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Accelerator science in coming years will be increasinglgedelent upon high single-
bunch charges ayal small emittances. Under these conditions, single-@artlynam-
ics are not a dfticient description of beam behavior and interactions beatviiee beam
particles must be taken into account. One such interacsiovhien collisions between
the particles that compose a bunch perturb the motion ofdhieling particles signif-
icantly and frequently enough to impact the beam dynamicsiltiMe, small-angle,
collisions blow up the emittance of the bunch and are refieioas intrabeam scattering
(IBS). Here are documented the theoretical and experimstudies of IBS in storage
rings undertaken as part of the CesrTA program.

Under the conditions where IBS becomes dominant, other paiticle dgfects can
also appear. The additionaffects we investigate include potential well distortion, co-
herent current-dependent tune shift, and direct spacgehar

CesrTA design and analysis is conducted in a normal mode icaded environment
which allows for natural handling of coupling. To that ence develop a 6D normal
modes decomposition of the linear beam optics.

Multi-particle dfects are also important for Energy Recovery Linear Accedesat
(ERLS). Because the beam circulates for only a short periothad in an ERL, the
beam lifetime imposed by Touschek scattering is not sigaiticHowever, the particles
scattered out of the bunch can generate a radiation hazaskiney collide with the
beam pipe. We re-derive Piwinski’s original Touschek ssaty equation to check its
validity when applied to ERL beams, then repurpose the faartmijenerate a profile of

where scattered particles are generated and where theyséare |



The results presented here advance our understandingrgkeetiapendent behavior
in the sorts of high charge-density accelerators that veélliraplemented in coming

years.
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PREFACE

This document presents the results of theoretical and empetal investigations of cur-
rent dependentfiects in the types of bunched electfpositron beams that will be uti-
lized in the next generation of advanced particle accalesatThe charge-dependent
behavior of single bunch beams dominated by intrabeamesiagtis investigated using
CesITA, and design studies are conducted to determine wioerschiek particles are
lost in the Cornell Energy Recovery Linear Accelerator.

The first chapter is a brief introduction which discussesitigortance of acceler-
ators in high technology and scientific research. Some othatlenges involved in
developing the next generation of accelerators are disduss

In the second chapter, the IBS investigations conducted afT&ewe presented.
CesrTA lattice design and analysis of beam dynamics is cdadun a normal mode
coordinates environment which allows for a natural hamgbhcoupling. To that end,
this chapter begins by deriving a demonstration storaggfrom first principles. Start-
ing with the Hamiltonian of a charged particle in a magnegifiwe derive the transfer
matrices necessary to assemble a simple storage ringeA gliadrupole is introduced
to create a storage ring with coupling between the horizowatical, and longitudinal
motion.

After discussing the dhiculties encountered when analyzing particle motion in the
demonstration storage ring, we derive a formalism for dgmusing the particle motion
into the eigen modes of the magnetic lattice. The derivadtants with Wolski's eigen
mode formalism found in [58], and extends it to a 6-dimenaigrormal mode formal-
ism. This 6-dimensional normal mode formalism can be vieagdn extension of the
4-dimensional normal mode formalism developed by SagarRarwah in [41].

An important advantage of the normal mode formalism is thallows beam sizes

that can be measured in the laboratory to be properly caémiia coupled machines.

Xiv



This is particularly important when predicting beam sizeswements in CesrTA. Due
to dispersion in the RF cavities, bunches in CesrTA are tiltethé xz plane and the
usual formulas for calculating beam size do not apply.

The normal mode formalism is then applied to the demonstratiorage ring, where
it is shown that quantities such as particle action and beaitiasce (phase space vol-
ume occupied by the ensemble of particles) regain theiifstignce in a normal modes
coordinate system.

The thesis then discusses fanatrix-based IBS formalism developed by Kubo and
Oide [21]. This is a generalization of Bjorken & Mtingwa’s foalism [5] and naturally
handles coupled motion. Particular attention is paid toGbelomb Logarithm. One
of the main results of our investigations at CesrTA is thatgtaper tail-cut should be
applied when calculating IBS growth rates in electpmsitron storage rings.

Piwinski’'s original IBS formalism [30] is re-derived suchathits Coulomb Loga-
rithm factor can be treated in the same manner as in Kubasdtism. It is shown that
all three formalisms give similar results when applied torTAsprovided the Coulomb
Logarithm is treated consistently

A Monte Carlo IBS simulation based on Takizuka & Abe’s binarjlismn model
for non-relativistic plasmas [48] is developed. The mainaadage of the Monte Carlo
simulation is that it is independent of any coupling formaliand takes nonlinearities
of the guide field into account.

In addition to intrabeam scattering, potential well distor and coherent tune shift
are observed in CesrTA. A theoretical model for potentiall @itortion is described
and coherent tune shift measurements are presented.

Having developed and presented the theory necessary tolesarrent-dependent
beam sizes in CesrTA, we present data on IBS-dominated beaaisexd during the

April 2012 and December 2012 CesrTA machine studies. Anestarg anomaly in

XV



our data is a blow up in the vertical beam size at high curreat tloes not fit with
our models. Incoherent tune shift due to direct space chargeesented as a possible
explanation of the blow up.

The last chapter of this thesis presents work done on Tolusetattering in Energy
Recovery Linear Accelerators (ERLS). Piwinski’s originalisahek formula [32] is re-
derived to check its validity when applied to ERLs. We find tRavinski’'s Touschek
formula is accurate to first order in energy spre%d,and divergence. The formula is
then re-purposed to determine the locations in the ERL wheuscdhek particles are
generated and lost. These loss profiles guide the placerhentlinators in the ERL

design.
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CHAPTER 1
INTRODUCTION

Particle accelerators are a broad class of high technollegyremagnetic devices that
produce, accelerate, store, and transport beams of leftadsons, or ions to very high
velocities. Particle accelerators are ubiquitous in giemesearch, high tech industry

and medicine. There are roughly 26,000 accelerators opegnabrld wide.

Depending on application, the velocities attained in arkcator may be quite low.
An industrial use of particle accelerators is ion implaiotat Beams of ions, such as
boron, arsenic, or oxygen, are accelerated to ab&db@he speed of light and are used
to dope semiconductors. lon implantation is an importagp $ the manufacture of
silicon-on-insulator (SOI) microprocessors. A similaogess is be used to harden steel

tools with nitrogen, improving tool lifetime by 60% [50].

In medicine, particle therapy bombards tumors inside thdylvath ionizing beams
of electrons, protons, or ions. The energy and species @ihele determine the depth
at which the radiation is delivered. Figure 1.1 comparesdepth for various patrticles.
Particle beam therapy is a very high precision techniquecande used to treat tumors
where damage to the surrounding tissue must be avoidedAB&jccelerator for proton
therapy typically consists of an ion source, a cyclotrondoeterate the particles, and a

transport line to deliver the beam to the patients.

Another medical application of accelerators is the produacdf radiopharmaceuti-
cals. Radiopharmaceuticals are compounds that are botigially active and radioac-
tive. They are usually designed to localize in certain pafrtee body. For example, they
may localize in regions where glucose uptake, and theref@tabolism, is high. This

can be useful for identifying cancer metastasis. The lopadf radiopharmaceuticals in
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Figure 1.1: Radiation dose delivered versus depth for variotms of particle therapy.
Image source: [54].

the body can be determined by looking for the positron razhaihey emit [55]. Sim-
ilarly, radiopharmaceuticals can be designed to releatiatran that destroys diseased
tissues. Many of the radioisotopes used in medicine areugextiin accelerators such

as the Brookhaven Linac Isotope Producer at Brookhaven Nati@boratory (BNL).

About 100 accelerators worldwide are operated for scienmgfearch. These can be

divided into to two broad categories: colliders and lightees.

Colliders include the Large Hadron Collider (LHC) at CERN in GemebSwitzer-
land, the Relativistic Heavy lon Collider (RHIC) at BNL in New Yor&nd the Beijing
Electron Positron Collider (BEPC) in Beijing, China. These maekiaccelerate parti-
cles to very high energy, 99.995% the speed of light and hjgimel collide them head
on. These collisions generate exotic states of matter ¢éflatd about the the early uni-
verse and help us define the standard model. The standard ma@earticle-based
classification scheme for the data obtained in high energgipt experiments. It de-

scribes the particles and interactions that make up thedvasdund us and also those
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Figure 1.2: Chart of the electromagnetic spectrum. Acctdetzased light sources span
the far infrared through gamma rays. Image source [26].

that made up the very early universe. The recent discovetlyeoHiggs boson, which
explains why particles have inertial mass, is the resultaakekerator-based collision

experiments.

Light sources are a broad class of accelerators dedicagtducing intense, pre-
cise pulses of photons. They are unique in their ability toegate intense light pulses
over a wide range of photon energies. Shown in Fig. 1.2 isldatremagnetic spectrum.
Generally speaking, the wavelength of the light being usddvestigate an object de-
termines the size of the features that can be resolved. iyoihe arrangement of atoms
in a crystal requires light in the x-ray region of the eleotemnetic spectrum, which has
a wavelength of about 18° meters. However, such light is blind to the details of a nu-

cleus. Nuclear studies require light with a wavelength senéthan about 10'* meters.

Accelerator-based light sources work on the principle ¢haharged particle emits
electromagnetic radiation when it is accelerated. Thikéssame principle behind ra-
dio transmission and the reason metals glow red when heblteth accelerator-based

light source, electrons are accelerated to very high enanglyinjected into a storage
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Figure 1.3: A charged particle beam emits a cone of radiatiben bent by a dipole
magnet. Image source [57].

undulator period

magnet polcs
Figure 1.4: In an undulator, a series of bends causes thelpdrtam to emit an intense
pulse of light. Image source [57].

ring where they circulate for several 10s of minutes. Stemdawgs are typically several
hundred meters in circumference. The storage ring contimsg dipole fields that
accelerate the beam perpendicular to its trajectory. Asctexpin Fig. 1.3, this accel-
eration generates a strong radiation field in the forwardation. Accelerator-based
light sources are particularly useful because the opemggeeaof the radiation varies
inversely with the beam energy. The light emitted by a chégaticle beam is concen-
trated into a very narrow cone. The opening angle of the tiadian a 5 GeV electron

beam is about.005.

An undulator, depicted in Fig. 1.4, is a specialized devieedun a light source that
consists of a series of bend magnets of alternating gradiéw series of bends causes

the beam to accelerate back and forth very quickly and emittense pulse of light.
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Figure 1.5: Layout of the Advanced Photon Source showing/éi®us experimental
stations. Electrons are accelerated in the linac and bosgtehrotron, then injected
into the storage ring where they are used to generate light.

Undulators can be tailored to deliver the exact type of ligdeded for an experiment.
The wavelength of light from an undulator is determined ke/ahdulator period,, the
strength of the bend magnets, and the energy of the beam.afusvidth and intensity
of the light is determined by the number of periods. Showngn E5 is the layout of the
Advanced Photon Source (APS) located at Argonne NatioralHlinois. The type of
light delivered and setup of the experimental station aterdened by the application.

Applications include materials science, biology & lifeesece, geology, chemistry, and

condensed matter physics.

From 1939 to 2009, about one-third of Physics Nobel Prizgs hrecorporated data

from accelerator-based experiments [7]. Acceleratora@important in other fields.



Figure 1.6: Structure of a bacterial ribosome as determinyealccelerator-based x-ray
crystallography. The ribosome contains more than 2800=atidles and about 33 pro-
tein molecules. The locations of over,®00 non-hydrogen atoms have been identified
[43].

Nobel Prizes in Chemistry were awarded for acceleratorebessearch in 1998, 2003,
and 2009. The 2009 Nobel Prize in Chemistry was awarded fermgting the struc-
ture and function of the ribosome using accelerator-basey xcrystallography. The

ribosome, depicted in Fig. 1.6, is the primary site of biadagjprotein synthesis in the

cell.

The next generation of advanced particle acceleratorseging beveloped to support
continued advances across a wide range of disciplinesoi®sies at the LHC over the
next several years will hopefully tell us in which directitmtake high energy physics.
One possible direction is that of high-precision collisexperiments. To that end, the
International Linear Collider (ILC) and Compact Linear Colid€LIC) are being de-
veloped. These machines are designed to enable highesipreaeasurements of the

discoveries at LHC. New light sources, such as Cornell's BnRerovery Linac (ERL)



and Ultimate Storage Rings (USRs) aim to deliver brighterstelhgulse length light

pulses over a wide range of wavelengths.

The aim of the research presented in this thesis is to uradelisty the charge-
dependent beam physics phenomena that arise when eleatlgpoaitron beams are
pushed to very high charge densities. Theects will be increasingly important in
future accelerators. In a low current accelerator, the besambe modeled as an ensem-
ble of non-interacting particles. As the density of paetcin the beam increases, the
particles begin interacting with each other and the beano ismger well-described as
an ensemble of non-interacting particles. The interastitan be one-particle to one-
particle, as in intrabeam scattering. The interactionsatsmbe many to one, as in direct
space charge, or the particles can interact with each dthaugh the beam chamber, as

in impedance fects.

Our primary goal is to understand intrabeam scattering (IB8)s is where col-
lisions among the particles that compose the bunch tramséenentum between the
particles in such a way that the total amplitude of their keitdns increases. However,
other collective &ects may arise in beams where intrabeam scattering is iargort
Those other #ects include impedancdfects and direct space charge. Because particle
motion in CesrTA is coupled, these studies are done in terrtieeaformal modes of the

beam.



CHAPTER 2
INTRABEAM SCATTERING STUDIES AT CESRTA

Intrabeam scattering has been studied in detail and p [24, 25, 31], and heavy ion
colliding beam machines [14]. In such machines, IBS slowtyeases the phase space
volume occupied by the beam (emittance) and imposes a lityndetime. Studies

of IBS in ion beams have been conducted at the Relativistic yHkawvCollider (RHIC)

at Brookhaven National Lab [14]. There, good agreement wasddetween IBS the-
ory and experiment. Lattices which reduce IBS growth by mining the dispersion
invariantH, = yanz + 2aanan, + Ban’? have been implemented at RHIC and are used
regularly for colliding-beam experiments [13]. For beamgmtons and anti-protons,

good agreement between theory and measurements was failnedTatvatron [24].

Electron and positron beams in rings come to equilibrium mmore rapidly than
hadron beams, hence IBS in lepton rings manifests its&treintly. Lepton machines
have strong radiation damping, and the equilibrium emittaa determined by a balance
between radiation damping and quantum excitation. Tymleahping times are on the
order of tens of milliseconds. The quantized nature of IBSrdautes a random motion
to the scattered particles, which tends to increase theamé (phase space volume
occupied by the beam). The random excitation of the IBS durailes with radiation

damping to determine the beam size. The result is a curegmgretient emittance.

Single, large-angle scattering events that can kick pastioutside the core of the
bunch and contribute to particle loss or beam halo are velgtrare. Multiple, small-
angle, scattering events are more common. The former arenooiy referred to as
Touschek scattering, and the latter as intrabeam scagtérime emphasis in this chapter

is intrabeam scattering.



IBS in electron beams has been studied at the AcceleratoFaedity (ATF) at KEK
[2], where detailed measurements of the current depenadhcech energy spread and
length are in good agreement with theory. Measurementsedfréimsverse dimensions

at ATF, however, are not as complete.

One of the goals of the CesrITA IBS investigation is to improvéh@nATF results by
including detailed measurements of the bunch charge depepaf the transverse beam
sizes. CesrTA has independently powered quadrupoles amdpiadility to store larger
single-bunch charges. This flexibility allows for measueens in a greater variety of
conditions. In this chapter, we describe the CesrTA IBS erpants, and compare the
results to both analytic theory and Monte Carlo simulatic@®mne of the results shown
here were first presented at the 2012 International PaAmbelerator Conference [11].
The presentation here provides a more complete descripgtidriheoretical framework

for the results.

CesrTA is a re-purposing of the Cornell Electron Storage RingSR)Eas a test ac-
celerator for future storage rings designs [29]. CesrTA isggler-dominated storage
ring, with 90% of the synchrotron radiation produced by weel9 T superconducting
damping wigglers. Some parameters for CesrTA are given imeT2li. Design and
analysis of CesrTA is done using tBrad relativistic charged beam simulation library
[37]. Designa-mode (horizontal-like), single particle geometric eanittee, is 2.7 nm-
rad. The minimum measurd#mode (vertical-like) emittance, at the time of these
measurements is about 20 pm-rad and is dominated by magsalignments and the
effectiveness of our emittance tuning procedure. The fleibdf the CesrTA optics
allows precise control db-mode emittance above that minimum. We are able to vary
b-mode emittance by using closed coupling bumps to introduoealized vertical dis-

persion in the damping wigglers. In this way, vertical eantte can be increased by an



Table 2.1: Machine parameters for IBS measurements.

Beam Energy (GeV) 2.085
Circumference (m) 768
RF Frequency (MHz) 449765
Horizontal Tune Q) 14.624
Vertical Tune Q) 9.590
Synchrotron Tune@,) —0.065
Transverse Damping Time (ms) 56.6

order of magnitude withoutfecting the global optics. The bunch length is determined
by the RF accelerating voltage. With a voltage of 6 MV, the lhulenigth is about 16
mm. Measurements were made with bunch charges ranging f®m10° to 1.6 x 10

particlegbunch (010 mA to 100 mA).

CesrTA is instrumented for precision bunch size measuresmerall three dimen-

sions.

Vertical beam size measurements are made by imaging x-rags & hard bend
magnet through a pinhole onto a vertical diode detectoyd8%]. The measurements

are turn-by-turn, but the average of the fits of 1024 turnaken as the measurement.

Horizontal beam size measurements are made with a visihtEhsgtron light inter-
ferometer [52]. The interferometer is used to image vissiylechrotron radiation on a
charge-coupled device (CCD) that is exposed over about 466 atrhigh current and
about 40000 turns at low current. Bunch length measuremeatdame with a streak
camera, making use of visible light in the synchrotron radaspectrum from a bend-

ing magnet [17].

Validation of the beam size instrumentation includes chegkor intensity depen-

dent systematics using filters, and size systematics byingagource-point betatron-

10



functions. The horizontal beam size monitor undergoestaalibration with a source

of known size [52].

2.1 Overview of Modeling Environment

The primary tool used for CesrTA design and modeling isBthad relativistic charged
beam simulation library [38]Bmad is suite of modules that enable the development of

codes for designing and simulating charged particle acateles and X-Ray beam lines.

Physics conventions, such as coordinate system, usedsirthisis follow those

outlined in theBmad manual [38].

The code | have contributed 8mad includes calculation of intrabeam scattering
growth rates, Touschek scattering rates, potential wstbdion, eigen mode decompo-
sition of transfer matrices, and simulation of a digitaléuracker, which is a phase-lock
loop instrument used to resonantly excite oscillations padicle beam. | have also
made performance enhancements to the symplectic lie trgakiodule for wigglers
and the module for tracking particles through higher ordeltipples. These enhance-
ments consist of simplifying and rearranging the math apma to enable the compiler

to more dficiently vectorize the code.

2.2 Canonical Coordinates

Following theBmad coordinate convention, the phase space coordinate of ialpasl-

ative to the reference particle is,

X(s) = (x(8), Px(8),Y(8), Py (8),2(8), P2(9)) , (2.1)

11



wheres refers to position along the length of the machixeandy refer to horizontal
and vertical coordinate angl, and p, refer to horizontal and vertical momenturnis
time-like andp; refers to the total momentum of the particle. Both are definetktail

below.

The transverse momenta are normalized by the referendelpanbmentunP,,

Px = FO (2.2)
_ Py

The reference particle momentum is related to the desigrggrmé the machinePy =
B (s) Eo/c. Thezcoordinate is defined as the tirhgs) that a particle arrives at a partic-

ular locationsin the machine,

z(s) = —B(g)c(t(s) —to(s)) (2.4)
—B(s)cAt(s), (2.5)

whereg (s) is the velocity of the particle at positionandt, (s) is the time at which
the reference particle arrived at A particle with a positivez arrives ats before the
reference particle, and a particle with a negatigerives ats after the reference particle.

The longitudinal momentum coordinate is defined as,

P— Py
— 2.6
pZ PO ’ ( )

whereP is the total momentum of the patrticle,
P? = P; + PJ + P2 (2.7)

Note thatP is not the longitudinal momentum of the particle.

12



Within the paraxial approximation whepg, p, << 1,

dx Px
X =G Tip 1
dy
y_ESN1+pz(1+gx) (2.8)

whereg = 1/p andp is the radius of curvature. Typicallg,is non-zero only when the

particle is travelling through a bend magnet.

X = (X(5),px(9).Y(9).py(s),z(9),p,(9) is a , with n = 3, canonical coor-
dinate system.(x, py), (Y, py), and(z p,) are canonically conjugate coordinate pairs.
X, Y, andz are the generalized coordinates (tfis in the usual Hamiltonian notation).
Px, Py, and p, are the generalized momenta. Trajectories ican be described by a

Hamiltonian.

The coordinate system described here is-dependent. The and p, coordinates
tell us about the arrival time of particles at a particulagzations. They do not tell
us about the longitudinal distribution of the particles.eTbngitudinal distribution is
necessary when calculating intra-bunéfeets, when it is important to know the relative
spatial coordinates of the particles. In Sec. 2.9.2, wheoat®l Carlo IBS simulation
is discussed, the time-dependent Hamiltonian is used teloie\a map from thes-

dependent coordinate system to a time-dependent cocedigistem.

13



2.3 Hamiltonian Formalism

The s-dependent Hamiltonian for a particle traveling in the pesis direction through

a canonical vector potential and electric potentiap is,
HS:
2 2 2!
_ X W (Y (A
(e (er- ) (%) (%

1 2 mec2 q
— .1+ p, — A, (2.9
+ﬁo\/(+p)+Pg B s (2.9)

Py is the reference particle momentumis the horizontal bending radius for the refer-
ence particleq is the particle chargey is the electric potentiak; is the speed of light,
andmis the particle mass. The second term in the Hamiltonianaggeecause we de-
finedzrelative tozy. (A, Ay, As) = Ais the magnetic vector potential. The Hamiltonian

for a particle travelling in the negativedirection is

Hfs —

i) (aem ) (%) ()

1 mec2’
g \/(1+ p,)° + o PﬂOAS. (2.10)

The equations of motion are obtained by applying the Hamidtguations [34],

dX  _oH

== Sar (2.11)
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where,

S= , (2.12)

0O 0 0 0 0 1

O 0 0 0-10
andxXwas defined in Eqn. (2.1). The transformation from from omaimns to another

locations; is given by,

X(5.1) = X(9) + ST (5.1 5). (2.13)

Solutions to the equations of motions can usually be foundifany common accelera-

tor components by linearizing Eqn. (2.13).

Knowing the electromagnetic field potentigiand A and bending radius of a mag-
netic component, one can quickly go from the Hamiltoniarhéquations of motion.
Lie algebra techniques can be applied to the Hamiltoniamtiegrate symplectically
while taking into account arbitrary number of non-lineamis. This can be useful

when tracking through highly non-linear elements such aspilag wigglers.

In the following sections, we will derive from the Hamilt@m the transfer matrices
necessary to construct a simple demonstration storageTirggstorage ring will consist
of quadrupoles, bend magnets, and drift sections. We gl eltroduce a simple longi-
tudinal focusing element and a tilted quadrupole. The pagpd this storage ring is to
demonstrate coupled particle motion. The symplecticitthefHamiltonian will be used
to derive an eigen modes decomposition of the demonstrstiiwage ring. This decom-

position will allow us to recover concepts such as particieoa and beam emittance.

15



The eigen decomposition will later be extended to a normalerdecomposition, from
which we can obtain additional information about couplediorin the beam. We will

also obtain a method for calculating the projected beans siza coupled machine.

2.3.1 Equations of Motion Through a Quadrupole

Consider a particle travelling through a quadrupole. Igmpfringe fields, the field of
a magnetic multipole has onbyandy components and only th&; component of the
vector potential is non-zero. Outside of a bend magmet,is zero and the magnetic

vector potential is given by

As =R <i ¥, (X — zy)”) , (2.14)
y=1

whereV, is the strength of the multipole of order For a dipole, only¥; is non-zero,

for a quadrupole, only¥, is non-zero, and so on.

Evaluating Eqgn. (2.14) for a quadrupole, white= 0, yields,

As=R (‘PZ (x — zy)z)

=R (Y2 (X — y* — 2ixy))

= 2%, (X —y?). (2.15)

To check Egn. (2.15), we calculate its curl. In the curvidineoordinate system of

16



X, ¥, § the curl ofA is [47],

B=VxA
_(0As 1 oA %
“\dy 1+pixos
1 oA 1 0 ) X
(1 +pIx0s  1+pixox (T+07) As) yT
(@Ay an> )
— — §
O0X oy
A O
oy OX
=2 (YX — X9).,

which is indeed the magnetic field inside a quadrupole.

(2.16)

The electric potential is zero inside a quadrupole and the magnetic vector potentia

is given by (2.15). Furthermorg,is zero because we are not inside a bend. We can now

write down the Hamiltonian for a particle moving through adrupole,

mec2’
P

Hsquad = _\/(1+ pz)z_ P — pg +,3_o

1 \/(1+ ) +

ar;

where we have define}éE =5
0

17



The equations of motion for this Hamiltonian are,

d_X _ aHssquad _ &
ds 0P« Ps
dpx aHs,quad
= - — —k
ds ox X
d_y _ al'|squad _ &
ds opy Ps
dﬁ _ _aHs,quad _ kly
ds oy
d_Z_aHs,quad__l‘f'pz_'_i 1+pz
ds apz Ps ﬁO \/(1 + pz)z + mzp_gz‘
dpz - aHs,quad B
- =0 (2.18)
where,
pe— /(14 P~ - 2. (2.19)

has been defined to simplify the notation.

In the paraxial approximation, whemg, p, << 1, and assuming¥c?/P3 << 1,

the simplified Hamiltonian is

quuad ~ 2 (

and the equations of motion become,

dx
ds

dy
ds
dz

ds

1+p;
Py
1+ p;
0

PEEP ki,
11 p) -E(x —Y) (2.20)
d—zy— Ky
dp,
5~ O
(2.21)

For the case of a quadrupole, general solutions can be faumithdé equations of

motion. The equation fafx, px) can be converted into a single second ordé&edential

18



equation, and so can those for p,). Clearly,zandp, are constant. The trajectory of a

particle through a horizontally focusing; (> 0) quadrupole is,
Pxo .
X(s) = xocos( 1/|K|s) + — sin{ 4/[kj|s
(Vikl's) + —memsin(y/lls)
Pyo .
y(s) = Yocosh( 4/|K|s) + —==sinh{ 4/|Kj|s). (2.22)
0 < 1 ) /K] < 1 )
For a quadrupole that is vertically focusirg (< 0),
Pxo .
X(S) = Xpcosh( 4/|K:|s) + — sinh( 4/[Kj| s
( 1 > /K] ( 1
y(s) = yocos(4/|k/l| s) + %sin@ukﬁ s) . (2.23)
1

Equations (2.22) and (2.23) are valid at any location insidgiadrupole. If a particle

N———

with initial coordinategxo, Pxo, Yo, Pyo) iS at the entrance end of a quadrupole of length

L, its coordinates at the exit end are found by evaluating Ejj82) and (2.23) at = L.

2.3.2 Transfer Matrix of a Quadrupole

The form of Egs. (2.22) and (2.23) invites a transfer matepresentation. We define

the focusing parameté¢ of a quadrupole with streng#j and lengthL asK = /K] L.
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The transfer matrix for a horizontally focusing (vertigadlefocusing) quadrupole is,

Mor =
cos(K)
—+/|K| sin(K)
0

0

0

0

~sin(K)
cos(K)
0
0
0

0

cosh(K)

+/|K| sinh(K)

0

0
ﬁ sinh
cosh(K

0

0

(K) 0

) 0

0

0

(2.24)

By similar means, the transfer matrix for a horizontally drfsing (vertically focus-

ing) quadrupole is obtained,

MQD =
cosh(K)
+/|K| sinh(K)
0

0

0

0

\/—ﬁ?lsinh(K)
cosh(K)
0
0
0
0

0
0
cos(K)

— /K sin(K)
0

0

0 0

0 0
\/—ﬁ?lsin(K) 0
cos(K) O
0 1

0 0

0

0

(2.25)

At this time, it is convenient to write down the transfer nratf a drift of lengthL.

20



This can be obtained by taking the limit of Eqn. (2.24kas O,

1LO0O0O0O

010000

Mp = . (2.26)

2.3.3 Transfer Matrix of a Dipole

Our goal is to derive transfer matrices for the three bagpedyof accelerator element
necessary to make a simple storage ring. This simple storageill be used to launch
into our discussion of eigen modes and coupling. We have uhergpole and drift in

hand, next we derive the transfer matrix for a bend.

p~Lis finite in a bend and the magnetic vector potential in cinedr coordinates is

given by [47],

As = — (x+ ;(—D B,. (2.27)

Taking the curl of Eqn. (2.27) we obtain,

B-VxA
0As .

A

oX

=¥y

= By, (2.28)
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which is indeed the magnetic field inside a dipole. Cleatl{; is By, and we have

written it as such.

The Hamiltonian for a particle propagating through a dipsje

X 1
Hsdipole = — <1 + ;) \/(1 + pz)2 —Pi— P

1 2 mZCZ‘ qu X
+IB—O\/(1+ pz) +F +FO (X+ Z) (229)

0
The bending radiug is for the ideal particle and can obtained from the usualesgion,

P
0= — (2.30)

— er,
wheree is the electric charge. We will assume this is a sector bewdigmore edge

focusing.

Applying Hamilton’s equations to Eqn. (2.29) gives the daares of motion,

dx < x>pX

o (142 X

ds P/ Ps

%_Ep_}(} 5)

ds p—° p\p p

d_y:<1_|_l(>&

ds P/ Ps

dpy

-

dz ( x>1+pZ 1 1+ p,
g + .
@ proPsPo Jap)
dp,

45 ~ O (2.31)

In the paraxial approximation whemg, py << 1, and assuminQ‘Fz,Tc2 << 1, and
0

keeping terms up to 2nd order in coordinate and momentum,

2 2
XP; X2 P+ B

He e & — 12 -y 2.32
sdipole 0 pz+2p2+2(1+pz), ( 3 )
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and the equations of motion become,

dx_ _p,
ds 1+p,

dpx _ 1 X

ds_ppZ p2

dy _ B

ds 1+p;

dpy

ds 0

dz X >

ES——;-FO (X,X,,y,y)

dp,

E_O' (2.33)

The general solutions of Egs. (2.33) give us the particljedtary through a dipole,

P sin(xs) + ppao (1 - cOS(kS))

X(S) = XoCOS(kS) + —

Px (S) = —kXoSiN(kS) + Pyo COS(kS) + Pook SiN(S)

y(s)=vYo+ 77 55

Py (S) = Pyo

z(s) =2 — pﬁ; sin(xs) + % (cos(ks) — 1) — pxo (s— %sin(:<s)>

Pz (S) = Pa. (2.34)
wherex? = p2(1—1+pz)'

If we assume that & p, ~ 0, we can write the transfer matrix of a dipole of length
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0 0 1L 0 0
Mg = 0 0 010 0 . (2.35)
—sin(;g) p(COS(;';)—l) 001 —L+psin<';>
0 0 000 1

Notice that the transfer matrices for the quadrupole arft] &qs. (2.24) and (2.26)
are block diagonal. These elements do not couple particiomoThe motion in any
one dimension is independent of the motion in the other tweedisions. For example,
the motion in the horizontal coordinatesp, does not depend on the motion ymp,

andzp,. A bend, however, introduces coupling between the horaartd longitudinal

coordinates.

A transfer matrix can be divided into ninex22 blocks,

I\/Igeneric: yX yy yz . (236)

Non-zero values in thefbdiagonal blocks indicate coupling. For example, non-zero

values in thexy block indicate that motion iix, py) is coupled to motion iny, py).

The xz andzx blocks of the transfer matrix for a bend are non-zero, irttigathat
the horizontal and longitudinal motion is coupled. Theoordinate of a particle at the

exit end of the element depends on fyecoordinate at the entrance end. This agrees
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with intuition. A patrticle with slightly more momentunp,, > 0, will be bent slightly
less than the reference particle. This contributes a pesitilisplacement to the particle
coordinates at the end of the element. Similarly, a partitd enters the dipole with a
positive x coordinate will follow a longer path and exit with a smalleoffset. Thexz

coupling introduced by a bend is commonly referred to asailspn.

2.3.4 A Simple FODO Storage Ring

Accelerators are composed of sequences of elements. Alpatithe exit end of one
element will be at the entrance end of the next. In so far afotices are linear, the coor-
dinates of a particle at the end of a string of elements candedf by successively mul-
tiplying the transfer matrices for each element. For examgparticle with initial coor-
dinatesx that travels through a focusing quadrupelérift—bend-drift—defocusing
guadrupole- drift—bend-drift— focusing quadrupole sequence of elements would

exit the bend with coordinates

Xi = MorMpMgMpM gpM pMgMpM oF %

= MeopoX:. (2.37)

The sequence of elements just shown is called a FODO cell.el&@ators are often
constructed out of cells, which are a sequence of elemeatssthepeated throughout
the machine. FODO cells are typically defined to be symmeTie first quad is half-

length, the middle quad is full-length, and the last quadi$length.

At this point we have enough tools in hand to construct a smsfrage ring out of
FODO cells. The sequence of elements defining an entireexatet is called a lattice.
Our lattice will be 200 m in circumference and composed of ODB cells. Since a

FODO cell has two bend magnets, each magnet will need to breparticles through
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Table 2.2: Physical parameters of demonstration FODCcéattiThe dipole bending
radiusp is 22 ~ 25465 m.

Element Length Each (m) Quantity Total Length (m)
Bend Dipoles 5 32 160
Focusing Quadrupoles D 16 8
Defocusing Quadrupoles D 16 8
Drifts 0.375 64 24
Total Circumference 200
2

£ ~ 0.3927 radians of arc. Each bend magnet will be 5 m long. Eactirgpale will
be Q5 m long. The physical parameters of this demonstratioitéattre summarized in

Tab. 2.2.

To introduce longitudinal focusing, we will replace two bétdrifts, at opposite ends
of the lattice, with,

1L00O0O
010000
001L 0O
M = . (2.38)
000100

00O0O0T1O

0 00 O0Tf 1
This transfer matrix is simply a drift with thems element set td_. This will result in
az-dependent kick tg,. Equation (2.38) resembles the transfer matrix for a sirRfle

cavity model [6].

Up to this point we have specified the sequence of elemerts,lémgths, and the
bending radius of the dipoles. Two additional quantitiesracessary: the quadrupole

strengthk and longitudinal focusing strengtf.
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It is a well-known result of linear dynamics that, for 1-dinsgonal systems,
Tr(M) | < 2.0, (2.39)

is necessary and ficient condition for motion to be stable over repeated appibo of

the transfer matri .

In the case of higher-dimensional coupled systems, it issgry to first transform
the system to an eigenbasis and then calculate the tracadbrrmaode of oscillation.
If the transfer matrix in the eigenbasis coordinates islstahen the diagonal blocks
will be 2 x 2 rotation matrices with phase advance between 0 andfZhe transfer
matrix is unstable, then the diagonal blocks will have prebeance 0 or 2 or contain
exponentially growing terms. Exponentially growing terowrespond to imaginary

phase advance. This topic will be continued in Sec. 2.4.

For now, we note that the motion in our storage ring is only kixeaoupled. As is
often the case in accelerator physics, assuming that theingais uncoupled and linear
is a good place to start. In the presence of mode coupling, £989) is a valuable,

though inexact, guide for finding magnet strengths thatlyséhble motion.

The vertical motion in our model storage ring is completelydpendent of the hor-
izontal and longitudinal, and the horizontal and longitidiare coupled by the non-
zero df-diagonal blocks in Eqn. (2.35). The coupling is weak beedhs df-diagonal
blocks contain terms proportional to 5@) and 1— cos(%), whereas the diagonal

blocks contain terms proportional to c@;‘) and unity.% is typically ~ 0.05.

Transfer matrices Eqn. (2.24), (2.25), (2.26), (2.35), @88) have been coded into
a Mathematica notebook along with the demonstration lattice describedaib. 2.2.
This notebook computes the 1-turn transfer matrix for thigcks, from which we can

calculate the traces of the diagonal blocks and observe Iepwhase space coordinates
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evolve turn-by-turn.

We find that a quadrupole strengthlof= 0.1 and longitudinal focusing of,

—0.0005 vyields a stable lattice. The numerical expression eftthnsfer matrices for

each element are located in Appendix A. The 1-turn transtgriris,

M 1-turn =
—0.653306 201491 0 0.
—0.027775 —0.658743 0 0.

0. 0. 0.170534 —34.825
0. 0. 0.027880 0170534
—0.513052 —30.2019 Q 0.
0.000170 —0.009484 0 0.
The traces are,
T —0.825785 168939

—0.021221 —-0.825115

—0.47686 173338
Tr
—0.004406 —0.47686
0.575359 —298571
Tr

0.001854 (845118

Each of these traces has magnitude less than 2,

lattice is stable.

Inspecting the 1-turn transfer matrix, we noti

zero, while thexy, yx, yz, andzy blocks are zero. This same pattern would be followed

28

0.027270 2%258
0.000145 0523929
Q 0.
(2.40)
0 0.
0.929245 -9651
0.000984 0963229
— —1.6509
— —0.95372
— 1.42048 (2.41)

and we fingkttiate motion in this

ce that ae@nd zx blocks are non-



by the 1-turn map were it computed at any location in ring. sTattern reflects the
horizontal-longitudinal coupling introduced by the bendgnets, and the fact that there

is no source of transverse coupling in the ring.

Shown in Figs. 2.1(a), 2.1(c), and 2.1(e) are phase spatsfptdhe three lab-frame
coordinates for a particle tracked repeatedly through ddB® cell for 500 iterations.
No longitudinal focusing is included. From these plots wefom that the motion is in-
deed stable. Shown in Figs. 2.1(b), 2.1(d), and 2.1(f) &&,th andzcoordinates of the
particle tracked repeatedly through a FODO cell. Fortlaady plots, the FODO cell
without longitudinal focusing was used. For thglot, the FODO cell with longitudinal

focusing was used.

From these plots we see that theoordinate makes one complete oscillation ap-
proximately every 1771 cells. This tells us that the phase advance is approxiynate
0.5366 radiangell. They coordinate completes an oscillation after approximat@lg 2
cells, for a phase advance of8050 radiangell. In thez coordinate there is evident
coupling. z versus turn appears to be a fast signal superimposed on aigjoal. The
frequency of the fast signal isEB66 radiangell, which matches the frequency of the
horizontal oscillations. The frequency of the slow sigrsa0D582 radiangell and is

due to the longitudinal focusing elemeéwit;, .

There are 16 FODO cells in the demonstration lattice, 2 ottviebntain the longi-

tudinal focusing element. The expected phase advancesrpeare

Q, = 1.3664 (2.42)
Q, = 0.7767 (2.43)
Q, = 0.1482 (2.44)

The phase advance per cell in theoordinate is about twice the phase advance per
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Figure 2.1: Trajectory of particle with initial coordinat€¢0.01 0,0.01, 0,0.01,0)
tracked repeatedly through a single FODO cell.

cell in they coordinate, even though the quadrupole focusing is the $anteoth di-
mensions. The extra focusing xcomes from the dipoles and is called weak focusing.
Particles which enter a sector bend with a posikagtset will follow a longer path and
be subject to more bending. The upper right 2 block of the transfer matrix for a
focusing quadrupole, Egn. (2.24), looks similar to the uppght 2 x 2 block of the

transfer matrix for a bend, Egn. (2.35), Wiggl ~ k. For our cell,/% ~ 0.0015 and
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k = 0.01. The quadrupole focusing is much stronger than the dipalgsing, but there
are 10 m of dipole per cell and only®meters of focusing quadrupole. For our sim-
ple FODO ring, weak focusing makes a significant contributm the total horizontal

focusing.

Shown in Figs. 2.2(a), 2.2(c), and 2.2(e) are the phase spageams of a particle
tracked repeatedly through the entire demonstratiorcéatfi he initial coordinates are

Xo = 0.01 m,yp = 0.01 m, andz = 0.01 m withp, = py = p, = 0.

Shown in Figs. 2.3(a), 2.3(b), and 2.3(c) are the absoldteesaf the Fourier trans-
forms of thex, y, andz particle motion over 300 turns. The tune of an accelerattirdas
number of orbits in phase space that a particle makes duneguwn around the ma-
chine. This is typically a whole number plus a fractionaltp@here are three tunes to a
machine representing horizontal, vertical, and longitatimotion. A Fourier transform

of turn-by-turn data is only sensitive to the fractionaltpzrthe tune.

The Fourier transform data is mirrored about the abscisspomt. This is we
measure only the position, rather than the position andearwye know what the tunes
are because we calculated them earlier from the phase apancell. This knowledge
of the actual machine allows us to pick the correct peak ouhefFourier spectrum

calculated from position measurements at one point in thehina.

We see that the horizontal motion has components3&1( and 0519 oscillations
per revolution. These are the horizontal and longitudimaés. The longitudinal motion
has components at the same frequencies, but the signd%tDis stronger than the

signal at 03617. The vertical motion is uncoupled and has one peak’@60@.

In Sec. 2.4.1 we will see how the 1-turn transfer matrix candesl to decompose the

particle motion into eigen modes. Particle motion is undedpn the eigenbasis, and
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Figure 2.2: Trajectories in phase space of particle withtiahi coordinates

(0.01 m0,0.01 m0,0.01 m0) tracked 500 turns through the demonstration lattice.

can be described using action-angle variables. We willlsaehe action of a particle is

an invariant.
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Figure 2.3: Fourier transform of particle motionxny, andz over 300 turns. Coupling
is evident between the horizontal (a) and longitudinal (c}ion, while the vertical (b)
motion is uncoupled.

2.3.4.1 Horizontal-Vertical Coupling: Tilted Quadrupole

Before moving on to eigen mode decompositions, we will firskenthie particle motion
more interesting by introducing horizontal-vertical cbng using a tilted quadrupole.
A tilted quadrupole is an ordinary quadrupole that has bitted by some angle about

the s-axis. Tilted quadrupoles can result from magnet misalignts, or they can be
deliberate. For example, a skew quadrupole is a quadrupaténais been tilted by 45

and is used to manipulate transverse coupling.

A transfer matrixM 4ea for some un-tilted element can be transformed into the trans

fer matrixMyeq Of an element tilted by an angdeusing [36]
Miited = R (=) MigeaR (¢) , (2.45)
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where

COS¢ 0 sinp 0 0O
0 COS¢ 0O sing 0O
R(6) - —Sing 0 cosp O OO (2.46)
0 —sing 0 <cosp O O
0 0 0 0O 10
0 o o o0 o0y

This transformation works because transporting a cootelimactor through a tilted
guadrupole is the same as transporting a tilted coordinateor through a non-tilted

quadrupole.

The transfer matrix for a.6 m long defocusing quadrupole wikh= —0.1 that has

been rotated 10s

M gt tilted =

1.01177

050196

0.047193 101177

0.004275 0000713

0004275 0000713 0O O.

0017101 0004275 0O O.

008828

0498045 0 O.

0.017101 0004275 —0.046777 (O8828 0 O.

0.

0.

0.

0.
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and the 1-turn transfer matrix becomes,

M 1.turn tilted =

—0.65956 208300 —0.012636 —2.2365 002737 29796
—0.02612 —0.69869 000334 059081 000012 045262
0.16286 —3.9408 016029 —-36.637 —-0.00262 —7.0338
0.01193 -0.28864 002713 003781 —0.00019 —-0.51525

—0.51190 -30230 Q00233 04120 092923 —-96.560

0.00014 —0.00884 —0.00005 —0.00957 000098 096439
(2.48)

Notice in Eqn. (2.48) that thg coordinates are now coupled to theoordinates.
This is indirect coupling. By design, there are no elementthéring which couple
longitudinal motion into vertical motion, but there areraknts which couple longitudi-
nal motion into horizontal and also elements which coupleziontal into vertical. This

results in a 1-turn map with longitudinal-vertical coupgjin

Shown in Fig. 2.4 are the phase space and turn-by-turn tosies of a particle
tracked through the FODO ring with the tilted quadrupolee Bddition of horizontal-

vertical coupling makes motion more complicated than in 2.2

Shown in Fig. 2.5 are the Fourier spectra of a particle trddke 500 turns in the

demonstration lattice with one tilted quadrupole.
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Figure 2.4: Phase space and trajectory of particle tradkedigh lattice withxy cou-
pling.

2.4 Invariants of Particle Motion

In a machine without mode coupling, particle motion can becdbed as independent

modes in the horizontal, vertical and longitudinal dimensi Viewed from a fixed

location in the ring, particles trace out perfect ellipsesx, px), (Y. py), and(z p,)
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Figure 2.5: Fourier transform of y, andz particle motion over 500 turns in demonstra-
tion lattice with horizontal-vertical coupling.

phase space as they make successive revolutions in thei@toel

The area of the phase space ellipse traced out by a partieter@any turns is related
to an invariant of particle’s motion called the actidn Calling the area of the ellipse

traced out inx, px) spaceAyx, the action is defined as,

A
JX - 2)(72)(

A
J, = 227‘;2, (2.49)

where we have made corresponding definitions¥gy andA,,. The area of an ellipse
is given byA = & x a x b, wherea andb are the major and minor axes of the ellipse.

In the convenient case where the phase space ellipse idtadf tve can calculate the
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action of the particle as,

Ay y D
ny,z: X,y,ZZ X,Y,Z, (250)

whereay,, andb,,, are the axes of the ellipse traced out in horizontal, vertaad

longitudinal phase space. The units of action are megelians or nrad.

Inspecting Fig. 2.2(c), we find the axes of the ellipse trasedin vertical phase

space are.010 and 000283. The action of the particle is,

Jy = 1.42um - rad (2.51)

Louiville’s theorem states that the volume of an element lndige space remains
constant if the motion of the particle is Hamiltonian. As asequence, the shape of the
ellipse may change depending on where in the ring it is et@ailjdut the area of the

ellipse, and hence the action, will remain the same.

An uncoupled machine is unrealistic. Bend magnets couplagdmtal and longi-
tudinal motion. Magnets cannot be perfectly aligned ancetsame finite alignment
precision. Quadrupoles with a vertical misalignmeftiset create a vertical bend which
couples vertical and longitudinal motion. Tilted (skewegdpdrupoles introduce trans-

verse coupling.

The vertical action is well-defined if the motion is uncoupknd the trajectory in
phase space traces out a neat ellipse. However, if cougliprgsent, then particle action
in lab-frame coordinatesl{, J,, andJ,) is not a well-defined concept. This is because
the phase space coordinate in one dimension on any parttaatawill depend on the
coordinates in the other two dimensions. The phase spaeettey will not form a
closed ellipse. For the fully coupled demonstration lattdepicted in Fig. 2.4, particle
action is not well-defined in any of the lab frame coordinafidse quantities horizontal,

vertical, and longitudinal action lose their meaning in agged machine.
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In an uncoupled machine with a stable orbit, particle motan be described in
action-angle coordinates that correspond to the horitorggical, and longitudinal di-
mensions. The three invariant actions we cgJlJy, andJ,. The angle variables are
o ¢y, andg,. For example, the horizontal coordinate at any locationlmmdescribed
entirely by J, and¢y. Similarly for motion in the vertical and longitudinal. Ticeordi-
nates of a particle at any location in the ring can be foungkirny knowing its action

and angle at that location of the ring.

In a coupled machine, particle motion can still be descrtpetihree invariant actions
and three angles. However, the actions and angles need &fibedlin the eigenbasis
of the machine, typically called, b, andc (as opposed ta, y, andz). The actions and
angles are referred to ag, Jy, J. andg,, ¢y, ¢.. These quantities correspond to the

three eigen modes of the accelerator.

The orientation of the eigenbasis coordinates relativdn¢oléb frame coordinates
change with location in the accelerator. Motion in tamode can be described entirely
by J. and¢,, but the orientation o and p, relative tox; py, ¥, py, Z Py, changes from

one location to the next.

The eigenbasis is related to the eigenvectors of the 1-tansfer matrix. In the
Sec. 2.4.1, we will decompose the 1-turn map of our fullypted demonstration lattice
and obtain, among other interesting properties, the iamgsiof the particle motion. In
Sec. 2.4.3.1, the tunes of the machines are obtained fromigleavalues of the 1-turn
matrix. In Sec. 2.6, these single-particle ideas will beepgied to describe distributions

of particles.
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2.4.1 Eigen Mode Decomposition of the 6x6 Transfer Matrix

The derivation shown here follows the eigen mode analydi®dunced in [58] and
bridges that derivation to the normal mode analysis intceduin [41]. The ultimate

result, presented in Sec. 2.7, will be a 6-dimensional nbmuale decomposition.

In what follows, the eigenvectors of the 1-turn matrix an@aaged into a matrie
and normalized to yield a unique symplectic transformalietween lab-frame coordi-

nates and eigen mode coordinates.

2.4.1.1 Eigenvectors and eigenvalues of the a transfer matri

In linear beam optics, a particle with coordinatean be propagated once around the

storage ring from to turni + 1 using,

%-ﬁ-l =M 1turn)§, (2.52)
whereM 1y is the 1-turn transfer matrix.

As described in Sec. 2.3.4M 1y IS the product of the transfer matrices for the
individual elements that make up the accelerator. Theseezleby-element transfer
matrices are derived from a Hamiltonian and are therefongpégctic. The product of
two symplectic matrices is itself symplectic, andMa,n is symplectic. Note that we
are ignoring non-symplectic processes such as radiatiorpishg and excitation and
intrabeam scattering. Those processes transfer energedetparticles and are not

symplectic.

It is a necessary and icient condition for the symplecticity of the transformatio
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M 1 that it satisfy the symplectic condition [15],
MTSM =S, (2.53)

whereS s defined in Eqn. (2.12). Note that the symplectic conditsomet for each of

the transfer matrices derived in Sec. 2.2.

A vectorg is an eigenvector of the square matkixwith corresponding eigenvalue
A; if it satisfies,

M& = A8. (2.54)

If M is stable, then thg; will lie on the unit circle in the complex plane. A symplectic
matrix of dimension & will have 2n eigenvectors and eigenvalues. The eigenvectors
and eigenvalues are in general complex|THfM| < 2, then they occur in reciprocal

pairs such that the full set of eigenvalues is,
{1, 47, A2, A5, A3, A3} (2.55)
and the full set of eigenvectors is,

{61.€].6,8,6,6}. (2.56)

where* indicates the complex conjugate.

2.4.1.2 Sorting the eigenvectors and forming E

Provided the beam is not strongly coupled, the eigenvectonde sorted according to
the magnitude of their elements. The assumption is that dhiedntal, vertical, and
longitudinal modes can each be clearly associated with dbtieecthree eigen modes.
This is true for our demonstration lattice and for nominatditions in CesrTA. In the
case of a strongly coupled lattice, more detailed bookkeg[@ necessary [41]. That

can happen if the tunes are near a coupling resonance or batdgesonance.
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This sorting puts the matrix of eigenvectors into a convetfierm. It results in the
normal mode Twiss information laying along thex2 diagonal blocks of the matrix of

eigenvectors, see Eqn. 2.67.

Among the 3 complex-conjugate pairs of eigenvectors, fa& pair the magnitude
of the first element will be clearly larger than the magnitofithe other elements. This
pair should be placed in the first two columndgofSimilarly, there will be a pair whose
third element is clearly dominant and should be placed imahird and forth columns
of E. The fifth element of the remaining pair of eigenvectors Wwél clearly dominant

and should be placed into the last two column&of

Thus sorted, the eigenvectors are arranged in columns o thoe complex matrix

of eigenvectors,

E-(&€&&&¢6). (2.57)

Next, it may be necessary to swapwith &, & with &, or & with &. This is done
to remove ambiguity when calculating the phase advanceupefriom the eigenvalues.
Compute the determinant Qﬁ;i E;;) Becauses; and€; are complex conjugates, the

determinant will be purely imaginary,

Xy +1y1 Xy —1y1
= 21 (Y1X2 — XoY1) . (2.58)

Xo+1y2 Xp—1Y?

If the imaginary part of the determinant is negative, swagfitst and second columns.

Then, compute the determinant @3 E34). If the imaginary part is negative, swap the

3 Eas

third and fourth columns. Lastly, compute the determinér(t@ Egg). If the imaginary

part is negative, swap the fifth and sixth columns. Swappoigrens in this manner
removes ambiguity in the tunes and ensures that the Twissifuns we calculate later
on will have the correct sign. Without this step, the fragtibtunes calculated from the

eigenvalues might be reflected about the half-integer.

42



Arranging the eigenvalues along a diagonal mabixn the same ordering a8

allows us to write the eigendecomposition as,

M = EAEL. (2.59)

2.4.1.3 Make E symplectic and adjust complex phase

The columns ok (eigenvectors oM) are unique only up to a non-zero complex mul-
tiplier. Here we compute a column-by-column complex noinadion that renderg

symplectic and unique.
First, the columns oE are scaled by a real multiplier such that [58],
ETSE =S (2.60)
This is done by computing three normalization factors,
ng = /Im (E’HSE’.Z)
np = 4/Im (ELSE,

ns = 4/Im (ELSEs), (2.61)

i

whereE; refers to théth column ofE.

Second, we multiply each column Bfby €%, where#; is chosen to makgj,e ",
Esze 2, andEsse % real valued4,, 6,, andds are the principal values of the arguments

of E111 E33, andE551

6, = Arg (E11>
92 = Arg (E33)

63 = Arg (Ess) (2.62)
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where,

-

2 arctan S S x>0o0ry+0
X2 +y? + X

Arg (X +ay) =4 X < 0andy — 0 (2.63)
undefined x=0andy =0
Finally, define
€2 0 0 0 0 O
1
o £ 0 0 0 O
1
- 0 02 0 0 O
R = 2 , (2.64)
0 0 0 £ 0 0
0 0 0 0 &2 0
0 0 0 O e
3
and apply the normalization,
E — —ER. (2.65)

The matrix of eigenvectors is now unique and symplectic up to a factor olt also
still satisfies Egn. (2.59). This form fd is the same as that in Eqn. (18) of Wolski’s
paper [58], except that here we have specified the complesepbiaeach eigenvector.
The reason for doing this will become apparent when we inicechormal mode Twiss

parameters and the coupling matrix in Sec. 2.7.
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2.4.2 Transformation to a real basis

The eigendecomposition Eqn. (2.59) can be transformedainéal basis,

M = EAE?

= (EQ) (Q*AQ) (QT'E™Y)
— NDN7?, (2.66)

where we have introduced the real matrices

N = EQ (2.67)

D = Q'AQ, (2.68)

and,

o- -1 . (2.69)

0O 0 00 1.

0O 0 00 1—:

Note thatQ is symplectic, and because the product of symplectic nestiic also sym-

plectic,N andD are symplectic.

2.4.3 Invariants of Motion

By rearranging Eqn. (2.66), we can transfa¥ininto a block diagonal matrix,
D = N"MN, (2.70)
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The definition ofD in Egn. (2.68) can be written as

Qg_l Aa QZ
D= Q2_1 Ay Q, (2.71)
Qz_l Ac Q2
where,
A 0
A = (2.72)
0 A
and,
Q- |t (2.73)
2 — \/§ 1 , . .

If we put A; in modulus-argument notation,
Ai = rie’gi, (274)

wherer; = ||4i]]| = 1 (we noted earlier the eigenvalues of a stable 1-turn mhdrian

the unit circle) and; = Arg (4;), we can write,

L 111 1|(e% O 1 .
Q;'AQ: = 5 (2.75)
—1 1 0 e 1 —

1| € +e (ef —e
-3 ( ) (2.76)

_eu‘)i + e—lﬁi el@i 4 e—lﬁi

cos6;  siné
= , (2.77)
—sing, cosé

where we made use of Euler’s Formula in the last step. We s¢B ik a block-diagonal
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matrix of the form,

where

cosf;,  siné,

R(6) =

—Sing, cosy

(2.78)

(2.79)

Let X; be the canonical coordinates of a particle at some locati@M,_,, be a

transfer matrix that takeg to %, X, = M;1_,»%;. Define a new vectad = N~1X, where

N is from the eigen mode decompositionMf,_,,, so that,

Then fora, we have,

g, = N71x,.

d = N1%
= NIMx,
= NINDN™1x,
= DN!%,

= Day,

a7

(2.80)

(2.81)



and we see thal, is a rotation ofd;. If & is written in the following form [58],

v/ 2J3 COS¢,
- \/ 2Ja S|n¢a
v/ 2Jp COSoy,
4= , (2.82)
— 4/ 2Jb Sin¢b
v/ 2J. COS¢p.
- \/ ZJC S|n¢c
then the quantities,, Jy, J. are invariant undeb,
cosfa sinda O 0 0 o V2Ja COSpa
~sinéa cései 0 0 0 0 —V/2Ja singa
Da _ 0 0 cosh sinfy 0 0 /2Jp COSp
0 0 0”8 cou sing ~ Sk s
co%. sin
0 0 0 0 - singc cos@cC - %gzﬁ;
/233 '(COSHa COSPa—Sinba Singa)
— v/2J3(Sinf; COSPa+C0SY, Singa)
V23 (cost, cosgp—Ssindy singp)
— v/2Jp (Sinfy cOSpp+COSby, Singp)
1/2J3;'(C0SH; cOSpe—Sinbe Singe)
— 1/2J3¢ (Sinfc coSgc+COSHc Singec)
/235 cog0a+da)
—/23;'sin(fa+¢a)
_ V/23p cog0p+b)
o — /23y 'sin(Bp+p) (283)
v/23; cog(0c+c)
—/23c"sin(0c+¢c)
and we see tha& (6,) ¢ — ¢ + 6.
For a particle with coordinates & is obtained as,
a=N"1x (2.84)

Call the components of the vectdr= (a, pa, b, ps, C, pc), then the invariants can be

obtained as,
1
Jo= 3 (8" + pd)
1
Jo =5 (07 + pf)
J. = % (C+ ). (2.85)
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These invariants will become useful in later sections whenewamine processes,
such as photon emission and scattering, that can changettientomentum of the

particle.

2.4.3.1 Calculating Phase Advance from Transfer Matrices

The three phase advances of thex @ transfer matrixM are simply the arguments
of its eigenvalues. This appears to be a simple concept,hlené is ambiguity over
which complex conjugate to use and whether to calculatertgle@lockwise or counter-
clockwise. In this section, these ambiguities are resobyedpecifying exactly how to

perform the calculation.
The eigenvalues of a stable transfer matrix have unit leagthare written as,
{Aa, A, Ap, Af, A, A2 (2.86)

If the ordering of the eigenvalues is consistent with theeardy that has been applied
to the matrix of eigenvectors, then the horizontal, veltiaad longitudinal tunes of the
machine can each be obtained from the second, fourth, attu eigenvalues by the
following algorithm. Note that the first, third, and fifth eigvalues could also be used,

but the calculation would be somewhaffdrent.

The eigenvalues are in general complex and their argumeahtisne turn phase
advance\gy,

A = e, (2.87)

Plotted in Fig. 2.6 is an eigenvectoplotted inx + 1y format.

Functions which return the argument of a complex numbendifteve a branch cut

in the complex plane from 0 te-co. Examples of such functions are “atan2%g in
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Al

Figure 2.6: Eigenvectot = x + 1y plotted on complex plane. The phase advance of the
transfer matrix is\¢.

Mathematica, or the Arg function defined in Egn. (2.63) of this thesis.

(a, pa) and(b, p,) advance clockwise in thee-mode ancdb-mode phase planes. For
thea andb mode phase advance, if the eigenvector has positive imggiaat, then the
phase advance is given by,

Agx = Arg (/lk) . (2.88)

If the eigenvector has negative imaginary part, then theltrgszen by Arg(4y) will be

negative. In that case the phase advance is given by,

Agy = 21 + Arg (/lk) . (2.89)

At highly relativistic energies, the velocity of a particlees not change significantly
with momentum, but its mass does. A particle with more monmang positivep., will
be bent less by the dipoles and follow a longer path and falinakethe other particles in
the bunch. Similarly, a particle with a negatipg will follow a shorter path and move

ahead of the other particles in the bunch. This is called tegative mass”féect and
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it causes the patrticle to advance counter-clockwise in ttes@ space. HencAg. is

expected to be negative.
If 1. has negative real part, then the phase advance is given by,

Ape = Arg (Ac) . (2.90)

If 1. has positive real part, then the phase advance is given by,

Ape = =21 + Arg (A¢) - (2.91)

If the transfer matrix in question happens to be the 1-tandfer matrix, therg,,

A¢p, andA¢. are the tunes of the machine.

2.4.3.2 Summary

We have shown that a symplectic transformatibn ., that takes the lab frame coordi-

natesx; at one location in the accelerator to another can be decardss

X = M%)

— NDN™x%,, (2.92)

whereD is a pure rotation. We have also shown that lab frame codelnean be

transformed into eigen mode coordinates,
a=N"1x (2.93)
and shown tha@ reduces to three invariants and three angles.

The relationship between lab coordinatand eigen mode coordinates of the ac-

celeratora are depicted in Fig. 2.7N~* can be viewed as a transformation that takes
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Y

<

x|

a - Da

Figure 2.7: Relationship between lab coordinatesd the eigen mode coordinates of
the acceleratag.

canonical lab-frame coordinates into an uncoupled eigaoesdn the eigen space, mov-
ing from one location in the accelerator to another is a sempiation in(a, p,), (b, py),
(c, pc) phase space. The matiiktakes eigen mode coordinates and transforms them

back to canonical lab-frame coordinates.

In the next section, we apply these ideas to the coupled detnadion storage ring

that was developed in 2.3.4.

2.5 Eigen Mode Analysis of a Simple FODO Storage Ring

When we left ¢f in Sec. 2.3.4 we had introduced transverse coupling to old®&tor-
age ring by tilting one of the quadrupoles. Combined with thezontal-longitudinal
coupling from the bend magnets, this resulted in a machitte thve motion coupled in
all three dimensions. We had pointed out how an invariant@fiarticle motion, called
action J, could be calculated from the area of the phase space ethpsehe particle
traces out over successive turns, and that this quantitynetasell defined in the pres-

ence of coupling. We also had questions about how the dtabfla coupled machine
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could be determined from its 1-turn matrix.

In Sec. 2.4.1 we developed an eigendecomposition of syiipleansfer matrices
and used it to develop a transformatigtetween lab frame coordinates and eigen mode

coordinates. We also defined three invariants of the panti@tion,J,, J,, andJ..

In this section we apply the eigendecomposition of the h-tcansfer matrix to the
fully-coupled demonstration FODO lattice and calculate itivariants of the particle

motion and the phase advance per turn.

The 1-turn transfer matrix of the fully coupled lattice, reguced here for conve-

nience, is

M 1-turn,tilted =

—0.65956 20300 —0.012636 —2.2365 002737 29796
—0.02612 —0.69869 000334 059081 000012 045262
0.16286 —3.9408 016029 —-36.637 —0.00262 —7.0338
0.01193 -0.28864 002713 003781 —0.00019 —-0.51525

—0.51190 —30.2300 000233 04120 092923 —-96.560

0.00014 —0.00884 —0.00005 —0.00957 000098 096439
(2.94)

The sorted and normalized matrix of eigenvectors, Eqn5§2f6r this transfer ma-
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trix is,

E =

3.76319

0.006819— 0.148647

376319 —0.971744— 0.173611

0.006819+ 0.148647 —0.020251— 0.06456%

—2.009010- 0.200563 —2.009010+ 0.200563 4.64371

—0.021551- 0.031833 —0.021551+ 0.031833 0.015199- 0.120399

—0.076588— 2.832979 —0.076588+ 2.832979 0.538940— 1.618365

—0.000065+ 0.000772 —0.000065— 0.000772 —0.000031— 0.00014%

—0.971744+0.173611 0.029919+ 0.705920  0.029919- 0.705920

—0.020251+ 0.06456% 0.000106— 0.002893  0.000106+ 0.002893

4.64371

—0.066759+ 0.144334 —0.066759— 0.144334

0.015199+ 0.120399 —0.000104— 0.007762 —0.000104+ 0.007762

0.538940+ 1.618365% 1274198 1274198

—0.000031+ 0.00014% —0.002645+ 0.039211 —0.002645— 0.039211

Which when converted to a real basis, Eqn. (2.67), yields,

N —

5.32195

0.00964

—2.84117

—0.03048

—0.10831

—0.00009

0

021022

028364

004502

400644

—1.37425 024552 004231 099832

—0.02864 009131 000015 —0.00409

656720 0 —0.09441 020412

002149 017027 —0.00015 —0.01098

076218 228871 1801989 0

—0.00109 —0.00004 000020 —0.00374 005545

Recall that the initial coordinate of the patrticle is
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X = (0.01 m0,0.01 m0,0.01 m0). Calculatingd = N~1X gives,

0.00254
0.00021
0.00262
d= . (2.97)
0.00007

—0.00040

—0.00004,

Applying Egs. (2.85) yields the three invariant actionshef particle in the fully-coupled
FODO lattice,

Ja = 3.25um-rad
J = 3.44um-rad
J. = 0.08 um-rad
Comparing these numbers to the phase space ellipses in4tgese numbers seem

reasonable, but the ellipses in the phase space portraitsaarwell defined, so it is

difficult to judge.

Repeating the same calculation for the lattice without ediljuadrupole, depicted

in Fig. 2.2, yields,

J,=182x 10"
Jy=141x10°
J. =0.15x% 10°°.

This value forJ, compares favorably with the value o#1 for J, that was calculated in

Egn. (2.51).
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Horizontal Fractional Tune

Figure 2.8: Comparing horizontal Fourier transform of detmotion in fully coupled
machine to the eigen mode tunes calculated from eigenvafiige 1-turn map.

The tunes of the fully coupled lattice are obtained by follugvthe instructions in

Sec 2.4.3.1,
Aga
= — 0.353272
Qa =3
Ay
- —2-07
Qo 0.753696
A
Q. = e _ 0051651 (2.98)

In Fig. 2.8 these calculated tunes are superimposed on theohtal Fourier trans-
form from the fully coupled demonstration lattice. The ragk$ indicate the calculated
tunes. Q, and Q, compare favorably with the expected phase advances ceadula
Egn. (2.44).Q. does not agree with the calculatéd because the full lattice includes
two focusing elements, while the expected phase advancealagated assuming re-

peated FODO cells.

Shown in Fig. 2.9 is the phase space and trajectory in eigaternoordinates of a

particle tracked through the fully coupled FODO lattice eThajectories here represent
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the same particle motion as plotted in Fig. 2.4, th&edence is that here the coordinates

are represented in the eigenbasis of the machine. As exhedbe trajectories trace

out circles in phase space (note that the axes of the plotadreguare). The apparent

amplitude modulation in tha andb turn-by-turn data is due to aliasing. Théurn-by-

turn plot does not show this modulation beca@geas a small fraction of 2.

pe x 10°

=

AL

€ o
R AHRE L
-1 -1
\‘\ /
-2} e e -2
-2 -1 ._0—-. 1 2 0 10 20 30 40 50
a(mm Turn
(a) apa (b) aturn-by-turn
| 2
-1 -1
3 S -2
-2 -1 0 ......... 1 2 0 10 20 30 40 50
b (mm) Turn
(c) bpy (d) bturn-by-turn
L I 0.4
0.9 A 0.2
’ \\ £ \ /\ /\
0. ! T E 0.
\ /| 5
-0.2 \ / -0.2
Y e — -0.4
-0.4 -0.2 0.0 0.2 0.4 0 10 20 30 40 50
c(mm) Turn
(e) cpc (f) cturn-by-turn

Figure 2.9: Phase space and trajectory in the eigenbagis ofidchine.

Shown in Fig. 2.10 are Fourier transform of @iy, andc coordinates of the particle
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over 3000 turns. Each spectrum contains only one signal.
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(c) c-mode

Figure 2.10: Fourier transform of particle motionanb, andc over 300 turns.

The stability of the lattice is determined by taking the &sof the 2x 2 diagonal

blocks ofD, as defined in Eqgn. (2.68),

Tr(D,) = —1.208 (2.99)
Tr (Dp) = 0.0464 (2.100)
Tr(Dc) = 1.896 (2.101)

whereD,, Dy, andD. are the Z 2 blocks down the diagonal @. For a stable machine,

Tr (Dapc) = 2C0sA¢a, b, c.
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2.5.0.3 Summary

Without eigen mode decomposition, the invariants of theigdarmotion in the fully
coupled demonstration lattice are not well defined. Usigg®imode analysis we have
obtained those invariants. We have also demonstrated heweaam tune calculation can

be done using the eigenvalues of the 1-turn transfer matrix.

Using a transformatiohl—! that takes lab frame coordinatg$o eigen mode coor-
dinatesa we showed that over successive turns on the machine thelparaces out
perfect ellipses in phase space. Additionally, a Fouri@ndform of the eigen mode

particle motion shows one distinct signal in each of thedltienensions.

2.6 Gaussian Distributions of Particles

Thus far we have limited our discussion to a single partiBleginning with the Hamilto-
nian for a particle traveling through an electromagnetieptal we developed a simple
FODO storage ring. We explored the horizontal-longitutlozaupling due to bend mag-
nets and introduced transverse coupling by tilting a quaaleu10. We then developed
a formalism for transporting particle coordinates into éigenbasis of the accelerator.

This allowed us to identify 3 invariants of the particle nooti
In this section we will extend these concepts to a Gausssrilalition of particles.

In storage rings with significant radiation loss in bend netgnRF cavities are used
to restore the energy that is lost as synchrotron radiati@r. cavities have a time-
varying longitudinal field that is able to add energy onlyttoge particles that are in the

correct phase relationship with the field. The amount ofgnadded depends on when
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exactly the particle arrives at the cavity. Particles whactive early receive a stronger
kick than those which arrive later. Because of the negativesrdgect (see Sec. 2.4.3.1),

this results in longitudinal focusing towards the idealrgge

RF “buckets” exist at 2 intervals of the frequency of the RF system. Inside these
buckets are bunches of particles which are focused longailyg by the RF system, and

transversely by the magnetic guide field (i.e. quadrupdlesds, etc,).

Photon emission in bend magnets is a stochastic process. pastiale travels
through a bend, photon emission delivers small kicks atoankbcations along its tra-
jectory. Depending upon the local optics at the time of thession, the canonical
momentum may increase or decrease. The photon carries nomeaway, but the RF
system will add longitudinal momentum back. Over time, tigtribution of momenta
in a bunch of particles becomes dominated by this stochpsimess. The central limit
theorem predicts that, provided the random momentum clsaaigedrawn from a dis-
tribution with a finite mean and variance, the resultingréhstion of particle momenta

will be Gaussian.

A three-dimensional Gaussian distribution of particlelsjsct to linear transforma-

tions can be described by the matrix of second order moments,

00 xpy Oy (xpy) 0D (xpy)
(P (PP (Y (PxBy) (P2 (Pup2)
s |0 oo () 02 R | (2.102)
(px) (P (p) (Py) (R2) (PyP2)

@0 (o @) () @ (@)

(PX) (PP (P (PaBy) (P2 (PeP2)

where we have assumed that the first-order moments vanish.n¥dtrix is called the

60



Y-matrix of the beam.

A X-matrix is properly matched to a machine if it is invariantienthe 1-turn map,

r=MIMT.

BecauseéVl is symplecticMTSM = S, we have[58],

MXMTSM = £SM
MZXS = ¥SM

(£S) "M (£S) = M.

Say thazS has the eigendecomposition,

¥S=EFEL

Then Eqn. (2.104) is satisfied by any matkixthat can be written algl =

(ZS) 7'M (ZS) = M

~ o~ o~

EF 'EEAE'EFE ! = EAE!

I
>

FIAF

>
Il

A,

becausé andA are diagonal and therefore commute.

(2.103)

(2.104)

(2.105)

EAE,

(2.106)

However, the matri that diagonalize® is given uniquely by its eigendecompo-

sition. E must be the matrix of eigenvectors which are unique up to azeoa complex

normalization. We have,

me
I
m

>
I
I

(2.107)



Therefore, the eigenvectors of the 1-turn transfer mariare the same as the eigen-

vectors of &-matrix matched to the machine.

In [58], Wolski shows that the eigenvaluesX® are invariant under any symplectic
transformation, not just the 1-turn map. The eigenvalues®are the same no mat-
ter where in the machine it is evaluated. They are thereforariants of the bunch

distribution. The eigenvalues are typically writtenegse,, ande,

{—1€s, 162, —16, 16y, —IE;, 1€, } (2.108)

The three invariantg,, ,, ande. of the beam distribution are commonly referred
to as emittances. These are particle distributions anabtgothe invariant actions of a

single particle’s trajectory,, J,, andJ..

In the case of an uncoupled machine, the invariants arereelf¢n ase,, €, ande,

and can be calculated from,

& = /OO (PR
& = /()

&= /() (). (2.109)

where(-) indicates averaging over all particles in the bunch.

H

In the case of a coupled maching, ¢, ande, calculated in this manner are not

invariant, bute,, &,, € are.

Note thate,, €, ;. are simply the eigen mode emittances and can be calculateg us

ea = /(@) (P2)

& = /(02 (p2)

€ = /() (PR (2.110)
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2.6.1 Building theX-matrix of a Matched Beam Distribution

From Eqgn. (2.107) we have that a matched beam distributisriifeasame eigenvectors
as the 1-turn matrix. From [58] we have that the eigenvaldgékeobeam distribution

are the eigen mode emittances.

The X-matrix of a matched beam can be obtained from the eigem#eofahe 1-
turn transfer matrix and the eigen mode emittances of thenb#4ith the eigenvectors

arranged as in Eqn. (2.107), and the three emittangces ande;, theX-matrix is given

by,

YS=E E-L (2.111)

0 0 0 0 —1e. O

0 0 0 0 0 e

or in terms of real-valued matrices by,

*S=N Nt

= NAeaN"1, (2.112)
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where the real matrix of eigenvalues has been definéde.as The horizontal and verti-

cal beam sizes and bunch length are simpl11, v/Zs3, and v/Zss .

2.7 Normal Mode Twiss Parameters and the Coupling Matrix

Parameterizing accelerator optics in terms of Twiss pararsas a well-established
technique [8]. Each lab frame coordinate is parameterizé three variablesp, «,
and¢. B anda are related by,

1dB

S 2.11
¢ 2ds’ ( 3)

wheresis the longitudinal coordinate: is an angle.

The beam envelope in a particular dimension is defined adlgxac of the Gaus-
sian distribution of particlesoy, oy, ando, are usually used to refer to the horizontal,
vertical, and longitudinal beam envelope. The transveesarbenvelopes are often re-

ferred to as the beam sizes. The longitudinal beam envetopsuially called the bunch

length.

Using emittance, to characterize the horizontal phase space volume of tha,bea

the envelope is given by

o \/ 0 sin
“|= Ve Pr - (2.114)
: w1

Tx — U ) \COS¢x

Similar equations exist for the verticalnd longitudinak coordinates.

For the transverse dimensions, Sagan and Rubin extend thewviks formalism
to normal mode coordinates in [41]. Normal mode space islaind eigen space,

except that phase space ellipses in normal mode space anedhend stretched by
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normal mode Twiss parameters. This shearing and stret@éhingrmal mode space is

analogous to that in the lab coordinates.

In normal mode space, the coordinates are simply uncouplbey preserve op-
tical properties similar to those of the lab frame coordésatIn an eigen space, the

coordinates are uncoupled and the phase space ellipseiettb a circle.

Sagan and Rubin derive a mathikthat takes lab frame transverse phase space co-

ordinatesx; into two dimensional normal mode phase space coordinates,
G =V '%, (2.115)
whereq refers to coordinates in the normal mode basis.

They also derive a block-diagonal matii& that contains normal mode Twiss pa-

rameters,
Gy | S . (2.116)
0 : Gy
where,
1 0
Gap — | VA (2.117)
Qab
—,Ba,b ﬁa.b-

G tells us about the shape of the beam envelope in normal mede sp

If §is normalized by the normal mode Twiss parameters, then ti®mis reduced

to a circle and the coordinates in the transverse eigen spaabtained,

d = Gq. (2.118)

It is then easy to derive the relationship between lab fraowdinates and eigen
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mode coordinates within the normal mode formalism,

d =GV Ix. (2.119)

Notice that the conversion between lab frame coordinatdseagen mode coordi-

nates put forth by Wolski and reproduced in Sec. 2.4.1is

da=N"1x (2.120)

If we say thatG andV are now 6x 6, then we see an important connection between

the eigen mode formalism and normal mode formalism,

N=VG™ (2.121)

In Eqn. (2.64) the matrix of eigenvectors is normalized vétepecially calculated
phase factor. Thefiect of this normalization is to put the resultihginto a form such
that its 2x 2 diagonal blocks are simply the symplectic conjugates @hibrmal mode
Twiss factors times,, yp, 0Or y.. Comparisons between ti&matrix andy, . obtained
by the normal mode formalism and tli& obtained from the eigen modes formalism

agree completely.

The three parametess, yy, andy. that are used in the normal mode formalism can
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be obtained from the eigen modes formalism as,

Ny N

Y=Det| = (2.122)
No1 N
Nss N

2 =Det| =~ (2.123)
Naz  Naa
Nss N

y2=pet| = . (2.124)
N65 N66

The block-diagonal matrix, defined in Eqn. (2.116) is a 4 4 matrix. The full

6 x 6 matrix is

Ga 0 . 0
G=| 0 :iGy,: 0 [, (2.125)
0 0 G

where the diagonal blocks can be obtained fildm

Nz N
Gapo— — | 7. (2.126)

Ya
No1 N

Dagger' represents the symplectic conjugate,

T

A1 A _ Ao —A12. (2.127)

A21 A22 _A21 A11

Shown in Fig. 2.11 are the turn-by-turn trajectories andsphspace plots in normal
mode coordinates of a particle tracked for 500 turns thrabeglfully coupled demon-

stration lattice. Notice that the motion does not appeasketodupled. Theféect of the
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normal mode Twiss parameters is evident in the shearing @ettising of the phase

space ellipses.
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Figure 2.11: Trajectory in normal coordinates of particiéwinitial lab frame coordi-
nates(0.01 m 0,0.01 m 0,0.01 m 0). Particle is tracked for 500 turns.

Shown in Fig. 2.12 are the three normal mg@diinctions plotted versus location in
meters. Smaller values gfindicated stronger focusing and larger phase advance. The

steep segments indicate the location of focusing and dsiloguuadrupoles. The long

68



segments indicate the location of bend magnets.
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Figure 2.12: Normal modg-functions calculated from eigen-decomposition of the 1-
turn transfer matrix. The lattice elements are not symmetoouts = 0 m.

With G thus easily obtained fror, the transformation from lab coordinates to

normal mode coordinates via the eigen decomposition isredda

V = NG. (2.128)
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N transforms from lab frame coordinates to the eigen modeduoates. It “re-
moves” both the coupling and Twiss parameters from the é¢oatel system. One way
to think of N is that it has information about both the coupling in the #medor and the
local optics. By decomposinyg into V andG we have separated the coupling informa-

tion from the optics.

It is convenient to normalize the optics dependence oM, of
V =GVGL (2.129)
PluggingV = NG into Eqgn. (2.129), we obtain

V = GN. (2.130)

N, G, V, areV all symplectic.V can be written in the form,

Yal ECab Cac
V=1 -Dl wl Ce | (2.131)
—DL~Dg,: ¥

wherel is the 2x 2 identity matrix and Th€ andD matrices describe coupling between

the modesV can be written in the form,

el Coe |- (2.132)

.......................

-DL, DL, ¥

<|
I
|
)

In machines with coupling between only two of the modeg,= Dj;. If the motion is

uncoupled, then th€’s andD’s are0 (matrix of zeros), andy = V=1.

If all three modes are coupled, and the coupling is not toongtr then the fi-
diagonal blocks resemble the symplectic conjugate of thgosite diagonal counter-

part. Intuitively, it feels like it should be possible to dker a relationship between the
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threeC matrices and threB matrices. | have not been able to find such a relationship,
but if such a relationship were found, it could allow for th@ios correction procedures
described in [1] to be extended from the two transverse tthedle modes. This would

concise optics correction procedures that account forloaypetween all three modes.

2.7.0.1 Beam Size Calculations

A method is given in [41] for obtaining the horizontal and ti@al beam sizes from
the 4D normal mode Twiss parameters and emittances. HereseE&agn. (2.112) and
Egn. (2.121) to obtain formulas for the horizontal, veitiead longitudinal beam sizes.

The result is a 6D counterpart to the 4D formulas in [41].
Starting fromX-matrix in terms of real-valued matrices, Eqn. (2.112),
XS = NAeaN?, (2.133)
we use the definition dfl in terms of the normal mode matric¥sandG to obtain,
S = G WAV 1G. (2.134)

Takingos = X113, 07 = Xa3, ando = Xss and simplifying gives the projections of the

beam envelope into the lab frame,

o5 = Ba (viea + (6§b11 + 651012) e + (Coen + Coar) &) (2.135)
032/ = Bb (vbeo + (Eﬁalz + 5%6122) €a + (6§c11 + C_§c12) €) (2.136)
o3 = Be (7560 + (Egalz + 5%&122) €a + (5(2:b12 + 6<2:b22) fb) (2.137)

Note thaty,, yn, andy. are not the Twisg functions, but are coupling parameters as
defined in Eqn. (2.132). The following property of sympleanatrices was useful in

deriving these formulagv —! = STIMTS.
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These projections are stated in term&/ah Appendix B.

Equations (2.135), (2.136), and (2.137) are the lab framgptions of the beam
envelope and are what is typically measured by the instrteien. Written in this
format, it is clear how the various coupling termsMrcontribute to the projected beam

sizes.

2.7.0.2 Summary

We have obtained the 6 6 V coupling matrix simply by extractin® from a properly
normalized eigen mode decomposition. This is a novel arettlimethod for obtaining
V. We have also established clear and simple relations batweenal mode coordi-

nates and eigen mode coordinates.

Normal mode analysis has been applied to the fully-coupérdanstration storage
ring and the phase space and trajectory plots have beemebtaiAdditionally, the

normal mode Twiss parameters have been obtained from tha decomposition.

The beam size calculations given in [41], which project tbenmal mode quantities
into the lab frame, have been extended from two-dimensmtigée-dimensions. Writ-
ing the projected beam sizes in terms\bfeveals how the coupling termsfect the

measured beam sizes.
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2.8 Analytic Intrabeam Scattering Calculations

2.8.1 Kubo

The IBS formalism outlined here is described succinctly byp&in [20] and in detail
by Kubo and Oide in [21]. It is based on changes to the secoderanoments of the

Y-matrix of the beam distribution in the frame of the bunch, as

A{pip) = cR(6W?)R”, (2.138)
where,
(owz) 0 0
(ow?) = | o (w8) 0 (2.139)
0 0 (owd)

andR is a matrix of eigenvectors defined be@ﬂw%), <6w§> and<6w§> are the rates
of change of the normal mode 2nd order moments, gnsl proportional to the bunch

charge.

IBS refers to scattering among nearby particles. The 2ndr ondenents of thez-
matrix describe the momentum spread of the entire bunch. Whateded is the “local”
momentum spread, or the spread in the momentum of partictedel a small spatial
element of the bunch. Theftkrence between ti&-matrix 2nd order moments and the

“local” moments is depicted in Fig. 2.13. The local momentpread is obtained as
Zipp = <FTI| 5|J> = Xpp — ZIpE;leXp; (2.140)

whereX, = <5i§j>, Yox = <>Z>?j>, andx,, = (ij>.
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Figure 2.13: The local momentuBrmatrix describes the distribution of momentum in
a small spatial element of the bunch.

Xpp IS symmetric and positive-definite and can be decomposed as
Yipp = RGR', (2.141)

whereG is a diagonal matrix of the eigenvaluesXf,, and the columns oR are the

eigenvectors. The eigenvalues are denated,, us. Note thatR™ = R,

<6W2> is obtained from

(0W8) = g +9s— 20y, (2.142)

<5 2> = 01+ 03— 20, (2.143)

<5 3> = O+ G — 205, (2.144)
where

O = g(ug Uy, Uz), (2.145)

02 = g(upugUz), (2.146)

O3 = g(Us,ug,Uz), (2.147)
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and
2asir’ scoss

J‘ﬂ/Z
g(a,b,c) = ds. (2.148)
0 \/(

sif s+ 2cog s) (sin’ s+ 2cog s)

01, 02, andgs are analogous to the temperatures of the 3 normal modes biitiah.

¢ is defined as
r2NeAS

¢ = ——Cy
drytesenec

(2.149)

wheree,, &, ande. are the normal mode emittances of the beam, and the Coulomb
LogarithmC, will be defined in the next sectiorN, is the number of particles in the
bunch,re is the classical electron radiugjs the relativistic factor, andsis the length

of the element.

2.8.2 Coulomb Logarithm

The Coulomb LogC,, appears in the integration of the Rutherford scatteringszro
section over all scattering angles. The integral divergessiall scattering angles,
which correspond to large impact parameters. This reqtheestroduction of a largest
impact parameter cufio We follow the prescription by Kubo and Oide [21] and use the
smaller of the mean inter-particle distance and smallestrbéimension as the maxi-

mum impact parameter,
brnax - min (n_l/s, O-X7 O-y, ’)/O'Z) N (2.150)

wheren is the particle density in the bunch frame,

N
n= = (2.151)

(47?)3/ 2 O'XO'y’)/O'Z.

As for the largest scattering angle (smallest impact pararyeboth Piwinski and

Bjorken-Mtingwa assume thét,, = 7/2. It was suggested in [33] that scattering events
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which occur less frequently than once per radiation dampimg should be excluded
from the calculation of the IBS rise time. This is because sexdnts do not occur
frequently enough for the central limit theorem to apply #merefore do not contribute
to the Gaussian core of the beam. Such infrequent eventg&nikrate non-Gaussian
tails. It is the size of the Gaussian core that we can measoifey comparison with the

data, we exclude contributions to the tails.

In an electrofpositron storage ring, photons are emitted when the beaveltra
through bend magnets and wigglers. The emitted photonesaaway some transverse
momenta, which reduces action, but the sudden change obthleparticle momenta
causes an increase in its betatron oscillation amplitute.olverall change to the parti-
cle’s action depends on the local optics and betatron pHabe particle at the time of
photon emission. Photon emission is a stochastic procas®ticurs at unpredictable
locations along the particle’s trajectory. Each time a phas emitted, the amount of
transverse momentum carried away and amount by which tisedlorbit jumps are

drawn from stochastic distributions.

Very many photon emission events occur per damping peribé.nimber of pho-

tons emitted per second by a beam patrticle is [53],
_ 15V3'P,
-

Non - (2.152)
whereP, is the rate at which the particle radiates energy and the critical photon
energy of the synchrotron radiation. For CesrTA 4t @eV, P, is 0.2 MeV/turn, and
the damping time is 20000 turns. For 4 Z5eV beam and a bending radius of 122 m,
the critical photon energy. is 156 eV. Each electron emits about 2A.0° photons per

damping period.

The central limit theorem predicts that the average of aelamgmber of stochastic

events drawn from a distribution with a finite mean and vargais a Gaussian distribu-
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Table 2.3: Nominal conditions for a bunch witt#6< 10'° particles.

Beam Energy 4080
Average Density 4.2 x 107t parym?®
Twissyy 051 mt
Emittancee, 3.0 nm-rad

tion. Because the momenta of each particle in the bunch isvidi@ge of very many

stochastic momentum kicks, the distribution of particlementa in a bunch is Gaussian.

Similarly, there are a large number of small-angle intrabaaattering events that
likewise excite oscillations. The IBS momentum kicks arek#stic and have a well-
defined mean and variance. These IBS events increase the ofithle momentum

distribution. However, very few large-angle scatteringreg occur per damping time.

A particle with velocityv, traveling through a gas with densjtyand an interaction
cross-sectiowr, will undergo scattering events at a rate &= pvo. Writing o = b2,

whereb is the dfective impact parameter yields
1 2
. mpvb”. (2.153)

For non-relativistic Coulomb scattering, the impact paramis related to the scattering

angley by
le v
b= Z‘E cotE (2.154)
wherescis the velocity of the particles in their center-of-momentfiame. Substituting
Equation (2.154) into (2.153) gives the rate at which pkasi@are scattered into angles

less than or equal t:
1 1 cr?
_ _& COtz ﬂ

T Y4 (eya)? 2
where /ey, has been used qu_r, € is emittance, andg, is thea-mode Twissy. The

(2.155)

relevant beam parameters for CesrTA are shown in Table 2.8. rdte of scattering
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Figure 2.14: (a) Events which occur less than once per dapijire are excluded from
the calculated growth rate. (b) Equilibrium beam size dalions assuming éierent
cut-ofs.

events['s, in units of radiation damping timé&;, as a function of maximum scattering
angle is shown in Fig. 2.14(a). The tail-cut consists of editlg those events which
occur less than once per radiation damping period. A measuhe sensitivity to the
cutaf is illustrated in Fig. 2.14(b). The calculated equilibrilb@am size is shown for a
range of two orders of magnitude of the cflitd'he data shown are the same as plotted

in Fig. 2.28(a).

The tail-cut consists of restricting the calculation of tB& growth rate to include
only those events which occur at least once per damping ge&wvents which occur
less frequently than once per damping period generatdyligbpulated non-Gaussian
tails that do not contribute to the Gaussian core. The Gangsire is what determines
luminosity in a collision experiment and brightness of dtigource. It is the Gaussian

core that we measure in our beam size measurements.

The tail-cut is applied by setting the minimum impact paremas

[ 1
Brin = ,
mn N,y

wherery is the longest damping time in the bunch frame ans the average particle

(2.156)

velocity in the bunch frame. ¥, is greater tham, and ‘TSZ'Z, thenv ~ cy /2.
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The computed IBS growth rate is directly proportional to theildmb Log and is

expressed as the logarithm of the maximum impact parameg¢ertioe minimum,

Cy = log b"‘ax. (2.157)
Brrin
In hadron and ion machines, such as the Tevatron and RHIC, thpidg time is
very long and there are enough of even the very large-angtéess to populate a Gaus-
sian distribution. A tail-cut does not significantlffect the calculated IBS distributions
for those machines. However, for machines with strong dagy@uch as lepton storage
rings, very few large-angle scattering events occur permiagrtime, and applying the
tail-cut is essential to reliably computing the equilibmiudistribution of the Gaussian
core of the bunch. In CesrTA, applying the tail-cut signifityachanges the calculated
growth rate. With the tail-cut, the average Coulomb log in Tasat 1.6 x 10'° parti-
clegbunch is %4. Without the tail-cut, that is, if we assume that the maximacattering

angle is 90, the average Coulomb log is B/

2.8.3 Eigen decomposition as a patch between beam-envelope ma-

trix and Twiss-based schemes

The IBS formalism described in Sec. 2.8.1 is an examplebhaatrix based formalism,
also known as a beam-envelope formalism. In such formalib@®eam-envelope is
propagated using,

=M1 ZiMJ . (2.158)

whereM_,, is the transfer matrix that takes coordinates from locaficio location
2, and could easily be the 1-turn matrix. In the beam-enelgpmalism, radiation

damping is incorporated into the transfer matrix and quangxcitation is added as a
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diffusion term [27],

Y, = MZMT + B, (2.159)

whereB contains changes to the 2nd-order moments offihmatrix due to photon

emission.

Twiss based formalisms, on the other hand, parameterizedam in terms of 3
emittances and 9 optics function,fc, @abc, andeéapc). Radiation damping and exci-

tation are applied as kicks which depend on the optics fanstand bend angles [16].

Using the relationships between the eigen decompositiontteeX-matrix devel-
oped in Sec. 2.6.1 and the normal mode decomposition and de@mposition estab-
lished in Sec. 2.7, it is possible to switch between Twiss &temce-based descriptions

of the beam an&-matrix descriptions of the beam.

Bmad is a Twiss-based environment, while Kubo’s IBS formalismaséxd on th&-
matrix. Beam tracking and synchrotron radiation are are lleand Bmad’s Twiss-based
infrastructure. To calculate IBS growth, we first build tHematrix using the normal
mode emittances and eigen decomposition of the 1-turn mhpn We adjust the 2nd
order moments of th&-matrix according to Kubo’s formalism. Finally, we calctda

the new emittances by calculating the eigenvalues®f

2.8.4 Modified Piwinski with Tail Cut

2.8.4.1 Introduction

The first widely used formalism for the calculation of IBS $eehg rates was by Anton

Piwinski in 1974 [30]. The original derivation contained antbersome 3-dimensional
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integral. In 1980, Evans and Zotter made an exact repladevhére triple integral with
a single integral [25]. This formalism was extended by Muarith 1984 [25] to include

derivatives of the lattice optics.

Piwinski’s original formalism contains a Coulomb Logarithihat assumes a maxi-
mum scattering angle af/2 and contains the momentum dependence of the scattering
particles. The formalism was originally intended for hadend ion accelerators. As
discussed in Sec. 2.8.2, large angle scattering eventauaeénrlepton accelerators on

the time scale of a damping time.

In this section, Piwinski’'s original formalism for the calation of IBS scattering
rates is re-derived assuming a constant Coulomb Logariththeo$ame form used by
Kubo [21] and Bjorken & Mtingwa [5]. This makes it possible tppdy Piwinski's
original formalism to lepton rings and compare the reswtshbse obtained by the

Kubo and Bjorken & Mtingwa formalisms.

As a bonus, this derivation puts Piwinski's formalism in ayvsimple form. Even
with Zotter’s integral, Piwinski’s formalism is considereumbersome to evaluate and

opaque approximations of varying reliability are oftendife8].

When a constant Coulomb Logarithm is assumed, two of the thtegrals in Piwin-
ski’s original derivation can be solved exactly. The resilin IBS scattering formula
that is quick to evaluate, and which can be derived from Fswiis original formula

with the application of only one easy to understand appraiion.

2.8.4.2 Derivation

Piwinski’'s original formalism diers from the Bjorken-Mtingwa formalism in that it

preserves the relative momentum dependence in the Couloméritlam. It may be
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argued that preserving this dependence is more accurateeddg when applied to
machines with significant damping it is found that the Couldmly must be adjusted
according to the tail-cut procedure. The tail-cut procecagssumes a Coulomb Log that

is not dependent on momentum.

In the classic theory, the smallest scattering is calcdlftem the smallest beam

dimension and the largest scattering anglg, is

sinZ 2
2_ ~ log ~ log M (2.160)

sin @ min e

log

whereba is the largest impact parameter (typically the beam heighid the electron

radius,8 is the relative velocity of the two colliding particles, awe have used,

tany = (2.161)

le
26%b°
In the tail-cut theory, the largest scattering angle is als@ll, typically less than

0.01 radians, and the relative velocity of the two particlespdrout,

in Ymex
2~ log Ymax log Brna (2.162)

sin@ wmin min

log

Note, however, thab.,,, EQn. (2.156), is proportional to the square root of theiplart
velocity. Kubo’s formula for the tail-cut replaces the tela velocity of individual

particles with the average particle velocity.
The integral for Piwinski’s original derivation is [30],
o prop21
f(a,b,c) = ZJ f J log (¢°r) (1 —3cog6)
0 Jo Jo
exp(—r (cos 6 + (a®cos ¢ + b? sir? ¢) sin’ 6) ) sinddgdedr, (2.163)

where the Coulomb Logarithm is the log factor inside the irdeg
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Before assuming the constant Coulomb Logarithm, we apply tsiféw steps from
Evans and Zotter’s derivation [12], where they convert tiy@e integral to a single

integral.

First, notice that cd® and sirf 6 are symmetric about/2. Replace the integration

of # over 0 torr with an integration over 0 te/2 and multiply the integral by 2,

o 5 or2r
f(a,b,c)=4fO LL log (°r) (1 —3cog6)

exp(—r (cos 0 + (a®cos ¢ + b? sir? ¢) sin’ 6) ) sinddgdedr. (2.164)

The same can be applied to the variahleeplacing the integration over O ta 2ith

and integration over 0 to/2 and multiplying the integral by 4,

f (a,b,c) = 16LOO Jj fr log (°r) (1 — 3cos6)

exp(—r (cos 6 + (a®cos ¢ + b sir? ¢) sir’ §) ) sinddgdedr. (2.165)

Next make use of the identities 8ip = =%°2 and sif ¢ = 22,

f (a,b,c) = 16LOO fj fr log (°r) (1 —3cos6)

exp(—r (cos 6 + (a® + b* + (a® — b*) cos B) sin’ 6) ) singdgdedr. (2.166)

Replace 2 with y,

f(a,b,c) = BLOO fj Lﬂ log (¢°r) (1 —3cog6)

exp(—r (cos 0 + (a® + b* + (& — b?) cosy) sirf 6)) singdydedr. (2.167)
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Replace co8 with x,

f (a,b,c) —8J fjlog q’r) (1—3x°)

exp( (x +5 (a®+ b*+ (a* — b*) cosy) (1— ))> dydxdr. (2.168)

At this point, Evans and Zotter use an identity to integrater o exactly. We diverge
from their derivation by replacing the logarithm with a ctamg and moving it outside

the integral,

f(ab,c)=8( clogj JJ (1-3%)

exp( (x +5 (a®+ b*+ (a* — b*) cosy) (1— ))> dydxdr. (2.169)

The integration over is now straightforward,

f(a,b,c) =

1— 3%
16(cl
G(COQ)L L @+ b+ (2—-a2—b?)x2 + (a% — b?) (1 - x?) cosy

dydx. (2.170)

The integration ovey is also straightforward and yields the final result,

f(ab, (cl 1-3¢ _d 2171
(@.b.) = 8 (clog) \/a2 (1-a)x /b2 + (1 - 1?) X * (247)

2.8.4.3 Discussion

Equation (2.171) is a numerically easy to integrate formhef integral in Piwinski’s
original derivation. The only approximation made is th& @oulomb Log was assumed

to not depend on the relative momentum of the colliding pkasi.

Note that this equation is very similar to Evans and Zottéegvation. Their result

has a logarithmic term inside the integral that is the monm@ntlependent version of
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the Coulomb Logarithm,

f (a,b,c) = 87TL1 1\/%(2 (2 log (% <\/i5 + T%)) — &) dx, (2.172)

wherey’is Euler’'s constant and,

P(x)=a’+ (1-a) ¥ (2.173)

Q(x) = b*+ (1—b?) %% (2.174)

Equation (2.171) is also very similar to Bane’s approxina{®8] to the Bjorken-
Mtingwa formalism, except that our equation treat@andy equally, where Bane’s

derivation does not give sensible results when the vertiisplersion is zero.

2.8.5 Method Comparison

In addition to Kubo and Oide’s method, two other commonlydusesthods for calcu-
lating IBS growth rates are one by Bjorken and Mtingwa [5] anceesion of Piwin-
ski’s original derivation that includes derivatives of lagtice optics [30]. The constant
Coulomb Log integral derived in Sec. 2.8.4 is used here. Shovig. 2.15 are hori-

zontal beam size versus current calculated using the thedieoats.

We treat the Coulomb Log the same way in each method and appljailcut.
Applying the tail-cut to Piwinski’s original method reqas modifying the derivation so

that the minimum and maximum scattering angles can be seatrampters.

Bjorken & Mtingwa’s and Piwinski's methods are based on Tvgasameters. We
use normal mode Twiss parameters in place of lab frame Tvaispeters when evalu-
ating either formalism. The growth rates given by the forasidre applied to the normal

mode emittances.
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Figure 2.15: Comparing (a) horizontal, (b) vertical, andl@mgitudinal beam size ver-
sus current for three flerent IBS formalisms. The high emittance lattice bgs= 4.6
nmrad,e0 = 143 pmrad, andro = 10.0 mm. The low emittance lattice hag = 2.8
nmrad,eo = 1.5 pmrad, andr = 10.3 mm.

These calculations suggest that, provided the Coulomb Lbgased the same, the

three most general IBS formalisms predict similar equilibribeam sizes.

2.9 Intrabeam Scattering Monte Carlo Simulations

In addition to the analytic IBS calculations discussed abaeéchave developed a Monte
Carlo simulation based on Takizuka and Abe’s plasma cotlisiodel [48]. An ensem-
ble of 2000 particles representing the bunch distributsoimacked element-by-element
using theBmad standard tracking methods [37]. Tracking through the sfrownlinear

field of the superconducting damping wigglers is done witly@agectic Lie method
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based on a map of the wiggler field [39].

At each element, the ensemble is converted from canonicghatial coordinates
and boosted into its center of momentum frame where thectestare non-relativistic.

Then Takizuka and Abe’s collision model is applied:

1. The bunch is divided into cells. This enforces locality.
2. Particles in each cell are paireff.dcach particle undergoes only one collision.

3. The change in the momentum of the pair is calculated, gakito account their

relative velocities and the density of particles in the.cell

The ensemble is then boosted back to the lab frame and trarexfidoack into canonical

coordinates.

Note that this is not a Monte Carlo simulation of individuahttering events. Such
a simulation would require the calculation %ifscattering events per element and is not
computationally feasible. Takizuka & Abe’s formalism asllttes the expectation value
of the change in the momentum of a test particle travelingugh a “wind” of nearby
particles. The relative velocity of the paired particlesedaines the velocity vector
of the wind. The rate of change of the particle momentum duscédtering events is

assumed to be constant through the length of the element.

A log term corresponding to the Coulomb Log appears in Talkaz&kAbe’s for-
malism. The calculation of the expectation value of the gleaim the momentum of
the particles assumes many small-angle scattering evEnits method of Monte Carlo
simulation is subject to the central limit theorem and ¢ait-in the same way as the

analytic calculations.
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2.9.1 Generating a Distribution of Particles Matched to the Ma-

chine

The equilibrium beam distribution in a lepton storage riaghe result of stochastic
radiation damping and excitation. Any arbitrary distribatinjected into a storage ring
will in time assume a Gaussian distribution that is invariamder the 1-turn map. For

CESR, this occurs on the a scale of approximately 20000 turrsdyaut 50 ms.

In principle, the Monte Carlo simulation could be seeded \aitly arbitrary distri-
bution and end up with the same result. However, the MonteoGamulation is time
consuming. If the simulation is seeded with a distributioattcorresponds to the equi-
librium distribution, then it will equilibrate faster. Tcking 2000 particles for 20000
turns on a 32 CPU Xeon E5-4650 cluster takes about 12 hours.

A distribution of particles matched to the machine is getegldy first generating
the distribution in the eigen basis. In the eigen basis titgcoordinates are simply
given by,

/235 COSpa
—1/2Ja SiNg
4o | VB COSh | (2.175)
— /2, singy

V23 cospe

Y 2\]0 S|n¢c

This is identical to Eqn. (2.82) and is reproduced here foweaience. In one dimen-

sion, a distribution of particles in equilibrium has a flagtdibution ing, and a Gaussian
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distribution in action],
1
J o) =—e €, 2.176
p(J¢) T ( )

wheree is the emittance.

A flat distribution in¢ for N particles is easily obtained by generating a seNof

random real numbers between 0 and 1 and multiplying the st by

A Gaussian distribution id is obtained using inverse transform sampling. A set of
N random real numbers with a flat distribution between 0 andtfaissformed into a

Gaussian distribution with vanishing first order moment amdth e using
Ji = —¢€ |Og (X,) , (2177)
whereX; - - - Xy is the flat distribution of random real numbers.

Generating three distributions Nfparticles in(J, ¢a), (Jb, ¢p), and(Je, ¢c) we now
have a distribution of particles in the eigenbasis of thelmreee This is converted into a

distribution of particles matched to the machine using ERr&7),

X = N&. (2.178)

2.9.2 Coordinate Transformations

2.9.2.1 Bmad coordinates to spatial coordinates

After tracking a distribution of particles to some locatmin the lattice, for each particle
we know (x(s), px(S),Y(S), py(5).z(s), p.(s)). These are the canonical coordinates
of the particles at the locatiog, and do not represent the spatial distribution of the

bunch.
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To find the spatial distribution, we need to find the locatiérihe particles at the
time ty, this is the time that the reference particle arrived.afhez coordinate of each

particle isz(s) = —B(s)c(t(s) — to (S)), from which we obtain,

At=1t(s) —to(s) =

(2.179)

At this point each particle witlAt < 0 should be propagated backwards through
the previous element for a tim, and each particle witht > 0 should be propagated
forward through the next element for a timeé For simplicity, we simply propagate the
particles through a drift. This approximation is reasoaad long as the betatron phase
advance over the length of the bunch is much much less#fi2amand the guide field

strength not too strong.

The time-dependent Hamiltonian for a particle of chaegand massm moving

through a field-free region is [46],

me 2 v ymc?
He (X, Pe Y. By, S Psit) = C <(30) + P Py pi) =5 (2180)

wherepyy.s = Pxy.s/Po. Pxys is the momentum of the particle afg is the momentum

of the reference particle. The equations of motion are obthas,

d_X _ oH; _ PxC dpy _ _aHt _0
dt apx \/<@>2+ p2+ 2+ 2‘ dt aX
Po x T By + Ps
dy _ cHe _ PyC doy __dHe_
dt  op, 2 | a oy
\/(%") Bt B P2
ds_ oH _ PsC dps _ b _
d  Jps 2 ‘ dt 0s '
\/(2—“) B+ B+ P2

Note that making the paraxial approximatipg p, << 1 and assumingc/Py <<

1 yields,
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dx_&C dy By ds

E_ps dt_psc a—c-

The longitudinal momenturps = Ps/P, of the particle can obtained from its canon-

ical coordinates,

P2 =3 ((1+p)" — P~ ). (2.181)

We can now write the map from canonical coordinate® spatial coordinates; =

(Xs, Pxss Yss Pyss S, Ps),

Yo — o+ At (2.182)
dt
Pxs = Pxc (2.183)
d
Ys = Ve + Atd—)t/ (2.184)
Pys = Pyc (2.185)
ds
= At— 2.1
S i (2.186)
Ps
= = 2.187
pS PO’ ( 8 )

whereAt is given by Eqgn. (2.179).

Shown in Fig. 2.16 are thry, xz, andyz projections of a bunch & = 0 (Bmad

coordinates) antl= O (spatial coordinates). The bunch lies on a non-zero clogat

2.9.2.2 Spatial coordinates t®mad coordinates

The map from spatial coordinates backBead coordinates is obtained from tre

dependent Hamiltonian of a particle in a field-free regiod)[4

2
Hs(X, Px; ¥, Py, t,—E; S) = — \/(%) - p>2( - pf, — MPc? = Bsynmc, (2188)

which is the kinetic momentum in thredirection. The equations of motion are,
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Figure 2.16:x, y, andz coordinates of a bunch at= 0 andt = 0. The bunch lies on a

non-zero closed orbit.
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mec
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2
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pyC
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dx  dHs

ds  dpx \/<
dy _ dHs _
ds_épy_\/(
dz OHq

mc

Po

2
)+ R+ P

PsC
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mc

Po

2
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2.9.2.3 Spatial coordinates to COM frame

dpx _ dHs _

ds  oOx

d_py__aHS_O
ds oy

dp, _ JHs _

ds 0s

The Monte Carlo IBS formalism applied at CesrTA is based on Tédd#& Abe’s binary

collision model [49]. It is a non-relativistic plasma csltbn model. Particles in an
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electroripositron accelerator are typically ultra-relativisticowkever, in bunched beams
with a small energy spread and divergence, one can boosh&tenter of momentum
(COM) frame of the bunch where the particles will be non-reistic. \WWe calculate the

particle interactions in the COM frame, then boost the plagiback into the lab frame.

All coordinates in this section are spatial coordinatesr@hgy, andsrepresent the
spatial coordinates of the particle relative to the refeegparticle, angy, py, andps are

the horizontal, vertical, and longitudinal momentum of paeticle normalized byp,.

At first glance, one might simply boost alorsggusing the reference momentum.
However, this is not ideal if the closed orbit is non-zero.that case, the boost will
be not be parallel with the bunch COM and particles in the mBab$tame will have
an unnecessarily large relativisgic Misalignments and strong wiggler fields are two

possible contributions to a non-zero closed orbit.

The Lorentz transformation for a boost in any direct&)ﬂ (Bx: By Bs) 1S,

Y P By ~Ps
2
—¥Bx 1+(7—1)'B—)2( (y_l)ﬁ_xfy (y_l)ﬁxgs
A 1 g p (2.189)

Py ’832’ Bybs |’ '

Py (7’—1)7 1+(y—1)l§ (7_1)?2
BPx BB Jiz

s (y—1) 7 ()/—1)’6)—2y 1+(),_1)E

1 . , :
wherey = , /1 — W . A particle with four-momentuniE, py, py, ps) in the lab frame
\ b
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will have momentun(E’, pi, pj, p;) in the boosted frame,

E/ Y —¥Bx —YBy —YBs E
% BxBy BxBs
o B —¥Bx 1+(7—1)’§ (7—1)ﬁ—2182 (y—1) iz Py
, BB ByBs ’
g | 0D 1+0-U% Y [‘;22 By
i)\ 005 -0 1eo-0% ) e
(2.190)

whereE = \/PE( + P2+ P2+ mScZ‘.

We want to boost into a frame where the sum of the individudiga momentum

is zero,
Zn: B = (2.191)
i=1
Zn: B =0 (2.192)
i=1
Zn: Py = (2.193)

wherep, P, ..., are the lab-frame momenta in spatial coordinates. Solviisgsystem

of equations vidlathematica yields,

IBX = 7n ﬁy = :, ,Bs = 71
> Ei > E Z E;
i=1 =1 i=1

(2.194)

After boosting the distribution of particles according tqri (2.189) and (2.194),

the momentum of the particles will average to zero.
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The spatial coordinatels, y, z) must also be transformed. The four-vectoxis="
(0, x,Y,2). By setting the first element of the four-vectmrto zero, we are stating that
an observer measures the location of each particle sinadtesly. The transformed

distribution is obtained by applyingy = Ax; for each particle in the ensemble.

Time dilation reduces the amount of time passed in the bddstene by a factor of

At = A a1 (2.195)
Y

whereg = /B + B+ 2. Inthe lab frame,ﬁ'—C seconds pass as the particle travels

through an element of lengthin the boosted frame, the amount of time passed is much

1
shorter,yﬁc.

The total energy of a particien the boosted frame is,

E, — c\/PE + PA + P+ mic?, (2.19)

,S

where the prime indicates quantities in the boosted franhe. VElocity of particlea in

the boosted frame in units of meters per second is

P xC?
Vix = —E— (2.197)
|
P;yC?
Yy = g (2.198)
P;.sC?
Vig = 'l’;_ : (2.199)
|
V= AV VR (2.200)

Takizuka and Abe’s plasma collision algorithm is non-niglatic. Figure 2.17 is a
histogram of the relative velocity between particle pairthie boosted frame. There are

100000 particles in the ensemble.
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Relative velocity between particle pairs in boosted frame
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Figure 2.17: Relative velocity of particle pairs in the cer@dEmomentum frame of the
ensemble.

2.9.3 Collisions

Intrabeam scattering considers only those collision eventh an impact parameter
small enough to significantly perturb the momentum of thédialy particles in a single
event. Only the collisions that a particle has with nearlyiglas contribute to the IBS
growth rate. In Monte Carlo simulation, this requirementn$oeced by binning the

distribution of particles.

In the boosted frame, the particles are divided into celfsndd by a 10x 10 x 15
grid. In each cell, the particles are pairefdl for collision. If there are an odd number
of particles in the cell, then one triplet is selected andabiésion is calculated such
that particle 1 imparts a momentum change to particle 2, kvimgparts a momentum
change to particle 3, which imparts a momentum change taf@it The pre-collision

momentum of particle 3 is used when calculating the momenthamge imparted to
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particle 1.

If a cell happens to have only one particle, then no collisiare calculated for that
particle. This will usually happen only for particles at thgremities of the bunch where

particle density, and thus the collision rate, is very low.

The pairing must be done such that each particle is matchedactly one other
particle. This is donef&ciently using Durstenfeld’s algorithm for generating adam
permutation of a finite set [10]. The algorithma@yn). Naive methods for determining

the pairs tend to b€ (n?) and can significantly slow down the simulation.

Each particle in the ensemble represents the same numbgactual particles. If a
bunch ofN = 10* electrons is represented by an ensemble of 2000 partibkers gach
particle in the ensemble represents= 0.5 x 10 electrons. The density of particles in
the cell is calculated from the total number of ensembleigastn in the cell and the

dimensions of the cely, h, andl,

Nn=* Ne

p
At this point we have selected two particles for collisiordamill refer to them as

particlea and particleb.

Particlea is treated as a test particle taking a random walk through iadof
particles all with the same velocity vector as particleThe density of particles in the

wind is determined by the density of particles in the cell.

As a result of travelling through the wind, the relative \ety of the two particles is
changed. The change is computed in the center of momentome foathe two particles,
where the collision is head on. This change is parameteasezenithy and azimuth

¢. To calculate the change iy a random number is selected between 0 and ™
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calculate the change iy a random number is selected from a Gaussian distribution

with variance,

e*pAt Brmax
= lo , 2.202

wheree is the electric charge; is the density of particles in the cel\t is the length

52

of time over which the patrticles interacty, is the electron masgg is the permittivity
of free spaceAu is the relative speed of the two particles in their center ofman-
tum frame bnax IS the maximum impact parameter (typically taken as thehtegthe

bunch), and
1

T rtpAU’

Brain (2.203)

wherer is the damping time. This calculation foy,, represents the tail-cut. It says
that as the particle makes its random walk through the winly, those collisions which

occur more than once per damping time are included in theilzion.

With change in azimutlp and zenithd thus obtained, the change in the relative

momentum of two particles is,

u . Uy .
Auy = u—xuzsmeco&/) — u—yu singsing — uy (1 — cosh) (2.204)
1L 1
A U Uy ..
Uy = u—uzsmeco&/) + u—u singsing — u, (1 — cosh) (2.205)
1L 1
Au, = —u; Sinfcosy — U, (1 — cosh), (2.206)

where,

U= ,/UZ+ U3+ U2 (2.207)
Uy = 4/U§+ U2, (2.208)

anduy, uy, andu, are thex, y, andz components of the relative velocity of the particles.

Particlea receives atuy, +Uy, and+u, kick. Particleb receives a-u,, —uy, and

—U, kick. After all particle pairs have been collided, the enbtams boosted back to
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Figure 2.18: Horizontal beam size versus turn from Monte cCsirhulation that incor-
porates intrabeam scattering. The equilibrium distrdoufrom the lower current runs
are used to seed the higher current runs.

the lab frame and tracked to the next element. This procegpeated until the beam
distribution reaches equilibrium. Figure 2.18 shows thezomtal beam size versus turn
for current ranging from @ mA to 80 mA. The initial beam size is fferent for each
run because the equilibrium distribution from the low catneins are used as the initial
distribution of the higher current runs. The beam sizes aterchined by calculating
theZ-matrix, Eqn. (2.102). The horizontal, vertical, and Idndinal beam sizes/Z11 ),
v/Z33, and 4/Zs5. Shown in Fig. 2.28 are the equilibrium beam sizes versusentr

compared with analytic results and data.

In Sec. 2.12.2, Monte Carlo simulation of direct space chagliscussed in the

context of incoherent tune shift.
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2.10 Potential Well Distortion (PWD)

Another current-dependentfect that impacts the bunch dimensions in a storage ring
is potential well distortion. Potential well distortion dsie to interactions between the

bunch and its surrounding environment.

The field of the bunch interacts with structures in the vacsystem, resulting in
wake fields that act back on the bunch. One consequence a$ thigoltage gradient
along the length of the bunch. Particles at the head of thelblose energy to the
vacuum system. Part of this energy is reflected back to theftdie bunch, &ectively
transferring energy from the head of the bunch to the tailmbchines that operate
above transition, particles with less energy move aheativelto the reference particle,
and those with more energy move back. The result is bunchHengg. The amount of
lengthening is sensitive to the total bunch charge, butmtité transverse dimensions

of the bunch.

Energy that is reflected back into the bunch does not chamgttal energy of the
bunch and is referred to as the inductitg pr capacitive C) part of the impedance.
Energy absorbed by the vacuum system does change the tetglyesf the bunch and
is referred to as the resistive part of the impedariR)e (The dfect of potential well
distortion can be modeled as affieetive current-dependent RF voltage. Tlikeetive

RF voltage is [4]

C“b(‘[')

V(1) = Vs cos(wt + ¢) + Rl (7) + L .

(2.209)

wherer is relative to the bunch center. The resistive impedaRdends to shift the
synchronous phase but does not contribute to lengthenimginductive part changes

the Gaussian profile of the bunch, leading to real bunch hemghg.
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Figure 2.19: Hect of (a) resistive and (b) inductive parts of the longitadimpedance
on the longitudinal profile of the bunch.

In principle, there is also a capacitive part to the impedarits dfect is to shorten
the bunch. In CesrTA, only bunch lengthening is observeds iBHhecause the inductive
term in the overall impedance is much larger than the capackience, the reactive part
of the impedance is modeled as entirely inductive. In thetbwy inductive, capacitive,
and resistive parts of the impedance could each be detedrfiiom the shape of the
longitudinal profile of the bunch. However, our measuremmané not detailed enough

to determine if there is a significant capacitive component.

A derivation of PWD based on Vlassov theory results inféedential equation for
the longitudinal profile of the bunch [4],

ay  eEgy [ Vi cos(wt + ¢) + QRyY — Ug
ot olaTy 1 4 Qv ’

2
ogaTo

(2.210)

wherek, is the beam energy;e is energy spread; is momentum compactiofly is the
period of the ringV; is the total RF cavity voltagey is the RF frequency is the phase
of the reference particle with respect to the RHs the bunch chargé), is the energy
lost per particle per turrR is the resistive part of the longitudinal impedance, and
the inductive part of the longitudinal impedanee(r) is the longitudinal profile of the
bunch. Equation (2.210) is used to compute tiieat of various resistive and inductive

impedances on the longitudinal profile of the bunch. Thelteswe shown in Fig. 2.19.
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Figure 2.20: Simulatedfiact on bunch length of PWD in combination with IBS.

We have incorporated thdfect of PWD in our analytic model of IBS. Equation
(2.210) is used to compute bunch length, including the gnespgead resulting from
intrabeam scattering. Comparing the measured bunch leegsuy current data to the
simulation resultL is determined to be between 15 and 19 nH. Our bunch length pre-
dictions are largely insensitive & and we use the published value of 1328jiven by
Holtzapple et al. [17]. At the time of this writing, PWD has rimgen implemented in

the Monte Carlo simulation.

As shown in Fig. 2.19, resistive impedance has a negligifiéeton the shape of the
longitudinal profile, whereas the inductive impedahabstorts the Gaussian profile and
generates bunch lengthening. Figure 2.20 shows the cotitribof the potential well

distortion to the bunch length assuming various valuesieiinductive impedance.

The current-dependent energy spread in CesrTA is deternfipedeasuring the
dependence of the horizontal beam size on the horizongaédi®n at the instrument
source point. The dispersion is varied with the help of aexdladispersion bump around

the source-point. The horizontal beam size is measured inwdesets of conditions as
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the number of particles in a single bunch decays frogx110* down to 24 x 10,
Horizontal dispersion is.28 cm in the first set of conditions, and.2Zm in the second.
The measured energy spreadris/E = (8.505+ 0.314) x 10~4 and is independent of
current within the measurement uncertainty. The desigmevaf the fractional energy
spread as determined using the standard radiation insaedry is 8129x 10~-*. There

is no evidence of a microwave instability, which would appesian energy spread that

increases with current above some threshold current.

2.11 Simulation Lattices

An element-by-element description of CesrTA is used for thadydic and tracking cal-
culations shown here. This description includes quadegaextupoles, bends, steer-
ings, skew quadrupole correctors, wigglers, and RF caviSgstematic multipoles are
included for those sextupoles which have skew quadrupolertical steering windings.
We use an analytic model of the damping wiggler field, whidhaised on a fit to a finite

element calculation [40]. Tracking through wigglers is pynplectic integration.

The vertical IBS rise time depends on the dispersion. Howewestical dispersion
is zero for an ideal flat ring. Vertical dispersion is incldde our analytic IBS calcu-
lations by introducing/z coupling into the 1-turn transfer matrix. This is done atreac

element by augmenting the 1-turn transfer matrix beforeung it in the analytic IBS
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calculation. The transfer matrik is replaced with withl', whereT = TW, and

100 0 0 O
010 0 0 O
001 0 0 —f
W = L8 (2.211)
000 1 0-7

004 —#iy 1 O

000 O O0 1

This transformation preserves the symplecticity of thegfar matrix. 7, and; are
dispersion-like quantities. An ideal lattice modified aating to the above prescription
with 77y = 0.01 m andrn{ = 0.002 has an rms vertical dispersion of.4nm and a
vertical IBS rise time similar to that of a lattice with an rmeartical dispersion of 10

mm.

The vertical dispersion in CesrTA is measured to be less thamrh. The upper
bound is limited by the resolution of our measurement tegi The coupling is de-
termined by direct measurement to Ge < 0.003, using an extended Edwards-Teng

formalism [41].

The analytic simulation takes the measured low currenizbatal and vertical beam
sizes and bunch length as input parameters and computesrtieatcdependence. The
horizontal emittance used in the calculation is chosen twimitie measured near zero
current emittance. The vertical emittance is also set teagvith the measurement
extrapolated to zero current. (The vertical emittance efdlsign simulation lattice
is zero.) The energy spread and bunch length used in theaiowlare obtained by

evaluating the standard radiation integrals.
The Monte Carlo simulation includes photon emission andguires a realistic ver-
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tical dispersion function. This is generated by applyingsaribution of misalignments
to the ideal lattice, then correcting the phase advanceglicm, orbit, and vertical dis-
persion according to the same procedure that is applied id&¢44]. The magnitude
of the misalignments is set such that the zero current @réimittance is roughly 15

pm-rad.

2.12 IBS Experiments at CesrTA

2.12.1 Horizontal-Longitudinal Coupling in CesrTA

The horizontal beam sizes measured at the start of our IBStigetions at CesrTA
were about 240 um. This is significantly larger than the 175that was expected.
Usinge = %2, 240 um corresponds to about 6 nm-rad horizontal emitte®oen-rad is

what is expected from radiation integrals calculations.

Initial investigations focused on identifying discrepeaschetween the design optics
and actual machine optics. Discrepancies large enoughublelohe horizontal emit-
tance were not found. We also investigated the horizontairbsize monitor for sys-
tematics. The horizontal beam size monitor is calibratedgua source of known size.
Additionally, the instrument is validated by measuring ltieam size while varying hor-
izontal B-function at the source point. These investigations ruledimstrumentation

systematics as a cause of the larger-than-expected htaizneasurements.

The cause of the large horizontal beam sizes was found wénleldping the Monte
Carlo IBS simulation. Beam sizes are obtained from the MonteoCanhulation by

computing the beam envelope matrix of the particle distidou The horizontal and
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Figure 2.21: CesrTA desiga-mode (horizontal-like3 and dispersion;. The gray
vertical bars indicate the locations of CesrTAs four RF dasit Horizontal dispersion
in the RF cavities is about 1 m.

vertical beam size and bunch length are obtained from th&3,1and 55 components
of the beam envelope matrix. The horizontal beam sizesmdaddrom the Monte Carlo
simulation agreed with the larger-than-expected measemewe were obtaining from

the machine.

It was then quickly discovered that the particle distribotvas tilted in thexz plane.
Tiltin the xzplane increases theprojection of the particle distribution, yielding a large

measured horizontal beam size.

The source of thexz tilt is xz coupling introduced by horizontal dispersion in the
RF cavities. For low-emittance operation, it is necessaslitoinate dispersion in the
damping wigglers. This requirement constrains on the sggiech that the horizontal
dispersion in the RF cavities cannot be zero. The horizgitahction and dispersion,

along withe locations of the four RF cavities, are shown in Eig1.

The xz tilt of the beam is given by th€,; term of the coupling matrixCye; is
the 15 term of the/ matrix and is also known ag,s Shown in Fig. 2.22 i3/,5 along
CesrTA. Also shown is the location of the horizontal beam sipaitor instrumentation
source points. The horizontal source point for positror&’#247 m, and for electrons

is 4931812.
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Figure 2.22:xz coupling termV,5 along CesrTA. The blue bands show the locations of
the horizontal beam size monitor source points for pos#i@74247 m) and electrons

(3941812 m).

Horizontal @-mode) emittance in CesrTA is about 3 nm-rad. Longitudigahpde)
emittance is about @m-rad. The coupling parametey is very close to one. At loca-
tions whereVis is large, thec-mode emittance can make as much of a contribution to

the projected horizontal beam size as@h@mode emittance.

xz tilt can be managed by adjusting the phase advance betweeRRhcavities.
There are two pairs of RF cavities in CesrTA. Through the Scegion, they are sepa-
rated by approximately.% betatron wavelengths. To mitigate tketilt, the horizontal
betatron phase advance between the two pairs is adjustedhaichexz coupling gen-
erated in one pair of RF cavities cancels that generated iottiex pair. This results in

more tilt in the South region, but reduces tilt near the unsentation source points.

Data taken during the April 2012 CesrTA run, shown in Sec. 3.12is dfected by
the xz tilt. This is evident in the large zero-current horizontabin size. Data taken in
December 2012, shown in Sec. 2.12.3.2, was taken on a latilce/;5 compensation.

The horizontal beam sizes in the December data are noticeatalller.

In and of themselves, tilted beams are not problematic. Thieulty is in calculat-

ing the beam size. In the presencexafcoupling, the commonly used expression for
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Figure 2.23: xz coupling termV;5 along CesrTA withV;s compensation. The blue
bands show the locations of the horizontal beam size moswiarce points for positrons
(374247 m) and electrons (394812 m).

calculating the beam size,

o=\ B+ 1?03, (2.212)

is no longer valid and should not be used. However, caladtie beam size from the

beam envelope matrix, as discussed in Secs. 2.6.1 andl2.ig.0alid.

2.12.2 Coherent and Incoherent Tune Shift

A current-dependent shift of the coherent tune is obsemdtieisrTA. At 21 GeV, the
vertical shift was measured to be0.505 + 0.006 kHZmA. The horizontal shift was
measured to be-0.072+ 0.006 kHZmA. (1 kHz corresponds to a change in fractional
tune of 00026.) The synchrotron tune has been measured versus ts@ameno shift
was observed. These tune shifts are relevant to IBS studossibe the beam size will
in general depend on proximity of the coherent tune to resoménes in the tune plane.
Preparation for IBS studies includes identifying a regiortheff tune plane where the
effect of resonance lines is minimized for the range of currémtise explored. The
tune plane is scanned with direct measurement as well alsirigasimulation. The

experimental tune scans are performed by recording the beas as the tune is varied
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by adjusting quadrupole strengths.

Figure 2.24 shows the measured dependence of vertical aizdhial coherent tune
on bunch current. The betatron frequencies are measuredpaa of spectrum analyz-

ers connected to beam position monitor (BPM) buttons.

Incoherent tune shifts may also contribute to the currepeddence of the measured
beam size. The flierence between coherent and incoherent tunes is wellidedcr
by Schindl [42]. In short, coherent tune refers to the motdrihe bunch centroid.
Incoherent tune refers to the distribution of tunes in thedbu One source of incoherent
tune shift is direct space charge, which is discussed in timegt of linear collider
damping rings in [9, 51, 60]. Under the influence of directcgpaharge, each particle
in the bunch will in general have aftkrent betatron tune that depends on the particle’s
invariantsJ, andJ,. The betatron tune will also depend @rand the longitudinal phase
of the particle, as the defocusing force due to space chajgendls on where the particle
is relative to the bunch center. The width of this distribatcan become very large at a
few mA, making it dificult to position the bunch in the tune plane so that no padicl
encounter resonance lines. If a particle encounterdtareince resonance, its motion
becomes coupled and action can be transferred from thetlmtigal or horizontal to
the vertical. If a particle encounters a sum resonanceciisres can become arbitrarily
large [46]. Theseféects will cause the vertical emittance to increase, and rsaylead
to particle loss. A bunch with a large tune footprint may btuenced by the féect of

several resonance lines at once, makingfiialilt to predict beam behavior.

The incoherent tune shift due to direct space charge foaresparticle with spatial

coordinates, y, andz, is given by [9]

=2
LreNe?

: (2.213)
(21)%243 /€x€y 0

AQst:;x|y ~
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Monte Carlo Simulation of Space Charge
Vertical Emittance vs. Turns for Various Currents
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Figure 2.25: Monte Carlo simulation of direct space chargbe Vertical beam size

equilibrates to a larger value as current is increased.

wherelL is the ring circumference, is the electron radiusy, is the number of particles

in the bunchgr, is the bunch lengthy is the relativistic factor, ané,, are the geometric

emittances. A particle will sample a space charge focudiag) ¥aries as it executes

synchrotron oscillations.

Evaluating Eqgn. (2.213) under typical CesrTA conditionsdqrarticle az = 0 in
a bunch with 16 x 10 particles yields a fractional tune shift ef0.01. Atz = o,
the shift is—0.004. The predicted shift scales linearly with current. Fe&gR.26 shows
Monte Carlo simulations of the tune spread produced by dgpate charge. At each
element in the lattice, for each particle, the electric foklé to space charge is calculated
using the Bassetti-Erskine formula [3]. This electric fieddused to apply a kick to the

particle.

Figure 2.25 shows thefect of direct space charge on the equilibrium vertical beam
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size. As current is added to the bunch, direct space chargrafes a large tune spread
among the particles in the bunch. This drives the tune owiddal particles over res-
onance lines, which increases the vertical beam size ankhidimes the ffect of direct

space charge.

The simulation tracks 2000 particles for 5000 turns eacheBoh patrticle, the tune
over the last 2048 turns is extracted with a fast Fouriewstiam (FFT). The FFT spectra
of the individual particles are averaged to give the plotesult. This plot shows that
the spread in horizontal tune is small, but spread in vdrtigges becomes very large

above a few mA.

Figure 2.27 shows a simulated tune scan. The color scalessth@wvms value of the
vertical-like normal mode actiod), of a particle tracked for 2000 turns, normalized by its
initial value Jy. The thin lines are analytic calculations of the for@, + sQy + tQ, =
n. The labels are of the fornr, s;t,n). Amplitude-dependent tune-shift causes the
resonance lines in the simulation to biéset from the analytic calculations. The initial
action of the tracked particle is set to be about ten timegtjudlibrium emittance. The
yellow line shows the range of coherent tune spanned as & loleoays from B x 10
particles to 16 x 10° particles. The upper right hand point is the zero currenétun
Comparing Figs. 2.26 and 2.27, we see that above a few mA, tieefdotprint spans a

significant region of the tune plane.

The simulated and experimental tune scans are generajlyroapproximate agree-
ment. The lower order resonances, suctilas-1, —1,0), tend to be much broader in
the experimental tune scan. The higher order resonancesrstee simulated scan do
not appear in the experimental scan. The choice of workimgt ffor the IBS measure-
ments is based on consideration of both of the tune scans apdeiadjusted further

depending on machine behavior.
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Figure 2.27: Simulated tune scan based on a lattice modeintlades magnet mis-
alignments and corrector magnet settings determined dicgpto our emittance tuning
procedure. The yellow line shows how the coherent tunegase as a bunch decays
from 1.3 x 10" down to to 16 x 10° particles.

2.12.3 Intrabeam Scattering Experiments

For measurements of intrabeam scattering, we load a spktifce configuration, and
set beam energy, working point, and RF voltage. The machitunid for minimum
vertical emittance according to the algorithm given in [48¢r experiments requiring a
largerey, the vertical emittance is increased by adjusting a closeglang and vertical

dispersion bump that propagates vertical dispersion tirdle wigglers.
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A single bunch of about.6 x 10 particles (10 mA) is allowed to decay. The
measurements include horizontal and vertical beam sigeskscamera measurements
of the longitudinal profile, and tunes in all three dimensiofhe short beam lifetime is
due to Touschek scattering. In about 20 minutes, the bearardutecays from 10 mA
to 1 mA. Below 1 mA the beam lifetime improves significantly.the interest of time,

a large-amplitude pulsed orbit bump is used to scrape pestaut of the beam in.R5
mA increments. The discontinuities in the data at bunchgghar 2 x 10'° particles

correspond to the regime where beam is scraped out.

IBS measurements were done during dedicated periods of Cegdration in April
2011, June 2011, December 2011, April 2012, and Decembé&. Z0fe IBS measure-
ments in 2011 led us through iterative improvements in owteustanding of how to
operate the accelerator and how to measure B&Es. Improvements on the acceler-
ator side included a better understanding of the tunes anddiection of the working
point (tunes as determined by lattice optics), a better rataieding of the coupling
and its impact on the measurements, and the developmentreferact procedures for
establishing the desired machine configuration. Improvegte the instrumentation in-
cluded the implementation of beam size measurements farddettrons and positrons

and the development of more accurate and robust analy$igasef

This thesis includes data from the April and December 2012hne studies. The
configuration procedures, analysis methods, and simulatiethods implemented in
April yielded data where it seems clear that the horizongarb size versus current is

dominated by IBS and agrees well with simulations.

The December results confirm and build upon the April measargs. The exact
same IBS calculation method that yielded good agreement tiwéghApril 2012 data,

also yielded fair agreement when applied to the Decembe? #@ia. The December
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Figure 2.28: (a) horizontal, (b) vertical, and (c) longial beam size versus current
for e bunch in conditions tuned for minimum vertical emittance.

2012 includes measurements & eV and data taken versus RF voltage. The April
measurements are all at1l2GeV and the IBS calculation methods we use were devel-
oped on 21 GeV data. The fact that the model worked, without modifargton the 23

. 1
GeV data was reassuring. IBS growth rates have a strgrigpendence.
Y

2.12.3.1 April 2012 Data

Shown in Fig. 2.28 is data from a positron bunch in condititimsed for minimum

vertical emittance.

The approximate statistical uncertainties at high curaeatshown in Tab. 2.4. For
the bunch length and horizontal beam size measurementstatigtical uncertainty in

the current and size is plotted for each data point. The dracs may be below the
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Table 2.4: Approximate statistical uncertainties at highrent.

Measurement Uncertainty
Current (horiz. binning) 0.3%
Current (bunch length binning) 0.9%
Horizontal Size 0.2%
Bunch Length 1.0%
Vertical Size 0.2%

resolution of the plot.

The vertical measurement represents the average of thevéitsl024 consecutive
turns. Error bars representing the statistical uncestaire plotted, though they may be
below the resolution of the plot. Much of the point-to-pdinttuation can be attributed
to noisy transverse feedback amplifiers that were diagnafied this data was taken.
The sharp decrease in the vertical beam size and subsega¢fitictuations in beam
size at low current is puzzling. Our first reaction is thatdlaga looks like a low-current
instrumentation systematic. However, our analysis of #ve instrument data has not
pointed to any particular systematic which could cause tlop-dif. We have been
unable to explain the dropfiowith any of the current-dependerffects that have been

addressed in our studies.

The vertical measurements are subject te a-2 micron systematic that will be
addressed in detail in my colleagues thesis [45]. For now ete that IBS is sensitive
to the vertical beam size, but not so sensitive thatmicron is significant. The theory
results shown below are evaluated over a range of vertieathtsgzes that covers the the
potential systematic uncertainty. As will be explainedoaelwe observe IBS blow-up
in the horizontal dimension, but not so much in the vertidgalehsion. The vertical
dimension is important to our IBS predictions because itthetparticle density, which

in turn dfects the horizontal IBS blow-up.
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Analytic results from th&-matrix formalism described in Sec. 2.8.1 and the Monte
Carlo simulation described in Sec. 2.9 are shown along welhdtta. The accuracy of
the simulation is limited by the ambiguity of the Coulomb Lagddimited knowledge
of the zero current vertical beam size of the machine. Thelsition result shown here

follows the usual convention for the tail-cut of 1 evelstmping time as the cufio

A major contribution to the vertical measurement systeenatcertainty is the “pin-
hole subtractor”. The pinhole subtractor is the size thatld/be reported by the instru-
ment if the beam has zero vertical size. It is calculatedgugisimulation of the vertical

beam size monitor. The vertical beam size measuremegig
om= /035 — 03, (2.214)

whereop is the size reported by the instrument anglis the pinhole subtractor. The
value of the pinhole subtractor at12GeV is (15. + 2.) micron, and at B GeV is
(135 + 2.) micron. The systematic uncertainty in the beam sizg due to uncertainty

in the pinhole subtractar,,, is calculated from,

Com = 2a'crp. (2.215)
o

m

This gives a systematic uncertainty of abatk.2 um at 21 GeV for a 25 um beam,
and+1.4 um at 23 GeV for a 20 um beam. Other sources of systematic unceyrtaint
include magnification of the pinhole optic and uncertaintythe lattice optics at the

image source point.

TheX-matrix IBS simulation is run twice, once with a zero curreattical emittance
that extends to the bottom range of the measurement unagrtand once that extends
to the upper range of the measurement uncertainty. The dhrad®n is the area be-
tween those two results. This serves two purposes. Firsgflécts our uncertainty
about the vertical beam size. Second, it gives the readateandaf how the horizontal

simulation result depends upon particle density as deteaidy the vertical beam size.
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Figure 2.29: CesITA desigmmode (horizontal-likep and dispersion.

The zero current vertical emittances that bound the datéginZ=28(b) are 1.4 pm
and 246 pm. The shaded regions of 2.28(a) and 2.28(c) show how theontal and
vertical simulation results change as the zero currentcaremittance is varied from

the lower bound to the upper bound.

The measured zero current horizontal emittance, which is@ut parameter to the
simulation, is 3 nm-rad. The calculated value isTzam-rad for the perfectly aligned
lattice. This discrepancy between the measured and ctdduleorizontal emittance
is not well understood. For the bunch length and energy dpnea use the values

calculated from the radiation integrals.

The simulation uses a perfectly aligned CesrTA lattice. ivaltdispersion is in-
cluded by modifying the 1-turn transfer matrix withi before passing it to the IBS
rise-time calculations is set to 10 mm. The horizontal emittance increases fr@n 3
nm-rad at low current{ 1.5 x 10° particlegbunch) to 104 nm-rad at 13 x 10" parti-
clegbunch. The reason for the relatively large horizontal blgwis the large horizontal
dispersion in CesrTA. The lattice functiogg andn, are shown in Fig. 2.29. The rms
horizontal dispersion,, is L0 m and peaks at26 m. For comparison, the rms vertical

dispersion is less than 15 mm.

In Fig. 2.30 the zero current vertical emittance of the buwel increased by prop-

agating vertical dispersion through the damping wiggleitk the help of a closed cou-
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Figure 2.30: (a) horizontal, (b) vertical, and (c) longinal beam size versus current
for e bunch with increased zero current vertical emittance.

pling and dispersion bump. The larger vertical beam sizesdses the particle density,
which in turn reduces the amount by which IBS blows up the looial beam size. The
zero current horizontal emittance isfm-rad. The zero current vertical emittances

that bound the data are 43m and 56 pm.

IBS theory is species-independent. Measurements of gothnd e can help
identify machine and instrumentation systematics andngjsish IBS from species-

dependent beam physics such as electron cloud andfiert®

Figure 2.31 shows data from an electron bunch in conditianed for minimum ver-
tical emittance. During the electron experiments, an irpprly setup transverse feed-
back system was mistakenly left on. It drove the coherergdwmto theg1, —1,1,0)

resonance line at currents abové 5 10 parfbunch. The measured horizontal emit-
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Figure 2.31: (a) horizontal, (b) vertical, and (c) longinal beam size versus current for
e~ bunch in conditions tuned for minimum vertical emittancen éninitialized trans-
verse feedback system was mistakenly turned on duringuhisit drove the coherent
tunes onto thél, —1, 1, 0) resonance line at currents65< 10'° above paybunch.

tance is 43 nm-rad at zero current and28nm-rad at 8 x 10'° particlegbunch. The

zero current vertical emittances that bound the data afedi and 25 pm.

Shown in Fig. 2.32 is data from &n run where the vertical emittance was increased.
The horizontal emittance is.2 nm-rad at zero current andSsnm-rad at 48 x 10%°

particlegbunch. The vertical emittances that bound the data are 172vwhi88 pm.

Figure 2.33 shows the combined data from the évaand twoe™ April 2012 data

sets. Simulation parameters for the April 2012 data are samzed in Tab. 2.5.
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Figure 2.32: (a) horizontal, (b) vertical, and (c) longial beam size versus current
for e bunch with increased zero current vertical emittance. Anitialized transverse
feedback system was mistakenly turned on during this rudrolte the coherent tunes
onto the(1, —1, 1,0) resonance line at currents abové 5 10'° parfbunch.

Table 2.5: Simulation parameters used to model April 2013.da

Min. &y Max. ey €0 €4 at high current
(pm rad) (pm rad) (nm rad) (nm rad)
e" Low gy 174 246 38 106
e High &y 48.0 563 37 81
e Low gy 170 225 4.3 -
e~ High gy 172 188 4.2 -
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2.12.3.2 December 2012 Data

Prior to the December 2012 machine studies, the same latit®een used for all IBS
experiments. This lattice is referred to as “CD40” and has it@lers at full power, and
the optics are configured for low emittance. This lattice &las about 1 m of horizontal

dispersion in the RF cavities.

In the April 2012 measurements, and during all earlier maebktudies, the horizon-
tal beam size was observed to be abouuB80larger than calculated. Around 1@én

was expected, but around 24t was measured.

The large horizontal beam size was puzzling. There were rimegtigations into
possible optics problems and instrumentation systemaiiten, during the develop-
ment of the Monte Carlo simulations discussed in Sec. 2.9 # moticed that the same
large horizontal beam sizes were being reproduced. Siionlatvestigations led us to

the conclusion that the cause was dispersion in the RF cavitie

Dispersion in the RF cavities creates horizontal-longitatlicoupling that is re-
flected in non-zerdv/is coupling terms. These coupling terms tilt the beam in the
horizontal-longitudinal plane. This was the cause of tlrgdahorizontal beam size
measurements. The beam was tilted in xhe z plane at the instrumentation source

points.

In preparation for the December 2012 machine studies, tmedes were prepared.
The first remedy was to create a new lattice that controlledhtrizontal phase advance
between the RF cavities. The phase advance was adjustedentordancel thé/;s
terms in the regions where the instrumentation is locatdds [kttice is referred to as

“V15 Managed”.
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Table 2.6: Simulation parameters used to model Decemb& 201GeV data. All data
is from positron beams. Optics adjusted to minimiZe at the beam size instrumenta-
tion source points.

Min. g0 Max. ey €0 €4 at high current
(pm rad) (pm rad) (nm rad) (nm rad)
Low €, 129 177 36 108
Med. &y 59.6 696 4.1 81
High &y 180. 197 3.4 5.8

The second remedy was to prepare a lattice with 6 of the 12 ihgmpgglers pow-
ered df. Powering @ the extra wigglers frees up the constraints on the lattite®pnd
allows for the dispersion at the RF cavities to be set to zelngs faturally eliminates the

V15 coupling, at the expense of half the damping. This latticefisrred to as “eta-free”.

To validate these remedies, beam size versus RF voltage regasts were taken
on all 3 lattices: CD40, V15 Managed, and eta-free. The resué shown in Figs. 2.41,
2.42, and 2.43. Th¥;s coupling term varies with the RF voltage and so changing the RF
voltage adjusts the tilt at the instrumentation sourcetgoiA reduction in the RF volt-
age is expected to reduce the tilt at the instrumentatiorceqaoint and therefore reduce
the measured horizontal beam size. However, reducing theoR&ge also lengthens
the bunch, which reduces IB$ects. The beam size versus RF voltage measurements
were done at low current,®mA and 10 mA to minimize the &ect of IBS. Nonethe-
less, IBS &ects are still present in the horizontal at these low cusrantl the predicted

results for these experiments include IBS calculations.

The V15 Managed lattice proved to be a success not only fob¢laen size versus
current measurements, but also for the beam size versientuneasurements. Beam
size versus current data for the V15 Managed lattice is shovags 2.34, 2.35, 2.36,

and 2.37. Simulation parameters are shown in Tab. 2.6.
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The beam size versus current data for the eta-free lattiscedoaninated by non-
IBS current-dependentifects. Beam size versus current measurements for the eta-free
lattice are not shown. Loading the eta-free lattice into T&sobtaining decent injec-
tion, and tuning for low emittance were very challengingisTlattice will be revisited
in future CesrTA machine studies and more attention will benspn working out its

systematics.

Prior to the December 2012 machine studies, it was foundthieatransverse feed-
back amplifiers were adding a substantial amount of noiskeedéam. The amplifiers
were exciting beam motion at the betatron tunes and inergabie emittance of the
beam. This fect was seen even if feedback was not being applied to the.b&am
remedy this solution, the feedback amplifiers were phylsicained df during the IBS
measurements. This resulted in a 5 pm reduction in vertio@tance and substantially

less measurement-to-measurement scatter in the horlibaata size measurement.

Difficulties were encountered when trying to obtain data witkted@s during the
December 2012 machine studies. We were not able to obtaablellBS data with
electron beams. It is not known whether species-dependam physics, such as ions
or electron cloud, played a role, or if there were problemthwhe instrumentation.
Positron beams and electron beams are measured viinesit instrumentation. All

reported data from the December 2012 machine studies isgositron beams.
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Lattice With Managed Horizontal-Longitudinal Coupling
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Figure 2.34: Measurements on V15 Managed lattice. (a) botad, (b) vertical, and
(c) longitudinal beam size versus current &r bunch in CesrTA configured for low
emittance. The simulation is run twice. Once with a zeraenirvertical beam size
that extends to the bottom range of vertical size measuresyemd once that extends to
the upper range. The area between these two simulatiorigésghaded in blue. The
lower range vertical emittance is B2om-rad, and the upper range isdpm-rad. Zero
current horizontal emittance is&nm-rad.
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longitudinal beam size versus current #r bunch in CesrTA configured for approxi-
mately 55 pm vertical emittance.
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Measurements at 2.3 GeV

Comparison of data and simulation result over a range of bewrgies is an im-
portant check of the accuracy of IBS theory and our method fedipting current-

dependent beam sizes.

. 1
Intrabeam scattering growth rates have adependence on beam energy. Two of
Y

these factors ogf come from adiabatic damping of the geometric emittance. f@cter
Y

1 .
of — comes from length contraction. In the center of momentumé&af the bunch,
Y

. L 1 .
the particle density is reduced by a factor-ef The last factor ofy comes from time
Y

dilation in the center of momentum frame.

Shown in Figs. 2.38 and 2.39 is data from CesrTA positron besn28 GeV. In
Fig. 2.38, the machine is tuned for minimum vertical emit&nin Fig. 2.39, the zero
current vertical emittance is increased using a closec®iump that increased the

coupling and vertical dispersion in the wiggler regions.

Shown in Tab. 2.7 are the simulation parameters used to niloel&@ecember 2012

2.3 GeV IBS data.

Shown in Fig. 2.40 is the aggregated data from the DecemhliE? 23 GeV IBS

studies.

Note that the vertical beam sizes observed in CesrTAZG2V are smaller than
those observed at2GeV. This suggests that the current-independent vediodtance
of the machine is generated in large part by noise in the macttmittance generated
due to photon emission goesy&s while emittance generated due to noise is reduced as

beam energy is increased.
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Figure 2.38: (a) horizontal, (b) vertical, and (c) longial beam size versus current
for 2.3 GeVet bunch in CesrTA configured for approximately 6 pm verticaltésmice.

Table 2.7: Simulation parameters used to model Decemb& 281GeV data. All data
is from positron beams. Optics are adjusted to mininMzgcoupling at the beam size
instrumentation source points.

Min. &y Max. ey €0 €4 at high current
(pm rad) (pm rad) (nm rad) (nm rad)
Low €, 8.68 128 5.63 113
High €, 634 739 5.63 805
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Measurements versus RF \oltage

Figure 2.41: Horizontal beam size versus RF voltage. Both Wtl&rtd IBS dfects are
observed in this data.
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Figure 2.42: Vertical beam size versus RF voltage. The simoal#attices here are ideal
with no vertical dispersion. Expected response is flat \&eRdt voltage.

Figure 2.43: Bunch length versus RF voltage. The primé#igcesee here is the change
in bunch length due to change in RF cavity voltage.
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2.13 Discussion

2.13.1 Data

IBS effects are most evident in the horizontal dimension, whegel&orizontal dis-
persion leads to significant blow-up. In comparison, IBS isagtrong &ect in the
vertical. This is because the vertical dispersion and Wense coupling are so small.
The direct transfer of momentum from the horizontal to theigal by IBS is small at

2.1 GeV.

The amount of the blow-up can be controlled by varying thezenrent vertical
emittance, and thus the particle density. The simulatitiasvsounch lengthening due
to IBS, but we are unable to distinguish IBS lengthening frorteptial well distortion

in our measurements.

An interesting anomaly we have encountered is the behavithreovertical beam
size at high currents. Thefect is seen in Fig. 2.28(b) above<910 particlegbunch,
Fig. 2.38(b) above about 10'° particlegbunch, and also in Fig. 2.34(b), Fig. 2.35(b),
and Fig. 2.36(b). We observe that vertical beam size plotegdus current increases
with positive curvature. Much more severe cases of this hlpwhave been observed
during the machine studies. We find that adjusting betatndrsgnchrotron tunes during

experiments fiects the blow-up, but in a somewhat unpredictable way.

The horizontal beam size is observed to decrease when theavaize increases.
This is expected behavior in an IBS-dominated beam. Theaseren the vertical size

decreases the particle density, which therefore redueestténgth of the IBSfeect.

The blow-up is believed to be due in part to coherent tuné ahd incoherent tune
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footprint. When the coherent tune we measure approachesraargs line, the vertical
beam size is seen to increase. While the incoherent tune thameasured, analytic
calculations and Monte Carlo space charge simulation stgyties, at high current, the

footprint of the bunch in the tune plane is very large and spaany resonance lines.

At high current, the vertical beam centroid position over @2 turns was recorded
using the turn-by-turn vertical beam size-monitor. An FFThese data does not show a
clear signal above background, so we cannot attribute tbmalous growth in vertical

size to an instability. Adjustments to the corrected chrieitg did not impact the blow

up.

Coupling measurements at high current have been taken inticorsdwhere the
anomalous blow-up was observed, and no evidence was foundrognt-dependent

transverse coupling.

The low current bunch length we measure is consistently te®bumm longer than
the predicted value, or about 5%. Given that bunch lengthférly simple, and pre-
sumably robust, calculation, it is puzzling why our meamgats are systematicallyto
The size of the discrepancy seems to have been smaller dhgrigecember run. The
streak camera has been checked thoroughly for systemaitica aause has not been

found.

Good agreement between our IBS calculation methods andimergrwere found
in April and December for 2 GeV beams. In December, we also obtained data3at 2
GeV. We find that the predictions of our IBS calculation methatk in good agreement
with the 23 GeV data. No modifications to the simulation method weressary, and
no parameters were adjusted aside from loading in tB&2V lattice. We believe this

is a strong argument in support of our IBS calculation methods
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2.13.2 Theory

The presence of the Coulomb Log is a well-known ambiguity intB&ry as it requires
the introduction of loosely defined cufs in the minimum and maximum scattering
angle. The choice of one event per damping time as the boyredween multiple-
event and single-event scattering is somewhat arbitrargt $aid, the data shown here
are in reasonable agreement with theory, suggesting thhtimplementation of the
tail-cut, the IBS theory is a reasonable model of performégocelectron machines.
Furthermore, as shown in Fig. 2.14(b), the theory gives agmscription of the data
even when the large angle ctitased in the calculation is varied by more than an order

of magnitude.

The theory used here is Kubo & Oid&smatrix based IBS formalism. This model
is a generalization of Bjorken & Mtingwa’s formalism that deaendle arbitrary coupling
of the horizontal, vertical, and longitudinal motion. Itlndes the tail-cut. Coupling in
CesrTA for the experiments shown here was not large enougbticeably impact the
IBS growth rates. If coupling were significantly larger, thitee predictions from Kubo
& Oide’s method may diverge from those of Bjorken & Mtingwa’'®thod. Such will

be the subject of future investigations.

2.13.3 Conclusions

In this first half of the thesis, we have derived methods fédcudating IBS growth rates
and incorporated them into a normal modes simulation enwient. These methods

have been used to predict beam size versus current beha@esr TA.

Measurements in all three dimensions of beam size versuentun single-bunch
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beams dominated by IBStects at 21 and 23 GeV have been taken. The measure-
ments compare well with predictions over the range of cusrernere IBS &ects are

dominant.

At high current, anotherfiect takes over causing the vertical beam size versus cur-
rent to increase with positive curvature. Early invesimat suggest that this blow-up
could be due to incoherent tune due to direct space chargdytfncalculations suggest
that the tune shift due to direct space charge will be largevala few mA, and Monte
Carlo simulations have produced a tune foot print that entesarnhe half-integer reso-
nance. Future CesrTA experiments will examine tifiea by exploring regions of the

tune plane far away from low-order resonance lines.

We have discussed other current-independéiects, such as working point, and
current-dependenttects such as potential well distortion, coherent tune, smiitl direct
space charge. We have shown that these additidfeadte need to be considered when

studying low-emittance electrgpositron beams.

Measurements of beam size versus RF voltage at low currestlbeen taken and
confirm our hypothesis that the larger-than-expected boté beam sizes that were ob-
served in CesrTA were due to horizontal-longitudinal caugplntroduced by horizontal

dispersion in the RF cavities.
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CHAPTER 3
PARTICLE LOSS DUE TO TOUSCHEK EFFECT IN ENERGY RECOVERY
LINEAR ACCELERATOR

3.1 Introduction

Intra-beam scattering (IBS) refers to collisions among #migdes that make up a beam.
All particle beams occupy a finite region of phase space, lamckfore the particles are
constantly moving relative to the center of momentum (c.p.of the bunch and can
collide with each other. These collisions change the enefgye particles. Changes in
energy in the c.o.m. frame translate to changes in energiivelto the magnetic lattice
that guides the beam, and collisions between particlegfibwer change the trajectories

of the colliding particles through the accelerator.

The energy dference between two scattering particles is typically orotder of the
beam’s energy spread and thus several orders of magnitualeesthhan their average
energy. A scattering event can transfer energy from traseweotion to the longitudinal
which, as it turns out, is larger by the relativistic facjom the lab frame than in the
center of momentum frame. Collisions that change a paiobl@mentum parallel to the
average momentum can therefore result in energy changgsdaough to significantly
perturb the trajectory of particles whens large, causing the particle to collide with the

beam chamber downstream of the scattering event.

Particles lost along the chamber walls due to single-e8tdre called Touschek
losses and have been explored theoretically [32, 23] andrarpntally [28, 18]. Tou-
schek losses can reduce the beam lifetime [22], and causéioachazards as discussed

in this chapter.
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Intra-beam scattering that does not result in particledsssin change the emittance
and energy spread of a beam [30, 5]. Thke& can impose a current limit on low-

emittance storage rings such at ATF at KEK [2] and CesrTA at €lbfil].

This chapter discusses IBS and Touschek losses in lineaeeaites. Because the
beam in a linear accelerator does not circulate, there iseaonblifetime to be con-
cerned about, but the radiation hazard from particles llostgathe chamber walls and

the change in energy spread and emittance of the beam cagriiecaint.

Touschek scattering is of particular interest for Energyd®ecy Linear accelera-
tors (ERLS), where the beam undergoes deceleration. Thisases the relative energy
deviationAE/E of the particles which increases the dispersive contidouto the os-
cillation amplitude of the particles’ trajectories. Whenatjrle scatters in a dispersive
region and its energy changes, so does its action invatianhis efect is of increased
importance in an ERL becaugeincreases with &y by adiabatic anti-damping during

deceleration.

In an ERL, a particle that has lost energy in a scattering elattoccurred at high
energy can be stopped in an RF cavity and accelerated backwarohg the energy
recovery (deceleration) phase. These stopped particlgpose a problem for super-

conducting RF cavities.

The theory for our study of IBS in ERLs is based on a derivatioflwyinski [32].
Here we dfer an alternative derivation of Piwinski’s formula that ism rigorous and
gives the orders in divergence, momentum spread, andvistatty to which the result
is accurate. Whereas the earlier derivation in [32] is usatkfme a beam lifetime for
storage rings, our derivation is used to determine theibligion of scattered particles

generated at each element in an accelerator. This distnibaf scattered particles is
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tracked along the accelerator to determine where eacltleailost, yielding a distri-
bution of particle loss along the accelerator. This methfagroulating Touschek losses

was first developed at APS for their ERL design[59].

To facilitate the tracking, an additional simulation is d$e determine the element-
by-element energy aperture of the accelerator. This ageisuthe largest positive or
negative energy change that a particle can be given at @ylartelement such that the
particle is not lost further down the accelerator. This infation allows us to avoid
tracking particles that are not lost, and therefore not t#rast. The energy aperture is

allowed to be non-symmetric.

Additionally, we determine the background of scatterediglas exiting the linac.

Capturing this background is an important requirement fazaniodump design.

A methodology for placing collimators to control where IB&des occur is de-
scribed. The trajectories of scattered particles are aadlyo determine the best loca-
tions for collimators. We demonstrate how this methodolbgg been applied to the

Cornell ERL.

Large energy-change scattering events are infrequengértbat multiple scattering
events do not lead to significant losses, but multiple smadk@y change events can
change the emittance or energy spread of the beam. IBS fosrfrola [5] are applied

to determine emittance growth due to multiple scatterirenevalong the ERL.

3.2 Theory

The rateR at which particles are scattered out of a bunch is found lBgnatting over the

scattering cross-secti@nfor particle loss. This cross-section is obtained by iraégg
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the Moller diferential scattering cross-section over all scatteringesvehat result in
particle loss. In generad; depends on the momengaandp, of the scattering particles,

and it can depend on the locatimvithin the beam at which a scattering event occurs.

A test particle with momentung, at positionr; moving with velocityAv relative to

other particles in the bunch at positidmill make

[ (PpL) = jAvml, B)p (. Bo) P, (3.)

collisions per time, wherg (7, p) is the phase space density of the bunch arid the
cross-section for collisions that lead to particle lossedimating over each particle in the

bunch colliding with all of the other particles yields

R= %J f AV (P, ) f op (F. o) p (7. P) d°rd’prd’po. (32)

The factor ¥2 comes from the fact that particle 1 colliding with parti@lés the same

event as particle 2 colliding with particle 1.

For bunches with Gaussian distribution and witheytcoupling in the accelerator,

p(F.P) = Nexp(—Q(x. X) — Q(¥.Y) — Q(As,5)), (3.3)

whereN is a normalization and th@s are quadratic forms that depend on the Twiss

parameters.

We now restrict to the common case where the beam’s crogesecmuch smaller
than the beam pipe. In this case, the initial position cowatd of the particle is small
compared to the trajectories that result in particle loss then a good approximation

that the cross-section for particle lassloes not depend on initial coordinate

SubsequentlyA\v ando- are approximated in orders of the following small quarditie

1. the angler betweeng; and p,.
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2. energy spreadk of the bunch.

3. relativistic 1y} of the reference particle.

Collectively, approximations in these three parametersedegred to as of orde?. It is
one of the main contributions of this chapter to rigorouslyrg the order of these small

guantities to estimate the theory’s degree of accuracy.

To leading order, it will be shown thatv ando depend only on?, allowing the

integration over all terms in the exponential exceg}, yielding

R=N [ avrexp(-Q ) disch (3.4)

With yx = x cos¢ andyy = x sing, one can further integrate ovg¢mwhere the exponen-

tial of a trigonometric function generates a Bessel fungtion

R=N j AV (p) o () exp(—ax) lo (by) d. (3.5)

The derivation that leads to the scattering rate is orgdrazefollows: (a) integrate
Gaussians over, (b) approximateAv, (c) approximater, (d) integrate over the initial

angleg between the two patrticles.

3.2.1 Integrate Gaussians over

The integration over can be performed immediately. It is assumed that the buntdh wi

N, particles has a Gaussian distribution which can be writtefwiiss parameters as,

X5 + <axxﬁ + ,BXX,;,>2
20

p(F.P) —Lexp[—

8r3exe,07s0p

2
X5

(3.6)

2 B 2 2
20y, 205 2075

, 2
Yp + <a/yYﬁ +5y3’;3> AS 6 ]
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where, with the dispersiofDy, Dy) and the reference momentupp

Xﬁ = X — Dxép,
Ys = ¥Y— Dydp,

Xé - X/ - D;ép,

s = Y —Didp,
X = p/pr,
y, = py/pr- (3-7)

The integration over = {x,y, As} can be written in the form,

0 ASZ 0 )
J exp| —5 207 dAsJ exp(— (axX® + byx + ¢4) ) dxx

foo exp(— (ay* + by +cy))dy, (3.8)

—Q0
where the coicients ofx?, xt, andx? have been collected inmy, byy, andcyy, which
are not functions ok, y, andAs, but are functions opy, py, andé,. Evaluating the three

integrals in Egn. (3.8) yields,

Vo x \/Zexp(%i—cx> X \/;exp<:jy cy> (3.9)

The result is,
R= 1281'562620'30'2 \/;JJAV P1, P2) o (P1, Pa) x
P1 P2
52 +(52 b2 b2
D e S -y 34 A3
exP( { 202 Ry }) d°pudpz.  (3.10)
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3.2.2 Approximate Av

Here we find formulas for the relative velocityy between two particles. We begin by
constructing a coordinate system based on the momenta gidticles that are about to
collide. The particles’ coordinates are transformed ihte toordinate system and their
relative velocity in terms of the initial angle between ttrabmenta is determined. Next,
the particles are boosted into their center-of-momentamé& where their post-collision
momenta are written in terms of scattering angles. The galision momenta are

transformed back into the lab frame for the change in enérgyesholds on scattering
angles leading to particle loss are obtained by evaluatirggformula for a maximum

allowable change in energy. The Moller scattering crossi@e s integrated over these

angles to obtain the cross-section for particle loss usé&djm (3.10).

The pre-collision momenta of the two particles in the ladmfe are,

E1’2/C

Px1,2
Pr2 = . (3.11)

Py1,2

Pz.2 .

(%9:2)

The sum of these two momenta is defineddas 1 (B. + p2). A new orthonormal

coordinate system, depicted in Fig. 3.1 is defined by,

s oo L pxp [P
f=kxl k=g =5

In this coordinate system, the momenta of the particles eanrfiten as a longitudinal

part b1, and a transverse pgst . As constructed, the momenta of the incident particles
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Figure 3.1:]

i,k I coordinate system.

~

are in thej, k, | system:

El,z/C
TpL
Pio : (3.12)
0
P12 kD
_ s P2 x P
pL = Pij= 28 (3.13)
P2 = ﬁ1|,2ﬁ|' 6- (3.14)
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The following quantities are introduced, which will be ugkbrbughout this chapter:

- E. + E - E, - E>
Eo = 7 ETTE (3.15)
Eo 1
= = [1—-= A
Yo n’bCZ’ﬁO ’)/(2) ) (3 6)
Po = ¢ ‘Eofo, (3.17)
2 |
1
P2 = C_lEo\/(l + %> - 5. (3.18)
2 y2
Note thatp;, = |p.»| and,
Po = pl; %2 1+07), (3.19)
pip. = p;(l+07%), (3.20)
EiE, = Ej(1+07). (3.21)

From Eqn. (3.14) the velocity of the particles in tfjek, I)-frame is,

V12 TP

1
Via2 a Y1,2Mp ,
Vit Pi12

(1.kD) (JkD)

wherey;, = Ej»/moc?. The relative velocity of the two particles isv = V; — V.
Defining y as the angle betwegh and ., the j-component of the velocity simplifies
as,

PL —PL
YiMo  y2IMp

_ B2 x B i i
N 2[plmo ()’1+)’2>

1 pipesiny (moc2 moCZ)

AVJ' =

My [Py + P2l Ex Ez
P1P2 »n [ BE1+ Ez)
= c—/—=y(1+0 ,
P + pz)( ( ) ( E.E>
= CZ%)( (1+ 0%
0
= Box (L+07). (3.22)
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Thef—component of the velocity simplifies as,
AV| — i (E _ &)
Mo \ Y1 2

- o (Gee (22 2Y)

1 (IO% + PP2COSy P} + PiPe cos)(>

2|p|mo " Y2
2

e (2(1+%)-2)+rka+o)
~2|p E.

2 2

F(Q-%"-3)+Ra+0

- -
_ Bo (e 2\ _ B0 p
T (73+0)_2|ﬁ|0' (3:23)

Therefore, for high-energy accelerators with small dieeige and energy spread,

AV (x) = Bocy (1 +0?). (3.24)

3.2.3 Change in energy due to a scattering event

Continuing from Eqgn. (3.14), we derive the formula for the rggechange in terms of

scattering angles. Boosting along fhaxis gives,

Ye (E12/C— BcPin2)

tpL
7, - . (3.25)

0

Ye (=BcEvr2/C+ pri12) &
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The relativistic factors. andg. are chosen to boost into the c.0.m. frame, i.e. such that

Pi1 = —p2 = py, resulting in,

c/p|
Be = E_O’ (3.26)

with y. = 1/4/1 — 2. The momenta in the boosted frame can be written as,
Ye (E12/C — BePii2)
TpL

51,2 =
0

+ _
Py )

Next we rotate by an angle arcté%)

~

so that the momenta are entirely along one axis.

The rotated frame is denoted by k, I

Ye (E12/C — BcPiiz)
. 0
Fjiz =
0
s
P (kD)
where,
P’ =pl+ P

After the particles collide, the magnitude of the momentandbd change in the
(T, k, f)-frame, but their direction does change. Usindor the zenith fromi and ¢

for the azimuth aboutmeasured fronk, the momenta following the collision are,

Ye (E12/C— Bcpin2)

o +psinyg sing

P, = (3.27)
+psiny cosg

+pcosy
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~ A~

Next we rotate back frorfy, k, ) to (j, k, 1), then boost back frory, k, I to (j, k. /). The

resultis,

ﬁfz =
¥2 (52 = 24 % By (pu siny sing — py cosy)
+p;sing sing + p, cosy

+psinyg cosg

Ber? (52— 22) T ye (pu siny sing — py cosy)

k. (3.28)

From Eqgn. (3.28) the energy of each particle following thiigion is,

El, = ¥4 (E12 — BeCPi2) F BeycC(pL siny sing — p, cosy) . (3.29)

We are interested in the change in energy. However, in omléetive a concise

form for the change in energy, we must first derive anothattiedl. From Eqn. (3.25),

P = Ye(pPiu—BcEL/C)

+ P =Yc(P2 — BcE2/C)

2p; =—vc (P2 — P — BEER)

Then applying Eqgn. (3.14) we obtain,

Y B o\ PP PP
o S (e TR )
Yo B (PL+ P2)
> ( c (E1 — Ez) — B - (P2 )) :
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Now applyingE?, = p7,c* + mgc* and then using Egn. (3.26),

B E B B E, + E;
- GetE e (e Sl
I N P
- XE-E) (e )
AE
= — 3.30
2015 (3:30)
whereAE = E; — E,.
The change in energy is defined&s’ , = E}, — B,
AE;, = (y2—1)Ei2—¥3BChiz
FBeycC (pu siny sing — p cosy)
E
= —Boic (—ﬁ =+ pu,z)
%Bc?’cc(pl_ siny sing — Pi COS‘M
= FBcycc(pLsingsing + p — pjcosy),
using Eqn. (3.25) for the last line.
Finally, making use of Egn. (3.30), we obtain,
AE L[y o
AE}, = TyBcC sir? (—> + siny sin > . 3.31
12 YeBcCpL (y BeCPL 5 ysing ( )

If cp, is of the same order or larger thatf, then theAE term in the parentheses

goes as Ly, and can be neglected at high energy,

AE1, = TFydBcCpLsingsing (1 +0 (1)) : (3.32)

Yc

Equation (3.32) is the change in energy in the lab frame dwecallision between

two co-propagating relativistic particleg.andg are the scattering angles in thj k, )-

frame.
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3.2.4 Derive scattering cross-sectioor

The minimum energy change that results in particle lossfesmed to asAEq«. Using

this threshold, Eqgn. (3.32) is rewritten to give a conditfonparticle loss in terms of

~ o~ o~

scattering angles in thg, k, I)-frame,

Emax o B

siny sing > =
v ¢ YBcCPL

(3.33)

To first order,B depends only on the initial angle between the two particléss is seen

from,

AEmay  2|P]

YBeC |Pr X P
AEmax pl + p2 2
= 1+0
YBcC P1P2x ( )
AEBmax 2 5
- —(1+09). 3.34
YeBcC Pox ( ) (3:34)

The relativistic factors of the boosted franfe andy. can be approximated as,

2lp? G+ )

2 = =
ﬁc - Eg Eg
_ c? (P2 + p3 + 2p1p, COSY) g 1_)(_2 o
4E2 0 4 ’
from which follows,
V2 = 1 %
) 1-8 14 "Zﬁszmz’ + 0?
1
= 2 <1 — Zyg)/ + 02) : (3.35)
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Using these expressions féy andy. in Eqn. (3.34) yields,

5 _ 2AEm (1+0%)
PoCyoBox \/ (1_ )%2 " Og) (1— 182722 + 0?)
20E max ( 1 2.2 2) 2
= : 1+ x%+0°)(1+0
70,3%)( g\ Yo ( )
2,2
_ Zemax g YO (g o) (3.36)
Yox 4

wherede max = AE/Ey. A binomial expansion of the square root in the last line doul
be made and the result would still be accurate to the same. oHtawvever, such an
approximation is not necessary to reach our final goal, aeadtjuare root is actually

simpler notation than its binomial expansion.

For elastic identical-particle Coulomb scattering, the lgloscattering cross-section

is used,

_ 1\°/ 4 3 4
do = —= 1+ = — 1] sinydydg, 3.37
7 472 (( +,82> (sin“l// sinzl//) " sty " )smlp voe (3.37)

wherey andp are the relativistic factors in the frame of the two parscle

This equation is integrated over angles that meet the dondit Eqgn. (3.33),

~_Te F f <1+1)2< 4 3 )+ 4 1) singdyds
YV Jomin Juthio) 32 siffy  sify/)  sirfy ’

whereyy, (¢) = arcsinﬁ, émin = arcsinB. The factor if 1y, comes from transforming

the cross-section back to the lab frame.

The integration is performed in Appendix 1. The result is,
2 2
o= ﬂrfz (3—3—~£>In<1)—8+1+(1+~1> (i—l) , (3.38)
2ycy B2 p B B2 B2

We see that the cross-section depends only,and so make a change of variables
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in Eqn. 3.10 fromx; andx; to their average angkeand relative anglg,

A
@_%Z%
X=X =%
Xy =Y1—Ya
and the divergence can written as,
X1 = % + & — D/)(A_pp
Xep = — )%‘*‘SCX_D;%)
3{31= %+fy_D/App
Vo = — )% + & — D;A—F:O.
Note thaty = 4 /x% + x7 in the paraxial approximation. Since the relative velodity

and cross-sectionr depend only on the anghe between the particles’ momenta, the

integral for the rate, Eqgn. (3.10), can be written as,

1287562620'50'2 \/ axdy fJAV(X o () x

XxXy

62 -+»52 b2 b?

5p26plfy é:x

dp2, Op1, &y, @andé, can be integrated at this point. The integration is done ipeklix
D. The result yields,
NSO’h

6472 /7t exe,0 50 p

f f AV (1) o (1) exp(— (ka2 + k2 — lewty)) drydiss  (3.40)

XxXy
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where,

/
Dx’y — Dx’yax’y + Dx’yﬂx,y
1 1 H, H,
O'h O'p Ex Ey
212
k o ﬁx,y O-th,y
Xy - 2
deyy Aeg,
P
o DxDy

)
2€,€,

(3.41)

whereHyy = 1%, ¥xy + 2xylixytey + Bxyllry-

3.2.5 Integration over¢

To integrate over the relative angle of the two particles fthlowing change of variables

is introduced, which is true in the paraxial approximation,

Xx = xCOS¢, (3.42)

Xy = xSing, (3.43)

which simplifies Eqgn. (3.40) to,

NFZ)O'h sznax XZ
Av exp| = (ky + k
64n2ﬁexeyapasfxan e wen(’ k) -

2r i
f exp ()%2 \/I2 + (kyx — ky)2 cos(2¢ + ;b)) dody, (3.44)

0

where,
k

y —
—k)*

. T
¥ = arcsin >

iy —
17+ (k

The following identity for the modified Bessel function,

2 1 2n 2
lo <XEC0) = Zfo exp ()%Co cos(2¢ + 1,[/)) do,
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simplifies Eqn. (3.44) to,

i f"‘” AV(Y) o (1)

321%2€46,0750°s 2.
2 2 1
X X

Xxmin Can be obtained from Eqn. (3.33), which restrist® be less than one,

20
Bmax - 1= E,max’
YoX'min
462
Xoin = —=. (3.46)
Yo

The relativistic factors in the cross-section, Eqn. (3.38)nd3, are of the particles
in the c.o.m. frame. They can be written in termsypfandy.. From Eqn. (3.27) the
relativisticy of the particles in the boosted frame is,

S~ Vc(El _ﬁccpll)
Y=Y2=7N MoC?

ands = g (¥).

An exact relation relation betweesg, y., andy, is derived as,
~ Y1t
Y

_ S = Znﬁcz (Ex+ Ex — BcC(pin + Pi2))

_ ﬁ (ZEO — BcC (% - (Py+ I32)>)
= X (2, - 28:c|p))

2myC?
_ Eo 1 1_ Bc|pl
mec? \| 1 — 32 Eo
Eo Yo
- 1-p2 = o (3.47)

With Eqn. (3.47), the cross-section can be approximatedaariten in terms ofy.

Beginning with the first term we write,

2 1 1\?
3_53_E:4_(1+E>, (3.48)
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and proceed by approximating the term in the parentheses.

2
1 2-% 2-1p
l+== 2 2 1
2y5 (1 - B3+ Bx?/4+0°%) -1
va (- B2+ Box2/4+03) —1
4
= 24+ 55 +04 (3.49)
YoX

Using Eqgn. (3.49) in Eqn. (3.48),

2 1 2
3—[2—5—4 = 4 (2+—2 . +01)
YoX
16 16
= —4—4 - 2—2 + Ol. (350)
YoX YoX
3.2.5.1 Touschek Rate
We now introduce the following parameter,
2.2
r= y% , (3.51)

and then combine Egs. (3.45), (3.24), (3.38), and (3.49ptain,

321 /T €x€y0p0s Jy2 Ghox 2y%y,¢

(-2 A)n(2) soae (1 3) (3 9)-

ky + K 12+ (ke — ky)°
exp(——y)(2> lo \/ 2X ’ x| x (L+0%) dy

2 2
. Npo-h JXWX ﬂ'rg

2

(3.52)
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Simplifying with Egs. (3.47), (3.49), (3.50), (3.35), (8)3and (3.51) gives,
NZonr5cBo
16 VT 6,005y 2w VI+T

1 4 (SE’max V 1 + T 5E,max \/ 1 + T
=+ =]In -
T VT VT

’ (}”)( o) ‘1>>X

12 + (kg — k
exp(—ZkXJrk > \/ T [x (1+0") dr.

+1

(3.53)

Note that the arguments of the exponential and the BesseidarareO 1 x r

3.2.6 Integration Bounds

The integrand is accurate @' in 7, but the integration is over from 62 .. which is

O, to oo. It is shown that the strong exponential decay of the intedjr@lows us to

restrict the integration range to the vicinity 6t.

The behavior of the integrand for larges found by examining the behavior of an

exponential times$,. We begin by rewriting the argument of the Bessel function,

2 Aok, — 12
(\/| (ky — ky)? >:Io<7§(kx+ky)\/l—(kx+ky)zr>. (3.54)

The argument of the Bessel function is always smaller tharathement of the expo-

nential,(k + ky). This is seen by looking at the sign of the numerator undestfuare

root,
2 oﬁDf, X O'ﬁDfﬁy BxBy
4exey 4ey€s 4ecey
de, e o2D?2 o202
Ay —17) = X X
y Oy Oy
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Now look at the Egn. (3.41),

1 1 +7-{X Hy
= = S+=2+-
oy oF & &
2
o H H.
1 = J+o=+o~
o3 €x &
2 52 2 92 2
O D5 + Dy ,Dy + Dy
1= p R h 2
p X y
212 212 2 212 2n2
oD% oD of oD oD
—h o 2l = DXy T (3.55)
o2 o o3 o2 o

Since Eqn. (3.55) is always positive, the radical in Eqrb43is always less than one.
Furthermore, it is clear from the LHS of Eqn. (3.54) that thdical is always real. The
Bessel function can then be written as,
l (32 (ke + k) (1— Q) T) ,
0
whereA is O° and between 0 and 1. For very small argumeelts, (x) ~ 1. For large

argumentsl, (X) expands as,

lo (X) = e\);%‘() <1+0<%{)>.

For large values of our exponential times the Bessel function becomes,

exp (—% (ks + k) T) lo (% (ke + ky) (1 —2) T)

0 0

) exp(y—% (ke + k) (1— ) T)
\/j— (ke + k) (1— )T

exp(—/ly—zg (ke + ky) T) exp(—0~17)

= = : 3.56
JEkrk)a-nr Vo o

2
Yo

The denominator makes the integrand large for smalhd the exponential decay sup-
presses the integrand with a decay constant that.is€valuating Eqn. 3.56 at = O*

yields~ 1. At = 10 x O! the integrand is suppressed®, and atr = 100 x O* the
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integrand is suppressedd3. The accuracy of our equation for the Touschek scattering
rate is maintained as long as the upper integration bountlésast 100x 0%, but for
convenience we use 1,
R_ NSO’hI’gQBO 1 \/?
16/7 ex,0p0 sV 62 V1IHT

(Grtn(femir) -t

R
1 2 T
s —+2> T ) )«
(T ((%max(l +71) ) )

+1

e + 12+ (ke — k)2
exp(—ZX > yr> lo 2¢ | x (1+0Y)dr
70 70
(3.57)
where,
5Emax
B - : ’
VT
Ky + ki
C. = 2——~7,
Yo
17+ (e~ )?
C, = 2 )

5

1
Equation (3.57) gives the Touschek scattering rate acetwal (X, Op, 7—12) . 6p and
0
1/y5 are determined by beam propertigg.max is the dynamic energy aperture of the
accelerator. We find for the Cornell ERL that the dynamic enefgrture can range as

low as 001%. Therefore, thg of interest is on the order @€ .

A form of Egn. (3.57) more accommodating to numerical inddign is obtained by

making a change of variables &o= log .
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3.2.7 Recreation of Classical Form

With a few slight modifications to our derivation, Piwinskilassical formula for the
Touschek scattering rate can be obtained. It is found tleatldssical formula is consis-

tent to within factors of the relativistig, of the beam.

In [32], B is written as,

\/ 4+ Bavex? 358)

YoBax ’

Bp = 0E,max

where the subscripgt indicates the form found in Piwinski’s paper. We find thathifst

equation is approximated @' in 1/y3 andy, Eqn. (3.36) is obtained. Additionally,

%
p = 4 '’
_ ﬁgy(z))(rznin
Tpmin = T!

which allows Eqgn. (3.59) to be written as

B, — V 1+ Tp 5E,max
P VTp Bo .

Using these quantities yields,

1 NZonrac 1 VT
281 e poBIYE Jromin A/1F Tp

(T—lp (4+T—1p) In(Bp) —Bp+ 1+ (T—lp+2>2(8i%—1>) X

R —

2
Ky + ky 12+ (ke — ky)
exp (—2 T ) lo| 2 Tp | drp. (3.59)
o )7 BoYs T

The factor of one-half is because the classical formularmassua symmetric energy

aperture, so that two particles are lost for every scatjezirent. Our formula assumes
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an non-symmetric energy aperture, where the thresholdaudicfe loss due to energy

gain may be dterent from the threshold for particle loss due to energy.loss

We produce Eqgn. (3.59) only to demonstrate that our deamagrees with Piwin-
ski’s classic derivation. The arguments of the exponeatia Bessel function, as well

as the factor, are algebraically equivalent to the classiwvalion.

3.2.8 Trajectory of scattered particles

The amplitude of the trajectory of a particle that receive®maergy kick is sensitive to

the value of the dispersion invariahf at the location of the kick.

The linearized phase-space coordinate of a particle isdye

Xo v, 0
= ZJO ﬁo X
/ @ 1
X0 ~Vk VR
cosyo  Sinyo singo 1o
+ 6p0 .
—sinyy COSYo COS¢pg o

(3.60)

A scattering event that imparts a momentum change to thielgachanges its Courant-

Snyder invariant]l and betatron phasg

Xo A/ 0
= 2] Fo X
/ __ao 1
%o VR
CoSyo  Sinyg sing Mo
- Sp -
—sinyg COoSYo COoS¢ A

(3.61)
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Since the scattering event does not instantaneously chthegeositionx, and diver-

gencexy, Eqn. (3.60) and 3.61 can be equated to yield, after a bitgefah,

T sing _
CoS¢
-1 1
singo cosyo  SiNYo VB 0 Mo | Adp
Vi - v
OS¢ —sinyo  cosyg - T i
=V

whereAs, = 6o — dp0, and the RHS of the equation is definedvasSquaringV vyields,

2

sin .
var| M -y
cos¢
J(sif¢ +cos¢) = V?
J = VZ+V2. (3.62)
And ¢ is obtained by,
sing Vi
cosp
¢ = arctan% (3.63)

y

Writing out Eqgn. (3.62) and simplifying yields,

AS _ . 2
J = [ﬁSin¢o - —p< 1 (cospo — apSingg) — UE)\/ESW\%)}

V2'\ VBo
2
+ l\/ICOS% — % ( %(sin% + @ COSPo) + n’o\/,BT,cos%) }
2 / H
_ Woh N \/5(&0770 + Bomg) COS o + o) + 1o Sin(¢do + Yo) ﬁAép (364)
2 VBo

whereH, is the familiar dispersion invariant. In the Cornell ERl, is on the order

of 1071° The IBS scattering rate typically becomes appreciabl&sgt= 0.005. This
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makes the first term in Eqn. (3.64) of ordmf) = 2.5 x 107°, the second term of order
ASp+/Jo = 5 x 1078, and the third term of ordel, = 10~°. Keeping only the lowest

order term yields,
AS?

J, = 7/07—{07 , (3.65)

whereJ, has been normalized by, the boost at the time of the scattering. Equation
(3.65) is the new] of a particle that has undergone a scattering event whichriteg to

it a momentum chang&s,,.

To linear approximation, the horizontal coordinate of aipb as it travels through

the accelerator is given by,

x[s] = 1 [238[s] 2% sin[y[s] + ¢] + 7[S] 6p—2 . (3.66)

v (sl vIsl

Using Eqgn. (3.65) in Eqn. (3.66) yields,

_ Yo 2 i Yo _
x[s] — \/ T HoASZB () sinlu 5]+ o] + n[s a1

| Yo ) i Yo
Seo l TS HoB (S| sin[y [s| + ¢] + » [s]n [s]] . (3.67)

Equation (3.67) for the transverse displacement of a sealtfearticle has two terms.
The first term is a betatron contribution and the second isspedsive contribution.
Particles scattered to a momentum changg at a location with a particula#{,, have
the potential to be lost at locations wh@gs| andr [s| causex|[s| to exceed the radius

of the beam pipe.

3.2.8.1 Hfects of nonlinearities on particle trajectories

TheBmad standard tracking routines we use in our simulations taikedancount nonlin-

earities, but are not fully nonlinear. The routines are glesi to balance accuracy and
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speed [38]. More accurate tracking routines are availabBmad, but they are slower.
To check whether the standard routines af@antly accurate to reliably determine if
a scattered particle collides with the beam pipe, the dmution to the particle trajectory

from higher orders of dispersion is examined.

Higher orders of dispersion are calculated by combiningTiagor maps of the
individual elements that represent the beam line. The melspip dispersion terms
from the bend and wiggler elements. Dispersion is obtainech the matrix elements

of the map with,

. Tie
. = =
T6,6
Tie6
Tés
T1,6,6,6
Tg6
...and so on..., (3.68)

M =

whereny, 1., 13, are the 1st, 2nd, and 3rd orders of dispersion. The cotiwiito the

particle trajectory from dispersion of ordeis,

AXn = 10 X (%") . (3.69)

Shown in Fig. 3.2 is the contribution to the transverse coaté from nonlinear dis-
persion up to order 4 for a particle withHalO MeV energy defect. Figure 3.2 suggests
that prior to the final decelerating stage, higher orderssgatsion displace the particle
trajectory by a negligible amount. The displacement is teaa 002 mm, and we are
interested in displacements larger than 13 mm. Howevemgltine final decelerating
stage, the relative momentum spread blows up and highersoodi@ispersion can be-
come significant. This can cause a large number of partiolesitide with the final

decelerating cavities, which may lead to multipacting.ai @lso create a background
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Trajectory displacement due to nonlinear dispersion

0.15
— 2" order
3" order
— pth
0101 4™ order
—~ 005}
e
£
S
<1 0.00
—0.05
—0.10

0 500 1000 1500 2000 2500 3000
Location (m)

Figure 3.2: Displacement of trajectory of particle witi0 MeV/c momentum defect
due to 29, 39, and 4" order dispersion. The beam pipe diameter is 13 mm.

of particles around the beam and impact the design of the loeanp. The &ect of

nonlinearities at the end of the linac is seen in Fig. 3.12.

3.3 Implementation

3.3.1 Element-by-element energy aperture

Representing IBS particles with precision requires tracldegeral 10's of particles
through each of the several thousand optical elements thke mp the Cornell ERL.
This is a computationally intensive task and it is best toigacking particles that
are not lost and therefore not of interest. To avoid trackiagicles that are not lost,

an element-by-element energy aperture is determined. [Eheeat-by-element energy
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aperture is the minimum energy change that needs to be giaepdrticle in an element

such that it collides with the chamber walls somewhere ddwratcelerator.

Due to nonlinearities and asymmetries, along with the faa&t only particles with a
negative energy change have the potential to be stoppatydigceleration, the positive
energy aperturé; is not symmetric with the negative energy apertégei.e. 6z #

—&¢. Itis necessary to determine the positive and negativeaeandependently.

To determine the positive aperture, at the first optical eleinin the accelerator a
test particle is given an initial energy changie Since the beam size is on the order
of 10~®m and the beam pipe size is on the order of2m, the initial coordinate has a
negligible impact on the trajectory of a particle lost to beam pipe, and it is accurate

to O* to assume that each particle starts in the center of the basm p

The test particle is tracked to determine if it is lost. Ifstlost, the energy change is
decreased and the tracking done again. If it is not lost, tleegy change is increased.
Once an upper and lower bound for the aperture have beeriglséah a binary search is
performed to determine the aperture to arbitrary precisitnve process is then repeated
for the second optical element, and so on to the end of thdeaater. Similarly the

negative energy aperture is determined.

An example energy aperture is shown in Fig. 3.3. This exarnspiem a Cornell
ERL lattice version 3.0. This version is characterized byhtt40 m east turn around.
The stages of the accelerator are shown in table 3.1. Inxthimple the negative energy
aperture is dominated by IBS particles stopping during eézagbn. The positive aper-
ture is determined entirely by beam pipe collisions. Notita the energy aperture in
the accelerating structures is about an order of magnitardei than the energy aperture

in high-dispersion regions.
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Example Energy Aperture
0.10 ‘ ‘ :

0.08 1

0.06 1

0.04 1

0.02 1

Energy Aperture (AE/E)

0.00

N/

0 500 1000 1500 2000 2500 3000
Location (m)

Figure 3.3: Example energy aperture from CERL lattice ver8iOn The positive aper-
ture is determined entirely by beam pipe collisions. Theatigg aperture is dominated
by stopping during deceleration.

Table 3.1: Stages of CERL lattice version 3.0 used for examiplks m this chapter.
Sections that are crossed by the beam twice are labeledlbynd "\2". Particles are
injected at 0 m with 10 MeV.

Start (m)| End (m) | Label Description

0 318 LA\1, LB\1 | acceleration to 3 GeV
318 490 TA\1 East turn around

490 808 LC\1, LD\1 | acceleration to ® GeV
808 1284 SA user region, x-ray prod.
1284 1889 CE CESR turn around
1889 2207 NA user region, x-ray prod.
2207 2525 LA\2, LB\2 | deceleration to 5 GeV
2525 2696 TA\2 East turn around

2696 3014 LC\2, LD\2 | deceleration to 10 MeV
3014 3014 beam dump
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Example Cumulative Touschek Generation

25

201

15}

101

Cumulative Current (nA)

0 500 1000 1500 2000 2500 3000 3500
Location (m)

Figure 3.4: Cumulative generation of scattered particles.

3.3.2 Touschek scattering rates

The rate at which particles are scattered ali6{e+ 6;) or belowE(1 — 6;) is found
by evaluatingR(s£~), given by Eqn. 3.57, using the Twiss and beam parametersiat ea
element. The current of scattered particles generatedymehlds found by multiplying
the rateR by the fundamental charge and the time the bunch is in theegithic, where

| is the length of the element aieds the speed of light.

The cumulative current generated for CERL 3.0 is shown in Fi4. Bhis Fig. says
that the total current of scattered particles generate@ 2 The slope of this curve is

proportional to the scattering rate.
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3.3.3 Test particle distribution

At each element in the accelerator, two distributions of pesticles are tracked, one
representing particles that gain energy through scatfeend one for those that lose
energy. The distributions are constructed such that theyago only particles with

energy greater thal(1 + 67) or less tharE(1 — 6;).

The distribution of particles that gain energy is conseddby calculating the rate
R(6%) at which particles are scattered above the positive engrgsties; . This rate
is divided by the number of test particles to be trackdd, Each test particle is taken
as representing a rate Bf{¢;)/N; scattered particles. The energy change represented
by each test particle is determined by inverting a lineagrplation ofR(6g). This
gives 6e(R), and theith test particle is assigned a momentum chafgé? ) where

R =(i+ 1/2)%9. Similarly the distribution of particles that lose energgonstructed.

The number of scattered particles each test particle reptess obtained by mul-
tiplying the rateR by I/c. The current represented by each test particle is found by
multiplying the number of scattered particles it represdayt the bunch repitition rate
and the fundamental charge. The power each test partiadleseqts is found by multi-

plying its current by its energy.

In Fig. 3.5 an exampl®(6;) curve is shown along with the test particles used to
represent it. The curve starts at the positive energy agediithe optical element,
§¢ = 0.2%. It says that 5¢< 10" particles are scattered abo¥g per second. The
distribution has 50 test particles, and each test part'ﬂtheelsent%07 particles per

second.
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; Example Touschek Curve with Test Particle Distribution

Particles/Second (107)
w

.0 0.5 1.0 . 5 2.0
Momentum Aperture * 100 (Ap/p)

Figure 3.5: Example Touschek curve with test particle iigtron used to represent it.

3.3.4 Tracking losses

Each test particle is tracked usiBgad standard tracking routines from the optical ele-

ment where the scattering occurs to the element where isis lo

A particle can be lost by striking the beam pipe or stoppingrdudeceleration. If
the loss is due to a beam pipe collision, the current the tasicge represents is added

to the current deposited into that element of the acceleréh® power is also recorded.

Shown in Fig. 3.6 is the current of scattered particles isigikhe beam pipe for
CERL 3.0. The current stopping at the end of the linac is shov#ign3.7. Where Fig.
3.4 shows where the scattering occurs, Figs. 3.6 and 3.7 si@re the particles are
lost. The total current deposited into the CERL 3.0 beam pip€7i:iA. The current

stopped during deceleration is.3A.
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Figure 3.6: Current per meter of scattered particles sgikieam pipe. The current at
the end of the linac peaks at 2230 /pAdue to the 1y(s) dependence in Eqn. (3.67).
The tracking of test particles is parallelized with MPI. Astex node is designated
and its role is to send test particles to worker nodes whinltihra tracking routine. Each
worker node tracks the test particle it received from wheis generated to where it
is lost, and sends the results back to the master node. Themmasle will then send
another test particle to the worker node if there are anytdetitack. The parallelization
is set up to run on managed clusters, as well as ad-hoc @dustleich can be composed
of idle work stations. A typical tracking run requires apgroately 10 CPU-hours on 2

GHz CPUs.
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Current stopping per decelerating cavity
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Figure 3.7: Current per decelerating cavity of scatteretighes stopping at the end of
the linac. The design energy at the end of the linac is 10 M@¢hEcavity decelerates
the beam by 13 MeV.

3.3.5 Tracking background

In addition to tracking IBS particles that are lost in the dnghe simulations can be
adjusted to track IBS particles that make it to the end of thaclibut lie outside 10
sigma of the beam phase-space. These particles can be ampatien designing the

beam dump.

An additional element-by-element energy aperture, defasgtie largest momentum
kick that can be introduced without the particle laying alegsl0 sigma of the beam
dimensions at the end of the accelerator, is required fakimg the background of

scattered particles.

The background is determined by tracking test particleb @tergy changes larger
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than the ‘10 sigma’ aperture, but smaller than the ‘lossriape. These particles are
tracked to the end of the linac. Their phase-space cooetiratd their current and

energy are recorded. An example background is shown in Fig. 3

3.3.6 Multiple-event IBS

3.3.6.1 Losses

Thus far only single-event IBS has been considered; we haeoaissed only those par-
ticles that are ejected from the beam after a single scagt@vent that imparts an en-
ergy changdé\de. In multiple-event IBS, the cumulativefect of many small scattering

events is considered.

The dfect of multiple-event IBS is to increase the standard dexnatif the bunch
dimensions. We use the Completely Integrated Modified Pkvi(GIMP) result from
reference [19] to obtain a rise timg for the emittance of the bunch. This result takes

into account scattering in dispersive regions.

The emittance growth due to multiple-event IBS is found to 1384l This is trans-

lated into the number of particles lost by integrating oveoemal distribution,

2

X2 X
Qa0 — T D 0 i3
2((14«)o _ 20
Sx,pipee (@rom0® dx Sx,pipee xdx

Nlost = Nbunch , (3-70)

S;Opipe e_;r_zgdx
wherex, pipeis the beam pipe radius; is the RMS beam width\Npneh iS the number
of particles in the bunch, andis the emittance growth. The narrowest beam pipe in
the Cornell ERL is 27 cm and the average RMS beam width isi@B. Evaluating
Eqn. (3.70) with these parameters gives a result0-2%9%, At 5 x 10 particles per

bunch and B GHz, itis seen that the losses due to multiple-event IBSexwag are nil.
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Looked at from another perspective, the simulations irdit@at approximately 100
particles are scattered out of each bunch due to single-&88n Each bunch contains
5 x 10 particles. Therefore, the probability of a particle in a tlumndergoing a col-
lision that scatters it into the beam pipe is 108 x 10%). If it is estimated that the
probability of a particle undergoing a collision that imgato it half the energy change
necessary for a loss is 100 x 1®), then the probability of a particle in a bunch un-
dergoing two such collisions in the same directiok(000/ (5 x 1)), With 1.3x 10°
bunches per second, aboud@3 particles are lost per second due to two successive col-
lisions, a negligible rate. This confirms our previous eatenthat multiple-event IBS

does not contribute to Touschek losses.

3.3.6.2 Energy Spread

It is worth digressing for a moment to examine théeet IBS has on energy spread
in the Cornell ERL. Multiple-event IBS may not contribute to tu@e loss, but it does
contribute to growth in energy spread. The CIMP formulati®mised to calculate the

growth inAE/E through the linac.

The growth rates AT, 1/Ty, and 1/T, are calculated at the first element in the lattice
according to equation 16 from reference [19]. These groatbsrare used to calculate
how the beam dimensions change due to IBS. The formula foragiatpng the change

in og due to IBS from one element to the next is,

OEii1 = OEj X (1 + —) X — (3.71)

whereAt; is the time the beam spends in elemirt; is the beam energy at the start of

element, andE;, ; is the beam energy at the start of elemientl.
A o defined by the injector is started at element 1 and propadatedgh the linac.
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Growth in AE/E for Cornell ERL 3.0
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Figure 3.8: Growtm\E/E through linac due to IBS. The injectedE/E is 1073, At the
end of the linacAE/E is 49 x 1073
The results are shown in Fig. 3.8. Multiple event IBS incredseg by a factor of 5

from the beginning to the end of the lattice.

3.4 Results

The magnitude of around CERL 3.0 is shown in the top plot in Fig. 3.9. Shown in
the bottom plot is a simulation result for the number of srat particles generated per
bunch passing per meter that collide with the beam pipe straexndown the linac. The
relation betweer andR is given by Eqn. (3.67). Notice the correlation betw&én

and the number of particles generated.

Figure 3.6 shows the locations where these particles eollidh the beam pipe.

Notice that at the very end of the accelerator the deposite@iat rapidly increases to
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Figure 3.9:H and current of scattered particles produced per meter fan€lldERL.

a peak of 2230 pAn. This is due to the,/y(s) dependence of the betatron term in
Eqgn. (3.67). The dispersive term is negligible since themtade of the dispersion at

the end of the accelerator i2107° andy,/y(s) is at most 500.

The impulses shown in Fig. 3.7 are the current of particlepstd in the last four
decelerating cavities. Each cavity decelerates the beat3byleV, and the design
energy at the end of the linac is 10 MeV. The current stoppinihe final cavity is 56
nA. The trajectories of particles stopped in the cavities @mknown but expected to
be exotic. Detailed tracking simulations are necessaryeterthine their behavior and
determine if they could pose a hazard. Particles that amderated into the cavity wall

could lead to multipacting.
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3.4.1 Collimation

Shielding the user regions with a reasonable thicknessrairete requires that the cur-
rent striking the beam pipe there be limited to below JmpA Additionally, radiation
can decrease the MTBF of components anywhere in the acagl¢énanel. For these

reasons, shielded collimators are used to control whet&esed particles are lost.

Since the beam in the user regions is at full energy and hasengy spread, losses
there will be mostly due to betatron oscillations. IBS paesclost due to betatron
oscillations are generated in high dispersion regions @fdttice. The high dispersion
regions of the Cornell ERL lattice are the east turn around, C&8Raround, and the

user regions themselves.

Collimators cannot be placed in the linacs, since the linaesanstructed of cry-
omodules, which would make maintenance of collimatofadilt. Placing collimators
in the user regions is problematic due to the radiation gegadr Therefore, the best
location for collimators is in the turn-arounds, but coblitars may be placed in the user

regions if necessary.

To shield the first user region from IBS particles, note by loglkat table 3.1 that it
is proceeded by the east turn around. IBS patrticles lost iffitsteuser region will be

generated in either the East turn around or in the user retgelh

The simulation is set to look at particles scattered in tis fiirn around around and
lost in the first user region. The trajectories of these pladithrough the accelerator are
recorded and histogrammed. The histogram is analyzed¢ondigte where a collimator

of a given radius would be mosffective.

The bars in Fig. 3.10 show the current of IBS particles thatld/be stopped by a
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Potential collimator locations (10 mm radius collimators)
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Figure 3.10: Histogram of the current of particles scattereTA and lost in SA that
would be caught by a collimator at the given location. Thazutal coordinate spans
the TA region.

collimator placed at that location. The horizontal cooatiis the accelerator element
index and spans the TA region. Only particles that will be iloshe first user region are

counted. i.e. the plot indicates that a collimator placedig6 m would stop 120 pA

of electrons that would otherwise be lost in the SA user mregio

The procedure for collimating the first user region consi$iglacing a 10 mm di-
ameter collimator at the location of the highest peak in BdLO, then rerunning the
simulation to determine both th&ectiveness of the collimator and where the next col-
limator should be placed. This is repeated until losseseruger region from particles
scattered in the East turn around are below A pAThe diameter of the collimators was
chosen by balancingftective collimation that comes with a smaller diameter agfain

the detrimental #ect of wake fields.
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Figure 3.11: Results of collimating Cornell ERL to reduce cotiaf scattered particles
deposited into user regions. The red bars are before céiimand the green bars after
collimation. All green bars are below the 3 mthreshold.

If it if found that there are no locations in the turn-arounkese a collimator would
be dtective, but the losses in the user region are still above BnpAhe simulation is

adjusted to look at particles generated and lost in the eggom. A collimator is placed

where it would be ffective and where there is room to surround it with shielding.

It is found that a scheme of eight 10 mm collimators arfficent to reduce the
current of scattered particles lost in the user regions kb8 pA/m. Two collimators
are located in the east turnaround, three in the CESR turndraue in the South user
region, and two in the North user region. These results ave/shn Fig. 3.11. The

scheme is shown in table 3.2.
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Table 3.2: Location and current absorbed for scheme of 10 rameter collimators that
limits current deposited into user regions to below 3mpA The beam passes through
the TA collimators twice, once during the accelerating jereasd once during the decel-
erating phase.

Loc. Region| Current Absorbed
(m) (PA)
4701/26767 | TA1/2 1949
4846/26911 | TA1/2 984
11470 SA 26
17569 CE 56
18526 CE 154
18719 CE 617
20419 NA 108
21347 NA 18

3.4.2 Beam dump considerations

Particles that are scattered such that the amplitude aof tfagectory at the end of the
linac is larger than 10-sigma of the beam dimensions, butl @maugh that they do not
strike the beam pipe, form a background of scattered pastitiat needs to be dumped
along with the beam. The simulation is adjusted to tracketpesticles and their hori-

zontal phase-space coordinates at the end of the linac@elesl.

Shown in Fig. 3.12 is the horizontal phase space of the backgr of scattered
particles at the end of the linac. The total current of scatt@article laying outside 10-
sigma of the beam dimensions is 413 nA. 413 nA is small congp@arthe beam current
of 100 mA, but the phase space area of the scattered patisabesch larger than that
of the beam. The scattered particles are much mdheuli to steer into the dump. The

beam dump needs to be designed such that the trajectortes edattered particles does
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Figure 3.12: Horizontal phase-space distribution of scatt particles at the end of the
linac. The total current of particles laying outside 10 sigof the beam is 413 nA,
compared to a beam current of 100 mA. The radius of the beaenatithis part of the
accelerator is B5 cm. This data was run on the uncollimated lattice.

not cause too much current to be deposited into sensitivetates such as magnets.

3.4.3 Touschek Scattering Between Overlapping Beams offberent

Energy

Multiple turn accelerators have been proposed for ERLs.dadlaccelerators beams of
different energy may overlap in the linacs and arcs. Here we #uapteviously derived
formula for the Touschek rate to apply to scattering betwaaarlapping bunches of
different energy. The change required is to assume that the tidiragpparticles have
an energy dterenceAE = E, — E;, whereE, andE; are the energies of the high energy

beam and low energy beam, respectively. Additionally, dagich has dferent Twiss
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parameters and aftierent energy aperture. NE » g1, then energy spread can be

ignored.

The diferent Twiss parameters change the quadratic forms in Ecg). {Ghis results
in new expressions fdt, k,, andl. These new expressions are exact but complicated.
Refer to Apx. E for the expressions related to Touschek saagtbetween overlapping

beams.

The energy dierenceAE changes the relative velocityv of the two particles and

also their cross-sectian. The components of their relative velocity can be written as

B1B2

AVj = ﬁ (E]_ + Ez))( + 03
Ay, = i(ﬂ — 1) (B:E +,8E)<1—X—2>+O4
| 2“3| 2 1 22 11 2 .

WhenAE is large, the relative velocity between the two particles ddongitudinal
component and a transverse component. The relative welmait then be written in the

form,

AV = A+ AV

= ¢ (1+c?) +0°. (3.72)

Note that this is the velocity “seen” by the particles, na tHosing velocity. From
Eqn. (3.72) we see that the relative velocity has a constmtgnd a part that depends
on y. A plot of the relative velocity between two particles withffdrent energy is in
Fig. (3.13). The longitudinal part is significant if the rlstic y of one of the particles

is small.

Recall that the cross-section for particle loss was obtanyadtegrating the Moller

scattering cross-section over all angles that lead togbattss. To obtain these angles,
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Figure 3.13: Relative velocity between two particles witktatient relativisticy as a
function of angle between their momenta.

Eqn. (3.31) was interpreted as a condition for particle,loss

AEmay < + (AEsin2 (%) + veBcCP. sinz//sin¢) : (3.73)

There are two contributions to the energy change followirggdollision. The first term
is due to the energy fierence between the two particles. The second term is due to
their relative transverse momentum. In single beam Toussbattering, the first term
is much smaller than the second and is ignored. Howevaiifs large, then the first

term needs to be taken into consideration.

A closed-form expression for the integrated cross-seg¢tidound in the one-beam

case because ignoring the first term allows for an expligtession fory,

U= arcsin% . (3.74)

If both terms in Eqgn. (3.73) are significant, then an exactresgon fory cannot be

found and our method for deriving the Touschek rate breaksndddowever, if each
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term is examined independently, it is found that neithamtegsults a significant Tou-
schek rate. This is because both cross-sections becongedalg wheng is small. If

the energy dference between the two bunches is large, then there is a bmwed on
B.
The cross-section for losses due to Atecontribution to the energy change is found

by integrating Moller diferential scattering cross-section, Eqn. (3.37) over,
max

A
2arcsily/ —— < ¥ <,

0< ¢ <2r,

~D+1+ (1+5_12)2<%>] , (3.75)

_ 2AEqperture
E,—E;

where,

(3.76)

The higher energy beam is referred to with subscript 2, aadotiver energy beam with

subscript 1.

Both Egs. (3.75) and (3.10) scale wittit. Plotted in Fig. (3.14) i for three
combinations of overlapping beams wittitdrent energies. KE is large, then there are
no particle pairs with sma. It follows that the cross-section for Touschek scattering

between beams with a largée is small.

Observing Fig. (3.13), a largkE increases the rate at which collisions occur. Ob-
serving Fig. (3.14), a largeE makes it less likely for those collisions to result in pddic

loss. To find out which contribution dominates, a numeritadg is done on a prototype

187



1. 0F—/——— —— ——— —— ——
0.8 i
0.6 i

- - (v1, v2)

B L

f — (20, 500
0.4+ ( 0 1
I — (5020, 10000
0.2¢ — (9900, 10000 ]
O- 07\ L L L | L L L | L L L | L L L | L L L [
0. 0000 0. 0002 0. 0004 0. 0006 0. 0008 0. 0010

X

Figure 3.14:3, the velocity of colliding particles in the c.o.m. frameofied versuy.
WhenAE is large, there are no particle pairs with srall

2-turn ERL lattice. In this lattice, a beam which accelerétesh 10 MeV to 2510 MeV
overlaps a beam which accelerates from 2510 MeV to 5000 Me¥.r&sults are shown
in Fig. (3.15). Two loss mechanisms are shown: 1) Transfenefgy between particles
2) Transfer of transverse momentum between particles. @amb overlap in the linacs.
These results demonstrate that the scattering rate betwweelapping bunches of dif-
ferent energy is small. The scattering rate among particlé®e higher energy beam is

shown for comparison.

3.4.4 Conclusion

Touschek scattering is relevant to ERLs because the curfésgtgarticles can pose a
radiation hazard. To facilitate proper collimator placeméhe locations where scattered

particles are generated and where they are lost need todwgatall. We have re-derived
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Figure 3.15: Touschek rate for scattering rate betweenaygng beams of dierent
energy. The self-scattering rate for the higher energy bisatso plotted for compari-
son.

Piwinski’'s well-known formula for Touschek scattering&d beams to determine that

it is valid for ERL beams. This required reworking the caltigia to keep track of
approximations and determined that it is good foatder in combinations oA\g/E,

1/y0, andy. We then re-purposed Piwinski’s formula to give the rate laicl particles

with a certain energyfset are generated at each location in the ERL. Using standard
tracking methods we are able to determine the trajectoryasfd particles to where they

are lost.

Scattered particles can assume large-amplitude osoil&tand guide field non-
linearities may become important. We have also checkedhghebnlinearities need to
be taken into account when tracking. Our conclusion is tbatlmearities do not have

a significant impact on particle trajectories until the Etsiges of deceleration.
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These simulations have been applied to developfi@ctave collimation scheme for
the Cornell ERL. Before collimation, loss rates in the useraegiare as high as 47

pA/m. After collimation, the rate is below 3 p.

The phase-space of the background of scattered partidies béam dump has been
determined. This information can be used to design a beanp dusm éficiently dumps

not only the beam, but also the background of scatteredcfestaround the beam.
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APPENDIX A
TRANSFER MATRICES FOR “THESIS LAT”

0.996877 (24974 0 0 00
~0.024974 0996877 O 0 00
0 0 100313 025026 0 O

Mqi = (A.1)
0 0 0025026 100313 0 O
0 0 0 0 10
0 0 0 0O 01
1.0025 0500417 0 0 00
0.0100083 10025 0 0 00
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0 0  -0.00999167 ®I7501 0 O
0 0 0 0 10
0 0 0 0o 01

0.980785 406793 0 0. 0. 0.489299
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0. 0. 1. 5 0 0.

My (A.3)
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My = (A.4)

1 0375 O 0 0 0
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0.0471932 101177 00171011 (@0427526 0O O.
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0. 0. 0. 0. 1 O

0. 0. 0. 0. 0 1
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APPENDIX B
BEAM SIZE PROJECTIONS IN TERMS OF V

Equations 2.135, 2.136, and 2.137 are the projected be&w isizerms of th&/ cou-
pling matrix. Writing the projections in terms df reveals how the normal mode Twiss

parametersféect the expression of the coupling terms.

Starting fromZ-matrix in terms of real-valued matrices, Eqgn. 2.112,
S = NAreaN 4, (B.1)
we use the definition dil in terms of the normal mode matric¥sandG to obtain,
S = VG AeaGV L (B.2)

Takingos = X113, 07 = Xa3, ando = Ess and simplifying gives the projections of the

beam envelope into the lab frame,

2
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APPENDIX C
INTEGRATED CROSS-SECTION FOR TOUSCHEK DERIVATION

The Moller scattering cross-section is,

- 1\?/ 4 3 4
do = = 1+— — 1| sinydyde. Ci1
7 4y2 (( +,82) <sin4¢p sir?:p) " sirfy - )SIMI vae (€.

This equation is integrated such thatgising > B, whereB is some constant,

__@F f <1+i)2( S >+ 1) sinpdyds
2 o Jutnis) B?) \sinty sirfy/) sirfy ’

(C.2)
wheregmin, = arcsinB andy, (¢) = arcsin%.
Integrating first over azimuth yields,
_ 12 [z
o= -2
72 Pmin
1) 2 Yin Yin
[(1 + E) <—tantﬁm8inwm + log tan<?>) —4log tan<7) + COSYn
d¢. (C.3)

The equation is written in terms gfby using the following trigonometric identities,

tan arcsir( B ) = B (C.4)
sing q/sin2¢—82’

B B
sing sing’

arcsin( g5 sing — 4/sirf ¢ — B2
logtan # = %Iog ! ’ , (C.6)
sing + 4/sirf ¢ — B2

\/Sir? ¢ — B2
cosarcsir(siid)): S ¢ . (C.7)

sing

sin arcsin( (C.5)

and
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r2

y? B?

() e

sing + 4/sirf ¢ — B2

differentiating under the integral,

3 sing — 1/sif ¢ — B?
log d

arcsing sing + 4/sir’ ¢ — B2
r3 JB 0 sing — 4/sirf ¢ — B2

¢

— log dBdg

sing 0B sing + 4/sirf ¢ — B?

rs sing _25sj
_ J SN0 4Bdo
arcsinB JB B

\/Sirt ¢ — B2
2 —2sing
= ) dg¢dB
B J;lrcsinB é /sinqu . Bz

[

arcsinB

[

[

B? sing

—ef [(1+ 1>2 23in¢\/m +\/m

(C.8)

Integrating the first two terms overis straightforward. The third term is integrated by

(C.9)

[(3—%—%)Iog%—8+l+ (1+18—12)2(é—1)] (C.10)
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APPENDIX D
INTEGRATION OVER &y, &v, 6p1, AND 6p, FOR TOUSCHEK DERIVATION

The four inner integrations of Eqn. 3.39 can be written as,

52 Sp1 + 5o 52 b2 b?
f f exp f exp (E — cx> dgxf exp e Cy | dé,dd ;16 po.
5p25p1 fx g fy (D 1)

whereay, by, ¢y, a, by, andc, containéy, &y, 5,1, andd,. Powers of, are collected as,

2
X

b
4._a.X - CX - dx + é:xex + fx. (D.2)

Integrating oveg, yields,

fo exp(— (&dx + e + fy)) déx = 4/ _7;)( eXp<4idx — fx) . (D.3)

The same is done fat. The resultis,

62, + 62 2 &
4a pl p2 X
-+ X 4+ = —1].
aq exp( 207 + 20, x + ad, y

(D.4)

Powers ob,; ands,; can be collected as,

g

2 2
0% & 2

X L
202 ad,

+ 1, =
Op (6% + 65) + hp (0p1 — 6p2) + 1p0padp2 + jp.  (D.5)

After integrating oveb,; ands, we find that Eqn. (D.1) evaluates to,

2 h2
2 exp( P 4 ) : (D.6)
i —2 P

|/ (402 — i2) 9
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APPENDIX E
DERIVATION OF TOUSCHEK SCATTERING BETWEEN OVERLAPPING
BEAMS

This appendix contains a Mathematica notebook convertiedLiatex. The Touschek
scattering rate between overlapping beamsidécent energy is derived. This derivation
was done in Mathematica because the algebra is very cunmbersbhis formula was

derived when considering the feasibility of a 2-turn ene®povery linear accelerator.

For the Cornell ERL, we found that the scattering rate betweenlapping beams
was negligible. This is because the relative velocity betwihe overlapping beams in
their center of momentum is significantly larger than in timgke beam case. Touschek
scattering between overlapping beams made an insignifocenttibution to the overall

scattering rate, which includes scattering between pestia a single beam.
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The Touschek scattering rate for two overlapping beams at
different energies is given by:

R=[p1[r1 , P1] k212 . P2] av[P1, P2] o[P1, P2] @V

AV = dmdmdpdm

dx1 dx2 dyl dy2

dpx1l dpx2 dpyl dpy2 d aAsl das2 d(Alel) d (Ap%z)

r= (XB’ y/3, AS)
.p_\= (Xlll yllv Apl)
P2=(X2', Y2', 4Apy)

p1 and p, are the Gaussuan phase-space densities of
beam 1 and beam 2 Av is the velocity of a particle in
beam 1 with a momentum P relative to a particle in
beam 2 with a momentum P2 ois the scattering
cross-section.

The density in phase-space of each beam is,

P1 [XBll yBl! ASl! Xll1 yl'! Apl] =

' 2 ' 2
1 EXp [_ Xg12+ (0x1 Xa1+Bx1 X1' ) _ Y12+ (ayr Ypr+By1 Y1')
87 e ey1 Os1 P10opt 2 oxp? 2 oyp?

_asl? 1 (ﬂ)]
2 C"sl2 2C"plz pl
P2 [X/32! y/32! ASZ! X2I1 YZ" Apz] =

il 2 ' 2
1 Xg22+ (axp Xg2+Bx2 X2' ) Y22+ (ay2 Yp2+By2 Yo' )
Exp |- -
87l en ey Os2 P2 Op2 2 oyg2? 2 oypo?

_as2? 1 (ﬂ)]
20’522 20'p22 p2

The position of particle 1 is given by,

_ apl
x1 = xB1 + Dx1 L
yl = yBl + Dyl %%

which can be rearranged as,
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- _ Apl
xB1l = x1 Dx1 )
yBl = yl - Dyl 2B

pl

The divergence of particle 1 is given by,

xpl = xppl + Dpxl %%
ypl = ypBl + Dpyl Bt

which can be rearranged as,

xpfl = xpl - Dpxl %%
Apl
ypBl = ypl - Dpyl -
Similar equations can be written for particle 2. Since

we are only interested in the difference of the
divergence of the two particles we introduce the variables,

Lo X X"
Bai= B

Loty
Cyi="7

Ox:=x1" -%5'

ey:=Y1"Y2’

These variables allow the equations for xpf31l and ypBl to be
written as,

xpfBl = %f + x - Dpx1 %%
xpf2 = —%f + £x - Dpx2 %?
ypBl = % + gy - Dpyl B

o Ap2
ypPR2 = -5 + &y - Dpy2 =

And writing out the x1, x2, yl, and y2 formulas,
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Apl
pl
Ap2
P2
Apl
pl
Ap2
P2

xB1l = x1 - Dx1

xpB2 x2 - Dx2

yB1

yB2

yl - Dyl

y2 - Dy2

Apl, Ap2, Asl, As2 remain unchanged,

Apl = Apl
Ap2 = Ap2
Asl = Asl
As2 = As2

The above three sets of equations give a change of
variables from,

xpBl, xpB2, ypBl, ypB2, xBl, yBl, xB2, yB2, Apl/pl,
Ap2/p2, Asl, As2,

to

ex, o6y, Ex, Ly, Apl/pl, Ap2/p2, x1, x2, yl, y2, Asl, As2.

The Jacobian of this transformation is 1.

- 0 100000 -DpxI1 0 00
= 0 100000 0 -Dpx2 0 0
0 > 010000 -Dpyl 0 00
0 > 010000 0 -Dpy2 00
0 0 001000 -Dxl 0 00
AbS[Det[ O 0000100 -DylL 0 00O ]] =1
0 0 000010 O -Dx2 0 0
0 0 000001 0O Dy2 0 O
0 0 0000O0O0 1 0 00
0 0 000000 O 1 00
0 0 000000 O 0 10
0 0 000000 O 0 01

The volume elemental is,
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dv* = dxl dx2 dyl dy2 dfx dfy dox dey

d(%l) d(“:;:) dAas1l das2

The density functions are broken down into transverse and
longitudinal parts,

P1 [X1rgxrAplrexrylrgyrAplreyrAs:LrApl]=
Ps1 [A51] ppl [Apl] Px1 [X1/§xr Aplrex] pyl [ergyr Aplrey]
Px1 [X1r§x1Ap1/ex]=

2 2
[ (xl - Dx1 A:;ll) +(ax1 (xl - Dx1 ;Lll)ﬁixl (ez_x + x - Dpxl ﬂ))

Exp| - =

27 exl 2 oxp1?

Py1 [v1, §YIAPII ey] =

[l con Bt (ot B (2 oy o B))

27 eyl Exp - 2 cy/312
1 1 apl?
op1 [8p1] = —1— Ex [-_ 1]
pl[ P ] ‘/_Pl opl P Zoplz p12
Jo) Asl]=—L— Ex [ ]
sl[ ] ,—2" os1 P 2 os1?

P2 [x2,§X,Ap2,ex,y2,§y,Ap2,6y,As2,Ap2]=
Ps2 [ASZ] pp2 [Apz] Px2 [xzr§x1 Ap2/ex] py2 [y2/§y1 Ap2/ey]
Px2 [xzr§x1Ap2/ex]=

1 r (x2 - Dx2 A;';22)2+(o¢x2 (x2 - Dx2 Ap%) +3x2 (_92_x + &x - Dpx2 A:;:))z
27 ex2 EXP __ 2 oxp2? ]
Py2 [Y2,§y,Ap2,9y]=
Ap2 | 2 Ap2 2 ap2\ )2
1 Exp -_ (y2 - Dy2 :;2) +(0(y2 (y2 - Dy2 pLz)+/3y2 (-?y + 8y - Dpy2 :2 ))
27 ey2 | 2 oyp2?
1 1 ap2?
Poz [Ap2] = ——*—— Exp |- —1— L |
P2 P S o o2 ooz P | g opa? p2?
ps1]=——— Exp[- 225 ]
R T g

The velocity and cross-section are dependent on only the
angle between the scattering particles and so can be
written as,

Av [6y, ey] =Av [ﬁr ﬁ]
o[6x, ey] =G[F_>Ir F_>2\]
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We require that two colliding particles have the same
spatial coordinates

X = x1 = x2
y := yl = y2
As := Asl = As2

These three constraints are met by inserting delta
functions,

R=[p1[X1, Ex, Ap1,Ox,¥1, Ey, Bp1, Oy, ASL, APL]
P2[%2,8x,A02,0%x,¥2,8y,0p2,0y,A82, Ap2]
AV[6x,0,] 0[64,6,] 6[x1-x2] 6[yl-y2]
6[Asl-Asl] dx1l dx2 dyl dy2 dfx dfy dex dey

d(Ap’;ll) d(%z) dAas1l das2

=Ip1 [Xr §X1AplleXIy7 gyrAplreyrAsrApl]
P2 [X, gxr APZIGXIYI §YIAPZIQYIASIAPZ]

AV [64,0y,] 0[6%,6,] dx dy dfx dfy déx dey
Apl Ap2
d(pl) d(p2) das
Next the density functions are arranged to simplify
integration,

R=[ps1[As] ps2[As] dAs x [[Av([6x,6,] o[04, 6,]x
Jprl[Apl]DPZ[Apz]
[ [[oxi[%, 8xs APy, Ox] Px2 [X, Exs AP,/ 6x] Ax AL, |
[ [Joy1ly 8y, AP;, 651 Py2ly, By, AP,, 651 dy AT, |
() o[ 2) a0.ao,
The two inner transverse integrals,

J.J.pxl [xl §x1 Ap]_/ex] Px2 [xl §x1 Apzlex] dx dlgx
pryl [YI gyrAp]_rey] py2 [YI gyrAp2/ey] dlY dlgy

are evaluated first.
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These two integrals are symmetric. Only one needs to be
evaluated, and the other can be obtained by transcribing
y for x. The integral we will be evaluating is,

prxl [X, gxr Aplrex] Px2 [X, gxr Apzrex] dx dlgx

1
T an? exl ex2 j

J‘E (x—Dxl A;';11)2+ (axl (x—Dxl App;ll) +Bx1 (62—x+§x—Dpx1 A:;ll))
Xp [ -

2

2 oxpB12

p2 P2

(x—Dx2 £)2+(ax2 (x—Dx2 APL:)+Bx2 (—ez—x+§x—Dpx2 ﬂ))z ]
2 oxp2?
dx dfx

where both wvariables are evaluated from -o to +w.
The integral over x is of the form,

fExp[ax x%+b, x +cx] dx

This integral has the solution,

= _ bx?
- Exp[ 4ax+cx]

The coefficients a,, by, and c, are obtained by setting the

argument of the exponential equal to a, x?+b, x +cx and
comparing coefficients of like powers.

ay X?’+b, X +Cyx=

ap1) 2 Apl Ox apl ) | 2
_ (x_Dxl P—l) +(0lx1 (X—Dx1 P_1)+/5x1 (7+§x-Dx1’ P—l))

2 O'x/_;lz

Ap2 | 2 Ap2 6, , Ap2\)2
= + - =+ -—=+8x-
p2 ) (ze (X Dx2 p2 ) sz ( 2 gx Dx2 p2

2 O'x322

This yields,
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1 ax1? 1 ax2?

ax=-— - = -
X7 2 oxp1? 2 oxp1® 2 oxp2® 2 oxp2?
_ Dxl Apl  Dxl axl® Apl
x pl oxp1? pl oxp12
Dpxl Apl ex _Dpx2 Ap2 _s_x
_axl Bx1 (_—pl +8x+ 2) _ax2 Bx2 ( ~ Yz +8x 2)
cprl2 c:;x/322

Dx2 Ap2 Dx2 ax2? Ap2
p2 oxp22 p2 oxp22

Dx1? Apl2 Dx1? ax1? Apl2
2 p1? oxp1? 2 pl1? oxp1?

Cx=

Dxl axl Bxl Apl (-EE%f££+§x+%?) Dx2 ax2 Bx2 Ap2 (-EE%jEE+§x-%§)
+

+ 2 2
Pl oxBl P2 oxfp2

Dx2? ApZ2 Dx2? ax2? A1:>22

2 p2? oxp2? 2 p2? oxp2?

2 Dpxl Apl ox |2 2 Dpx2 Ap2 ox \ 2
- +Cx+ — - +fx-—
Bx1l ( o1 Ex > Bx2 = gx 2

2 oxp1? 2 oxp2?
These cumbersome coefficients can be simplified by using
Bx1i ¥x1=1+041%> and defining the quantities below.
The y—-dimension counterparts are obtained by transcribing
y for =x.
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YYPX =

aapx

aoamx

yxl  yx2
Texl ex2’
_oxl  ox2
Texl ex2'’
_oxl _ox2
_exl_ex2’

Dtwxl=axl Dx1l+fBx1l Dpxl;
Dhatxl =Dxl1 yxl+axl Dpxl;

Djx1

Dtwx2=ax2 Dx2+Bx2 Dpx2;
Dhatx2 =Dx2 yx2+ax2 Dpx2;

Djx2

YYPY

aapy

aomy

_ Yyl  yy2
_eyl ey2'
_ayl, ay2.
T eyl ey2'
_ayl_ay2.
eyl ey2’

Dtwyl=ayl Dyl+Byl Dpyl;

Dhatyl =Dyl yyl+ayl Dpyl;
Dpyl Dtwyl+Dhatyl Dyl;

Djyl

Dtwy2=ay2 Dy2+By2 Dpy2;

Dhaty2 =Dy2 yy2+ay2 Dpy2;
Dpy2 Dtwy2+Dhaty2 Dy2;

Djy2

giving,

ax

bx =

CcX

Dtwxl
" WX

exl

Bxl
2 ex1

L
-3 Y¥PX

(
(

ox
§x+2

Dhatx1
exl

Apl
pl

Djx1
2 exl

(

(§x+

Apl
pl

)
)2

ex
2

) +

;
(

Apl
pl
Bx2_
T 2ex2

ex2

Djx2
2 ex2

) +

Dhatx2

(

(

Ap2
P2

P2

Dtwx2
€ex2

Ap2

Dpxl Dtwxl+Dhatxl Dx1;

Dpx2 Dtwx2+Dhatx2 Dx2;

-
g

(ex-

ex
2

)

(ex-5)°
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ay = - YYPy

Dhatyl Apl Dhaty2 Ap2 oy
= — | |+—— |/ - - -
by eyl ( pl ) ey2 P2 aapy Cy aomy 2
oy = _Divi (apl 2 pjy2 [ap2)?2
Yy = 2 eyl pl 2 ey2 p2
Dtwyl e Apl Dtwy2 [2) Ap2
$20L (g, ) (LBL) DOMY2 (py_Ov) (2B2
yl 2 pl ey2 2 P2
Byl oy\2_ _By2 ey 2
2 eyl (§ + 2 ) 2 ey2 (gy 2 )

The integral now looks like,

1 I IExp[—f’aix+Cx] dgx

2
4 1% €x1 Ex2 -ayx

Similar to before, the argument of the exponential is a
quadratic. Three new coefficients d,, ey, and f,
are obtained from,

b2
dx§xz+ex§x+f;=—zir+cx
X

And we have,

1 2
472 ey ex \/ _nTx fExp[dx Cx“+eyx §x+fx] dgx

which yields,

1 bisa ex?
4 712 exl ex2 (-ax) (-dx) Exp[_4 dx+fx] -

The new coefficients d,, e,, and f, are simplified by
introducing the following quantities.

ay, by, ¢y, dy,, e,, and f, are obtained

by replacing all x with y in

the a,, by, cx, dx, ex, and £,

coefficients.
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Bx2
ex1 *ex2 ’
pxl _px2
exl - ex2 ’

BBpx=
BPRmx=
aapx

rApx=BBpx- 2% ;

aomx? |
TAmx=pBpx- ww—;

_ _ aomx aapx
I'Bx=33mx E——
Tpxl=Dtwxl - Dhatxl aapx

pxi= YYPX !
Tox2 =Dtwx2 - Dhatx2 aapx
pxz= Y¥px !

Dh 1
IImx1=Dtwx] - 2hatxl aamx .
YYPX
Dhatx2 aamx

Imx2=Dtwx2+ ——;
Y¥px

Dhatx1? .
—==%—_Dix1;
YYpPx €xl
Dhatx22

YYPX €x2

DJx1l:=

DJx2:= -Djx2;

B 2
BBpy="2L1+ 2

_ yl By2 |
BBmy= oyl ey2’

TApy=BBpy- L‘; ;

aamy?

T'Amy=BBpy- p—
I'B m aamy aapy .
y=BBmy-— """

_ _ Dhatyl aapy .
Ipyl=Dtwyl ey
Dhaty2 aapy .

ey
_ _ Dhatyl aamy
Imyl=Dtwyl R

_ Dhaty2 aamy

Hmy2-thy2+——7§ET——,

Ipy2=Dtwy2-

Dhatyl 2
YYpYy €yl
Dhaty2 2
YYPY €y2

DJyl:= -Djyl;

DJy2:= -Djy2;

and are written as,
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1
dx = - > TApx
Npxl Apl Npx2 Ap2 <]
ex = Dpxl (Apl) mpx2 (Ap2) oo ox
exl pl ex2 P 2
Fx - Dixi (ap1)\? poxz (ap2)?
T 2ex1 \ p1 2ex2 | p2
+ Imx1 Apl 6x _ Imx2 Ap2 ex
exl pl 2 ex2 P2 2
+ Dhatxl Dhatx2 Apl Ap2 _ TAmx x2
Yypx €xl ex2 pl P2 2 4
1
dy = -5 I'Apy
TIpyl Apl Mpy2 Ap2 oy
ey = 2 (E=) B [(ZE2) 1Ry X
y eyl ( pl ey2 P2 y 2
£ _ DJdyl Apl 2+ DJy2 Ap2 2
Yy =3 eyl | p1 2ey2 |\ p2
+ Tmy1l Apl 6y Imy2 Ap2 ey
eyl pl 2 ey2 P2 2

+ Dhatyl Dhaty2 [ Apl Ap2 TAmy 6y?
YYPY €yl ey2 pl P2 2 4

The integral for the rate now looks like,

Ipsl [AS] Ps2 [AS] das x
Javiex, 6,1 o[6x, 6]

o] |

ey? Ap Ap
] a[2) o[ ) o sn,

APy 1 Pi [
ppl[ pl ] pp2[ ] [ 4 7% exl ex2 (-ax) (-dx) Exp

[ 1 pisa Ex [_
4 7% eyl ey2 (-ay) (-dy) P

1 2 2
T 32n%exl ex2 eyl ey2 pl opl p2 op2 \/Abs[(ax) (dx) (ay) (dy)]

Ipsl [AS] Ps2 [AS] das
fAv[ex,ey] 0[6x,6y]

Apl2 1 Ap2® ex? ey?
IJE p o1? _20p22 o2 -2 dx+fx—‘1 dy+fy]
4Py 4py
d( pl ) d( p2 ) de doy
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The next integration is over Apl and Ap2,

-1 ﬂk_ o’ ey’ Apy
J~J~Exp[ 2012 P1 20p% p2? 4 d +Ex- 4 4y +f]p1p2 dl( Pl)dl(

The argument of the exponential is of the form,

o 2 5 (2 o (2 s 2] 03 (2) (82)-

The coeffficients are found by comparing like terms,

2 2
sp; 4p, sp; 8pp ), (2B} (282, =
gpl(Pl) +gp2(P1) +hp1(P1)+hp2(P2)+l (Pl) (P1)+J_

1 Ap,?

S Y- SV
20p12 p12 20'p2 x

Sy
2 P22 4 d, 4 4,

+£y

The dAp, dAp, integral now looks like,

[ Joeelams (32) vz (22)omen (1) ome2 (21 ()

which has the solution,

27 pl p2 Ex p[ gp2 hpl?+gpl hp2?-hpl hp2 i-4 gpl gp2 j+i2 j]

_i2
,4gplng:|. 4 gpl gp2-i

The new gp1,9p2,Bp1,hp2,1,j terms are simplified by
introducing the following quantities,
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m1 .o Dxl DIyl _ mpxi’® npy1? 1
ST ex1 eyl rapx exl®? TApy eyl®? opl?
=2 = DJx2 + DJy2 + l'Ipx22 1'Ipy22 1.
e ex2 ey2 T'Apx ex2? T'Apy ey22 erZ2 !
Imxl I'Bx IIpxl
rmx]= Imxl _ ZBX TPX- .
exl TApx exl’/
Imyl TBy Ipyl
Tmyl= - 2 IRV
Y eyl TApy eyl '’
_ Omx2 TBx Ipx2
ZPXZ— ex2 TApx ex2 '
Imy2 TBy IIpy2
spy2= "2, LBy Tpv2 .
14 ey2 TApy ey2 '
Ty = Dhatxl Dhatx2 + Dhatyl Dhaty2 Ipxl IIpx2 Npyl Ipy2
B Yypx €xl ex2 YYPY €yl ey2 T'Apx e€xl ex2 TApy eyl ey2
I'Bx?
STx=TAmx- ——;
T'Apx
T'By?
Zl'y=TAmy- ——;
y Y= Taoy i
and so the coefficients for the Ap, and Ap, integration are,
1 [~
gpl = > =1
1 [
gp2 = Y =2
[
hpl _ (Z‘.mxl (62_x +Zmyl (?y )
[<) [2)
hp2 _ - (Z‘.pxz (7) +Zpy2 (7) )
i=xz=
A (e_x)Z_ZPy (6_y)2
] = 2 2 2 2
The integral for the rate, having so far integrated with

respect to x, &, £y, Ap;, and Ap,, now looks like

Y,

1 72 72 4 72 pl? p2°
Abs[ (ax) (dx) (ay) (dy) (4 gpl gp2-i?)]

T 32 75 exl ex2 eyl ey2 pl opl p2 op2

JPs1(8s) psz (8s) das [ [av(ex, 6y) o(ex, 6y)

2 hpl?+gpl hp2?-hpl hp2 i - 4 gpl gp2 j+i? j
Exp[—gp pl°+gpl hp2°-hpl hp - gpl gp2 j :’]dlexdley
4 gpl gp2-i

The argument of the exponential is of the form,

kOx 6x2+k6y 6y2+l ox ey=_ng hpl®+gpl hp2®-hpl hp2 i - 4 gpl gp2 j+i% j
4 gpl gp2-i?
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where, as before, k6x, k6y, and 1 are found by
comparing like powers.

No additional terms are defined to simplify the kex, koy,
and 1 coefficients. They are found to be,

kOx:= -1 E2 smx1°+E1 Zpx2°+El E2 EI'x+2 Zmxl Zpx2 IX-EI'x Zx?
T8 El E2-3x2
1 =2 smyl®+=21 spy2%+E1 H2 =Ty+2 Smyl Spy2 S5-3Iy =n?
kox:= -% y Py y y
: 8 Bl E2-3232
1 _ 1 E2 Zmxl Imyl+E1 Zpx2 Ipy2+Imyl Zpx2 ZX+Imxl Ipy2 I3
T T4 El E2-52

At this point we hold off from integrating over 6x and 6y.
The relative velocity and cross-—-section may depend on those
variables. We have,

R= 1 72 72 4 72 pl1? p2?
T 32 55 exl ex2 eyl ey2 pl opl p2 op2 Abs|[ (ax) (dx) (ay) (dy) (4 gpl gp2-i?)]
[ps1(As) ps2 (8s) das [[Av (6, 6,) 0 (6, 6y)
EXP [ kox Ox*+koy 6y%+1 6, 6y] dO, d6,

The As term is easily integraged,

1

—L — Ex [ ]
V2 Os1 p 2 051 V2 Os2

1
'2naﬂ%2 xp[ ]dAs

_ 1 N2 &

2 7w Og1 Os2

fpsl [As] ps2[As] dlAs:j

2 0'51 2 052

2 7r(0512+0522)
After evaluating the As term, the rate becomes,
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1
T 32 55 exl ex2 eyl ey2 pl opl p2 op2

72 7?2 4 72 pl? p2®
Abs| (ax) (dx) (ay) (dy) (4 gpl gp2-i?) 2 (os1®+0s2?)]

[[Av(64,0y) 0(6x,08y) Exp[kox Ox%+key 6,%+1 6, 6,] dO, dO,
We now assume that Av(64,6,) and o0(6x,6,) depend only on

the total angle 4/6,%+6,% and not on the 6, and 6,

components separately. We introduce two new
variables, p and v,

6x=\Vp cos v

6y =‘V;r sin v

dpdv
2

X= \/ exz"'eyz =Vp

Giving,

de, de, =

1
T 64 75 exl ex2 eyl ey2 pl opl p2 op2

272 452 p1? p22
Abs| (ax) (dx) (ay) (dy) (4 gpl gp2-i?) 2 x (osl®+0s2?)]
2
F Lo VR o[ V7]

Exp [p (kex (cosv)?+key (sin v)2+1 (cos v sin v))]dvdp
The integral can be simplified,

I:LZHAV[\/;] o['\/?] Exp [,o (kex(COSV)Z—key (cos v)?
+koy (cos v)Z+key (sin v)2+1 (cos v sin v))]tivdp
I:I:"AV[\/F] G[N/F]

Exp [0 ((kex—key) (cosv)2+key+17 (sin 2v))] dvdp
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I:LZ"AV:\/F: G:W/F:

Exp[p (key: (ks"—;kei) (cos 2v +1)+17 (sin 2v))]dvde
_[:’f:"Av:W/F: 0:\/7:

Exp[§ ((kox+koy) + (Kex-key) cos 2v+l sin 2v)] dvde
K7 av[Ve | o[ Ve | Exp[2 ((kextkey) ]

Exp[§ (1 sin 2v +(kex-key) cos 2v)] dvdp
K av[Ve | o[Ve | Exp[2 ((Kextkey) ]

Exp[§ ('\/12+(k6x—k6y)2 sin[2 v+¢])] dv do

_[;”Av[«/F] o[«/?] Exp[2 ((kextkey)] [

Exp [§ \/12+ (kox-koy) %2 cos[2 v+o] ] dv dp

where

Kox-koy

V 12"' (kex_key) 2 ]

The integration over v can be written as,

J‘Z 7
0

where

¢

arcsin[

Y

Exp[g D1 sin[2 v+¢]] dv,

D1 = '\/12+(kex—k9y)2 .
The following identity for the modified Bessel function
becomes useful,

D1)—i

T2

IO(E :"Exp[g-Dl cos[2v+¢]] dv.

Usng this identity simplifies the integral to,

27rj:Av[«/F] o[«/?] Exp[2 ((kex+koy) ] 10[§ A 12+ (Kox-koy) 2 ] do

213



where Vp =x is the angle between the two colliding
particles.

The equation for the rate becomes,

27
64 7n° exl ex2 eyl ey2 pl opl p2 op2

R =

72 72 472 pl? p2?
Abs| (ax) (dx) (ay) (dy) (4 gpl gp2-i?) 2 7 (0s1®+0s2?)]
Fav[¥7] o[ V7]

Exp[2 (Koxtkoy) ] To[2 12+ (kox-koy)? | do

Simplifying the factors yields,

1

R =
16 V2 mwVm exl ex2 eyl ey2 opl op2

1
\/ Abs| (ax) (dx) (ay) (dy) (4 gpl gp2-i?) (os1®+o0s2?)]
Fav[V] a[v2]
\/12 kox-key) 2
Exp[p ke"—;kez] BesselI[O,p M] dp

2

Unless something is known about about the relative
velocity Av and cross-section o, we are done. The above
equation is exact. It gives the rate at which events whose
cross—-section is o occur between particles in two
overlapping beams at different energy. Generally,

the integral must be evaluated numerically. First, we
assume that Av and o are independent of p. This is done
to aid double-checking the integration performed above.
We pull Av and o out of the equation derived by Piwinski,
and in the limit that the properties of beam 2 match
those of beam 1, our equation should give the same
number as Piwinski’s equation.
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We go back to the expression for the rate before p and v
were introduced,

1
32 7° exl ex2 eyl ey2 pl opl p2 op2

R =

272 472 p1? p22
Abs[ (ax) (dx) (ay) (dy) (4 gpl gp2-i%) 27 (osl®+o0s2?)]

[[aviex, 6,1 o[64, 6,1 Exp[kex Ox2+koy 6,2+1 Oy ey] de, de,

1
32 7% exl ex2 eyl ey2 pl opl p2 op2

72 72 472 pl? p2?
. 2 2 AV o
Abs|[ (ax) (dx) (ay) (dy) (4 gpl gp2-i2) 27 (os1l®+0s2?)]

JT Exp[kex ex?+koy oy?+1 6ex ey] dex dey
and solve the integral,
[[ Exp[kox 6x°+key 6,%+1 6, ©,] do, de,

The solution is,

2 7

\/4 k6y kox-12

Giving a rate,

_ 1
T 32 75 exl ex2 eyl ey2 pl opl p2 op2

\/ 72 2 472 pl? p2® 4n?
Abs[ (ax) (dx) (ay) (dy) (4 gpl gp2-i?) 2 x (os1®+0s2?) (4 key kex-17)]

Avo

This can be simplified a bit to yield,

R= L
8V2 nVn exl ex2 eyl ey2 opl op2

1
A
\/ Abs[ (ax) (dx) (ay) (dy) (4 gpl gp2-i?) (os1®+0s2?) (4 key kex-12)] ] ve
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Numbers are plugged in notebook one_beam.nb. The
two equations do indeed agree.The equation for
the velocity is,

(*x= \/ ex2+9y2 =W*)

V5 ] w3 [Vo o [V ]

where
vj['\/F] :=M (E1+E2) Sin[w/F]
vl['\/_] (322 E2-B12E1+B1 B2 (E1-E2) Cos['\/_])

p:=5-Abs[p1+p2

where El1 and El1 are the energies of beam 1 and beam 2,
and Bl and 32 are the relativistic B of beam 1 and beam 2.

The integrand decay’s exponentially in p, so small angle
approximations on the formulas for the velocity are
justified. Approximating sin and cos yields,

vj[‘\/F] :=M (E1+E2) Vo
vl['\/_] == (B2? E2-B12E1+B1 B2 (E1-E2))
ZL (B2-B1) (B2 E2+B1l E1)

p: [p1+p2

Plugging these expressions into AV[V[)] yields,
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Av[w/?];:
\/Vj[\/g]zwl[ﬁ]z -

\/((i (B2-B1) (B2 E2+B1 E1))2+(% (E1+E2) ‘/3)2)

“2r \ (B2-B1)2 (B2 E2+B1 E1)2+p22 1% (E1+E2)% p

+0

_ B2 Bl (E1+E2) (B2-B1)2 (B2 E2+B1 E1)?
- 2p B22 B12 (E1+E2)?2

To simplify the expression, introduct two new definitions,

_ B2 Bl _(E1+E2)

==

(B2-B1)2 (B2 E2+B1 E1)2
B22 B12 (E1+E2)?

Av['\/;] :=cl Vec2+p

cl

c2=

Note that in the 1limit E1 = E2 Piwinski’s
expression for the relative velocity is obtained,

Av['\/?] 1= B’ (2E1) VO0+p

2(%Absﬁ1&3”

2
- Bl® (2 E1) m
\/(p12+p12+2 pl2 cos \/F)

281 pl ¢
== Vp
'\,4 pl v_

= BL c Vo

Note that our expression NG; is the angle between the two
particles, whereas Piwinski’s x is half the angle.

Now plug the expression for the velocity into the

rate equation,
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1
16 V2 nVr exl ex2 eyl ey2 opl op2

1
cl
\/ Abs| (ax) (dx) (ay) (dy) (4 gpl gp2-i?) (os1®+os2?)]

J12.
Jmo['\/_] MEXP[D kox+ key] BesselI[ L (kex “koy)® ] dp

Next we introduce two cross sections. The first, ol, is
the cross-section for scattering events that exchange
longitudinal momentum between the two particles,
resulting in one particle being kicked above an

aperture AE, or below an aperture AE.. o0l is independent
of p. The second, 02, is the cross-section for
scattering events that transfer transverse momentum to
longitudinal momentum, kicking one particle above an
aperture AE, or below an aperture AE.. 02 depends on p.

D(2-D)

2
c:1="7+e2 (§ (3-2-%) vog[ZR]-De1+ (14 3)" (F2E ))
2E2E1 OR D: 2E1E2

(AEQ 1)=E1-E:E2-EL-EZ g

(AEO 2) —E2- E1+E2 EZ;El >0

cZ—"re 3-2._ Lo [ ] -B+1+ 1+—-2 LL—I)
7 BZ B4 g B2
B: = —AE.-(AEO 1) AE,- (AEO 1) -AE_+ (AEQ 2) -AE, + (AEO 2)
T2 yc Be ¢ pperp 2 yc Bc c pperp 2 yc fBc c pperp 2 yc fc c pperp

In both equations, y and 8 are the relativistic factors of
the particles in the center of momentum frame.

¥c and fBc are the

relativistic factors of the center of momentum frame.
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