on inconsistent language 

problems than on consistent language problems (Hegarty, Mayer & Green, 

1992; Lewis, 1989).  

College students who showed a pattern of making reversal errors on 

inconsistent but not consistent problems were given two sessions of 

instruction on how to represent word problems within the context of a 

number line diagram (Lewis, 1989). Students who received representational 

training showed large pretest-to-posttest reductions in problem solving errors 

on word problems, whereas the control group of students who did not receive 

the training did not show large reductions. Problem solving errors were 

virtually eliminated in the group of students who received representational 

training, whereas error rates in the control group, which did not receive the 

training, remained unchanged.  

In one strand of research, Hegarty and Mayer and their associates 

(Hegarty, Mayer & Green, 1992, Hegarty, Mayer & Monk, 1995) examined the 

eye fixations of high school and college students as they read a series of word 

problems presented on a computer monitor. The student’s task was to 

describe how they would solve the problem (Hegarty, Mayer and associates 

used a fixed-head eye-tracking system, thus students were unable to make 

written calculations to actually solve the problems). The target two-step 

consistent and inconsistent language problems were presented among a 

variety of one- and two-step problems. Successful problem solvers were 

defined as those students who made no more than one error in planning 
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solutions to the problems. Hegarty, Mayer and Green (1992) defined 

unsuccessful problem solvers as those students making two or more errors, 

which seems rather arbitrary, but Hegarty, Mayer and Monk (1995) replicated 

their results using a more conservative criterion of four or more errors. The 

most common error was a reversal error.  

Successful problem solvers spent more time reading inconsistently 

worded problems than they did reading consistently worded problems. They 

spent that extra time by rereading variable names more in inconsistent 

problems than in consistent problems. Successful problem solvers spent more 

time on inconsistent than on consistent problem while less successful problem 

solvers spent about the same amount of time on both types of problems. Less 

successful problem solvers focused a larger proportion of their rereading on 

numbers than did successful students who focused a larger proportion of their 

rereading on variable names.  

Mayer and Hegarty argue that their research provides converging 

evidence that students often emerge from K-12 mathematics education with 

adequate problem execution skills, but inadequate problem representation 

skills. The pattern of reversal errors on inconsistent but not consistent 

problems seems to support the idea that unsuccessful problem solvers use a 

direct translation strategy. They conclude that the source of difficulty in 

mathematical problem solving is in problem representation rather than 

solution execution. Furthermore, the source of difficulty in problem 

representation is in comprehension of relational statements rather than 

assignment statements and the source of difficulty in understanding relational 

statements involves using a direct translation strategy rather than a problem 

model strategy.  
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Students who use a key word approach see the word "less” and are 

inclined to subtract. Briars and Larkin (1984) have shown that a key word 

approach to understanding word problems can be effective for many 

problems commonly found in mathematics textbooks. The difference between 

a key word approach and a model construction approach to problem 

representation may exemplify a possible difference between successful and 

unsuccessful problem solvers.  

Finding a balance between simplified problems that assist the learner to 

discover the semantic structure underlying the problems on the one hand, and 

presenting a broad selection of problems to challenge children to think rather 

than to just do, will be a complicated process, in part because children vary a 

great deal in their learning styles and what is right for one child will not work 

for another. Something to keep in mind throughout all of this is that while 

average US children lag behind their age-mates in many other countries on 

international assessments of mathematics achievement, the standard 

deviations are quite large and the best US children are on par with the best in 

the world. This is not good enough however, because as Stevenson, Lummis, 

Lee and Stigler  (1990) discovered, although US fifth graders who are matched 

on tests of computational ability outperform their Japanese counterparts on 

tests of problem solving ability, only 5% of the US children tested performed 

at the highest level compared to 77% of the Japanese students tested. Which is 

to say, the best of the American children (95th percentile in the language of 

standardized US tests) are on par with the majority of the Japanese children 

tested (those in the 33rd percentile). This should be quite sobering.  

It is also cause for some hope. Americans are proud of their creativity 

and flexibility of thinking, and the findings of Stevenson et al. (1990) reflect 
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that. Japanese teachers express concern that the emphasis on entrance exams 

(to university, to competitive high schools, and in some cases to junior high or 

even elementary schools) and the tendency to teach for those exams reduces 

the creativity their students bring to the problem solving process. In the 

process, however, schools in the US seem to fail to address the needs of the 

majority, as evidenced by the poor performance of US children compared to 

their counterparts in other countries. 

The difficulty with word problems may also arise from the 

predominance of canonical representations of problems. When children are 

learning their basic mathematical facts – addition, and multiplication of single 

digit combinations, and the equivalent subtraction and division combinations 

– there is an overwhelming tendency to present canonical presentations (e.g.,  

2 + 3 = ? rather than 2 + ? = 5 or ? + 3 = 5 or ? = 2 + 3 or any of the other six 

left-handed variations on this number sentence) of problems. Thus when 

children attempt to translate a word problem into a numerical sentence, they 

are less familiar with non-canonical representations (which may in fact be a 

more natural way of modeling the problem). One wonders if children who are 

taught a variety of ways of representing simple addition and subtraction 

problems may find it easier to solve word problems, because they will have a 

more flexible method of representing the syntactic structure of problems. For 

example, children are not as successful on Change 3 problems (e.g., Pete had 3 

apples; Ann gave him some more apples; now Pete has 10 apples; how many 

apples did Ann give to Pete?), Can children successfully represent this as  

3 + ? = 10, and does that representation assist with solution? 

 



 

42 

CHAPTER TWO:  

SOLVING ARITHMETIC WORD PROBLEMS 

 

Experiments 

Stevenson, Lee and Stigler (1986) have demonstrated that the disparity 

in mathematics achievement between Asian and American children exists as 

early as the first grade. Miura (1987) suggests that these differences may be the 

result of differences in cognitive understanding of number resulting from the 

relative ease with which the Base 10 numeration system maps onto the 

number words of languages based on ancient Chinese. She has documented 

differences in understanding of the concept of place value in Asian speaking 

first-graders compared to their American counterparts. Differences in 

mathematical achievement in younger children across cultures other than 

Asian countries, however, have remained largely untested. Both the first and 

the second international assessments of mathematical achievement have 

focused on the achievement of older children, 13- and 17-year-olds, by which 

time socio-cultural factors such as schooling may have had significant 

influence.  

If the performance advantage experienced by Asian children is 

linguistic as Miura and her colleagues (Miura, Kim, Chang & Okamoto, 1988; 

Miura, Okamoto, Kim, Steere & Fayol, 1993) suggest, then one would not 

predict differences in mathematics achievement between first-grade students 

in various European countries whose languages do not reflect the regularities 

of the Base 10 numeration system. First-grade students in France, for example, 

who perform similarly to American first-graders on tests of place value skills 
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should perform similarly on tests of mathematical achievement but to my 

knowledge, there are no studies comparing the mathematical achievement of 

French and American children in primary school.  

Although it is still unclear how early the differences in mathematical 

achievement become evident, by age 13, U. S. children clearly lag behind their 

counterparts in many countries. Stigler et. al. (1986) noted that US textbooks 

present a preponderance of the types of word problems that American 

children find the easiest. It seems just as logical to conclude that American 

children find these types of problems easier because they have had a lot of 

experience solving them. The Soviet textbook series was found to present 

roughly equal numbers of the different types of addition and subtraction 

word problems, but there does not appear to be any data on how well Soviet 

children solve various kinds of word problems. With the dissolution of the 

Soviet Union, such a comparison may be much more difficult to do, but if 

there are still countries using the Soviet textbook series, it would be interesting 

to see if children using this textbook series show improved performance on 

types of problems that occur infrequently in American textbooks.  

There has been some success teaching children how to deal with word 

problems they don’t generally do well on. It is not difficult to conclude that if 

children are only presented with simple forms of problems that can be solved 

by directly extracting a solution procedure from the text, that they will learn to 

look for key words and thus answer such problems more rapidly. After all, 

such a heuristic has worked correctly on most of the problems they have 

practiced on and there is no reason for them to abstract a more general 

understanding of the problem in order to solve it. 
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Experiment 1: Replication/Verification of Problem Type Difficulty 

Experiment 1 investigates first- and second-grade students’ ability to 

solve simple, one-step addition and subtraction word problems. The purpose 

of this experiment is to replicate previous work on the relative difficulty of 

various types of simple arithmetic word problems. It is intended to verify that 

the problems selected have the same pattern of relative difficulty of solution as 

has been previously documented (Carpenter & Moser, 1982; Fuson, 1992a, b) 

and also to establish a baseline for subsequent comparisons. 

Participants 

Eighty-seven first- and second-grade students participated in these 

studies. There were 44 first-grade children (15 boys and 29 girls) and 43 

second-grade children (16 boys and 27 girls). Mean ages at the two grade 

levels were 6 years-5 months for first-grade (range: 5-1 to 6-10) and 7-5 for 

second-grade (range: 5-11 to 8-0). Two of the second-grade children, both girls, 

did not report birth dates. These students were permitted to participate in the 

study but were obviously not included in the calculation of ages. The mean 

age of the second-grade students therefore reflects that of 41 children (25 girls) 

rather than 43. Students attended a public elementary school in a major East 

Coast city serving a middle to lower income neighborhood and were 

predominantly African American. Two first-grade students failed to take one 

of the tests due to experimenter error and were not included in analyses 

including that test. 

Materials 

Materials consisted of two sets of written word problems. There was a 

set of 6 typically worded Change problems, and a set of 5 Compare problems. 
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One of the Compare problems was included for a different comparison and 

will be discussed later. Each set of problems was a single page long. Problems 

were typed in a moderately large, easy to read font and single spaced with a 

substantial amount of white space between each problem. All numerals 

presented in the problems were written as Arabic numbers. Examples of these 

problem sets may be found in Appendices A and C. 

The set of Change problems included a single example of each of the six 

different types of Change problems. There was an addition example and a 

subtraction example each of the three different types of change problems: 

solve-for-result (Change 1 and 2), solve-for-change-set (Change 3 and 4), and 

solve-for-start-set (Change 5 and 6). 

The four Compare problems with which this study is concerned 

included a pair of problem in which the comparison cued the correct 

operation (Compare 3 and 4) and a pair of problems in which the comparison 

cued the opposite operation (Compare 5 and 6). Each of these pairs included 

an addition problem and a subtraction problem. Compare 1 and 2 problems 

were not included due to concerns about timing since piloting indicated that it 

took considerably longer for children to finish the Compare set than it did for 

them to complete the Change set. 

In both sets of problems, if there were two actors involved, one actor 

was male and the other was female. There were two different problem orders 

for the set of Change problems and five different problem orders for the set of 

Compare problems. Students were randomly assigned to one of the orders for 

each set of problems. An independent-samples t-test of the Change problems 

and an ANOVA for the Compare problems revealed no significant differences 

due to problem order. The data were therefore collapsed across order. 
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Procedure 

Each student was tested individually. Most students were pulled out of 

class and taken to a quiet area to work. This was generally at a table in a quiet 

hallway but occasionally students worked in the ‘library’ corner of their own 

classroom or in an empty classroom if one was available. First-grade students 

were tested in 2 sessions, generally on different days and usually a few days, 

but no more than a week, apart. Each session consisted of a single set (page) of 

problems. Second-grade students were generally tested in a single session. 

Occasionally a second-grade session was interrupted but there is no evidence 

that these interruptions affected student performance. In these cases, the test 

was completed at the next opportunity - the same day if possible. Both first- 

and second-grade sessions generally lasted about 15-20 minutes. Students 

were audio-taped as they solved the set of word problems and questioned 

about some of the problems after they completed the problem set. Students 

were randomly assigned to receiving the Change problems first or the 

Compare problems first.  

Students were asked to follow along as the researcher read each 

problem out loud. “We’re going to do some math problems. These are story 

problems so you’ll have to figure out how to find the answer. Some of them 

are addition problems and some of them are subtraction problems but I can’t 

tell you which ones are which. You have to figure it out. I’ll read the problem 

out loud for you and then you can solve it. I’ll read the problem as many times 

as you want me to. You can use anything you want to help you figure out the 

answer. You can use the things in my pencil box or your fingers or you can 

even use my fingers. You can also make marks on this blank piece of paper. 

When you are all done, I’m going to ask you some questions about what you 
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did. Just because I ask you questions doesn’t mean your answer is wrong, 

OK?” 

After receiving a clear acknowledgement that the student understood, 

the experimenter asked the student to answer a simple arithmetic problem 

such as “What’s one plus one?” After the student responded, she was asked to 

explain “How do you know that?” The experimenter probed the student two 

or three times as needed to encourage elaboration beyond ambiguous answers 

such as “because…”. This school encouraged students to explain their answers 

as part of the curriculum and none of the students attempted to change their 

answers when asked about how they figured that out.  

Each problem was read out loud at least twice. The researcher asked 

the student if he would like to hear it again and if the student seemed 

reluctant the researcher reminded the student that she would read the 

problem as many times as he wanted. Students were given as long as they 

needed to solve the problem. The use of manipulatives to assist with counting 

was encouraged. Students were told that they could use the contents of the 

researcher’s pencil box, their own fingers or the fingers of the researcher. The 

researcher’s pencil box contained several writing instruments, an eraser, some 

paperclips and a spare pair of double A batteries for the micro-cassette 

recorder, intentionally enough items to solve any of the problems presented. 

Students were also given a blank sheet of paper and told that marks could be 

made upon on it to help them solve the problems. Most students used some 

combination of these methods. If a student chose to use the researcher’s 

fingers, he was told that he had to manipulate the fingers up and down 

himself. After the student completed the problem and wrote down the 

answer, he was asked to “write down the math problem you used to figure 
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out the answer to my question.” Once the student completed the problem, he 

was asked if he was ready to continue and the next problem was read aloud. 

Once the student completed all of the problems being presented in the 

session, the researcher asked if she could ask him some questions. She would 

then point to a problem and ask the student to explain how he got his answer. 

The researcher would probe gently for expansion and clarification and then 

thank the student for his answer. In general, the researcher would ask first-

grade students about approximately half of the five or six problems in the 

session. Second-grade students were usually asked for explanations about 

more problems since second-grade sessions included more problems than a 

first-grade session. The researcher tried to include at least one problem that 

the student answered correctly when asking for explanations. 

Scoring 

A student’s answer on a given problem was scored as correct if they 

wrote down the correct numerical answer. In order to avoid experimenter 

bias, no allowances were made for counting errors observed by the 

experimenter (such as the child double counting an object) or for recording 

errors such as the juxtaposition of digits (e.g., child says 16 and writes “61”). 

Results 

Although boys appear to be slightly better (mean 4.7 problems correct) 

than girls (mean 4.0 problems correct) at solving these problems overall, this 

difference is not significant (p=.149). The difference between boys and girls on 

subtraction problems is also not significant (p=.116). There is no difference 

between boys and girls on addition problems overall. There is also no 

difference in the relative difficulty of solution for addition and subtraction 
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problems either overall (p=.110) or by gender. If anything, the raw scores 

suggest that children, boys in particular, may find these subtraction problems 

slightly easier to solve than the addition problems though there is statistically 

no significant difference in their performance (see Table 2.1). This finding is 

somewhat surprising as subtraction problems are generally considered to be 

more difficult for children to solve than addition problems. 

 

Table 2.1 Percent correct overall by arithmetic operation and gender. 

 Boys (N=29) Girls (N=56) Overall (N=85)  
Addition .4414 .3893 .4071 
Subtraction .5034 .4143 .4447  
Total .4724 .4018 .4259 

 

It is not really surprising to find that second-grade children are better 

overall at word problem solution than first-grade children (p<.001), given 

their additional year of mathematics instruction and practice. Second-grade 

children correctly solved an average of 5.3 of the ten problems where first-

grade children correctly solved an average of 3.1 of the same ten problems. 

Second-grade children do better than first-grade children on both addition 

and subtraction problems (p<.001, both). 

 

Table 2.2 Addition and subtraction problems, percent correct by grade 
  Mean %  Minimum  Maximum 
Grade  correct Std. Dev. # correct # correct  
1 Addition 0.3143 0.1539 0 3 
N=42 Subtraction 0.3286 0.2156 0 4  
 Overall 0.3214 0.1507 0 7  
2 Addition 0.4977 0.2559 0 5 
N=43 Subtraction 0.5581 0.2249 1 5  
 Overall 0.5279 0.2175 2 10 
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Informal conversations with teachers indicated that the first-grade 

students had not yet been introduced to subtraction at the time these tests 

were administered, but this is not evident from the student scores. There is no 

significant difference between first-grade children’s performance on the 

addition problems and the subtraction problems. Second-grade children, 

however, appear to do slightly better on the subtraction problems than they 

do on the addition problems (p=.062). There are no gender differences in 

performance overall at either grade level (see Table 2.3) even though second-

grade girls are better at solving subtraction problems than addition problems 

(p=.039). These girls solved 54.07% of the subtraction problems correctly and 

46.67% of the addition problems correctly. Second-grade boys do not 

demonstrate this disparity between addition and subtraction problems. Nor 

do first-grade students of either gender although first-grade boys show a 

trend to score better on subtraction problems (40.0% correct) than on addition 

problems (30.77% correct) that may be marginally significant (p=.111). 

 

Table 2.3 Mean percent correct by grade and gender. 

Grade Gender N Mean Std. Dev. Std. Error Mean  
1 Male 13 0.3538 0.1808 0.0502 
 Female 29 0.3069 0.1361 0.0253  
 Total 42 0.3214 0.1507 0.0233  
2 Male 16 0.5688 0.2626 0.0657 
 Female 27 0.5037 0.1870 0.0360  
 Total 43 0.5279 0.2175 0.0332 

 

Change problems are broadly reported to be easier for children to solve 

than Compare problems. The sets of problems used in this experiment 

replicate these findings. Children are much more successful solving Change 

problems than they are at solving Compare problems. This is true for both 
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boys and girls and at both grade levels at p<.001 (in all four cases) and for 

boys and girls within each grade level (p=.01 or below). Boys and girls 

perform comparably to one another on both Change problems and Compare 

problems. Performance between addition and subtraction Change problems is 

comparable except that second-grade girls show a trend towards performing 

better on subtraction problems (64.20% correct) than they do on addition 

problems (55.56% correct) which is marginally significant (p=.070). First-grade 

boys also show a trend better performance on subtraction problems but on 

Compare problems rather than Change problems (p=.104). They get more than 

twice as many subtraction problems correct (26.92%) than they do addition 

problems (11.54%). There were only 13 first-grade boys in the study, however, 

so this results needs to be weighted appropriately. 

As we would expect, second-grade students correctly solved 

significantly more problems than first-grade students on both the Change and 

the Compare sub-tests. First-grade children solved 41.67% of the Change 

problems correctly and 17.26% of the Compare problems correctly. Second-

grade children solved 64.34% of the Change problems and 35.47% of the 

Compare problems correctly. 

 

Table 2.4 Mean percent correct for Change and Compare problems by grade 

   Change Problems Compare Problems Overall  
   Mean   Mean   Mean 
   # (%) Std.  # (%) Std.  # (%) Std. 
Grade  N correct Dev. N correct Dev. N correct Dev.  
1 Boys 15 0.4444 0.2648 13 0.1923 0.2317 13 0.3538 0.1808 
 Girls 29 0.4023 0.2294 29 0.1638 0.2244 29 0.3069 0.1361  
 Total 44 0.4167 0.2398 42 0.1726 0.2242 42 0.3214 0.1507  
2 Boys 16 0.7188 0.2836 16 0.3438 0.3521 16 0.5688 0.2626 
 Girls 27 0.5988 0.1806 27 0.3611 0.3203 27 0.5037 0.1870  
 Total 43 0.6434 0.2288 43 0.3547 0.3284 43 0.5279 0.2175 
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Results by problem 

Overall, solve-for-result (Change 1 and 2) problems are easier for 

students to solve than solve-for-change-set (Change 3 and 4) problems 

(p<.001), which are in turn easier to solve than solve-for-start-set (Change 5 

and 6) problems (p<.001). This is as expected and true for both boys and girls 

and at both grade levels and is significant at p=.02 or better. First-grade boys 

do not perform significantly better on solve-for-change-set problems than they 

do on solve-for-start-set problems (p=.301) though second-grade boys do 

(p=.027). These findings regarding the relative difficulty of different sorts of 

Change problems broadly replicates those reported in the literature 

(Carpenter & Moser, 1982; Riley et al., 1983; Fuson, 1992 a, b).  

The six different kinds of Change problems can be ranked according to 

difficulty based on the percentage of children solving each problem correctly. 

Overall, from least difficult to most difficult, these Change problems would be 

Change 1 (92% correct), Change 2 (71%), Change 4 (61%), Change 3 (46%), 

Change 6 (33%) and Change 5 (14%). Boys and girls both show this same 

pattern of success rate with no significant differences between the percentage 

of boys and girls answering correctly except on the Change 5 problem where 

the boys meet with greater success solving the problem correctly (p=.002). 29% 

of the boys answered this problem correctly and only 5% of the girls answered 

this problem correctly. A closer look indicates that this result is due to the 

performance of second-grade students. This problem was correctly answered 

by 44% of the second-grade boys and only 7% of the second-grade girls 
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(p=.002). The difference in correct response rate between first-grade boys 

(17%) and first-grade girls (3%) is not significant. 

 

Table 2.5 Percentage of students answering correctly on Change problems 

 Solve for result Solve for change set Solve for start set 
Grade Change 1 Change 2 Change 3 Change 4 Change 5 Change 6 
1 .89 .55 .27 .45 .07 .27 
2 .95 .88 .65 .77 .21 .40 
Total .92 .71 .46 .61 .14 .33 

 

First- and second-grade students have nearly the same pattern of 

successful responses as is seen overall although first-grade students show no 

difference in their ability to solve Change 3 and Change 6 problems (see Table 

2.5). Second-grade students perform better than first-grade students at most of 

the problems. Second-grade students outperform first-grade student on 

Change 2, 3 and 4 problems, and show a trend in that direction (p=.057) on 

Change 5 problems. There is no difference between first- and second-grade 

students’ performance on Change 1 problems or Change 6 problems. Students 

in both grades do well on Change 1 problems: 89% of the first-grade students 

and 95% of the second-grade students solve this problem correctly. Students 

in both grades perform relatively poorly on Change 6 problems: only 27% of 

first-graders and 40% of second-graders answer this problem correctly.  

The results are somewhat less definitive for Compare problems. 

Children perform more poorly on Compare problems that they do on Change 

problems but contrary to suggestions in the literature (Carpenter & Moser, 

1982; Fuson, 1992, a, b) that Compare problems as a class are more difficult 

than any type of Change problem, the Compare problems tested seem to be 
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comparable in difficulty to the more difficult Change problems but not 

necessarily more so. 

Experiment 2: Typical vs Clarified Wording (Change problems) 

Hudson (1983) demonstrated that children as young as kindergarten 

perform better on Compare problems which have been formulated to take 

advantage of children’s ability to use a matching strategy to make a 

correspondence between items in the problem more obvious versus more 

standard forms of the question. Hudson’s data suggest that children’s 

difficulties on Compare problems are influenced by the formulation of the 

problem.  

Based on these findings, DeCorte, Verschaffel and DeWin (1985) 

systematically tested the hypothesis that rewording simple addition and 

subtraction word problems to make the semantic relations are made more 

explicit would facilitate the solution of these problems by young elementary 

school children. A group of first- and second-grade students were tested on 

two sets of Combine 2, Change 5, and Compare 1 problems. In one set, the 

problems were reformulated to make the semantic relations more explicit and 

the other set was left in the usual ‘condensed’ form. The reworded problems 

were solved significantly better than the standard problems. DeCorte and 

Verschaffel (1987) hypothesize that less able and inexperienced children 

depend more on text driven processing to construct an appropriate problem 

representation because their semantic schemes are not very well developed.  

While rewording problems to make the semantic structure more 

explicit may assist younger children in solving a greater range of problems, 
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we must not forget that in the long run, children must learn to solve more 

tersely worded problems and problems with more complicated wording. 

The purpose of this experiment was to determine whether relatively 

simple or minor clarification of semantic and temporal relationships has an 

effect on the solution of Change problems. That is, children were tested to see 

whether simple language clarification is able to improve their rate of 

successful problem solution. 

Participants 

The same 87 first- and second-grade children participated in this study 

as participated in Study 1. One first-grade student was eliminated from the 

analyses because student did not take one of the two tests resulting in 43 first-

grade students rather than 44. 

Materials 

Materials consisted of a set of 6 typically worded Change problems and 

a set of 6 Change problems in which the semantic relationships were clarified. 

The typically worded problems were the same as those used in Experiment 1 

(see Appendix A). In the set of clarified problems (see Appendix B), all 

pronouns were replaced with personal pronouns to reduce ambiguity of 

reference. Verb tense changed during the problem to reflect the passage of 

time and to clarify action. The initial sentence of the problem was changed to 

the past tense if it was not already past tense. The final question was asked in 

the present tense. Temporal cues such as “then” and “now” were added to 

emphasize the temporal order of action and to emphasize temporal cues. In 

both sets of problems, if there were two actors involved, one actor was male 

and the other was female (see Figure 2.1). When constructing these problems, 
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an effort was made to avoid using gender ambiguous names such as Sandy, 

Toni or Robin as an additional aid for clarification. 

 

Typical Change 2 problem: 
David had 11 cookies. 
He gave 4 cookies to Sharon. 
How many cookies does David have now? 

Clarified Change 2 problem: 
Nancy had 6 brownies. 
Then Nancy gave Oliver 4 brownies. 
How many brownies does Nancy have now? 

Figure 2.1 Examples of Typical and Clarified Change 2 problems 

 

There were 2 different orders for each set of problems. Independent-

samples t-tests for both the Typical problems and the Clarified problems 

indicate that there was no effect of order, therefore the data were collapsed 

across order. 

Procedure 

The procedure and instructions were identical to Study 1. Students 

were pulled out of class and tested individually. First-grade children were 

tested in 2 different sessions; second-grade students were tested in a single 

session whenever possible. The problems were read aloud to students at least 

twice and as many times as the student wanted. After students completed the 

set of problems, they were questioned about how they got their answers for 

some of the problems. The two problem sets (Typical and Clarified) were 

administered in a random order. 
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Results 

As with Experiment 1, boys (mean 7.0/12 problems correct) do not 

differ significantly from girls (mean 6.2/12 problems correct) at solving these 

problems overall. This is true for both addition problems and subtraction 

problems (see Table 2.6). Subtraction problems are actually solved better than 

addition problems overall (p=.002). This finding is counterintuitive as 

subtraction problems are generally considered to be more difficult for children 

to solve than addition problems. Although both boys and girls appear to do 

somewhat better on subtraction problems than addition problems, only the 

results for girls are significant (p=.001). Exploring this further we find that this 

gender disparity continues (see Table 2.7). Both first- and second-grade girls 

are significantly better at subtraction than they are at addition (1st: p=.012; 

2nd: p=.025) whereas boys at both grade levels perform comparably on 

addition and subtraction problems.  

 

Table 2.6 Percentage and number of problems correct by computation type 
and gender 

 Boys (N=31) Girls (N=55) Overall (N=86)  
Addition .5645 (3.4) .4667 (2.8) .5019 (3.0) 
Subtraction .6022 (3.6) .5636 (3.4) .5775 (3.5)  
Total .5833 (7.0) .5152 (6.2) .5397 (6.5) 

 

The results of this experiment are somewhat disappointing. Overall, 

performance on Typical and Clarified Change problems is comparable. No 

significant differences were found between them. This is true for both grades 

and no effects of gender were found at either grade or overall. None of the 

first-grade children got all of the problems correct (maximum score: 11/12) 
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and none of the second-grade children got all of the problems incorrect 

(minimum: 2; maximum: 12). 

 

Table 2.7 Percentage and number of addition and subtraction problems 
answered correctly by boys and girls 
   Addition Subtraction  Overall  
   Percent (#) Percent (#) Percent (#) 
Grade Gender N Correct Correct Correct  

 Boys 15 .4222 (2.5) .4222 (2.5) .4222 (5.1) 

1 Girls 28 .3631 (2.2) .4762 (2.9) .4196 (5.1)  

 Total 43 .3837 (2.3) .4574 (2.7) .4205 (5.0)  

 Boys 16 .6979 (4.2) .7708 (4.6) .7344 (8.8) 

2 Girls 27 .5741 (3.4) .6543 (3.9) .6142 (7.4)  

 Total 43 .6202 (3.7) .6977 (4.2) .6589 (7.9) 

 

Once again we find that second-grade children are better than first-

grade children at both types of problems. 

What is most striking about the Clarified problems is that subtraction 

problems are solved significantly better than addition problems (p=.004) 

overall. Boys do not show this differential performance but girls do (p=.001), 

in particular, first-grade girls (p=.016). Second-grade girls show a trend in this 

direction which is marginally significant (p=.096). There are nearly twice as 

many girls as boys in this study so these results may be somewhat more 

reliable. 
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Table 2.8 Mean percent correct for Typical and Clarified problems by grade 

  Typical Problems Clarified Problem Overall  
   Mean % Std.  Mean % Std.  Mean % Std. 
Grade Gender N Correct Dev. N Correct Dev. N Correct Dev.  
 Boys 15 0.4444 0.2648 15 0.4000 .3321 15 .4222 .2772 

1 Girls 29 0.4023 0.2294 28 0.4286 .2461 28 .4196 .2097  

 Total 43 0.4167 0.2398 43 0.4186 .2755 43 .4205 .2321  

 Boys 16 0.7188 0.2836 16 0.7500 .2981 16 .7344 .2809 

2 Girls 27 0.5988 0.1806 27 0.6296 .2972 27 .6142 .2194  

 Total 43 0.6434 0.2288 43 0.6744 .2998 43 .6589 .2479 

 

The most obvious reason that differences were not found is that it is 

possible that there was insufficient difference between the problem types for 

children with little experience at formal arithmetic and minimal experience 

with arithmetic word problems. The clarifications made were in fact pretty 

subtle, especially when one takes into consideration certain conventions that 

were followed for both sets of problems, such as attempting to eliminate 

gender ambiguous names from problems and using actors of different genders 

in problems with more than one actor. The latter may have unintentionally 

resulted in a tendency to select problems which had two actors and to reduce 

the number of pronouns used in the typical problems. Choices such as these  

may have unintentionally contributed to a greater similarity between clarified 

and typical problems than was intended. Another possibility is that the 

subtraction effect was an artifact of the problems chosen, something that 

cannot be discounted given the restricted set of problems. Mautone (1999) 

found marginally significant differences in performance found when temporal 

and spatial modifiers were added to Change 1 and 2 problems appeared to be 

confounded by verb choice. She - speculated that language plays a complex 
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role in children’s understanding of word problems and suggested that effects 

of language need to studied more systematically. This suggestion is 

concordant with Carpenter (1985) who suggested that subtle differences such 

as verb tense could have an effect of children’s solution of word problems. 

Results by problem 

As with Typical problems, solve-for-result problems are correctly 

solved more often than solve-for-change-set problems (p<.001). Both boys 

(p=.003) and girls and both grade levels at p<.01 or better. Girls at both grade 

levels (p=.000, both) as well as first-grade boys (p=.015) show this pattern. 

Second-grade boys demonstrate a trend in this direction that is marginally 

significant (p=.083). There is no overall difference, however, between the 

correct solution rate of solve-for-change-set and solve-for-start-set problems. 

First-grade boys are the only students better at solve-for-change-set problems 

than solve-for-start-set problems (p=.019). Neither their female classmates nor 

second-graders of either gender solve Change 3 and Change 4 problems better 

than Change 5 and Change 6 problems. 

Ranking the six Clarified change problems in order of increasing 

difficulty is somewhat less clear than it was for Typical change problems since 

somewhat different patterns of success are seen both by grade and by gender. 

Overall, from least to most difficult, these clarified problems would be ranked: 

Change 1 (78% correct), Change 2 (73%), Change 4 (53%), Change 6 (52%), 

Change 3 (37%) and Change 5 (34%). Unlike with Typical problems, the 

percentage of students solving Change 1 and Change 2 problems correctly is 

not significantly different. Change 4 and 6 problems correctly are also 

virtually indistinguishable from one another as are Change 3 and 5 problems. 



 

 

61

Other than a trend for boys to answer correctly more frequently than girls on 

Change 3 problems that is marginally significant (p=.110) boys and girls 

perform similarly to one another. First-grade boys show a marginal trend in 

this direction that is also not significant (p=.150). Curiously, first-grade girls 

do much better than first-grade boys (p=.010) on Change 6 problems. 61% of 

girls get this problem correct where only 20% of boys do. 

 

Table 2.9 Percentage of students answering correctly on Clarified change 

problems 

 Solve for result Solve for change set Solve for start set 
Grade Change 1 Change 2 Change 3 Change 4 Change 5 Change 6 
1 .70 .58 .21 .40 .16 .47 
2 .86 .88 .53 .67 .51 .58 
Total .78 .73 .37 .53 .34 .52 

 

Second-grade students outperform first-grade students except on 

Change 6 problems and Change 1 problems. On the latter, they show a trend 

in that direction (p=.070). 

Comparing the percentage of students answering correctly on Typical 

and Clarified problems suggests that students are not as successful at solving 

Clarified solve-for-result problems as they are at solving Typically worded 

problems. It also suggests that students experience greater success at solving 

Clarified solve-for-start-set problems. These finding are borne out by paired-

samples t-tests. Although there are no overall differences found between 

Typical and Clarified problems on solve-for-change-set problems, second-

grade girls are significantly better at Typical solve-for-change-set problems 

than they are at Clarified ones. This results in a marginally significant trend by 
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grade (p=.110) and a suggestive trend by gender which is not significant 

(p=.151). There is an overall difference evident on solve-for-start-set problems. 

Clarified problems are solved with greater success than Typical problems 

(p=.021). First-grade girls improve more on Clarified change-for-start-set 

problems. This is significant at p=.054. They actually do not improve on 

Typical solve-for-start-set problems at all. There is a marginally significant 

trend in the same direction by second-grade girls (p=.081). There are no 

differences found between Typical and Clarified solve-for-result problems. 

 

Table 2.10 Percentage of students answering correctly on Typical and 
Clarified problems 

 Solve for result Solve for change set Solve for start set 
Grade Type Change 1 Change 2 Change 3 Change 4 Change 5 Change 6 
 Typical .89 .55 .27 .45 .07 .27 
1 Clarified .70 .58 .21 .40 .16 .47 
 Typical .95 .88 .65 .77 .21 .40 
2 Clarified .86 .88 .53 .67 .51 .58 

 

The trend seen in Typical problems for greater success solving 

subtraction problems than addition problems on everything except solve-for-

result problems is also seen in Clarified problems. More students solve 

Change 4 problems correctly than Change 3 problems (p=.004) and more 

students solve Change 6 problems correctly than Change 5 (p=.002). The 

results for Change 3 and 4 problems are seen among first-grade students and 

as a strong trend among second-grade (p=.031 and p=057 respectively). 

Significantly more first-grade girls solve Change 4 problems correctly than 

solve Change 3 problems correctly; second-grade boys also show a trend for 

correctly solving Change 4 problems more often which is marginally 
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significant at p=.083). The results for Change 5 and 6 problems appear to be 

the result of first-grade girls (p<.001) which are strong enough to give 

significant the results by grade (p=.001) and by gender (p=.002). 

The clarifications did not work as hoped on except on solve-for-start-set 

problems. On Change 1 problems, students do better on Typical problems 

than they do on Clarified problems (p=.002). First-grade girls are especially 

prone to this (p=.031) though second-grade girls show a trend in this direction 

that is marginally significant (p=.103). On Change 3 problems there is a trend 

for students to perform better on typically worded problems as well (p=.103). 

This trend seems to be due to girls (p=.059) more than boys. 

More students solve the clarified version of the problem on both 

Change 5 (p<.001) and Change 6 (p=.005) problems. In both cases the effect is 

due to the performance of girls (p=.001 or less for both problems) though boys 

show a trend in that direction on Change 5 problems (p=.083). Second-grade 

girls are significantly better at the clarified problem where first-grade girls 

merely show a trend to do better at the clarified problem (p=.083). On Change 

6 problems, the effect is due to the performance of first-grade girls (p=.005) 

though second-grade girls show a strong trend in the same direction (p=.057). 

Reasons for why the clarifications made to problems had the desired 

effect only on solve-for-start-set problems and not solve-for-result or solve-

for-change-set problems need to be explored further. It is curious that the 

desired effect was achieved on problems that are widely thought of as the 

most difficult Change problems when it actually had the opposite effect as 

desired on solve-for-result problems which are problems that even young 

students generally can solve. 
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Study 3: Consistent vs Inconsistent wording 

This study was designed to look at whether students are better at 

solving problems in which the key word is consistent with the arithmetic 

operation required to solve the problem correctly than they are at solving 

problems in which the key word is inconsistent with the correct arithmetic 

operation. Are students better at solving problems in which the key word is 

consistent with the arithmetic operation necessary to solve the problem 

correctly than they are at problems in which the key word is inconsistent with 

the correct arithmetic operation for solution? 

Participants 

The same 87 first- and second-grade children participated in this study 

as participated in Study 1. Two first-grade students failed to take the Compare 

test and were not included in the analyses. 

Materials 

Materials consisted of a set of 4 Compare problems which included one 

of each of the following types of problems: a consistent addition problem 

(Compare 3), a consistent subtraction problem (Compare 4), an inconsistent 

addition problem (Compare 5) and an inconsistent subtraction problem 

(Compare 6). Consistent wording is where the key word(s) in a problem is 

consistent with the arithmetic operation necessary to solve the problem; 

inconsistent wording cues the opposite arithmetic operation. All together and 

more are examples of words that cue addition. Words such as less or fewer 

suggest that subtraction should be used to solve a problem. The less 

grammatically correct less was used instead of fewer because piloting 

suggested that students were less likely to understand the word fewer. 
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Consistent and inconsistent wording are really just alternate descriptions for 

different types of Compare problems. Examples of a consistent and 

inconsistent addition problems follow (see Figure 2.2). Appendix C contains 

an example of the one of the tests used for this experiment. 

 

Consistent addition (Change 3) problem 
Carmen caught 2 fireflies. 
Jim caught 5 more fireflies than Carmen caught. 
How many fireflies did Jim catch? 

Inconsistent addition (Change 5) problem: 
Sarah read 9 books last summer. 
Sarah read 6 more books than Tim read. 
How many books did Tim read last summer? 

Figure 2.2 Examples of consistent and inconsistent problems 

Procedure 

The procedure and instructions were identical to Study 1. Students 

were pulled out of class and tested individually. First-grade children were 

tested in 2 different sessions; second-grade students were tested in a single 

session. The problems were read aloud to students at least twice and as many 

times as the student wanted. After students completed the set of problems, 

they were questioned about how they got their answers for some of the 

problems. There were 5 orders and students were randomly assigned to a 

problem order. 

Results 

Contrary to expected results, students appear to be better at solving 

inconsistently worded problems than they are at solving consistently worded 
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problems. (first-grade p=0.051) Although there is no gender difference overall, 

first-grade girls are twice as good at solving inconsistently worded problems 

as they are at solving consistently worded problems (see Table 2.11). First-

grade boys on the other hand show no difference at all in their ability to solve 

either type of problem. 

 

Table 2.11 Mean percentage correct for consistent and inconsistent problems 
by grade 
   Consistent Inconsistent Overall (Compare)  
   Mean %  Mean %   Mean %  
Grade Gender N Correct SD Correct SD Correct SD  
 Boys 14 0.1786 0.2486 0.1786 0.2486 0.1923 0.2317 
1 Girls 29 0.1034 0.2061 0.2241 0.3158 0.1638 0.2224  
 Total 43 0.1279 0.2207 0.2093 0.2934 0.1726 0.2242  
 Boys 16 0.3125 0.4425 0.3750 0.3416 0.3438 0.3521 
2 Girls 27 0.3704 0.4065 0.3519 0.3877 0.3611 0.3203  
 Total 43 0. 3488 0.4160 0.3605 0.3672 0.3547 0.3284 

Study 4: Probable and Improbable subtraction 

The sequence of the numbers (and information) in the problem text also 

affects children’s solution processes. First- and second-grade children used 

either adding on (when using concrete objects) or counting up (when using 

verbal counting strategies) from the smaller given number to solve Combine 2 

problems in which the larger number was mentioned last (Verschaffel, 1984). 

When the larger number was given first, Carpenter and Moser (1984) reported 

that children in their study tended to either separate from or count down from 

the larger given number. These results suggest that the strategies young 

children use to solve addition and subtraction word problems depend not 

only on the semantic structure of the problem, but also on the sequence of the 

given numbers in the task. 
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This study was designed to look at the effect of an improbable 

subtraction task on student ability to solve a Compare problem. Young 

children are taught that it is “impossible” to subtract a larger number from a 

smaller number (e.g., to subtract 8 from 6). It is therefore conceivable that 

students might notice if the key words of a problem seemed to require an 

“impossible” subtraction and this might cause them to stop and reread the 

problem more carefully. Alternatively, there is evidence that an early 

subtraction strategy is to subtract the smaller digit or number from a larger 

one, regardless of how they are positioned in a problem so an impossible 

subtraction situation may in fact have little effect.  If a subtraction problem is 

improbable, that is, if it appears to call for subtracting a larger number from a 

smaller one, is the child more likely to solve the problem correctly than if the 

subtraction is probable, if it calls for subtracting a smaller number from a 

larger one? What effect might this have on students’ solution strategies? 

Three immediate possibilities came to mind. First, perhaps students 

would notice that the problems is suggesting an improbable computation and 

this will make students stop and think about the word problem further. 

Perhaps they would read it again more carefully and thus be more likely to 

parse what the problem was asking. Second, perhaps students would proceed 

to subtract the smaller number from the larger one without being particularly 

concerned about it. There is some evidence that when confronted with a multi-

digit subtraction problem, novice students will subtract the smaller digit from 

the larger one without being concerned about which digit comes first. That is, 

given the problem 72 - 38 = __, a student is likely to subtract the 3 from the 7 

and the 2 from the 8, yielding a final incorrect answer of 46 instead of 

regrouping to get the correct answer of 34. Finally, perhaps students would be 
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stymied by the request and respond that it was not possible to solve the 

problem. That is, students would notice that the subtraction was “impossible” 

and be unable to solve the problem. 

The term improbable is used rather than impossible because such a 

subtraction problem is not, in fact, impossible except when one is restricted to 

whole positive numbers. Since first- and second-grade students have not yet 

been introduced to negative numbers, they are effectively so restricted. For 

this experiment, only subtraction problems were tested since addition is 

commutative and it is therefore not possible to create an improbable addition 

occurrence. 

Participants 

The same 85 first- and second-grade children participated in this study 

as participated in Experiment 3.  

Materials 

The Compare test used in Experiments 1 and 3 included a fifth problem 

that was not used in those studies. In addition to the probable Compare 6 

problems that were used in the analyses of Experiments 1 and 3, there was a 

second, improbable Compare 6 problem embedded within the Compare test. 

In the probable subtraction problem, the larger of the two numbers was 

presented first and in the improbable problem, the larger of the two numbers 

was presented last. In both cases to correctly answer the problem, one must 

add the two numbers together in spite of the key word “less” suggesting 

subtraction as the appropriate arithmetic operation. Otherwise these two 

problems were extremely similar in form (see examples below). It was thought 
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that presenting the larger number last might make the subtraction seem 

improbable and perhaps trigger a more thoughtful response. 

Probable subtraction problem 
Joe missed 6 problems on the math test.  
Joe missed 4 less problems than Marie missed.  
How many problems on the math test did Marie miss? 

Improbable subtraction problem: 
Kate found 2 marbles.  
Kate found 8 less marbles than Billy found.  
How many marbles did Billy find? 

Figure 2.3 Examples of probable and improbable subtraction 
problems 

Procedure 

The procedure and instructions were identical to Study 1. Students 

were pulled out of class and tested individually. Both first- and second-grade 

children were tested in a single session. Each problem was read aloud to the 

student at least twice and repeated as many times as the student wanted to 

hear it. After students completed the set of problems, they were questioned 

about how they got their answers for some of the problems. There were 5 

orders and students were randomly assigned to a problem order. There were 

no differences found so responses were collapsed across order. 

Results 

There were no significant differences found between the students’ 

performance on problems whether the subtraction was probable or 

improbable. At least half of the students, 26 first-grade and 22 second-grade, 

solved both problems incorrectly. Ten first-grade students and 13 second-

grade students solved both problems correctly. Curiously enough, after 
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eliminating those students who got either both problems incorrect or both 

problems correct, the remaining 14 students who solved one but not the other 

correctly (6 first-grade, 8 second-grade) are split exactly evenly between which 

problem was solved correctly (see Figure 2.4). 

It may be that these problems are sufficiently difficult for children that 

something so minor as switching the order in which the numbers are 

presented has little effect on solution. Which is to say, the order in which 

numbers are presented in a problem may be insufficient to override the 

tendency to say, subtract the smaller number from the larger one. An analysis 

of the student responses might give insight as to what strategies students were 

using to solve the problem. If students are subtracting the smaller number 

from the larger, one would expect to see students respond “2” to the probable 

subtraction problem and 6 to the improbable subtraction problem. 

Also, although these problems were intended to be identical except for 

the order of the numbers, the verb in the probable subtraction problem is 

“missed” while the verb in the improbable subtraction problem is “found”. 

Missed may be considered to have a negative (subtractive) connotation where 

the verb in the improbable subtraction problem, found, may have a positive 

(additive) implication. This unintentional duplication of a subtractive term 

may have underscored the subtraction suggestion of the key word and 

rendered the probable condition more difficult to solve than the improbable 

condition which contains a word suggesting addition perhaps helping to 

counterbalance the key word suggesting subtraction. It is also possible that the 

additional phrase “on the math test” added to complexity of the probable 

subtraction problem perhaps adding to cognitive load and thus the difficulty 

of the problem. Both of these structural items, though unintentionally 
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included, may have affected the relative difficulty of the probable subtraction 

problem. 

 

Figure 2.4 Distribution of correct answers on probable and improbable 
Compare 6 problems 

 

Finally, caution must be taken in reading too much into a single pair of 

problems. This comparison was included because we were curious if a small 

change might have an effect and it appears that the change is in fact to small to 

have any effect. It may also be too small a change to give much idea of why 

not. 
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CHAPTER THREE:  

EFFECTS OF ARITHMETIC PRACTICE ON WORD PROBLEM SOLUTION 

 

Support for experiments 

Studies of mathematics textbooks indicate that there are in fact, very 

few story problems included in elementary school arithmetic textbooks 

(Stigler, Fuson, Ham & Kim, 1986). Analyses of textbooks indicate that of the 

many variations of addition and subtraction word problems that are possible, 

the problems that children may actually encounter tend to be the simplest and 

easiest to solve, primarily change problems in which the result is unknown 

(Fuson, Stigler & Bartsch, 1986; Stigler, Fuson, Ham & Kim, 1986; DeCorte, 

Verschaffel, Janssens & Joillet, 1984 as reported in DeCorte & Verschaffel, 

1991). By and large, however, the story problems that do appear are often 

presented at the end of a set of practice problems as optional problems or 

“challenge problems”. These problems are meant to be especially challenging 

for students but in practice are rarely assigned at all. 

In addition, most if not all of the arithmetic practice assigned to young 

school children is also of the ‘solve for result’ variety. Students are asked to 

add two numbers together or to subtract one number from another to yield an 

answer. Because this form of arithmetic practice makes up the most common 

form of arithmetic problem to which children are exposed, these types of 

arithmetic problems are referred to here as canonical problems. It is important 

to note that the form of this arithmetic practice parallels the way one would 

solve a change problem in which the result was unknown. 
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Stigler, Fuson, Ham, & Kim (1986) conclude that textbook 

manufacturers are adept at giving students the kinds of problems they are 

good at solving. One could as easily turn that conclusion on its head and 

conclude that children are good at solving problems to which they are 

exposed and at which they receive practice solving. 

If students were to get more exposure to solving for different parts of 

an arithmetic problem, would that exposure have an effect on their ability to 

solve simple (single step) arithmetic story problems? 

What are canonical and non-canonical problems? 

The different types of Change problems can easily be modeled as 

simple, single-step arithmetic sentences. Change 1 and 2 problems 

respectively can be modeled as addition and subtraction sentences in which 

the result is unknown. This is the standard form of arithmetic practice 

assigned to students - adding two numbers together or subtracting one 

number from another to determine the result (e.g., 2 + 3 = __ or  

7 - 4 = __). Because this form is so common, problems in which students are 

asked to solve for the result after the equals sign shall be referred to as 

canonical problems. Canonical problems always present the problem first, 

before the equals sign, and expect the result to follow the equals sign. 

Non-canonical problems, on the other hand, are not commonly 

assigned to elementary school students as practice. These atypical problems 

ask about one of the addends in an addition problem (e.g., 2 + __ = 5 or  

__ + 3 = 5), or about the subtrahend or minuend of a subtraction problem (e.g., 

7 - __ = 3  or  __ - 4 = 3). Change 3 and 4 problems can be modeled as 

arithmetic sentences in which the change set is unknown and Change 5 and 6 
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problems can be modeled as arithmetic sentences in which the start set is 

unknown. Change 3 and 4 problems are referred to by some researchers 

collectively as solve-for-change-set or change set unknown and Change 5 and 

6 problems are sometimes called solve-for-start-set or start set unknown 

problems. 

Finally, the presentation of problems can also be reversed. That is, 

rather than presenting the result last, on the right side of the equals sign, the 

result of the problem can be presented first, on the left side of the equals sign, 

with the arithmetic problem following the equals sign. (e.g.,  

__ = 2 + 3, 5 = 2 + __  and  5 = __ + 3  or  __ = 7 - 4, 3 = 7 - __ and  

3 = __ -4). Since these reversed, left-handed problems are either extremely 

uncommon or nonexistent in arithmetic practice, they are also considered to 

be non-canonical problems. This includes left-handed solve-for-result (Change 

1 and 2) problems. 

Since Change word problems can be modeled so easily with canonical 

and non-canonical arithmetic word problems, it seems plausible that exposure 

to alternative, non-canonical, arithmetic practice may make children more 

aware of how to solve forms of simple arithmetic problems, namely Change 

problems, that they generally find difficult by giving children a larger pool of 

experience on which to draw to solve them. The purpose of this experiment is 

to see whether practice solving for numbers other than the result of adding 

two numbers together or subtracting one number from another has any effect 

on children’s ability to solve simple arithmetic word problems. Specifically, if 

solving for one of the addends in an addition problem or the subtrahend or 

minuend of a subtraction problem may have an effect on a child’s ability to 

solve Change word problems that reflect that sort of arithmetic structure. 
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Experiment 5: Differential arithmetic practice  

If familiarity and practice play a role in children’s understanding then 

perhaps practice at other types of problems can effect improvement in parallel 

arithmetic word problems. It was predicted that additional practice with non-

canonical forms will improve students’ ability to solve Change problems in 

which the change set or the start set is unknown. Although the additional 

arithmetic practice was not predicted to have an effect on Compare problems, 

these were included in the posttest for completeness. 

Participants 

The first- and second-grade children who participated in the earlier 

studies also participated in this study. Five students moved at some point 

during the school year and were not present to take the posttests. One student 

did not complete all of the worksheets and was dropped from the study. One 

additional student decided that he did not want to take the posttest and was 

excused from doing so. Of the remaining 80 children, only students who took 

all three of the pretests and all three of the posttests were included in these 

analyses. One first-grade student failed to take all three of the pretests and 

three first-grade students failed to take all three of the post-tests. These four 

students were dropped from the analyses leaving 76 students. There were 35 

first-grade children (12 boys and 23 girls) and 41 second-grade children (15 

boys and 26 girls). Mean ages at the two grade levels were 6 years-10 months 

(range: 5-11 to 7-4) and 7-11 (range: 7-5 to 8-5) for first- and second-grade 

respectively. The two second-grade girls for whom ages are unknown both 

participated in this study therefore the mean age of the second-grade children 

reflects that of 39 children rather than all 41 participants. 
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Materials 

Materials for this experiment consisted of a set of arithmetic practice 

worksheets to be administered as class work or homework during the school 

year and a set of three posttests whose problems mirrored the three tests used 

in Experiments 1 and 2 - Typical Change, Clarified Change, and Compare - in 

form. There were two different sets of 44 worksheets. Each set of worksheets 

contained a total of 648 arithmetic problems. The majority of the worksheets 

contained 15 problems. The final two worksheets consisted of 14 and 4 

problems respectively. Problems were either standard, canonical arithmetic 

practice or atypical, non-canonical arithmetic practice.  

Canonical Practice 

The Canonical practice consisted of problems in which two numbers 

were being added or subtracted and the student was asked to solve for the 

result. There are 81 single digit arithmetic facts when one includes all 

permutations of adding one through nine together. Likewise there are 81 

equivalent subtraction problems with a single digit subtrahend and result. 

Each of these single digit addition and subtraction problems was presented a 

total of four times each. The worksheets were mixed addition and subtraction. 

Problems were randomized with the caveat that there was no problem 

repetition within a worksheet. Each worksheet consisted of a single page of 

problems typed in a large font and presented in two columns. There was 

sufficient space between problems for students to make tally marks or 

otherwise make calculations. A sample Canonical worksheet may be found in 

Appendix E. 
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Non-Canonical Practice 

Non-canonical arithmetic practice problems require students to solve 

for one of the addends in addition problems, or for the subtrahend or 

minuend in subtraction problems. In addition, students were asked to solve 

not just “right-handed” problems in which the answer occurred at the end, 

after the equals sign, but also “left-handed” problems in which the answer or 

result was presented first and the problem followed the equals sign. This 

results in four possible variations/versions of each standard or Canonical 

problem (see Figure 3.1). 

 

Canonical problem 

2 + 3 = __ 

7 - 4 = __ 

Non-Canonical problems 

2 + __= 5; __ + 3 = 5; 5 = 2 + __; 5 = __ + 3 

7 - __ = 3; __ - 4 = 3; 3 = 7 - __; 3 = __ - 4 

Figure 3.1 Examples of Canonical and Non-Canonical practice 
problems. 

 

Each of the 81 single-digit addition problems was presented once in 

each configuration, requiring students to solve for one of the addends in both 

the right- and left-handed forms (i.e., 2 + __ = 5, __ + 3 = 5, 5 = 2 + __ and 5 = 

__ + 3). The equivalent subtraction problems, 5 - __ = 2, __ - 3 = 2, 2 = 5 - __ 

and 2 = __ - 3, were also presented once each. Each addition and subtraction 

problem is unique and occurs exactly once in each configuration which results 

in the total of 648 unique problems (see Appendix F for a sample page of 
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problems). Problems were presented identically to those in the Canonical 

practice: typed, mixed addition and subtraction. It was not necessary to worry 

about problems repeating but for simplicity, the same arithmetic problems 

were used, in the same order, on equivalent Canonical and Non-canonical 

worksheets. Left-handed versions of solve-for-result problems (e.g., __ = 2 + 3 

or __ = 7 - 4) were not included as that would have required including an 

addition 162 problems on both types of practice worksheets. 

In both practice conditions, problems were mixed addition and 

subtraction, randomly ordered except for making sure all problems on a 

worksheet were unique. Non-Canonical and Canonical worksheets were 

paired and included equivalent problems in identical orders. For example, if 

the first problem on a Non-Canonical worksheet was 8 = __ + 5, the first 

problem on the equivalent Canonical worksheet was 3 + 5 = __. 

Changes to Posttest 

The posttest was arithmetically identical to the 3 sub-tests administered 

in Experiments 1 and 2. Several changes were made to the language so that the 

story problems were not identical but the structure of each problem was left 

untouched. The names of the actors in the problems were changed and the 

genders were switched. For example, Billy and Kate in a pretest problem 

became Cindy and George in the equivalent posttest problem. The object 

nouns used in each of the problems were also changed, generally to something 

similar. Thus a problem about cookies in the pretest became a problem about 

cupcakes in the posttest and one concerning fireflies became one about 

tadpoles. 
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Pretest 
Nick gave Sue 4 marbles. 
Now Sue has 7 marbles. 
How many marbles did Sue have in the beginning? 

Posttest 
Betsy gave Rob 4 seashells. 
Now Rob has 7 seashells. 
How many seashells did Rob have in the beginning? 

Figure 3.2 Examples of pretest and posttest Change 2 problems 

 

Although the Compare posttest contained five problems, the 

improbable subtraction problem described in Experiment 4 was not used in 

these analyses. Thus any overall scores reflect that of 16 problems: six Typical 

Change problems, six Clarified Change problems, and four Compare 

problems. 

Finally, the problems were presented in a different order on the posttest 

than they were on the pretest. As with the pretest there were two different 

orders for both types of Change problems (Typical and Clarified) and five 

different orders for the Compare problems. No effect of order was found so 

results were collapsed across order. 

Procedure 

Student results on the three tests used in Experiments 1 and 2 comprise 

the pretest or baseline for this experiment. Those studies took place during 

November and early December, prior to winter break. After taking the 

pretests, students were randomly assigned to one of three practice conditions: 

No Practice, Canonical Practice, or Non-Canonical Practice. Children assigned 
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to the No Practice condition did not receive any additional practice 

worksheets. They were tested in the fall and in the late spring like their 

classmates who received practice worksheets but were not worked with in any 

special way during the intervening months of the school year and received no 

additional practice beyond the regular curriculum. Children assigned to one 

of the two practice conditions received a series of worksheets over the course 

of the spring semester. Teachers were asked to assign two to three worksheets 

per week as additional classroom work or as homework. Although one 

teacher did this successfully and two other teachers gave out some of the 

worksheets, the majority of teachers were unable (or unwilling) to consistently 

assign the worksheets. For the majority of the students, the experimenter 

would periodically take the children out of class to work with them in pairs or 

small groups on the worksheets. 

The posttests were administered individually to students in the late 

spring (May) of the school year, approximately five months after students 

were initially tested on arithmetically identical word problems. The procedure 

paralleled that of the Experiments 1 and 2 with changes as noted. Students 

were pulled out of class and tested individually. First-grade children were 

tested in three different sessions, one session for each of the three sub-tests 

and second-grade students were tested in a single session. The problems were 

read aloud to students at least twice and as many times as the student wanted. 

Students were questioned about how they got their answers for some of the 

problems after they completed each session. For first-grade students this was 

at the end of each page and for second-grade students it was after they 

completed all three pages. The experimenter asked students about problems 

that they answered correctly as well as problems they answered incorrectly. 
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None of the students showed any inclination to change their answers when 

questioned about them. The order in which the three sub-tests were 

administered was randomized. 

Although the children were randomly assigned to a worksheet 

condition, independent-samples t-tests were used to verify that there was no 

difference between the groups of students assigned to the three different 

worksheet conditions. Both first- and second-grade students showed an 

overall difference due to performance on Typical problems. First-grade 

students assigned to the No Practice condition did significantly better on the 

Typically worded pretest than their counterparts who were assigned to the 

Non-Canonical Practice condition (p=.042). Second-grade students assigned to 

the Non-Canonical Practice condition did significantly better than those 

assigned to the No Practice condition (p=.049). There was no significant 

difference between the pretest scores of those students assigned to the 

Canonical Practice condition and those assigned to the No Practice condition 

though a marginally significant trend (p=.117) for second-grade students in 

the Non-Canonical Practice condition to outperform their counterparts 

assigned to the No Practice condition was observed for Clarified problems. In 

order to accurately compare the performance of children assigned to different 

worksheet conditions, we must therefore look at gain scores, or the percentage 

of improvement rather than the percentage of problems answered correctly. 

Scoring 

Scoring for the posttest problems was identical to that of the pretest 

problems. Only correct numerical answers were scored as correct.  
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Overall Results 

Improvement over the course of the school year is expected. Overall, 

single-sample t-tests of the gain scores indicate that students improve 

significantly at solving word problems from pretest to posttest (p<.001). This 

is true for both addition and subtraction problems (p<.001, both). The amount 

of improvement made on addition problems is not significantly different than 

it is for subtraction problems as indicated by a paired-samples t-test. 

Significant gains are made by both boys and girls (p<.001, both genders) at 

both grade levels (also p<.001, both grades). Both genders show improvement 

on addition problems and subtraction problems at p<.001. Although boys 

appear to have a slight edge over girls at solving subtraction problems (19.44% 

versus 13.27% improvement), this difference is not significant and there is no 

gender difference apparent in the amount of improvement on addition 

problems. The amount of improvement on addition problems is not 

significantly different for than for subtraction problems for either boys or girls. 

 

Table 3.1 Percent correct and improvement by gender and overall 

  Boys (N=27) Girls (N=49) Overall (N=76)  
   Std.   Std.   Std. 
   Error   Error   Error 
 Mean St. Dev. Mean Mean St. Dev. Mean Mean St. Dev. Mean  
Pre .5023 .2626 .0505 .4579 .1986 .0284 .4737 .2227 .0256 
Post .6806 .2544 .0490 .6008 .1808 .0258 .6291 .2117 .0243  
Gain .1782 .1951 .0376 .1429 .1697 .0242 .1554 .1787 .0205 

 

Within each grade, students show the same sort of pattern of 

improvement that is seen overall. Both first- and second-grade students 

improve significantly from pretest to posttest (p<.001, both grades). This is 

true for both addition (p<.001, both grades) and subtraction problems (1st: 
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p<.001; 2nd: p=.016). There is no difference in the amount of improvement 

gained on addition versus subtraction problems for either grade. 

Boys and girls both show improvement overall. First- and second-grade 

girls both show significant improvement in performance on both addition (1st: 

p<.001; 2nd: p=.001) and subtraction problems (1st: p<.001; 2nd: p=.050). The 

same is true of first-grade boys. Second-grade boys, however, show 

improvement only on addition problems (p=.041) and not subtraction 

problems (p=.178). Although the results are not significant, first-grade boys 

show a trend (p=.067) for greater improvement than first-grade girls. First-

grade boys solve an average of five more problems correctly on the posttest 

than they did on the pretest for an average of 10.8 problems correct where 

first-grade girls averaged an increase of only three additional problems (mean 

8.8 problems correct). There is no such trend evident among second-grade 

students. It turns out that this trend (p=.065) is due mostly to the performance 

of first-grade boys on subtraction problems (gain=34.38%) compared to that of 

first-grade girls (gain=19.57%). Although first-grade boys also appear to 

improve more (28.13%) than first-grade girls (17.93%) on addition problems, 

this difference is not significant. There are also no gender differences found 

among second-grade students on either addition or subtraction problems. 

 

Table 3.2 Percentage improvement by gender and grade 

  Boys Girls Total  

Grade N Mean Std. Dev. N Mean Std. Dev. N Mean Std. Dev.  

 1 12 .3125 .1884 23 .1875 .1837 35 .2304 .1922 

 2 15 .0708 .1224 26 .1034 .1489 41 .0915 .1391  

Overall 27 .1782 .1951 49 .1429 .1697 76 .1554 .1787 
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First-grade students improve significantly more than second-grade 

students (p<.001). This is true for both addition problems (p=.014) and 

subtraction problems (p=.001). Although first-grade boys improved more than 

second-grade boys (p<.001), the difference in improvement between first- and 

second-grade girls is not significant (p=.083). First-grade girls do not improve 

more than second-grade girls on addition problems (p=.380), but they do 

improve more than second-grade girls on subtraction problems (p=.045). First-

grade boys improved more than second-grade boys on both addition and 

subtraction problems (p=.002 and p=.003 respectively). 

If we look at performance broken out by problem class, that is, if we 

look at how children perform on Typical and Clarified Change problems and 

on Compare problems, we see that there is improvement from pretest to 

posttest across all three classes of problems. The mean percent correct on 

Typical Change problems was 53.51% on the pretest and 70.39% on the 

posttest. This is a gain of 16.89% (p<.001). Mean percent correct on Clarified 

change problems was 55.04% on the pretest and 71.27% on the posttest. This is 

a gain of 16.23% (p<.001). On Compare problems, there was a gain of 12.50%, 

with pretest and posttest averaging 26.64% and 39.14% correct respectively. 

Overall, neither Typical nor Clarified problems show significantly more 

improvement than Compare problems. This is somewhat surprising as 

Compare problems have widely been found to be more difficult than Change 

problems (Fuson, 1992a). Improvement on Typical and Clarified problems is 

also not significantly different from one another overall. 

Boys improved on all three classes of problems (Typical: p=.002; 

Clarified: p=.003; Compare: p<.001). Girls did not improve on Compare 
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problems (p=.248), but they did improve on both Typical and Clarified 

Change problems (p<.001, both). Further, although there is no difference in 

the amount of improvement by gender on either of the two types of Change 

problems (Typical or Clarified), boys show significantly more improvement 

on Compare problems than girls (p=.016). Boys get an average of 50.93% of the 

Compare posttest problems correct and while girls only average 32.65% of 

these problems correct. 

Single-sample t-tests of the gain scores indicate that both first- and 

second-grade children improved on all three types of problems. First-grade 

students got an average of 2.5 of the typically worded Change problems 

correct on the pretest and an average of 4.3 correct on the posttest (p<.001). On 

the Clarified Change problems their pretest and posttest means scores were 

2.5 and 3.9 respectively (p<.001). Mean percent correct on the Compare test 

also showed significant improvement (p=.019). Students scored an average of 

17.86% correct on the Compare pretest and 32.14% correct on the posttest. 

Second-grade students averaged 4.0 problems correct on the Clarified pretest 

and 4.6 correct on the posttest (p=.009). Their improvement on Typical and 

Compare problems were also significant at the p=.009 and p=.043 levels 

respectively. First-grade students improved more than second-grade students 

on Typical problems (p<.001) and showed a trend in that direction on 

Clarified problems (p=.060). There was no difference in improvement between 

first- and second-grade children on Compare problems. 

First-grade boys improved significantly on all three tests at p=.01 or 

better. First-grade girls also improve on Typical and Clarified problems 

(p=.005 or better). They do not however improve significantly on Compare 

problems. Not surprisingly, first-grade boys improve significantly more than 
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girls on Compare problems (p=.016). Improvement in second-grade is even 

more clearly demarcated by gender. Second-grade boys improve significantly 

only on Compare problems (p=.028). Second-grade girls, on the other hand, do 

not show significant improvement on Compare problems but they do improve 

on both Typical and Clarified problems (p=.008 and p=.002 respectively). The 

only difference by gender among second-grade students is a trend for girls to 

improve more than boys on Clarified problems which is marginally significant 

at p=.085. 

 

Table 3.3 Percentage of students answering correctly on pretest and posttest 
by problem type 
Problem Type: Typical Clarified Compare  

Grade N Gender Pretest Posttest Pretest Posttest Pretest Posttest  

 12 Male .4444 .7917 .3889 .6528 .2083 .5417 

1 23 Female .4130 .6812 .4420 .6449 .1630 .2065  

 35 Overall .4238 .7190 .4238 .6476 .1786 .3214  

 15 Male .7000 .7333 .7333 .7667 .3000 .4833 

2 26 Female .5890 .6667 .6154 .7692 .3654 .4327  

 41 Overall .6301 .6911 .6585 .7683 .3415 .4512 

 

Paired-samples t-tests were used to compare the gain scores by test. 

First-grade students improved significantly more on Typical problems than 

they did on Compare problems (p=.039). Their improvement on Clarified 

problems is not significantly different either from that of Compare problems 

or Typical problems. If we break this down by gender we see that boys do not 

show a significant difference in the amount of improvement between any of 

the three tests. Girls, however, show the same pattern we see overall. First-

grade girls improve significantly more on Typical Change problems then they 
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do on Compare problems (p=.011) although their improvement on Clarified 

problems is not different from either Compare problems or Typical Change 

problems. 

Second-grade students like those in first-grade also improved on all 

three problem types though they do not show nearly as much improvement as 

do first-grade students. There is, however, no significant difference in the 

improvement they make on the different tests. Although it appears that 

second-grade boys improve the most on Compare problems and second-grade 

girls improve more on Clarified Change problems than they do on Typical 

Change problems or Compare problems, these results are not significant. 

 

Table 3.4 Percent improvement by problem type 

Problem Type: Typical Clarified Compare   
Grade N Gender Gain Std. Dev. Gain Std. Dev. Gain Std. Dev.   
 12 Male .3472 .2508 .2639 .2969 .3333 .3257 
1 23 Female .2681 .2343 .2029 .3096 .0435 .3167  
 35 Overall .2952 .2394 .2238 .3023 .1429 .3445  
 15 Male .0333 .1569 .0333 .1911 .1833 .2907 
2 26 Female .0769 .1352 .1538 .2207 .0673 .3575  
 41 Overall .0610 .1432 .1098 .2161 .1098 .3356 

 

When we compare the gain scores of first- and second-grade students 

to one another, we find that first-grade students show more improvement 

than second-grade students do overall (p<.001). There is no difference in 

amount of improvement on Compare problems by grade. First-grade students 

show significantly more improvement than second-grade students on Typical 
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Change problems (p<.001) and show a trend in that direction on clarified 

Change problems though it is not significant (p=.060). 

 

 Figure 3.3 Percent improvement on Typical, Clarified and Compare 
problems by grade 

 

There is a gender effect on one of the three sub-tests for first-grade 

children. First-grade boys do significantly better than first-grade girls on 

compare problems (54.1% correct versus 21.2% correct). They may in fact do 

better than both second-grade girls and boys on this particular sub-test 

Second-grade children demonstrate no effect of gender on any of the three 

sub-tests. 
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Results of Worksheet Practice 

Students improved during the school year regardless of the worksheet 

condition to which they were assigned. Single-sample t-tests of the gain scores 

are significant at p<.001 for both students assigned to the Canonical and those 

assigned to the Non-Canonical Practice condition and at the p=.001 level for 

students assigned to the No Practice condition. 

Children improved on both Typical and Clarified Change problems 

regardless of the worksheet condition to which they were assigned. There are 

no differences evident overall in the amount of improvement gained by 

worksheet condition. There are also no gender differences in the amount of 

improvement made. 

First-grade students in all three conditions improved significantly on 

Typical problems. Those in the Non-Canonical and No Practice conditions also 

improved significantly on Clarified problems though students assigned to the 

Canonical Practice condition did not. Second-grade students in the Canonical 

Practice condition improved on both Typical and Clarified problems (p=.014 

and p=.026 respectively). Second-grade students assigned to the Non-

Canonical Practice condition improved only on Clarified problems (p=.023), 

not Typical problems. Second-grade students assigned to the No Practice 

condition did not improve significantly on either the Typical or Clarified 

change problems.  

Although the different types of arithmetic practice were not expected to 

have any effect upon Compare problems, both children in the Canonical 

Practice condition and children in the Non-Canonical Practice condition 

appear to show a trend towards improvement on Compare problems (p=.065 

and p=.055 respectively). Children assigned to the No Practice condition did 
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not show the same trend of improvement on Compare problems. It appears 

that this trend is merely an artifact as it disappears when we examine 

improvement by grade level. Neither first- nor second-grade students 

improved significantly on Compare problems whether they were in the No 

Practice condition or in one of the two practice conditions.  

 

Table 3.5 Percent improvement by worksheet condition 

 Worksheet   Problem Class  
Grade Condition N Typical Clarified Compare  
 None 14 .2143 .2143 .1671 
1 Canonical 11 .2273 .1354 .1591 
 Non-Canonical 10 .4833 .3333 .1750  
 None 12 .0556 .0278 .1346 
2 Canonical 13 .1026 .1282 .0863 
 Non-Canonical 16 .0313 .1563 .1094 

 

Effect of worksheet practice 

No overall differences in improvement are seen across the three 

conditions. There was no difference found in the amount of improvement of 

those children assigned to the No Practice condition and those children 

assigned to the Canonical Practice condition. Students in the Canonical 

Practice condition appear to improve slightly less than students in the No 

Practice condition on Clarified problems though this is not significant. 

Although all first-grade students improve on Typical problems, the 

amount of improvement students in different worksheet conditions gain is not 

the same. First-grade students who received Non-Canonical Practice 

demonstrated significantly more improvement in their ability to successfully 
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solve Typically worded change problems than students in the Canonical 

Practice condition (p=.022) or students in the No Practice condition (p=.009). 

These students improved much more on Typical change problems than they 

did on Compare problems (p=.041). In fact, they improved more on Typical 

problems than second-grade students. Their improvement on Clarified change 

problems fell between that of Typical and Compare problems and was not 

significantly different from either. Students in the Canonical Practice and No 

Practice conditions demonstrated no such difference in improvement on 

Typical, Clarified and Compare problems. 

Second-grade students assigned to the Non-Canonical Practice 

condition show a different pattern of improvement than do first-grade 

students. They improve significantly more on Clarified problems than they do 

on Typical problems (p=.029). Their improvement on Compare problems is 

not significantly different than their improvement on either Clarified or 

Typical problems. As with first-grade students, children in the Canonical and 

No Practice conditions did not differ significantly in the amount of 

improvement gained on Typical, Clarified or Compare problems. 

The sample of male and female children are too small to look at gender 

differences in the different worksheet conditions. Looking at performance on 

individual problems there are some small differences but nothing that 

suggests a pattern. The Ns are too small to be meaningful and the standard 

deviations are too large if one tries to examine gender differences within 

grades.  

Although second-grade children showed improvement from pretest to 

posttest, the effect of the three different worksheet conditions was not 

significant. This is in contrast to first-grade students who clearly show 
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differential gain scores depending on the worksheet condition to which they 

were assigned. Why is it that first-grade students show such large gain scores 

on Typically worded Change problems and second-grade students do not? It’s 

possible that by mid-way through second grade, basic addition and 

subtraction facts are so well known that second-grade students treated the 

worksheets like rote practice. First-grade students, on the other hand, initially 

had a great deal of difficulty solving the non-canonical arithmetic problems.  

Informal observation indicated that many of the first-grade children 

began using a strategy that consisted of performing the required operation on 

the two numbers present and filling in the calculated response on the blank 

line, regardless of where it appeared in the problem. For example, if a student 

was asked to solve 4 + __ = 9, she would add the 4 and 9 together to get 13 and 

write that on the blank space so the solved problem read  

4 + 13 = 9. 
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CHAPTER FOUR:  

CONCLUSIONS/GENERAL DISCUSSION 

 

This work was concerned broadly with two things. Firstly, are there 

relatively simple changes that can be made to word problems themselves to 

make them easier for children to understand and to solve and what sorts of 

changes actually help? Secondly, are there other things that can be done to the 

curriculum, such as additional or different types of arithmetic practice, which 

will transfer to solving arithmetic word problems? 

On clarifying word problems 

Students answer solve-for-result (Change 1 and 2) problems with 

greater success than solve-for-change-set (Change 3 and 4) problems whether 

the wording of the problems has been clarified or is more typical of what is 

seen in textbooks and what has been tested by researchers. Although typically 

worded solve-for-change-set problems are solved correctly significantly more 

often than solve-for-start-set (Change 5 and 6) problems, this is not the case 

with Clarified problems. With Clarified problems there is no significant 

difference found between solve-for-change-set and solve-for-start-set 

problems. 

Clarification of semantic and temporal relationships can improve 

student performance on Change problems in some cases. Students improved 

significantly on solve-for-start-set problems, which are the problems on which 

they did the most poorly in the typically worded set of problems as well as the 

types of Change problems that students have been shown to find the most 

difficult to solve. 
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Typically worded Change problems show the expected pattern of 

relative difficulty: solve-for-result problems are easier to solve than solve-for-

change-set problems which are in turn easier to answer than solve-for-result 

problems. Students answer solve-for-result (Change 1 and 2) problems with 

greater success than solve-for-change-set (Change 3 and 4) problems whether 

the wording of the problems is typical or has been clarified. 

The exception is that subtraction problems were generally solved more 

successfully than addition problems. In the set of problems selected, Change 1 

problems were found to be easier to solve than Change 2 problems, but in 

both the case of solve-for-change-set and solve-for-start-set problems, the 

subtraction problem was solved correctly with greater frequency than the 

addition problem. The finding that subtraction problems are easier to solve 

than comparable addition problems was not expected although it could be an 

artifact of the problems chosen. Since there was only a single example of each 

type of problem, this cannot be determined without additional studies. This 

could also be why there were no significant difference found among the 

compare problems. 

The attempted clarifications may have been too minor to have an effect. 

There were very few instances of pronoun usage and the typical problems 

selected may have been unintentionally clarified by conventions such as the 

choice of using actors of different genders. It would be interesting to do a 

more systematic variation of problem structure to see if problems can be made 

more difficult as well as less difficult. One wonders if problems can also be 

made more difficult by altering their wording. For example, one would expect 

that changing the order of information in a Change 1 problem to “Joe gave 

Stephanie 4 books. Before that Stephanie had 7 books. How many books does 
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Stephanie have now?” should increase the difficulty of the problem for young 

children.  

On the effects of differential arithmetic practice 

Additional arithmetic practice can affect improved solution of some 

types of word problems. Specifically, Non-Canonical arithmetic practice does 

seem to transfer to improvement on typically worded Change problem 

solution, at least among first-grade students. Practice of both types appears to 

help second grade students some, but not nearly so much as it helps first-

grade students. There are some other intriguing trends that proved not to be 

significant. Neither Canonical nor Non-Canonical practice appears to 

differentially affect Compare problem solution compared to no practice, but 

this is as expected. 

Why was there improvement on typically worded problems and not 

problems in which the wording had been clarified? First of all, it is important 

to note that this is not merely an effect of having more practice. Students in the 

Canonical Practice condition received just as many additional practice 

problems as students in the Non-Canonical Practice condition but show very 

similar improvement on Typical change problems as students in the No 

Practice condition. Secondly, students in the Non-Canonical Practice condition 

do improve significantly on Clarified change problems, it is just not 

significantly more improvement than students in the Canonical or No Practice 

conditions demonstrate on those problems.  

It is actually intriguing that the Canonical practice appears to have no 

effect in first-grade. Students receiving no practice improved just as much as 

those who received Canonical practice. Second-grade students who received 



 

 

96

Canonical practice improved on both types of Change problems, but this was 

not significantly more than the improvement made by students receiving no 

practice, even though those students’ gains were not significant. 

There are a number of reasons why practice may have helped first-

grade students more than it helped second grade students. One possibility is 

that the arithmetic practice was too simple for second grade students. Since 

students are expected to know their addition and subtraction facts in 

preparation for being introduced to multi-digit arithmetic, it is possible that 

practice with simple addition and subtraction facts may not have been 

sufficiently challenging and therefore did not cause them to think about the 

structure of the problem. Second-grade students have had much more practice 

solving simple arithmetic facts than first-grade students and filling in the 

correct single digit answer could quickly become a matter of rote allowing 

students to ignore the Non-Canonical structure of the problem.  

Another possibility is that second grade students may have found the 

arithmetic of the word problem similarly not difficult and that their scores are 

sufficiently high that making significant improvement on those problems is 

difficult. Both of these things might be addressed by creating problems, both 

arithmetic practice and word problems, which are more arithmetically 

challenging for second grade students. Initially, these studies were piloted 

with two-digit arithmetic problems for the second grade students, but the 

arithmetic was sufficiently difficult (time consuming) that the decision was 

made to use the same problems as were used for first-grade students. It is 

possible to construct 2-digit addition and subtraction problems which do not 

require regrouping which should be less difficult for second-grade students 

than the 2-digit problems which were originally piloted. 
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Since it is the exposure to atypical problem structures which were 

conjectured to assist students with word problem solution, if students were 

not paying attention to the structure of the practice, the projected gains would 

not occur. This could be addressed by making the arithmetic practice more 

challenging for second grade students. Perhaps if the problems did not 

involve regrouping or carrying, they would still provide enough challenge to 

require students to pay attention to the structure of the problem without 

becoming so time consuming as to be onerous. 

Another difficulty that this research runs into is that once students were 

divided among three different worksheet conditions, the Ns in each condition 

are quite small, thus it is difficult to get significant effects. There are, however, 

some intriguing trends which might be explored further in a subsequent 

study. 

One could speculate that sufficient regular practice with left-handed 

problems may help to mitigate the difficulties students are reported to have 

understanding what an equals sign represents. Students are prone to treat an 

equals sign as an indication to give an answer. Teachers of middle school 

science report that students treat an equals sign on a calculator in a similar 

fashion, expressing an expectation that the solution to the problem will appear 

when they push the equals button as opposed to using the calculator as a tool. 

Perhaps part of the reason that children have difficulty with the concept of 

equality is that in practice, given the preponderance of canonical arithmetic 

practice that students receive, an equals sign does represent an indication to 

give an answer. In that case, earlier introduction to alternative forms of 

arithmetic practice might help prevent that misconception from forming. 

Extensive practice with non-canonical arithmetic forms may also help prevent 
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canonical arithmetic from being over-learned and may have (positive) 

consequences when algebra is introduced. Non-canonical arithmetic practice 

is in fact, a simple form of algebra that does not use a letter to represent the 

missing set. 

Regardless of the effect or lack thereof that the two worksheet practice 

conditions had on word problem solution, first-grade teachers reported 

anecdotally that students who were in either of two worksheet conditions 

performed better on other classroom arithmetic tasks than their classmates 

who did not receive additional worksheet practice. In first-grade, in addition 

to learning basic addition and subtraction facts, students are taught to tell 

time, about calendar math and to deal with money. Review or drill of basic 

arithmetic facts seemed to be lacking while these special topics were being 

taught so perhaps that is why students in the worksheet conditions better 

retained basic computations skills. 

Other data analyses 

Identify patterns of errors 

It may also be possible to analyze student numerical responses for 

patterns of errors that may be suggestive of the strategies used to answer each 

problem. Although students sometimes just guess, often they repeat one of the 

numbers presented in the problem. They may also perseverate at a familiar 

task. First-grade students in particular might perseverate at addition since it is 

more familiar and perhaps simpler task. This maybe especially prevalent 

during the pretest tasks as they had not yet been formally introduced to 

subtraction at that point in the school year. 
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Since students were asked for each question to write down the math 

problem that they used to get their answers, these student-reported math 

problems may provide further insight about the arithmetic strategies used by 

students to answer the word problems. Used in conjunction with numerical 

responses, analyzing these student-reported math problems would also allow 

us to identify problems in which an incorrect numerical answer is merely a 

computation error rather than a failure to set up a problem correctly. It would 

also provide a way to corroborate student-reported strategies for solving the 

word problems. 

Analyze children’s explanations of what they did 

There is a rich array of student responses that could be analyzed using 

qualitative techniques. Since all sessions were individually audio-taped, 

student answers to experimenter probes could be transcribed, coded and 

analyzed for common threads of reasoning. Student explanations of how they 

solved problems may also help shed light on whether student errors are due 

to a comprehension failure and what type of errors they are making. As one 

example, the experimenter noticed informally that a number of students, in 

particular first-grade students, seemed to be failing to use “less” and “more” 

as relative terms. That is to say, students often seemed to add the terms 

“more” and “less” somewhat indiscriminately to a sentence without intending 

it to be a relative term. Children would say things such as “Andy has five” 

and “Andy has five more” meaning, in both cases, that Andy has a total of five 

grapes, not that he had five additional grapes than he had before. DeCorte and 

Verschaffel (1987b) also have evidence that children’s understanding of what a 
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word problem says is not always the same as what the adult who wrote the 

problem intended.  

It has also been suggested that failures in comprehension may be 

related to working memory. That longer, more complex sentences may tax a 

young child’s ability to follow what is being said simply because they are not 

able to hold all of it in their heads. This may also be the case with longer, more 

complex problems. Although children must eventually learn to understand 

the sometimes terse and sometimes complex language in which mathematics 

problems are written, it behooves us to teach them what that language is. One 

way of accomplishing this would be to introduce students to relatively simple 

problems in which the relationships are more clearly demarcated. and to teach 

them to recognize/understand increasingly complicated and terse problems. 

Future Directions 

There is evidence suggesting that it is indeed possible to affect student 

performance on certain types of (Change) arithmetic word problems simply 

by giving them additional practice on alternate forms of arithmetic problems. I 

suggest that this was successful because sufficient practice with alternate, non-

canonical, arithmetic problems gives the students a broader variety of 

problems to call upon when trying to model arithmetic word problems. 

Pulling apart why this helps beyond speculating about it is critical to offering 

teachers suggestions that may actually affect their practice. 

In order to answer why we need to look at several different things. 

How do students interpret problems? Analyzing responses and computational 

errors gives clues about what strategies children may be using but without 

giving us an understanding of why they choose to use those strategies. 
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DeCorte and Verschaffel’s (1987b) debriefing of students offers intriguing 

suggestions that students sometimes do understand problems differently than 

the adult who wrote them intended. 

Structured practice 

Simply throwing additional and alternative types of arithmetic practice 

at students is probably not a useful suggestion. Just as we introduce addition 

prior to introducing concepts of subtraction, we should think about how to 

structure arithmetic practice. I suggest that determining a criterion for mastery 

of canonical math problems should be the gateway for introducing non-

canonical practice and as students master the different forms that non-

canonical problems should make up an increasingly larger and larger amount 

of their practice. Rather than giving students mixed addition and subtraction 

practice, arithmetic practice could be structured in a way to take advantage of 

a student’s increasing mastery of addition and subtraction facts. As students 

demonstrate competence with canonical addition facts, they should be 

introduced to alternative forms of arithmetic sentences, perhaps beginning 

with left-handed solve-for-result questions (i.e., problems which present the 

answer first) followed by right-and left-handed solve-for-change set problems 

and finally right- and left-handed solve-for-start-set problems. As students 

develop competence at these alternative forms of arithmetic practice, they 

should make up an increasing percentage of the practice assigned to students 

to increase the pool of resources they have available. 

The order in which to introduce alternative arithmetic sentences and 

criterion for competence prior to introducing additional or alternate forms 

should be tested experimentally. With first-grade students, one might want to 
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begin with addition problems, substituting subtraction problems once they are 

introduced in the curriculum. At some point it seems sensible to require 

students to solve mixed addition and subtraction sets, thus requiring them to 

pay attention to which arithmetic operation is required.  

Interspersing word problems among arithmetic practice may be a more 

effective way of teaching students to solve word problems. Wildmon, Skinner, 

McCurdy and Sims (1999) report that secondary school students will 

voluntarily choose a homework assignment with more total problems if there 

are simple arithmetic computation problems interspersed between the word 

problems over a homework assignment that contains only word problems. 

Students also ranked the mixed assignment as less difficult than the 

assignment containing onlyword problems even though the students’ rate of 

accurate completion of the word problems on the two assignments were 

comparable. If one were to design mixed computation and word problem sets 

such that the computation was relevant to the structure of the word problems, 

students might be able to infer how to use the arithmetic practice to assist 

them with the word problems without actively being taught to do so. For 

example, a problem set of canonical arithmetic problems could be interspersed 

with Change 1 and 2 (solve-for-result) word problems or a set of arithmetic 

problems asking about the amount changing could be interspersed with 

Change 3 and 4 (solve-for-change-set) problems. Clearly, the computational 

practice would need to be appropriate for the students’ level of understanding 

and word problems would need to be carefully selected such that their 

semantic structure matched that of the computational practice. This might 

assist teachers with introducing word problems of an appropriate level of 

complexity and requiring appropriate computational skills to students. 
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Practicing word problems 

In addition to simplify problems so they are easier for children to 

understand we must also teach students to understand the ‘language of 

mathematics’. Ultimately students must learn to parse the relatively terse and 

sometimes cryptic language in which mathematics problems are usually 

written. 

There is research suggesting that both conceptually and procedurally 

based curricula have a positive effect on student performance, but also that 

both fail in certain ways (O’Rode, 2004). Children will learn what adults teach 

them. Children who are taught to reason conceptually about things may still 

have considerable difficulty with the actual computation, that is with 

proceduralizing what they understand. In contrast, students with a broad 

array of procedural tools in at their disposal may set up and solve formulas 

but give impractical answers like the two commonly given for the now oft-

quoted school buses problem from the NAEP. One-third of a school bus is a 

nonsensical answer and rounding down to 31 leaves some of the passengers 

without transportation. 

I have not at all addressed whether giving students practice on word 

problems themselves would assist students in solving them. It is fairly 

obvious to predict that it would but a better question is how might one 

structure such practice for optimal effect. Students are taught to look for 

certain key words in a problem for clues about what sort of arithmetic 

operation is required to solve the problem. They are taught that words such as 

“more” and “altogether” mean they are supposed to add and words such as 

“less” mean they are supposed to subtract. Unfortunately if a problem is 

asking the student to solve for something other than the result, the words 
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indicating the action may not cue the arithmetic operation needed to actually 

solve the problem. Asking students more systematically to explain why or 

how they made decisions about what to do or to explain what the story 

problem was asking and perhaps even to write their own story problems 

about particular arithmetic problems might help them make the links between 

them.  

One question that remains unanswered is why are math word 

problems so difficult. Given that students have better success when problems 

are ‘simplified’ is it something so simple as limitations on working memory? 

More complex sentence structure requires more processing resources from 

students. It is likely that the answer to this is actually quite complicated and 

that several factors each play a role in this difficulty. 
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APPENDIX A: 

TYPICAL CHANGE PROBLEMS, ORDER A 

 

Lauren had 8 erasers. 

She lost some of them. 

Now she has 6 erasers. 

How many erasers did Lauren lose? 

 

David had 11 cookies. 

He gave 4 cookies to Sharon. 

How many cookies does David have now? 

 

Erica had 2 oranges. 

Scott gave Erica 3 more oranges. 

How many oranges does Erica have now? 

 

Keith has 2 pencils. 

How many more pencils does he need 

so he has 11 pencils altogether. 

 

Dan gave Kathy 3 acorns. 

Now Dan has 7 acorns. 

How many acorns did Dan have to start with? 
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Nick gave Sue 4 marbles. 

Now Sue has 7 marbles. 

How many marbles did Sue have in the beginning? 
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APPENDIX B: 

CLARIFIED CHANGE PROBLEMS, ORDER A 

 

Roger had 7 crayons. 

Then Lori gave Roger some more crayons. 

Now Roger has 9 crayons. 

How many crayons did Lori give to Roger? 

 

Jack had 11 pens. 

The Jack gave Becky some pens. 

Now Jack has 8 pens left. 

How many pens did Jack give to Becky? 

 

Mike had 8 apples. 

Then Joyce gave Mike 4 more apples. 

How many apples does Mike have now? 

 

Justin had some bottlecaps. 

Then Sherri gave Justin 5 more bottlecaps. 

Now Justin has 9 bottlecaps. 

How many bottlecaps did Justin have to start with? 

 

Nancy had 6 brownies. 

The Nancy gave Oliver 4 brownies. 

How many brownies does Nancy have now? 
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Abby had some superballs. 

Then Abby gave Brian 5 superballs. 

Now Abby has 3 superballs left. 

How many superballs did Abby have in the beginning? 
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APPENDIX C: 

COMPARE PROBLEMS, ORDER A 

 

Carmen caught 2 fireflies. 

Jim caught 5 more fireflies than Carmen caught. 

How many fireflies did Jim catch? 

 

Joe missed 6 problems on the math test. 

Joe missed 4 more problems than Marie missed. 

How many problems on the math test did Marie miss? 

 

Steven and Elizabeth went to the pet store to buy some goldfish. 

Steven bought 12 goldfish. 

Elizabeth bought 3 less goldfish than Steven bought. 

How many goldfish did Elizabeth buy? 

 

Kate found 2 marbles. 

Kate found 8 less marbles than Billy found. 

How many marbles did Billy find? 

 

Sarah read 9 books last summer. 

Sarah read 6 more books than Tim read. 

How many books did Tim read last summer? 
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APPENDIX D: 

TYPICAL CHANGE PROBLEMS, POST-TEST, ORDER A 

 

Andy had 2 grapes. 

Carol gave Andy 3 more grapes. 

How many grapes does Andy have now? 

 

Michael had 8 buttons. 

He lost some of them. 

Now he has 6 buttons. 

How many buttons did Michael lose? 

 

Rachel had 11 crackers. 

She gave 4 crackers to Leon. 

How many crackers does Rachel have now? 

 

Martha gave Neil 3 stickers. 

Now Martha has 7 stickers. 

How many stickers did Martha have to start with? 

 

Betsy gave Rob 4 seashells. 

Now Rob has 7 seashells. 

How many seashells did Rob have in the beginning? 
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Cheryl has 2 paperclips. 

How many more paperclips does she need  

so she has 11 paperclips altogether? 
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APPENDIX E: 

SAMPLE CANONICAL ARITHMETIC WORKSHEET 

 

Name Date  

Solve the problem by filling in the blank. 

 

 

17 - 9 = __ 

 

4 + 3 = __ 

 

5 + 1 = __ 

 

3 - 2 = __ 

 

15 - 6 =  

 

14 + 3 = __ 

 

14 - 9 = __ 

 

7 + 4 = 

 

9 + 7 = __ 

 

1 + 3 = __ 

 

9 + 8 = __ 

 

10 - 7 = __ 

 

12 - 9 = __ 

 

3 + 7 = __ 

 

7 + 3 = __ 
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APPENDIX F: 

SAMPLE NONCANONICAL ARITHMETIC WORKSHEET 

 

Name Date  

Solve the problem by filling in the blank. 

 

 

__ - 9 = 8 

 

__ + 3 = 7 

 

6 = __ + 1 

 

1 = 3 - __ 

 

9 = __ - 6 

 

__ + 3 = 11 

 

__ - 9 = 5 

 

11 = 7 + __ 

 

9 + __ = 16 

 

1 + __ = 4 

 

17 = __ + 8 

 

3 = 10 - __ 

 

__ - 9 = 3 

 

10 = __ + 7 

 

7 + __ = 10 
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