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The defining metric for any wireless communication network is the maximum

reliable data rate, also known as capacity. Before any data bit can be commu-

nicated over a wireless channel, information about the network state such as

connectivity, channel statistics, or channel gains, is required. Receiver nodes

feed such information back to other wireless nodes using feedback channels

and feedback mechanisms. Considering the role of feedback makes the char-

acterization of the network capacity a daunting theoretical task. As a result,

researchers have overwhelmingly simplified the feedback channels to come up

with tractable models. Specifically, it has commonly been assumed that feed-

back channel has infinite capacity and has no delay. While these assumptions

could be justified for small, static, or slow-fading networks, they are not viable

in the context of large-scale, mobile, or fast-fading wireless networks. In fact,

feedback channel is low-rate, unreliable, scarce, and is subject to delay. The

recent dramatic increase in wireless data traffic, caused by the success of on-

line media streaming and the proliferation of smart phones and tablets, obliges

researchers to understand the capacity of large-scale mobile networks. Thus,

given the limited, scarce nature of feedback channels, future progress in wire-

less data communications crucially depends on a deeper understanding of the

impact of feedback on the capacity of wireless networks.

In this work, we aim to adjust the assumptions on feedback channels in



a way to open doors to better understanding of real world, large-scale wire-

less networks. In particular, wireless networks are considered with rate-limited

feedback links, with outdated channel state information, and with local views

of the network state.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent years have seen a dramatic increase in the wireless data traffic, caused

by the success of online media streaming services and the proliferation of smart

phones, tablets, and netbooks. Several new advances such as fourth-generation

(4G), LTE, and fifth-generation (5G) digital wireless standards have facilitated

the data traffic in wireless networks. However, given the scarcity of wireless

spectrum, the task of supporting the ever-increasing demand has become quite

challenging and demands new innovations. The only solution, seems to be

to exploit a much denser spatial reuse of the spectrum, by considering new

paradigms in wireless communications such as heterogeneous networks and

device-to-device communications.

Heterogeneous networks are created via the deployment of several low-

power nodes such as pico stations, femto stations and relays, besides the ex-

isting high-power base station infrastructure. In this organically-grown multi-

flow multi-terminal setting, interference becomes the dominating bottleneck

for network capacity improvement. Similarly, device-to-device communication,

while offering improvements in network coverage and quality of service, comes

at the price of higher interference generation. Thus, interference management is

of significant importance to the performance of wireless networks. As a result,

the key to increase the performance of any wireless network is to maximize the

operational efficiency by optimally using available spectral using interference

management techniques.
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In order to perform any interference management technique, wireless nodes

need to acquire some information about the network status such as network

connectivity or topology, and the channel gains associated with wireless links.

The task of providing wireless nodes with network information is quite chal-

lenging due to the dynamic state of the networks, i.e. node and environmental

mobility. Mobility leads to significant changes in network topology, network

connectivity, and per-link channel gains at different time-scales. The constant

flux in the state and in the available resources has made the problem nearly in-

tractable. Hence, the question to be answered is, how should nodes choose their

transmission and reception parameters to maximize the global network objec-

tive of maximal network efficiency based on imperfect knowledge of the network

dynamics?

Although distributed decision making is a well known area and has been

studied by many researchers, modeling and understanding the fundamental

capacity limits of wireless networks with imperfect state knowledge is an un-

touched area. While development of network protocols is many decades old,

fundamental results to bound the performance of distributed decision making

are basically non-existent and most of the works in network information theory

have been done on the case of fully coordinated nodes. Therefore, our motiva-

tion is to develop information-theoretic foundations for distributed decisions in

wireless networks which lead to the design of future wireless networks. There

are many challenging, yet promising directions left open in front of us and we

will try to develop some guiding principles, which will have a direct impact on

the design of future wireless networks.

In order to understand the fundamental limits of communications when
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global network dynamics are not available, we consider four main directions:

(a) Communication with Delayed Channel State Information: In this case,

we take into account the delay at which network dynamics are tracked

at each node. This direction provides a suitable guideline for fast-fading

wireless networks. We discover new coding opportunities in wireless net-

works and we develop a framework to describe how these opportunities

should be combined in an optimal fashion. We also develop novel tech-

niques to derive outer-bounds and to prove the optimality of our trans-

mission strategies.

(b) Capacity results for Gaussian Networks with Delayed Channel State In-

formation: In the first direction, while we study the delay in distributed

setting, we limit ourselves to a simple on-off channel model. To show the

practicality of our results, we consider a two-user multiple-input single-

output broadcast channel with delayed channel state information, and we

derive a constant-gap approximation of the capacity region for this prob-

lem.

(c) Communication with Local Network Views: In this direction, we focus

on the role of local network knowledge on network capacity and the asso-

ciated optimal transmission strategies. We propose a new tractable frame-

work that enables us to understand how to manage interference and how

to optimally flow information with only local network views. This direc-

tion provides a suitable guideline for large-scale wireless networks where

learning the entire network knowledge creates significant overhead.

(d) Communication with Rate-Limited Feedback Links: In this direction, we

focus on the feedback links as they play a central role in learning algo-
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rithms. In the previous directions, while we have considered several con-

straints, we always assumed feedback links have infinite capacity. How-

ever, as expected, such assumption does not hold in practice and careful

consideration is needed when feedback links have limited capacity.

1.2 Prior Work

As emphasized previously, to perform any interference management technique,

wireless nodes need to acquire some information about the network status such

as network connectivity or topology, and the channel gains associated with

wireless links. This information has to be obtained via feedback mechanisms

and feedback channels. Therefore, there is no surprise to see a large body of

work on the role of feedback in wireless networks. In fact, the history of study-

ing the impact of feedback channel in communication systems traces back to

Shannon and in [47], he showed that feedback does not increase the capacity of

discrete memoryless point-to-point channels. Ever since Shannon’s work, there

have been extensive efforts to discover new techniques that exploit feedback

channels in order to benefit wireless networks.

First efforts on understanding the impact of feedback channels were focused

on the slow-fading channels in multi-user networks where feedback links where

utilized to provide transmitters with knowledge of previously transmitted sig-

nals. In particular, it was shown that in multi-user networks, even in the most

basic case of the two-user memoryless multiple-access channel [20, 39]. Hence,

there has been a growing interest in developing feedback strategies and under-

standing the fundamental limits of communication over multi-user networks
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with feedback, in particular the two-user interference channel (IC) (see [23, 31–

33, 45, 50, 53]).

However, in today’s wireless networks, a more important objective in uti-

lizing feedback channels is to provide the transmitters with the knowledge of

the channel state information (CSI). In slow-fading networks, this task could

have been carried on with negligible overhead. However, as wireless networks

started growing in size, as mobility became an inseparable part of networks, and

as fast-fading networks started playing a more important role, the availability

of up-to-date channel state information at the transmitters (CSIT) has become

a challenging task to accomplish. Specifically, in fast-fading scenarios, the co-

herence time of the channel is smaller than the delay of the feedback channel,

and thus, providing the transmitters with up-to-date channel state information

is practically infeasible.

As a result, there has been a recent growing interest in studying the effect

of lack of up-to-date channel state information at the transmitters in wireless

networks. In particular, in the context of multiple-input single-output (MISO)

broadcast channels (BC), it was shown that even completely stale CSIT (also

known as Delayed-CSIT) can still be very useful and can change the scale of the

capacity, measured by the degrees of freedom (DoF) [35]. A key idea behind

the scheme proposed in [35] is that instead of predicting future channel state

information, transmitters should focus on the side-information provided in the

past signaling stages via the feedback channel, and try to create signals that

are of common interest of multiple receivers. Hence, we can increase spectral

efficiency by retransmission of such signals of common interest.

Motivated by the results of [35], there have been several results on the impact
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of delayed CSIT in wireless networks. This includes studying the DoF region of

multi-antenna two-user Gaussian IC and X channel [25, 68], k-user Gaussian IC

and X channel [2, 37], and multi-antenna two-user Gaussian IC with Delayed-

CSIT and Shannon feedback [52, 70]. In particular, the DoF region of multi-

antenna two-user Gaussian IC has been characterized in [71], and it has been

shown that the k-user Gaussian IC and X channels can still achieve more than

one DoF with Delayed-CSIT [1, 37] (for k > 2).

1.3 Contributions

1.3.1 Communication with Delayed Channel State Information

In wireless networks, transmitters obtain the channel state information (CSI)

through feedback channels. A fundamental consideration for feedback chan-

nels is that they are subject to delay. While for networks with slow mobility,

gathering and utilizing channel state information within the coherence time of

the network is plausible, it becomes daunting as the mobility and size of the

network increase (e.g., millisecond time-scale coherence time). Hence, in fast

fading scenarios, transmitters can no longer rely on up-to-date CSI. We would

like to study how delayed channel state information at the transmitters (CSIT)

can be utilized for interference management purposes in wireless networks.

In prior work, Maddah-Ali and Tse [35] showed that in broadcast channels

delayed channel state information is very useful and can change the scale of

the capacity, measured by the degrees-of-freedom (DoF). We would like to un-

derstand the potential of delayed CSI, in the context of interference channels
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(distributed transmitters). Consider the network in Figure 1.1(a), in which two

transmitters, Tx1 and Tx2, are interfering with each other. We focus on a specific

configuration, named the two-user Binary Fading Interference Channel (BFIC)

as depicted in Fig. 1.1(a), in which the channel gains at each time instant are

either 0 or 1 according to some distribution. The input-output relation of this

channel at time instant t is given by

Yi[t] = Gii[t]Xi[t] ⊕Gīi[t]Xī[t], i = 1, 2, (1.1)

where ī = 3 − i, Gii[t],Gīi[t] ∈ {0, 1}, and all algebraic operations are in F2.

We define the channel state information at time t to be

G[t] 4= (G11[t],G12[t],G21[t],G22[t]). (1.2)
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No-CSIT

Instantaneous-CSIT

Delayed-CSIT

(b)

Figure 1.1: (a) The two-user binary fading interference channel, and (b) the ca-
pacity region for three architectures.

As the main motivation, we study the two-user BFIC as a stepping stone

towards understanding the capacity of more complicated fading interference

channels with Delayed-CSIT. Lately, the linear deterministic model introduced

in [7], has been utilized to bridge the results from deterministic networks into

Gaussian networks (e.g., [7, 8, 11, 12, 46, 50, 59]). In the linear deterministic
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model, there is a non-negative integer representing the channel gain from a

transmitter to a receiver. Hence, one can view the binary fading model as a

fading interpretation of the linear deterministic model where the non-negative

integer associated to each link is either 0 or 1. Furthermore, as demonstrated

in [63], the binary fading model provides a simple, yet useful physical layer ab-

straction for wireless packet networks in which whenever a collision occurs, the

receiver can store its received analog signal and utilize it for decoding the pack-

ets in future (for example, by successive interference cancellation techniques).

We consider three models for the available channel state information at the

transmitters:

(a) Instantaneous-CSIT: In this model, the channel state information Gt is

available at each transmitter at time instant t, t = 1, 2, . . . , n;

(b) No-CSIT: In this model, transmitters only know the distribution from

which the channel gains are drawn, but not the actual realizations of them;

(c) Delayed-CSIT: In this model, at time instant t, each transmitter has the

knowledge of the channel state information up to the previous time instant

(i.e. Gt−1) and the distribution from which the channel gains are drawn,

t = 1, 2, . . . , n.

We fully characterize the capacity region of the two-user BFIC under the

three assumptions where

Gi j[t]
d
∼ B(p), i, j = 1, 2, (1.3)

for 0 ≤ p ≤ 1, and we define q = 1 − p.
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The capacity region for three assumptions on the available channel state in-

formation at the transmitters is shown in Figure 1.1(b). The most challenging as-

sumption is Delayed-CSIT where transmitters only become aware of CSI when

it is already expired. In this scenario, we introduce and discuss several novel

coding opportunities, created by outdated CSIT, which can enlarge the achiev-

able rate region. In particular, we propose a new transmission strategy, which

is carried on over several phases. Each channel realization creates multiple cod-

ing opportunities which can be exploited in the next phases, to improve the rate

region. However, we observe that merging or concatenating some of the opportu-

nities can offer even more gain. To achieve the capacity region, we find the most

efficient arrangement of combination, concatenation, and merging of the oppor-

tunities, depending on the channel statistics. This can take up to five phases of

communication for a two-user channel. For converse arguments, we start with

a genie-aided interference channel and show that the problem can be reduced

to some particular form of broadcast channels with Delayed-CSIT. We establish

a new extremal inequality for the underlying BC, which leads to a tight outer-

bound for the original interference channel. The established inequality provides

an outer-bound on how much the transmitter in a BC can favor one receiver to

the other using Delayed-CSIT (in terms of the entropy of the received signal at

the two receivers).

The detailed discussions and proofs in this direction can be found in Chap-

ter 2, and [62, 63, 65, 67].

9



1.3.2 Capacity results for Gaussian Networks with Delayed

Channel State Information

In the first direction, while we study the delay in distributed setting, we limit

ourselves to a simple on-off channel model. To get closer to real world settings,

we consider the two-user multiple-input single-output (MISO) complex Gaus-

sian broadcast channel (BC) as depicted in Fig. 1.2. At each receiver, the received

signal can be expressed as follows.

y1[t] = h>[t]x[t] + z1[t],

y2[t] = g>[t]x[t] + z2[t], (1.4)

where x[t] ∈ C2×1 is the transmit signal subject to average power constraint P,

i.e. E
[
x†[t]x[t]

]
≤ P for P > 0. The noise processes are independent from the

transmit signal and are distributed i.i.d. as zk[t] ∼ CN(0, 1).

We focus on the impact of delayed CSIT at finite SNR regime, as opposed

to prior works on the asymptotic DoF analysis. While there is strong body of

work on the broadcast channels with perfect channel state information (see [40,

72, 73]), no capacity result has been reported for the delayed CSIT scenario.

Figure 1.2: Two-user Multiple-Input Single-Output (MISO) Complex
Gaussian Broadcast Channel.

We provide a constant-gap approximation of the capacity region of the two-

user MISO BC with delayed CSIT. We obtain an achievable scheme and an outer-
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bound on the capacity region, and analytically show that they are within con-

stant number of bits, for all values of transmit power. The detailed discussions

and proofs in this direction can be found in Chapter 3, and [58, 66].

1.3.3 Communication with Local Network Views

In this case, we would like to understand the effect of local network knowl-

edge on network capacity and the corresponding optimal transmission strate-

gies. This local view can be different from node to node and can even be inac-

curate at some nodes. Figure 1.3 depicts the issue of limited view in the net-

works. We propose a new tractable framework that enables us to understand

how to manage interference and how to optimally flow information with only

local network views.

A

B

Network view 
of Node A

Network view 
of Node B

Figure 1.3: Depiction of a typical scenario, where Nodes A and B have to rely on
different partial views about the network to make their transmission
decisions.

There is a general consensus that our current understanding of networks is

so limited that attacking the problem directly is nearly impossible. Hence to

make progress, we will focus on one of the dominant issues, i.e. the role of

information about current state of the network on network capacity and the

associated optimal strategies. To capture the dominant effects of the problem,
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we propose to model a node’s view of the network with a class of distance-based

accuracy models using network coordination protocols as a source of network

state estimations.

Denote the nodes in the network as Ni. We say that a node pair (Ni,N j), is

connected if the channel state distribution is such that, the link between the two

nodes is not always in a deep fade. The network topology T, is the graph where

two nodes are connected when the channel between them satisfies the above

condition. We will consider two different models for the local view at node N.

(a) Hop-Based Model: In this setting, we use the hop-distance between node

N and link (Ni,N j), in order to figure out whether the node is aware of

the channel gain or not. This model is well suited for single-layer net-

works [4]. See figure 1.4(a) for a depiction.

(b) Route-Based Model: We will map each link (Ni,N j), to those source-

destination pairs that have (Ni,N j) in one the routes between them. We

further define the source-destination adjacency graph, P, which consists of

n nodes corresponding to the n source-destination pairs in the network.

Two source-destination pairs, (Ti,Di) and (T j,D j), are called adjacent (i.e.,

there is an edge between them in P) if there is either a route from Ti to

D j or a route from T j to Di. We can now use the hop-distance between

the source-destination pair (in P) corresponding to the node N and link

(Ni,N j). This model is inspired by learning algorithms that provide us with

knowledge about the routes in the network and it is suitable for multi-

layer networks [60]. See Figure 1.4(b) for a depiction.

One of our main objectives, is to study the loss in the network capacity due to
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(b) Route-based model for lo-
cal view.

Figure 1.4: Illustration of two different model for network state at node N.

incomplete knowledge at the nodes. In a recent work on single layer networks

with partial information [4], a novel approach has been adopted by character-

izing normalized sum-capacity in these networks, which is defined as the best

guaranteed ratio of the sum-rate with local view to the sum-capacity with full

global view at each node. We borrow this useful definition and we focus on

multi-layer networks, where source-destination pairs are multi hops away. This

significantly adds up to the complexity of the problem and therefore, the chal-

lenges we face. Our goal is to characterize normalized sum-capacity as a func-

tion of partial information available at different nodes, based on route-based

model. See Figure 1.5 for a depiction.

Figure 1.5: Normalized sum-capacity as a function of partial information
available.
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Figure 1.6: (a) An example of a two-layer network in which coding is required ,
and (b) the two-layer K × 2 × K network.

It is a well established fact that network coding is an effective technique

to increase the spectral efficiency of the networks. However, a major problem

is how to effectively exploit network coding with partial network-state infor-

mation. The problem becomes really challenging when we are dealing with

multi-commodity flows, such as the one depicted in figure 1.6(a). In our recent

works [60] and [61], we have proved that by utilizing repetition coding at the

transmitters and linear network coding at the relays, it is possible to achieve

normalized sum-rate of 1
2 , which can be shown to be the maximum achievable

normalized sum-rate with the assumption of 0-hop route-based partial informa-

tion, i.e. each transmitter is only aware of network topology and all the channel

gains of the links that are on a route to its destination. We reveal a deep connec-

tion between network geometry and optimal schemes with partial knowledge.

The detailed discussions and proofs in this direction can be found in Chap-

ter 4, and [60, 61].

1.3.4 Communication with Rate-Limited Feedback Links

Finally, there is one subtle aspect of feedback channels that seems to be ne-

glected by most researchers. In prior works, whether the feedback channel is
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used to provide transmitters with channel state information or previously trans-

mitted signals, it has mostly been assumed that the feedback links have infinite

capacity. A more realistic feedback model is one where feedback links are rate-

limited. In this direction, we study the impact of the rate-limited feedback in

the context of the two-user IC. We consider a two-user interference channel (IC)

where a noiseless rate-limited feedback link is available from each receiver to its

corresponding transmitter. See Figure 5.1. The feedback link from receiver k to

transmitter k is assumed to have a capacity of CFBk, k = 1, 2.

Tx 1

Tx 2

Interference 
Channel

X1

X2

Y1

Y2

W1

W2

W1

W2

CFB1

CFB2

N

N

N

N

Rx 1

Rx 2

Figure 1.7: Two-user interference channel with rate-limited feedback.

We focus on two fundamental questions: (1) what is the maximum capacity

gain that can be obtained with access to feedback links at a specific rate of CFB?

(2) what are the transmission strategies that exploit the available feedback links

efficiently? Specifically, we address these questions under three channel mod-

els: the El Gamal-Costa deterministic model [16], the linear deterministic model

of [7], and the Gaussian model.

Under the El Gamal-Costa deterministic model, we derive inner-bounds and

outer-bounds on the capacity region. As a result, we show that the capacity re-

gion can be enlarged using feedback by at most the amount of available feed-

back, i.e., “one bit of feedback is at most worth one bit of capacity”. We show
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that our inner-bounds and outer-bounds match under the linear deterministic

model, thus establishing the capacity region. For the Gaussian model and sym-

metric channel gains, we show that the gap between the achievable sum-rate

and the outer-bounds can be bounded by constant number of bits independent

of the channel gains. The detailed discussions and proofs in this direction can

be found in Chapter 5, and [57, 59].
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CHAPTER 2

COMMUNICATION WITH DELAYED CHANNEL STATE INFORMATION

2.1 Introduction

In this chapter, our goal is to shed light on fundamental limits of communica-

tions with Delayed-CSIT in interference channels. We consider a two-user inter-

ference channel as illustrated in Figure 2.1. In this network, the channel gains at

each time instant are either 0 or 1 according to some Bernoulli distribution, and

are independent from each other and over time. The input and output signals

are also in the binary field and if two signals arrive simultaneously at a receiver,

then the receiver obtains the XOR of them. We shall refer to this network as the

two-user Binary Fading Interference Channel (BFIC).

Tx1

Tx2

Rx1

Rx2

G11[t]

G22[t]

G
12 [t]

G21
[t]

X1 Y1[t]=G11[t]X1[t]   G21[t]X2[t]

X2 Y2[t]=G12[t]X1[t]   G22[t]X2[t]

Figure 2.1: Binary fading channel model for a two-user interference chan-
nel. The channel gains, the transmitted signals and the received
signals are in the binary field. The channel gains are distributed
as i.i.d. Bernoulli random variables. The channel gains are in-
dependent across time so that the transmitters cannot predict
future based on the past channel state information.

We fully characterize the capacity region of the two-user BFIC with Delayed-

CSIT. We introduce and discuss several novel coding opportunities, created by

outdated CSIT, which can enlarge the achievable rate region. In particular, we

propose a new transmission strategy, which is carried on over several phases.
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Each channel realization creates multiple coding opportunities which can be

exploited in the next phases, to improve the rate region. However, we observe

that merging or concatenating some of the opportunities can offer even more gain.

To achieve the capacity region, we find the most efficient arrangement of com-

bination, concatenation, and merging of the opportunities, depending on the

channel statistics. This can take up to five phases of communication for a two-

user channel. For converse arguments, we start with a genie-aided interference

channel and show that the problem can be reduced to some particular form of

broadcast channels with Delayed-CSIT. We establish a new extremal inequality

for the underlying BC, which leads to a tight outer-bound for the original in-

terference channel. The established inequality provides an outer-bound on how

much the transmitter in a BC can favor one receiver to the other using Delayed-

CSIT (in terms of the entropy of the received signal at the two receivers).

2.2 Problem Setting

We consider the two-user Binary Fading Interference Channel (BFIC) as illus-

trated in Figure 2.2 and defined below.

Definition 2.1 The two-user Binary Fading Interference Channel includes two

transmitter-receiver pairs in which the channel gain from transmitter Txi to receiver

Rx j at time instant t is denoted by Gi j[t], i, j ∈ {1, 2}. The channel gains are either 0 or 1

(i.e. Gi j[t] ∈ {0, 1}), and they are distributed as independent Bernoulli random variables

(independent from each other and over time). We consider the homogeneous setting

where

Gi j[t]
d
∼ B(p), i, j = 1, 2, (2.1)
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for 0 ≤ p ≤ 1, and we define q = 1 − p.

At each time instant t, the transmit signal at Txi is denoted by Xi[t] ∈ {0, 1}, and the

received signal at Rxi is given by

Yi[t] = Gii[t]Xi[t] ⊕Gīi[t]Xī[t], i = 1, 2, (2.2)

where the summation is in F2.

Definition 2.2 We define the channel state information (CSI) at time instant t to be

the quadruple

G[t] 4= (G11[t],G12[t],G21[t],G22[t]). (2.3)
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Figure 2.2: Two-user Binary Fading Interference Channel (BFIC). The
channel gains, the transmit and the received signals are in
the binary field. The channel gains are distributed as i.i.d.
Bernoulli random variables.

We use the following notations in this chapter. We use capital letters to de-

note random variables (RVs), e.g., Gi j[t] is a random variable at time instant t.

Furthermore for a natural number k, we set

Gk = [G[1],G[2], . . . ,G[k]]> . (2.4)

Finally, we set

Gt
iiX

t
i ⊕Gt

īiX
t
ī = [Gii[1]Xi[1] ⊕Gīi[1]Xī[1], . . . ,Gii[t]Xi[t] ⊕Gīi[t]Xī[t]]> . (2.5)
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In this chapter, we consider three models for the available channel state in-

formation at the transmitters:

(a) Instantaneous-CSIT: In this model, the channel state information Gt is

available at each transmitter at time instant t, t = 1, 2, . . . , n;

(b) No-CSIT: In this model, transmitters only know the distribution from

which the channel gains are drawn, but not the actual realizations of them;

(c) Delayed-CSIT: In this model, at time instant t, each transmitter has the

knowledge of the channel state information up to the previous time instant

(i.e. Gt−1) and the distribution from which the channel gains are drawn,

t = 1, 2, . . . , n.

We assume that the receivers have instantaneous knowledge of the CSI.

Consider the scenario in which Txi wishes to reliably communicate message

Wi ∈ {1, 2, . . . , 2nRi} to Rxi during n uses of the channel, i = 1, 2. We assume that

the messages and the channel gains are mutually independent and the messages

are chosen uniformly. For each transmitter Txi, let message Wi be encoded as

Xn
i using the encoding function fi(.), which depends on the available CSI at Txi.

Receiver Rxi is only interested in decoding Wi, and it will decode the message

using the decoding function Ŵi = gi(Yn
i ,G

n). An error occurs when Ŵi , Wi.

The average probability of decoding error is given by

λi,n = E[P[Ŵi ,Wi]], i = 1, 2, (2.6)

and the expectation is taken with respect to the random choice of the transmit-

ted messages W1 and W2. A rate tuple (R1,R2) is said to be achievable, if there

exists encoding and decoding functions at the transmitters and the receivers re-
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spectively, such that the decoding error probabilities λ1,n, λ2,n go to zero as n goes

to infinity. The capacity region is the closure of all achievable rate tuples.

In addition to the setting described above, we consider a separate scenario

in which an output feedback (OFB) link is available from each receiver to its

corresponding transmitter1. More precisely, we consider a noiseless feedback

link of infinite capacity from each receiver to its corresponding transmitter.

Due to the presence of output feedback links, the encoded signal Xi[t] of

transmitter Txi at time t, would be a function of its own message, previous out-

put sequence at its receiver, and the available CSIT. For instance, with Delayed-

CSIT and OFB, we have

Xi[t] = fi[t](Wi,Y t−1
i ,Gt−1), i = 1, 2. (2.7)

As stated in the introduction, our goal is to understand the impact of the

channel state information and the output feedback, on the capacity region of

the two-user Binary Fading Interference Channel. Towards that goal, we con-

sider several scenarios about the availability of the CSIT and the OFB. For all

scenarios, we provide exact characterization of the capacity region. In the next

section, we present the main results of the chapter.

2.3 Statement of Main Results

We basically focus on the following scenarios about the availability of the CSI

and the OFB: (1) Delayed-CSIT and no OFB; (2) Delayed-CSIT and OFB; and (3)

1As we will see later, our result holds for the case in which output feedback links are available
from each receiver to both transmitters.
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Instantaneous-CSIT and OFB. In order to illustrate the results, we first establish

the capacity region of the two-user BFIC with No-CSIT and Instantaneous-CSIT

as our benchmarks.

2.3.1 Benchmarks

Our base line is the scenario in which there is no output feedback link from

the receivers to the transmitters, and we assume the No-CSIT model. In other

words, the only available knowledge at the transmitters is the distribution from

which the channel gains are drawn. In this case, it is easy to see that for any

input distribution, the two received signals are statistically the same, hence

I
(
Xn

1 ; Yn
1 |G

n) = I
(
Xn

1 ; Yn
2 |G

n) ,
I
(
Xn

2 ; Yn
1 |G

n) = I
(
Xn

2 ; Yn
2 |G

n) . (2.8)

Therefore, the capacity region in this case, CNo−CSIT, is the same as the inter-

section of the capacity region of the multiple-access channels (MAC) formed at

either of the receivers:

CNo−CSIT =


0 ≤ Ri ≤ p, i = 1, 2,

R1 + R2 ≤ 1 − q2.

(2.9)

The other extreme point on the available CSIT is the Instantaneous-CSIT

model. The capacity region in this case is given in the following theorem which

is proved in Appendices A.1 and A.2.

Theorem 2.1 [Capacity Region with Instantaneous-CSIT] The capacity region

of the two-user Binary Fading IC with Instantaneous-CSIT (and no output feedback),
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CICSIT, is the set of all rate tuples (R1,R2) satisfying

CICSIT =


0 ≤ Ri ≤ p, i = 1, 2,

R1 + R2 ≤ 1 − q2 + pq.
(2.10)

Remark 2.1 Comparing the capacity region of the two-user BFIC with No-CSIT (2.9)

and Instantaneous-CSIT (2.10), we observe that the bounds on individual rates remain

unchanged while the sum-rate outer-bound is increased by pq. This increase can be

intuitively explained as follows. The outer-bound of 1 − q2 corresponds to the fraction

of time in which at least one of the links to each receiver is equal to 1. Therefore, this

outer-bound corresponds to the fraction of time that each receiver gets “useful” signal.

This is tight with No-CSIT since each receiver should be able to decode both messages.

However, once we move to Instantaneous-CSIT, we can send a private message to one

of the receivers by using those time instants in which the link from the corresponding

transmitter to that receiver is equal to 1, but that transmitter is not interfering with the

other receiver. This corresponds to pq fraction of the time.

Now that we have covered the benchmarks, we are ready to present our

main results.

2.3.2 Main Results

As first step, we consider the Delayed-CSIT model. In this case, the following

theorem establishes our result.

Theorem 2.2 [Capacity Region with Delayed-CSIT] The capacity region of the

two-user Binary Fading IC with Delayed-CSIT (and no output feedback), CDCSIT, is the
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set of all rate tuples (R1,R2) satisfying

CDCSIT =


0 ≤ Ri ≤ p, i = 1, 2,

Ri + (1 + q) Rī ≤ p (1 + q)2 , i = 1, 2.
(2.11)

Remark 2.2 Comparing the capacity region of the two-user BFIC with Delayed-

CSIT (2.11) and Instantaneous-CSIT (2.10), we can show that for 0 ≤ p ≤
(
3 −
√

5
)
/2,

the two regions are equal. However, for
(
3 −
√

5
)
/2 < p < 1, the capacity region of the

two-user BFIC with Delayed-CSIT is strictly smaller than that of Instantaneous-CSIT.

Moreover, we can show that the capacity region of the two-user BFIC with Delayed-

CSIT is strictly larger than that of No-CSIT (except for p = 0 or 1).

Furthermore, since the channel state information is acquired through the

feedback channel, it is also important to understand the impact of output feed-

back on the capacity region of the two-user BFIC with Delayed-CSIT. In the

study of feedback in wireless networks, one other direction is to consider the

transmitter cooperation created through the output feedback links. In this con-

text, it is well-known that feedback does not increase the capacity of discrete

memoryless point-to-point channels [47]. However, feedback can enlarge the

capacity region of multi-user networks, even in the most basic case of the two-

user memoryless multiple-access channel [20, 39]. In [50, 59], the feedback ca-

pacity of the two-user Gaussian IC has been characterized to within a constant

number of bits. One consequence of these results is that output feedback can

provide an unbounded capacity increase. This is in contrast to point-to-point

and multiple-access channels where feedback provides no gain and bounded

gain respectively. In this work, we consider the scenario in which an output

feedback link is available from each receiver to its corresponding transmitter on

24



top of the delayed knowledge of the channel state information as depicted in

Figure 2.3(a).
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Figure 2.3: Two-user Binary Fading Interference Channel: (a) with output feed-
back links from each receiver to its corresponding transmitter. In this
setting, the transmit signal of Txi at time instant t, would be a func-
tion of the message Wi, the available CSIT, and the output sequences
Y t−1

i , i = 1, 2; and (b) with output feedback links from each receiver to
both transmitters. In this setting, the transmit signal of Txi at time
instant t, would be a function of the message Wi, the available CSIT,
and the output sequences Y t−1

1 ,Y t−1
2 , i = 1, 2.

In the presence of output feedback and Delayed-CSIT, we have the following

result.

Theorem 2.3 [Capacity Region with Delayed-CSIT and OFB] For the two-user

binary IC with Delayed-CSIT and OFB, the capacity region CDCSIT,OFB, is given by

CDCSIT,OFB =
{
R1,R2 ∈ R+ s.t. Ri + (1 + q)Rī ≤ p(1 + q)2, i = 1, 2

}
. (2.12)
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Remark 2.3 The outer-bound on the capacity region with only Delayed-CSIT (2.11) is

in fact the intersection of the outer-bounds on the individual rates (i.e. Ri ≤ p, i = 1, 2)

and the capacity region with Delayed-CSIT and OFB (2.12). Therefore, the impact of

OFB is to remove the constraints on individual rates. This can be intuitively explained

by noting that OFB creates new path to flow information from each transmitter to its

corresponding receiver (e.g., Tx1 → Rx2 → Tx2 → Rx1). This opportunity results in

elimination of the individual rate constraints in this case.

Remark 2.4 As we will see in Section 2.8, same outer-bounds hold in the presence of

global output feedback where output feedback links are available from each receiver

to both transmitters, see Figure 2.3(b). Therefore, the capacity region of two user binary

IC with Delayed-CSIT and global output feedback is the same as the capacity region de-

scribed in (2.12). This implies that in this case, global output feedback does not provide

new coding opportunities, nor does it enhance the existing ones. Similar observation

has been made in the context of MIMO Interference Channels [52, 70], even though the

coding opportunities in Binary IC and MIMO IC are not the same.

Finally, we present our result for the case of Instantaneous-CSIT and output

feedback. Note that in this scenario, although transmitters have instantaneous

knowledge of the channel state information, the output signals are available at

the transmitters with unit delay. This scenario corresponds to a slow-fading

channel where output feedback links are available from the receivers to the

transmitters.

Theorem 2.4 [Capacity Region with Instantaneous-CSIT and OFB] For the

two-user binary IC with Instantaneous-CSIT and OFB, the capacity region CICSIT,OFB,
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is the set of all rate tuples (R1,R2) satisfying

CICSIT,OFB =


0 ≤ Ri ≤ 1 − q2, i = 1, 2,

R1 + R2 ≤ 1 − q2 + pq.
(2.13)

Remark 2.5 Comparing the capacity region of the two-user BFIC with Instantaneous-

CSIT, with OFB (2.13) or without OFB (2.10), we observe that the outer-bound on

the sum-rate remains unchanged. However, the bounds on individual rates are further

increased to 1 − q2. Similar to the previous remark, this is again due to the additional

communication path provided by OFB from each transmitter to its intended receiver.

However, since the outer-bound on sum-rate with Instantaneous-CSIT and OFB (2.13)

is higher than that of Delayed-CSIT and OFB (2.12), the bounds on individual rates

cannot be eliminated.

The proof of the results is organized as follows. The proof of Theorem 2.2

is presented in Sections 2.5 and 2.6. The proof of Theorem 2.3 is presented in

Sections 2.7 and 2.8, and finally, the proof of Theorem 2.4 is presented in Sec-

tions 2.9 and 2.10. We end this section by illustrating our main results via an

example in which p = 0.5.

2.3.3 Illustration of Main Results for p = 0.5

For this particular value of the channel parameter, the capacity region with

Delayed-CSIT and Instantaneous-CSIT with or without output feedback is

given in Table 2.1, and Figure 2.4 illustrates the results presented in this table.

We notice the following remarks.
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Table 2.1: Illustration of our main results through an example in which
p = 0.5.

Capacity Region Capacity Region

with Delayed-CSIT with Instantaneous-CSIT

No-OFB


Ri ≤

1
2

Ri + 3
2Rī ≤

9
8


R1 ≤

1
2

R2 ≤
1
2

OFB


R1 + 3

2R2 ≤
9
8

3
2R1 + R2 ≤

9
8


Ri ≤

3
4

R1 + R2 ≤ 1

Remark 2.6 Note that for p = 0.5, we have

CNo−CSIT ⊂ CDCSIT ⊂ CICSIT.

In other words, the capacity region with Instantaneous-CSIT is strictly larger than

that of Delayed-CSIT, which is in turn strictly larger than the capacity region with

No-CSIT. Moreover, we have

CDCSIT,OFB ⊂ CICSIT,OFB,

meaning that the instantaneous knowledge of the CSIT enlarges the capacity region of

the two-user BFIC with OFB compared to the case of Delayed-CSIT.

Remark 2.7 In Figure 2.4(c), we have illustrated the capacity region with Delayed-

CSIT, with and without output feedback. First, we observe that OFB enlarges the capac-

ity region. Second, we observe that the optimal sum-rate point is the same for p = 0.5.

However, this is not always the case. In fact, for some values of p, output feedback can

even increase the optimal sum-rate. Using the results of Theorem 2.2 and Theorem 2.3,
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Figure 2.4: Two-user Binary Fading IC: (a) the capacity region with No-CSIT,
Delayed-CSIT, and Instantaneous-CSIT, without OFB; (b) the capac-
ity region with No-CSIT, Delayed-CSIT, and Instantaneous-CSIT,
with OFB; and (c) the capacity region with Delayed-CSIT, with and
without output feedback.

we have plotted the sum-rate capacity of the two-user Binary Fading IC with and with-

out OFB for the Delayed-CSIT model in Figure 2.5. Note that for 0 < p <
(
3 −
√

5
)
/2,

the sum-rate capacity with OFB is strictly larger than the no OFB scenario.

Remark 2.8 Comparing the capacity region of the two-user BFIC with Instantaneous-

CSIT, with OFB (2.13) or without OFB (2.10), we observe that OFB enlarges the capac-

ity region. Moreover, similar to the Delayed-CSIT scenario, the optimal sum-rate point

is the same for p = 0.5. Again, this is not always the case. In fact, for 0 < p < 0.5, out-

put feedback can even increase the optimal sum-rate. Using the results of Theorem 2.1

and Theorem 2.4, we have plotted the sum-rate capacity of the two-user Binary Fading
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Figure 2.5: The sum-rate capacity of the two-user BFIC with Delayed-
CSIT, with and without output feedback. For 0 < p <(
3 −
√

5
)
/2, the sum-rate capacity with OFB is strictly larger

than the scenario where no OFB is available.

IC with and without OFB in Figure 2.6.

Remark 2.9 In Figures 2.5 and 2.6, we have identified the range of p for which output

feedback provides sum-rate gain. Basically, when the sum-rate capacity without OFB is

dominated by the capacity of the direct links (i.e. 2p), and the additional communication

paths created by the means of output feedback links help increase the optimal sum-rate.

Remark 2.10 While our capacity results in Theorems 2.2 and 2.3 are for binary fading

interference channels, in [63], we have shown how they can also be utilized to obtain

capacity results for a class of wireless packet networks.

In the following section, we present the main ideas that we incorporate in

this work.
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Figure 2.6: The sum-rate capacity of the two-user BFIC with
Instantaneous-CSIT, with and without output feedback.
For 0 < p < 0.5, the sum-rate capacity with OFB is strictly
larger than the scenario where no OFB is available.

2.4 Overview of Key Ideas

Our goal in this section is to present the key techniques we use in this work

both for achievability and converse purposes. Although we will provide de-

tailed explanation of the achievability strategy and converse proofs for all dif-

ferent scenarios, we found it instructive to elaborate the main ideas through sev-

eral clarifying examples. Furthermore, the coding opportunities introduced in

this section can be applicable to DoF analysis of wireless networks with linear

schemes (Section III.A of [30]) or interference management in packet collision

networks (Section IV of [63]).
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2.4.1 Achievability Ideas with Delayed-CSIT

As we have described in Section 2.2, the channel gains are independent from

each other and over time. This way, transmitters cannot use the delayed knowl-

edge of the channel state information to predict future. However, this informa-

tion can still be very useful. In particular, Delayed-CSIT allows us to evaluate

the contributions of the desired signal and the interference at each receiver in

the past signaling stages and exploit it as available side information for future

communication.

Interference-free Bits

Using Delayed-CSIT transmitters can identify previously transmitted bits such

that if retransmitted, they do not create any further interference. The following

examples clarify this idea.

Example 1 [Creating interference channels with side information]: Suppose

at a time instant, each one of the transmitters simultaneously sends one data

bit. The bits of Tx1 and Tx2 are denoted by a1 and b1 respectively. Later, using

Delayed-CSIT, transmitters figure out that only the cross links were equal to 1 at

this time instant as shown in Figure 2.7(a). This means that in future, transmis-

sion of these bits will no longer create interference at the unintended receivers.

Example 2 [Creating interference channels with swapped receivers and side

information]: Assume that at a time instant, transmitters one and two simulta-

neously send data bits, say a2 and b2 respectively. Again through Delayed-CSIT,

transmitters realize that all links except the link between Tx1 and Rx2 were equal
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Figure 2.7: Achievability ideas with Delayed-CSIT: (a) via Delayed-CSIT trans-
mitters can figure out which bits are already known at the unintended
receivers, transmission of these bits will no longer create interference
at the unintended receivers; and (b) to decode the bits, it is sufficient
that Tx2 provides Rx1 with b2 while this bit is available at Rx2; (c)
similar to (b). Note that in (b) and (c) the intended receivers are
swapped.

to 1, see Figure 2.7(b). In a similar case, assume that at another time instant,

transmitters one and two send data bits a3 and b3 at the same time. Through

Delayed-CSIT, transmitters realize that all links except the link between Tx2 and

Rx1 were connected, see Figure 2.7(c). Then it is easy to see that to successfully

finish delivering these bits, it is enough that Tx1 sends a3 to Rx2, while this bit is

already available at Rx1; and Tx2 sends b2 to Rx1, while it is already available at

Rx2. Note that here the intended receivers are swapped.

Remark 2.11 As described in Examples 1 and 2, an interference free bit can be retrans-

mitted without worrying about creating interference at the unintended receiver. These

bits can be transferred to a sub-problem, where in a two-user interference channel, Rxi

has apriori access to Wī as depicted in Figure 2.8, i = 1, 2. Since there will be no
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interference in this sub-problem, such bits can be communicated at higher rates.
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Figure 2.8: Interference channel with side information: the capacity region
with no, delayed, or instantaneous CSIT is the same.

Bits of Common Interest

Transmitters can use the delayed knowledge of the channel state information

to identify bits that are of interest of both receivers. Below, we clarify this idea

through several examples.

Example 3 [Opportunistic creation of bits of common interest]: Suppose at

a time instant, each one of the transmitters sends one data bit, say a4 and b4

respectively. Later, using Delayed-CSIT, transmitters figure out that all links

were equal to 1. In this case, both receivers have an equation of the transmitted

bits, see Figure 2.9(a). Now, we notice that it is sufficient to provide either of the

transmitted bits, a4 or b4, to both receivers rather than retransmitting both bits.

We refer to such bits as bits of common interest. Since such bits are useful for

both receivers, they can be transmitted more efficiently.

Remark 2.12 (Pairing bits of common interest) We note that in Example 3, one of

the transmitters takes the responsibility of delivering one bit of common interest to both
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Figure 2.9: In each case, it is sufficient to provide only one of the transmitted bits
to both receivers. We refer to such bits as bits of common interest.

receivers. To improve the performance, we can pair this problem with another similar

problem as follows. Assume that in another time instant, each one of the transmitters

sends one data bit, say a5 and b5 respectively. Later, transmitters figure out that all

links were equal to 1, see Figure 2.9(b). In this case, similar to Example 3, one of the

bits a5 and b5, say b5, can be chosen as the bit of common interest. Now we can pair

cases depicted in Figures 2.9(a) and 2.9(b). Then transmitters can simultaneously send

bits a4 and b5, to both receivers. With this pairing, we take advantage of all four links

to transmit information.

Remark 2.13 (Pairing ICs with side information (pairing Type-I)) The advan-

tage of interference channels with side information, explained in Examples 1 and 2,

is that due to the side information, there is no interference involved in the problem. The

downside is that half of the links in the channel become irrelevant and unexploited. More

precisely, the cross links in Example 1 and the direct links in Example 2 are not utilized

to increase the rate. Here we show that these two problems can be paired together to form

an efficient two-multicast problem through creating bits of common interest. Referring

to Figure 2.7, one can easily verify that it is enough to deliver a1⊕a3 and b1⊕b2 to both

receivers. For instance, if a1 ⊕ a3 and b1 ⊕ b2 are available at Rx1, it can remove b1 from

b1 ⊕ b2 to decode b2, then using b2 and a2 ⊕ b2 it can decode a2; finally, using a3 and

a1 ⊕ a3 it can decode a1. Indeed, bit a1 ⊕ a3 available at Tx1, and bit b1 ⊕ b2 available at
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Tx2, are bits of common interest and can be transmitted to both receivers simultaneously

in the efficient two-multicast problem as depicted in Figure 2.10. We note that for the

two-multicast problem, the capacity region with no, delayed, or instantaneous CSIT is

the same. We shall refer to this pairing as pairing Type-I throughout the paper.
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Figure 2.10: Two-multicast network. Transmitter Txi wishes to reliably
communicate message Wi to both receivers, i = 1, 2. The ca-
pacity region with no, delayed, or instantaneous CSIT is the
same.

Example 4 [Pairing interference-free bits with bits of common interest to cre-

ate a two-multicast problem (pairing Type-II)]: Suppose at a time instant, each

one of the transmitters sends one data bit, say a6 and b6 respectively. Later,

using Delayed-CSIT, transmitters figure out that all links were equal to 1, see

Figure 2.11(a). In another time instant, each one of the transmitters sends one

data bit, say a7 and b7 respectively. Later, transmitters figure out that only the

cross links were equal to 1, see Figure 2.11(b). Now, we observe that provid-

ing a6 ⊕ a7 and b6 ⊕ b7 to both receivers is sufficient to decode the bits. For

instance if Rx1 is provided with a6 ⊕ a7 and b6 ⊕ b7, then it will use b7 to decode

b6, from which it can obtain a6, and finally using a6 and a6 ⊕ a7, it can decode

a7. Thus, bit a6 ⊕ a7 available at Tx1, and bit b6 ⊕ b7 available at Tx2, are bits of

common interest and can be transmitted to both receivers simultaneously in the

efficient two-multicast problem. We shall refer to this pairing as pairing Type-II

throughout the paper.
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Figure 2.11: Pairing Type-II: providing a6 ⊕ a7 and b6 ⊕ b7 to both receivers is
sufficient to decode the bits. In other words, bit a6 ⊕ a7 available
at Tx1, and bit b6 ⊕ b7 available at Tx2, are bits of common interest
and can be transmitted to both receivers simultaneously in the effi-
cient two-multicast problem. Note that in (b), the cross links would
have been irrelevant for future communications, however, using this
pairing, we exploit all links.

Example 5 [Pairing bits of common interest with interference-free bits with

swapped receivers to create a two-multicast problem (pairing Type-III)]: Sup-

pose at a time instant, each one of the transmitters sends one data bit, say a8

and b8 respectively. Later, using Delayed-CSIT, transmitters figure out that all

links were equal to 1 as in Figure 2.12(a). In another time instant, each one of

transmitters sends one data bit, say a9 and b9 respectively. Later, transmitters

figure out that all links were equal to 1 except the link from Tx2 to Rx1, see Fig-

ure 2.12(b). In a similar case, assume that at another time instant, transmitters

one and two send data bits a10 and b10 at the same time. Through Delayed-CSIT,

transmitters realize that all links except the link between Tx1 and Rx2 were con-

nected, see Figure 2.12(c). We observe that providing a8 ⊕ a9 and b8 ⊕ b10 to both

receivers is sufficient to decode the bits. For instance, if Rx1 is provided with

a8 ⊕ a9 and b8 ⊕ b10, then it will use a9 to decode a8, from which it can obtain b8,

then using b8 and b8 ⊕ b10, it gains access to b10, finally using b10, it can decode

a10 from a10 ⊕ b10. Thus, bit a8 ⊕ a9 available at Tx1, and bit b8 ⊕ b10 available at

Tx2, are bits of common interest and can be transmitted to both receivers simul-
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taneously in the efficient two-multicast problem. We shall refer to this pairing

as pairing Type-III throughout the paper.
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Figure 2.12: Pairing Type-III: providing a8 ⊕ a9 and b8 ⊕ b10 to both receivers is
sufficient to decode the bits. In other words, bit a8 ⊕ a9 available at
Tx1, and bit b8⊕b10 available at Tx2, are bits of common interest and
can be transmitted to both receivers simultaneously in the efficient
two-multicast problem.

As explained in the above examples, there are several ways to exploit the

available side information at each transmitter. To achieve the capacity region,

the first challenge is to evaluate various options and choose the most efficient

one. The second challenge is that different opportunities may occur with dif-

ferent probabilities. This makes the process of matching, combining, and up-

grading the status of the bits very difficult. Unfortunately, there is no simple

guideline to decide when to search for the most efficient combination of the op-

portunities and when to hold on to other schemes. It is also important to note

that most of the opportunities we observe here, do not appear in achieving the

DoF of the Gaussian multi-antenna interference channels (see e.g., [25, 68]).
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2.4.2 Achievability Ideas with Output Feedback

In this subsection, we focus on the impact of the output feedback in the presence

of Delayed-CSIT. The first observation is that through output feedback, each

transmitter can evaluate the interference of the other transmitter, and therefore

has access to the previously transmitted signal of the other user. Thus, output

feedback can create new path of communication between each transmitter and

the corresponding receiver, e.g.,

Tx1 → Rx2 → Tx2 → Rx1.

Although this additional path can improve the rate region, the advantage

of output feedback is not limited to that. We explain the new opportunities

through two examples

Example 6 [Creating two-multicast problem from ICs with side information]:

In the previous subsection, we showed that interference-free transmissions can

be upgraded to two-multicast problems through pairing. However, it is impor-

tant to note that the different channel realizations used for pairing do not occur

at the same probability. Therefore, it is not always possible to fully implement

pairing in all cases. In particular, in some cases, some interference-free trans-

missions are left alone without possibility of pairing. In this example, we show

that output feedback allows us to create bits of common interest out of these

cases, which in turn allows us to create two-multicast problems. Referring to

Figure 2.13, one can see that through the output feedback links, transmitters

one and two can learn b11 and a11 respectively. Therefore, either of the transmit-

ters is able to create a11 ⊕ b11. It is easy to see that a11 ⊕ b11 is of interest of both

receivers. Indeed, feedback allows us to form a bit of common interest which
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can be delivered through the efficient two-multicast problem.

Tx1

Tx2

Rx1

Rx2

a11
Tx1

Tx2

Rx1

Rx2
b11a11

b11

Figure 2.13: Opportunistic creation of bits of common interest using output feed-
back: bit b11 is available at Tx1 via the feedback link from Rx1; it is
sufficient that Tx1 provides a11 ⊕ b11 to both receivers.

Example 7 [Creating two-multicast problem from ICs with swapped re-

ceivers and side information]: As another example, consider the two channel

gain realizations depicted in Figure 2.14. In these cases, using output feedback

Tx1 can learn the transmitted bit of Tx2 (i.e. b12), and then form a13 ⊕ b12. It is

easy to see that a13 ⊕ b12 is useful for both receivers and thus is a bit of com-

mon interest. Similar argument is valid for the second receiver. This means

that output feedback allows us to upgrade interference-free transmissions with

swapped receivers to bits of common interest that can be used to form efficient

two-multicast problems.

Tx1

Tx2

Rx1

Rx2

a13

b13 a13 b13

a13
Tx1

Tx2

Rx1

Rx2

a12

b12

a12 b12

b12

Figure 2.14: Opportunistic creation of bits of common interest using output feed-
back: using output feedback Tx1 can learn the transmitted bit of Tx2

(i.e. b12); now, we observe that providing a13 ⊕ b12 to both receivers
is sufficient to decode the intended bits.
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2.4.3 Key Idea for Converse Proofs with Delayed-CSIT

While we provide detailed proofs in Sections 2.6 and 2.8, we try to describe the

main challenge in deriving the outer-bounds in this subsection. Consider the

Delayed-CSIT scenario and suppose rate tuple (R1,R2) is achievable. Then for

β > 0, we have

n (R1 + βR2) = H(W1|W2,Gn) + βH(W2|Gn)
(Fano)
≤ I(W1; Yn

1 |W2,Gn) + βI(W2; Yn
2 |G

n) + nεn

= βH(Yn
2 |G

n) + H(Gn
11Xn

1 |G
n) − βH(Gn

12Xn
1 |G

n)︸                                 ︷︷                                 ︸ +nεn. (2.14)

We refer the reader to Section 2.6 for the detailed derivation of each step.

Here, we would like to find a value of β such that

H(Gn
11Xn

1 |G
n) − βH(Gn

12Xn
1 |G

n) ≤ 0, (2.15)

for any input distribution. Note that since the terms involved are only a function

of Xn
1 and the channel gains, this term resembles a broadcast channel formed by

Tx1 and the two receivers. Therefore, the main challenge boils down to under-

standing the ratio of the entropies of the received signals in a broadcast channel,

and this would be the main focus of this subsection.

Tx

Rx1

Rx2

1

2
X
n

n

n

Y1
n

Y2
n

Figure 2.15: A transmitter connected to two receivers through binary fad-
ing channels.
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Consider a transmitter that is connected to two receivers through binary

fading channels as depicted in Figure 2.15. We would like to understand how

much this transmitter can privilege receiver one to receiver two, given outdated

knowledge of the channel state information. Our metric would be the ratio of

the entropies of the received signals2. In other words, we would like to un-

derstand what is the lower-bound on the ratio of the entropy of the received

signal at Rx2 to that of Rx1. We first point out the result for the No-CSIT and

Instantaneous-CSIT cases. With No-CSIT, from transmitter’s point of view the

two receivers are identical and it cannot favor one over the other and as a result,

the two entropies would be equal. However with Instantaneous-CSIT, transmit-

ter can choose to transmit at time t only if G1[t] = 1 and G2[t] = 0. Thus, with

Instantaneous-CSIT the ratio of interest could be as low as 0. For the Delayed-

CSIT case, we have the following lemma which we will formally prove in Sec-

tion 2.6. Here, we try to provide some intuition about the problem by describing

an input distribution that utilizes delayed knowledge of the channel state infor-

mation in order to favor receiver one. It is important to keep in mind that this

should not be considered as a proof but rather just a helpful intuition. Also,

we point out that for the two-user BFIC with Delayed-CSIT and OFB, we will

derive a variation of this lemma in Section 2.8.

Lemma 2.1 [Entropy Leakage] For the channel described above with Delayed-CSIT,

and for any input distribution, we have

H
(
Yn

2 |G
n) ≥ p

1 − q2 H
(
Yn

1 |G
n) . (2.16)

As mentioned before, we do not intend to prove this lemma here. We only

provide an input distribution for which this lower-bound is tight. Consider m
2We point out that if H(Gn

11Xn
1 |G

n) = 0, then ratio is not defined. But we keep in mind that
what we really care about is (2.15).
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Figure 2.16: Four possible channel realizations for the network in Figure 2.15.
The transmitter sends out a data bit at time instant t, and at the
next time instant, using Delayed-CSIT, he knows which channel re-
alization has occurred. If either of the realizations (a) or (b) occurred
at time t, then we remove the transmitted bit from the initial queue.
However, if either of the realizations (c) or (d) occurred at time t, we
leave this bit in the initial queue. This way the transmitter favors
receiver one over receiver two.

bits drawn from i.i.d. Bernoulli 0.5 random variables and assume these bits are

in some initial queue. At any time instant t, the transmitter sends one of the bits

in this initial queue (if the queue is empty, then the scheme is terminated). At

time instant t + 1, using Delayed-CSIT, the transmitter knows which one of the

four possible channel realizations depicted in Figure 2.16 has occurred at time

t. If either of the realizations (a) or (b) occurred at time t, then we remove the

transmitted bit from the initial queue. However, if either of the realizations (c)

or (d) occurred at time t, we leave this bit in the initial queue (i.e. among the bits

that can be transmitted at any future time instant). Note that this way, any bit

that is available at Rx2 would be available at Rx1, however, there will be bits that

are only available at Rx1. Hence, the transmitter has favored receiver one over
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receiver two. If we analyze this scheme, we get

H
(
Yn

2 |G
n) =

p
1 − q2 H

(
Yn

1 |G
n) , (2.17)

meaning that the bound given in (2.16) is achievable and thus, it is tight.

Now that we have described the key ideas we incorporate in this paper, start-

ing next section, we provide the proof of our main results.

2.5 Achievability Proof of Theorem 2.2 [Delayed-CSIT]

For 0 ≤ p ≤
(
3 −
√

5
)
/2, the capacity of the two-user BFIC with Delayed-CSIT is

depicted in Figure 2.17(a) and as a result, it is sufficient to describe the achiev-

ability for point A = (p, p). However, for
(
3 −
√

5
)
/2 < p ≤ 1, all bounds are

active and the region, as depicted in Figure 2.17(b), is the convex hull of points

A, B, and C. By symmetry, it is sufficient to describe the achievability for points

A and C in this regime.

We first provide the achievability proof of point A for 0.5 ≤ p ≤ 1 in this sec-

tion. Then, we provide an overview of the achievability proof of corner point C

and we postpone the detailed proof to Appendix A.4. Finally in Appendix A.3,

we present the achievability proof of point A for 0 ≤ p < 0.5.
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(a)

R1

R2

p

p

B =

C =

A =

(b)

Figure 2.17: Capacity Region of the two-user Binary Fading IC with Delayed-
CSIT for: (a) 0 ≤ p ≤

(
3 −
√

5
)
/2; and (b)

(
3 −
√

5
)
/2 < p ≤ 1.

2.5.1 Achievability Strategy for Corner Point A

In this subsection, we describe a transmission strategy that achieves a rate tuple

arbitrary close to corner point A for 0.5 ≤ p ≤ 1 as depicted in Figure 2.17(b), i.e.

R1 = R2 =
(1 − q2)

1 + (1 − q2)−1 p
. (2.18)

Let the messages of transmitters one and two be denoted by W1 =

a1, a2, . . . , am, and W2 = b1, b2, . . . , bm, respectively, where data bits ai’s and bi’s

are picked uniformly and independently from {0, 1}, i = 1, . . . ,m. We show that

it is possible to communicate these bits in

n =
(
1 − q2

)−1
m +

(
1 − q2

)−2
pm + O

(
m2/3

)
(2.19)

time instants3 with vanishing error probability (as m→ ∞). Therefore achieving

the rates given in (2.18) as m → ∞. Our transmission strategy consists of two

phases as described below.

Phase 1 [uncategorized transmission]: At the beginning of the communication

3Throughout the paper whenever we state the number of bits or time instants, say n, if the
expression for a given value of p is not an integer, then we use the ceiling of that number dne,
where d.e is the smallest integer greater than or equal to n. Note that since we will take the limit
as m→ ∞, this does not change the end results.
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block, we assume that the bits at Txi are in queue Qi→i (the initial state of the

bits), i = 1, 2. At each time instant t, Txi sends out a bit from Qi→i, and this bit

will either stay in the initial queue or transition to one of the following possible

queues will take place according to the description in Table 2.2. If at time instant

t, Qi→i is empty, then Txi, i = 1, 2, remains silent until the end of Phase 1.

(A) Qi,C1 : The bits that at the time of communication, all channel gains were

equal to 1.

(B) Qi→{1,2}: The bits that are of common interest of both receivers and do not

fall in category (A).

(C) Qi→i|ī: The bits that are required by Rxi but are available at the unintended

receiver Rxī. A bit is in Qi→i|ī if Rxī gets it without interference and Rxi does

not get it with or without interference.

(D) Qi→ī|i: The bits that are required by Rxī but are available at the intended

receiver Rxi. More precisely, a bit is in Qi→ī|i if Rxi gets the bit without

interference and Rxī gets it with interference.

(E) Qi→F : The bits that we consider delivered and no retransmission is re-

quired.

More precisely, based on the channel realizations, a total of 16 possible con-

figurations may occur at any time instant as summarized in Table 2.2. The tran-

sition for each one of the channel realizations is as follows.

• Case 1
(
↗↘⇀⇁

)
: If at time instant t, Case 1 occurs, then each receiver gets a

linear combination of the bits that were transmitted. Then as illustrated

in Figure 2.18, if either of such bits is provided to both receivers then the
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receivers can decode both bits. The transmitted bit of Txi leaves Qi→i and

joins Qi,C1
4, i = 1, 2. Although we can consider such bits as bits of com-

mon interest, we keep them in an intermediate queue for now and as we

describe later, we combine them with other bits to create bits of common

interest.

Tx1

Tx2

Rx1

Rx2

a

b

a   b

a   b

a or b 

Figure 2.18: Suppose transmitters one and two send out data bits a and b
respectively and Case 1 occurs. Now, if either of the transmit-
ted bits is provided to both receivers, then each receiver can
decode its corresponding bit.

• Case 2
(
↘→⇁

)
: In this case, Rx1 has already received its corresponding bit

while Rx2 has a linear combination of the transmitted bits, see Table 2.2.

As a result, if the transmitted bit of Tx1 is provided to Rx2, it will be able to

decode both bits. In other words, the transmitted bit from Tx1 is available

at Rx1 and is required by Rx2. Therefore, transmitted bit of Tx1 leaves Q1→1

and joins Q1→2|1. Note that the bit of Tx2 will not be retransmitted since

upon delivery of the bit of Tx1, Rx2 can decode its corresponding bit. Since

no retransmission is required, the bit of Tx2 leaves Q2→2 and joins Q2,F (the

final state of the bits).

• Case 3
(
↗→⇁

)
: This is similar to Case 2 with swapping user IDs.

4In this paper, we assume that the queues are ordered. Meaning that the first bit that joins
the queue is placed at the head of the queue and any new bit occupies the next empty position.
For instance, suppose there are ` bits in Q1,C1 and ` bits in Q2,C1 , then the next time Case 1 occurs,
the transmitted bit of Txi is placed at position ` + 1 in Qi,C1 , i = 1, 2.
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• Case 4
(
→
→

)
: In this case, each receiver gets its corresponding bit without

any interference. We consider such bits to be delivered and no retransmis-

sion is required. Therefore, the transmitted bit of Txi leaves Qi→i and joins

Qi,F , i = 1, 2.

• Case 5
(
→

)
and Case 6

(
↘→

)
: In these cases, Rx1 gets its corresponding bit

interference free. We consider this bit to be delivered and no retransmis-

sion is required. Therefore, the transmitted bit of Tx1 leaves Q1→1 and joins

Q1,F , while the transmitted bit of Tx2 remains in Q2→2.

• Case 7
(
↗⇀

)
: In this case, Rx1 has a linear combination of the transmitted

bits, while Rx2 has not received anything, see Table 2.2. It is sufficient to

provide the transmitted bit of Tx2 to both receivers. Therefore, the trans-

mitted bit of Tx2 leaves Q2→2 and joins Q2→{1,2}. Note that the bit of Tx1 will

not be retransmitted since upon delivery of the bit of Tx2, Rx1 can decode

its corresponding bit. This bit leaves Q1→1 and joins Q1,F . Similar argument

holds for Case 8
(
↗↘⇀

)
.

• Cases 9,10,11, and 12: Similar to Cases 5,6,7, and 8 with swapping user IDs

respectively.

• Case 13 (↗): In this case, Rx1 has received the transmitted bit of Tx2 while

Rx2 has not received anything, see Table 2.2. Therefore, the transmitted

bit of Tx1 remains in Q1→1, while the transmitted bit of Tx2 is required by

Rx2 and it is available at Rx1. Hence, the transmitted bit of Tx2 leaves Q2→2

and joins Q2→2|1. Queue Q2→2|1 represents the bits at Tx2 that are available

at Rx1, but Rx2 needs them.

• Case 14 (↘): This is similar to Case 13 with swapping user IDs.
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• Case 15 (↗↘): In this case, Rx1 has received the transmitted bit of Tx2 while

Rx2 has received the transmitted bit of Tx1, see Table 2.2. In other words,

the transmitted bit of Tx2 is available at Rx1 and is required by Rx2; while

the transmitted bit of Tx1 is available at Rx2 and is required by Rx1. There-

fore, we have transition from Qi→i to Qi→i|ī, i = 1, 2.

• Case 16: The transmitted bit of Txi remains in Qi→i, i = 1, 2.

Phase 1 goes on for

(
1 − q2

)−1
m + m

2
3 (2.20)

time instants, and if at the end of this phase, either of the queues Qi→i is not

empty, we declare error type-(i) and halt the transmission (we assume m is cho-

sen such that m
2
3 ∈ Z).

Assuming that the transmission is not halted, let Ni,C1 , Ni→ j| j̄, and Ni→{1,2} de-

note the number of bits in queues Qi,C1 , Qi→ j| j̄, and Qi→{1,2} respectively at the end

of the transitions, i = 1, 2, and j = i, ī. The transmission strategy will be halted

and an error type-(ii) will occur, if any of the following events happens.

Ni,C1 > E[Ni,C1] + m
2
3
4
= ni,C1 , i = 1, 2;

Ni→ j| j̄ > E[Ni→ j| j̄] + m
2
3
4
= ni→ j| j̄, i = 1, 2, and j = i, ī;

Ni→{1,2} > E[Ni→{1,2}] + m
2
3
4
= ni→{1,2}, i = 1, 2. (2.21)

From basic probability, we know that

E[Ni,C1] =
Pr (Case 1)

1 −
∑

i=9,10,13,16 Pr (Case i)
m = (1 − q2)−1 p4m,

E[Ni→i|ī] =

∑
j=14,15 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m = (1 − q2)−1 pq2m,
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E[Ni→ī|i] =
Pr (Case 2)

1 −
∑

i=9,10,13,16 Pr (Case i)
m = (1 − q2)−1 p3qm,

E[Ni→{1,2}] =

∑
j=11,12 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m = (1 − q2)−1 p2qm. (2.22)

Furthermore, we can show that the probability of errors of types I and II

decreases exponentially with m. More precisely, we use Chernoff-Hoeffding

bound5, to bound the error probabilities of types I and II. For instance, to bound

the probability of error type-I, we have

Pr
[
error type − I

]
≤

2∑
i=1

Pr
[
Qi→i is not empty

]
≤ 4 exp

(
−m4/3

4n(1 − q2)q2

)
= 4 exp

 −m4/3

4(1 − q2)q2
[(

1 − q2)−1 m + m
2
3

] , (2.23)

which decreases exponentially to zero as m→ ∞.

At the end of Phase 1, we add 0’s (if necessary) in order to make queues Qi,C1 ,

Qi→ j| j̄, and Qi→{1,2} of size equal to ni,C1 , ni→ j| j̄, and ni→{1,2} respectively as defined

in (2.21), i = 1, 2, and j = i, ī. For the rest of this subsection, we assume that

Phase 1 is completed and no error has occurred.

We now use the ideas described in Section 2.4.1, to further create bits of com-

mon interest. Depending on the value of p, we use different ideas. We break

the rest of this subsection into two parts: (1) 0.5 ≤ p ≤
(√

5 − 1
)
/2; and (2)(√

5 − 1
)
/2 < p ≤ 1. In what follows, we first describe the rest of the achiev-

ability strategy for 0.5 ≤ p ≤
(√

5 − 1
)
/2. In particular, we demonstrate how

to incorporate the ideas of Section 2.4.1 to create bits of common interest in an

5We consider a specific form of the Chernoff-Hoeffding bound [29] described in [41], which
is simpler to use and is as follows. If X1, . . . , Xr are r independent random variables, and M =∑r

i=1 Xi, then Pr [|M − E [M] | > α] ≤ 2 exp
(

−α2

4
∑r

i=1 Var(Xi)

)
.
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optimal way.

• Type I Combining bits in Qi→ī|i and Qi→i|ī: Consider the bits that were trans-

mitted in Cases 2 and 14, see Figure 2.19. Observe that if we provide a1⊕a2

to both receivers then Rx1 can decode bits a1 and a2, whereas Rx2 can de-

code bit b1. Therefore, a1 ⊕ a2 is a bit of common interest and can join

Q1→{1,2}. Hence, as illustrated in Figure 2.20, we can remove two bits in

Q1→2|1 and Q1→1|2, by inserting their XOR in Q1→{1,2}, and we deliver this bit

of common interest to both receivers during the second phase. Note that

due to the symmetry of the channel, similar argument holds for Q2→1|2 and

Q2→2|1.

Tx1

Tx2

Rx1

Rx2

a1

b1

a1

a1 b1

Tx1

Tx2

Rx1

Rx2

a2

b2 a2

Figure 2.19: Suppose at a time instant, transmitters one and two send out
data bits a1 and b1 respectively, and later using Delayed-CSIT,
transmitters figure out Case 2 occurred at that time. At an-
other time instant, suppose transmitters one and two send out
data bits a2 and b2 respectively, and later using Delayed-CSIT,
transmitters figure out Case 14 occurred at that time. Now, bit
a1 ⊕ a2 available at Tx1 is useful for both receivers and it is a
bit of common interest. Hence, a1 ⊕ a2 can join Q1→{1,2}.

For 0.5 ≤ p ≤
(√

5 − 1
)
/2, we have E[Ni→ī|i] ≤ E[Ni→i|ī]. Therefore, after this

combination, queue Qi→ī|i becomes empty and we have

E[Ni→i|ī] − E[Ni→ī|i] =
(
1 − q2

)−1
pq

(
q − p2

)
m (2.24)

bits left in Qi→i|ī.
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a1a2a3...

a1a2a3...

...

Q1

Q1

Q1 Q1

Figure 2.20: Creating XOR of the bits in two different queues. We pick one
bit from each queue and create the XOR of the two bits.

• Type II Combining the bits in Qi,C1 and Qi→i|ī: Consider the bits that were

transmitted in Cases 1 and 15, see Figure 2.21. It is easy to see that pro-

viding a1 ⊕ a2 and b1 ⊕ b2 to both receivers is sufficient to decode their

corresponding bits. For instance, Rx1 removes b2 from b1 ⊕ b2 to decode

b1, then uses b1 to decode a1 from a1 ⊕ b1. Therefore, a1 ⊕ a2 and b1 ⊕ b2

are bits of common interest and can join Q1→{1,2} and Q2→{1,2} respectively.

Hence, we can remove two bits in Qi,C1 and Qi→i|ī, by inserting their XOR

in Qi→{1,2}, i = 1, 2, and then deliver this bit of common interest to both

receivers during the second phase.

For 0.5 ≤ p ≤
(√

5 − 1
)
/2, we have

(
1 − q2

)−1
pq

(
q − p2

)
m ≤ E[Ni,C1]. There-

fore after combining the bits, queue Qi→i|ī becomes empty and we have

E[Ni,C1] + m
2
3 −

(
E[Ni→i|ī] − E[Ni→ī|i]

)
=

(
1 − q2

)−1
p (p − q) m + m

2
3 (2.25)

bits left in Qi,C1 , i = 1, 2.

Finally, we need to describe what happens to the remaining

(
1 − q2

)−1
p (p − q) m + m

2
3

bits in Qi,C1 . As mentioned before, a bit in Qi,C1 can be viewed as a bit of common

interest by itself. For the remaining bits in Q1,C1 , we put the first half in Q1→{1,2}
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Figure 2.21: Suppose at a time instant, transmitters one and two send out
data bits a1 and b1 respectively, and later using Delayed-CSIT,
transmitters figure out Case 1 occurred at that time. At an-
other time instant, suppose transmitters one and two send out
data bits a2 and b2 respectively, and later using Delayed-CSIT,
transmitters figure out Case 15 occurred at that time. Now,
bit a1 ⊕ a2 available at Tx1 and bit b1 ⊕ b2 available at Tx2 are
useful for both receivers and they are bits of common interest.
Therefore, bits a1 ⊕ a2 and b1 ⊕ b2 can join Q1→{1,2} and Q2→{1,2}

respectively.

(suppose m is picked such that the remaining number of bits is even). Note

that if these bits are delivered to Rx2, then Rx2 can decode the first half of the

remaining bits in Q2,C1 as well. Therefore, the first half of the bits in Q2,C1 can

join Q2,F .

Then, we put the second half of the remaining bits in Q2,C1 in Q2→{1,2}. Similar

to the argument presented above, the second half of the bits in Q1,C1 join Q1,F .

Hence at the end of Phase 1, if the transmission is not halted, we have a total

of

(1 − q2)−1

 p2q︸︷︷︸
Cases 11 and 12

+ pq2︸︷︷︸
XOR opportunities

+0.5 (p4 − pq2 + p3q)︸               ︷︷               ︸
remaining Case 1

 m + 2.5m2/3

=
(
1 − q2

)−1
0.5pm + 2.5m2/3 (2.26)

number of bits in Q1→{1,2}. Same result holds for Q2→{1,2}.

This completes the description of Phase 1 for 0.5 ≤ p ≤
(√

5 − 1
)
/2. For
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(√
5 − 1

)
/2 < p ≤ 1, we combine the bits as follows. Fot this range of p, after

Phase 1, the number of bits in each queue is such that the mergings described

above are not optimal and we have to rearrange them as decsribed below.

• Type I Combining Qi→ī|i and Qi→i|ī: We have already described this oppor-

tunity for 0.5 ≤ p ≤
(√

5 − 1
)
/2. We create the XOR of the bits in Q1→2|1 and

Q1→1|2 and put the XOR of them in Q1→{1,2}. Note that due to the symmetry

of the channel, similar argument holds for Q2→1|2 and Q2→2|1.

For
(√

5 − 1
)
/2 < p ≤ 1, E[Ni→i|ī] ≤ E[Ni→ī|i], i = 1, 2. Therefore after com-

bining the bits, queue Qi→i|ī becomes empty, and we have

E[Ni→ī|i] − E[Ni→i|ī] =
(
1 − q2

)−1
pq

(
p2 − q

)
m (2.27)

bits left in Qi→ī|i, i = 1, 2.

• Type III Combining the bits in Qi,C1 and Qi→ī|i: Consider the bits that were

transmitted in Cases 1, 2, and 3, see Figure 2.22. Now, we observe that

providing a ⊕ c and b ⊕ f to both receivers is sufficient to decode their

corresponding bits. For instance, Rx1 will have a ⊕ b, c, e ⊕ f , a ⊕ c, and

b ⊕ f , from which it can recover a, c, and e. Similar argument holds for

Rx2. Therefore, a ⊕ c and b ⊕ f are bits of common interest and can join

Q1→{1,2} and Q2→{1,2} respectively. Hence, we can remove two bits in Qi,C1

and Qi→ī|i, by inserting their XORs in Qi→{1,2}, i = 1, 2, and then deliver this

bit of common interest to both receivers during the second phase.

For
(√

5 − 1
)
/2 < p ≤ 1, we have

(
1 − q2

)−1
pq

(
p2 − q

)
m ≤ E[Ni,C1]. There-

fore after combining the bits, queue Qi→ī|i becomes empty and we have

E[Ni,C1] + m
2
3 −

(
E[Ni→ī|i] − E[Ni→i|ī]

)
=

(
1 − q2

)−1 (
p4 − p3q + pq2

)
m + m

2
3

(2.28)

bits left in Qi,C1 .
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Figure 2.22: Consider the bits transmitted in Cases 1,2, and 3. Now, bit a⊕c
available at Tx1 and bit b⊕ f available at Tx2 are useful for both
receivers and they are bits of common interest. Therefore, bits
a ⊕ c and b ⊕ f can join Q1→{1,2} and Q2→{1,2} respectively.

We treat the remaining bits in Qi,C1 as described before. Hence at the end of

Phase 1, if the transmission is not halted, we have a total of

(1 − q2)−1

 p2q︸︷︷︸
Cases 11 and 12

+ p3q︸︷︷︸
XOR opportunities

+0.5 (p4 − p3q + pq2)︸               ︷︷               ︸
remaining Case 1

 m + 2.5m2/3

=
(
1 − q2

)−1
0.5pm + 2.5m2/3 (2.29)

number of bits in Q1→{1,2}. Same result holds for Q2→{1,2}.

To summarize, at the end of Phase 1 assuming that the transmission is not

halted, by using coding opportunities of types I, II, and III, we are only left with(
1 − q2

)−1
0.5pm + 2.5m2/3 bits in queue Qi→{1,2}, i = 1, 2.

We now describe how to deliver the bits of common interest in Phase 2 of the

transmission strategy. The problem resembles a network with two transmitters

and two receivers where each transmitter Txi wishes to communicate an inde-

pendent message Wi to both receivers, i = 1, 2. The channel gain model is the

same as described in Section 2.2. We refer to this network as the two-multicast

network as depicted in Figure 2.23. We have the following result for this net-

work.
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Figure 2.23: Two-multicast network. Transmitter Txi wishes to reliably
communicate message Wi to both receivers, i = 1, 2. The ca-
pacity region with no, delayed, or instantaneous CSIT is the
same.

Lemma 2.2 For the two-multicast network as described above, we have

CNo−CSIT
multicast = CDCSIT

multicast = CICSIT
multicast, (2.30)

and, we have

CICSIT
multicast =


Ri ≤ p, i = 1, 2,

R1 + R2 ≤ 1 − q2.

(2.31)

This result basically shows that the capacity region of the two-multicast net-

work described above is equal to the capacity region of the multiple-access

channel formed at either of the receivers. The proof of Lemma 2.2 is presented

in Appendix A.5.

Phase 2 [transmitting bits of common interest]: In this phase, we deliver the

bits in Q1→{1,2} and Q2→{1,2} using the transmission strategy for the two-multicast

problem. More precisely, the bits in Qi→{1,2} will be considered as the message

of Txi and they will be encoded as in the achievability scheme of Lemma 2.2,

i = 1, 2. Fix ε, δ > 0, from Lemma 2.2, we know that rate tuple

(R1,R2) =
1
2

(
(1 − q2) − δ, (1 − q2) − δ

)
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is achievable with decoding error probability less than or equal to ε. Therefore,

transmission of the bits in Q1→{1,2} and Q2→{1,2}, will take

ttotal =

(
1 − q2

)−1
pm + 5m2/3

(1 − q2) − δ
. (2.32)

Therefore, the total transmssion time of our two-phase achievability strategy

is equal to

(1 − q2)−1m + m
2
3 +

(
1 − q2

)−1
pm + 5m2/3

(1 − q2) − δ
, (2.33)

hence, if we let ε, δ→ 0 and m→ ∞, the decoding error probability of delivering

bits of common interest goes to zero, and we achieve a symmetric sum-rate of

R1 = R2 = lim
ε,δ→0
m→∞

m
ttotal

=
(1 − q2)

1 + (1 − q2)−1 p
. (2.34)

This completes the achievability proof of point A for 0.5 ≤ p ≤ 1.

2.5.2 Overview of the Achievability Strategy for Corner Point

C

We now provide an overview of the achievability strategy for corner point C

depicted in Figure 2.17 for
(
3 −
√

5
)
/2 < p ≤ 1, i.e.

(R1,R2) = (pq(1 + q), p) , (2.35)

and we postpone the detailed proof to Appendix A.4.

Compared to the achievability strategy of the sum-rate point, the challenges

in achieving the other corner points arise from the asymmetricity of the rates.
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At this corner point, while Tx2 (the primary user) communicates at full rate of

p, Tx1 (the secondary user) communicates at a lower rate and tries to coexist

with the primary user. The achievability strategy is based on the following two

principles.

(a) If the secondary user creates interference at the primary receiver, it is the

secondary user’s responsibility to resolve this interference;

(b) For the achievability of the optimal sum-rate point A (see Figure 2.17(b)),

the bits of common interest were transmitted such that both receivers

could decode them. However, for corner point C, when the primary re-

ceiver obtains a bit of common interest, we revise the coding scheme in a

way that favors the primary receiver.

Our transmission strategy consists of five phases as summarized below.

• Phase 1 [uncategorized transmission]: This phase is similar to Phase 1 of

the achievability of the optimal sum-rate point A. The main difference is

due to the fact that the transmitters have unequal number of bits at the

beginning. In Phase 1, Tx1 (the secondary user) transmits all its initial bits

while Tx2 (the primary user) only transmits part of its initial bits. Trans-

mitter two postpones the transmission of its remaining bits to Phase 3.

• Phase 2 [updating status of the bits transmitted when either of the Cases

7 or 8 (11 or 12) occurred]: For the achievability of optimal sum-rate point

A, we transferred the transmitted bits of Tx2 (Tx1) to the two-multicast

sub-problem by viewing them as bits of common interest. However, this

scheme turns out to be suboptimal for corner point C. In this case, we

retransmit these bits during Phase 2 and update their status based on the
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channel realization at the time of transmission. Phase 2 provides coding

opportunities that we exploit in Phases 4 and 5.

• Phase 3 [uncategorized transmission vs interference management]: In this

phase, the primary user transmits the remaining initial bits while the sec-

ondary user tries to resolve as much interference as it can at the primary

receiver. To do so, the secondary user sends the bits that caused interfer-

ence at the primary receiver during Phase 1, at a rate low enough such

that both receivers can decode and remove them regardless of what the

primary transmitter does. Note that pq of the time, each receiver gets

interference-free signal from the secondary transmitter, hence, the sec-

ondary transmitter can take advantage of these time instants to deliver

its bits during Phase 3.

• Phases 4 and 5 [delivering interference-free bits and interference manage-

ment]: In the final phases, each transmitter has two main objectives: (1)

communicating the bits required by its own receiver but available at the

unintended receiver; and (2) mitigating interference at the unintended re-

ceiver. This task can be accomplished by creating the XOR of the bits sim-

ilar to coding type-I described in Section 2.4 with a modification: we first

encode these bits and then create the XOR of the encoded bits. Moreover,

the balance of the two objectives is different between the primary user and

the secondary user.

As mentioned before, the detailed proof of the achievability for corner point

C is provided in Appendix A.4. In the following section, we describe the con-

verse proof for the two-user BFIC with Delayed-CSIT.
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2.6 Converse Proof of Theorem 2.2 [Delayed-CSIT]

In this section, we provide the converse proof for Theorem 2.2. As mentioned

in Remark 2.3, The outer-bound on the capacity region with only Delayed-

CSIT (2.11) is in fact the intersection of the outer-bounds on the individual rates

(i.e. Ri ≤ p, i = 1, 2) and the capacity region with Delayed-CSIT and OFB (2.12).

Therefore, the converse proof that we will later present in Section 2.8 for the case

of Delayed-CSIT and OFB suffices. However, specific challenges arise when

OFB is present and careful considerations must be taken into account. Here, we

independently present the converse proof of Theorem 2.2 to highlight the key

techniques without worrying about the details needed for the case of OFB.

We first present the Entropy Leakage Lemma that plays a key role in deriving

the converse. Consider the scenario where a transmitter is connected to two

receivers through binary fading channels as in Figure 2.24. Suppose G1[t] and

G2[t] are distributed as i.i.d. Bernoulli RVs (i.e. Gi[t]
d
∼ B(p)), i = 1, 2. In this

channel the received signals are given as

Yi[t] = Gi[t]X[t], i = 1, 2, (2.36)

where X[t] is the transmit signal at time t. We have the following lemma.

Lemma 2.3 [Entropy Leakage] For the channel described above with Delayed-CSIT

and for any input distribution, we have

H
(
Yn

2 |G
n) ≥ 1

2 − p
H

(
Yn

1 |G
n) . (2.37)

Remark 2.14 Note that with No-CSIT, from the transmitter’s point of view, the two

receivers are identical and it cannot favor one over the other and as a result, we have
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Figure 2.24: A transmitter connected to two receivers through binary fad-
ing channels. Using Delayed-CSIT, the transmitter can privi-
lege reveiver one to receiver two. Lemma 2.3 formalizes this
privilege.

H
(
Yn

2 |G
n
)

= H
(
Yn

1 |G
n
)
. With Instantaneous-CSIT this ratio can become zero6. There-

fore, this lemma captures the impact of Delayed-CSIT on the entropy of the received

signals at the two receivers.

Proof: For time instant t where 1 ≤ t ≤ n, we have

H
(
Y2[t]|Y t−1

2 ,Gt
)

= pH
(
X[t]|Y t−1

2 ,G2[t] = 1,Gt−1
)

(a)
= pH

(
X[t]|Y t−1

2 ,Gt
)

(b)
≥ pH

(
X[t]|Y t−1

1 ,Y t−1
2 ,Gt

)
(c)
=

p
1 − q2 H

(
Y1[t],Y2[t]|Y t−1

1 ,Y t−1
2 ,Gt

)
, (2.38)

where (a) holds since X[t] is independent of the channel realization at time in-

stant t; (b) follows from the fact that conditioning reduces entropy; and (c) fol-

lows from the fact that Pr [G1[t] = G2[t] = 0] = q2. Therefore, we have

n∑
t=1

H
(
Y2[t]|Y t−1

2 ,Gt
)
≥

1
2 − p

n∑
t=1

H
(
Y1[t],Y2[t]|Y t−1

1 ,Y t−1
2 ,Gt

)
, (2.39)

6This can be done by simply remaining silent whenever G2[t] = 1.
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and since the transmit signals at time instant t are independent from the channel

realizations in future time instants, we have

n∑
t=1

H
(
Y2[t]|Y t−1

2 ,Gn
)
≥

1
2 − p

n∑
t=1

H
(
Y1[t],Y2[t]|Y t−1

1 ,Y t−1
2 ,Gn

)
, (2.40)

hence, we get

H
(
Yn

2 |G
n) ≥ 1

2 − p
H

(
Yn

1 ,Y
n
2 |G

n) ≥ 1
2 − p

H
(
Yn

1 |G
n) . (2.41)

This completes the proof of the lemma. �

We now derive the converse for Theorem 2.2. The outer-bound on Ri is

the same under no, delayed, and instantaneous CSIT, and we present it in Ap-

pendix A.2. In this section, we provide the proof of

Ri + (1 + q)Rī ≤ p(1 + q)2, i = 1, 2. (2.42)

By symmetry, it is sufficient to prove it for i = 1. Let β = (1 + q), and suppose

rate tuple (R1,R2) is achievable. Then we have

n (R1 + βR2) = H(W1) + βH(W2)

(a)
= H(W1|W2,Gn) + βH(W2|Gn)
(Fano)
≤ I(W1; Yn

1 |W2,Gn) + βI(W2; Yn
2 |G

n) + nεn

= H(Yn
1 |W2,Gn) − H(Yn

1 |W1,W2,Gn)︸                ︷︷                ︸
= 0

+βH(Yn
2 |G

n) − βH(Yn
2 |W2,Gn) + nεn

(b)
= βH(Yn

2 |G
n) + H(Yn

1 |W2, Xn
2 ,G

n) − βH(Yn
2 |W2, Xn

2 ,G
n) + nεn

= βH(Yn
2 |G

n) + H(Gn
11Xn

1 |W2, Xn
2 ,G

n) − βH(Gn
12Xn

1 |W2, Xn
2 ,G

n) + nεn

(c)
= βH(Yn

2 |G
n) + H(Gn

11Xn
1 |W2,Gn) − βH(Gn

12Xn
1 |W2,Gn) + nεn

(d)
= βH(Yn

2 |G
n) + H(Gn

11Xn
1 |G

n) − βH(Gn
12Xn

1 |G
n) + nεn

Lemma 2.3
≤ βH(Yn

2 |G
n) + nεn
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= β

n∑
t=1

H(Y2[t]|Y t−1
2 ,Gn) + nεn

(e)
≤ β

n∑
t=1

H(Y2[t]|Gn) + nεn

( f )
≤ nβ(1 − q2) + εn = np(1 + q)2 + nεn. (2.43)

where (a) holds since W1, W2 and Gn are mutually independent; (b) and (c) hold

since Xn
2 is a deterministic function of W2 and Gn; (d) follows from

0 ≤ H(Gn
11Xn

1 |G
n) − H(Gn

11Xn
1 |W2,Gn)

= I
(
Gn

11Xn
1 ; W2|Gn) ≤ I

(
W1,Gn

11Xn
1 ; W2|Gn)

= I (W1; W2|Gn)︸          ︷︷          ︸
= 0 since W1⊥W2⊥Gn

+ I
(
Gn

11Xn
1 ; W2|W1,Gn)︸                    ︷︷                    ︸

= 0 since Xn
1=f1(W1, Gn)

= 0, (2.44)

which implies H(Gn
11Xn

1 |G
n) = H(Gn

11Xn
1 |W2,Gn), and similarly H(Gn

12Xn
1 |G

n) =

H(Gn
12Xn

1 |W2,Gn); (e) is true since conditioning reduces entropy; and ( f ) holds

since the probability that at least one of the links connected to Rx2 is equal to 1

at each time instant is (1 − q2). Dividing both sides by n and let n→ ∞, we get

R1 + (1 + q)R2 ≤ p(1 + q)2. (2.45)

This completes the converse proof for Theorem 2.2.

2.7 Achievability Proof of Theorem 2.3 [Delayed-CSIT and

OFB]

We now focus on the impact of the output feedback in the presence of Delayed-

CSIT. In particular, we demonstrate how output feedback can be utilized to fur-

ther improve the achievable rates. The capacity region of the two-user BFIC
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with Delayed-CSIT and OFB is given by

CDCSIT,OFB =
{
R1,R2 ∈ R+ s.t. Ri + (1 + q)Rī ≤ p(1 + q)2, i = 1, 2

}
, (2.46)

and is depicted in Figure 2.25.

R1

R2

Figure 2.25: Capacity region of the two-user BFIC with Delayed-CSIT and
output feedback.

The achievability strategy of the corner points
(
1 − q2, 0

)
and

(
0, 1 − q2

)
, is

based on utilizing the additional communication paths created by the means of

the output feedback links, e.g.,

Tx1 → Rx2 → Tx2 → Rx1,

and is presented in Appendix A.6. Here, we only describe the transmission

strategy for the sum-rate point, i.e.

R1 = R2 =
(1 − q2)

1 + (1 − q2)−1 p
. (2.47)

Let the messages of transmitters one and two be denoted by W1 =

a1, a2, . . . , am, and W2 = b1, b2, . . . , bm, respectively, where data bits ai’s and bi’s

are picked uniformly and independently from {0, 1}, i = 1, . . . ,m. We show that

it is possible to communicate these bits in

n =
(
1 − q2

)−1
m +

(
1 − q2

)−2
pm + O

(
m2/3

)
(2.48)
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time instants with vanishing error probability (as m → ∞). Therefore achieving

the rates given in (2.47) as m → ∞. Our transmission strategy consists of two

phases as described below.

Phase 1 [uncategorized transmission]: This phase is identical to Phase 1 of Sec-

tion 2.5. At the beginning of the communication block, we assume that the bits

at Txi are in queue Qi→i, i = 1, 2. At each time instant t, Txi sends out a bit from

Qi→i, and this bit will either stay in the initial queue or transition to a new queue

will take place. The transitions are identical to what we have already described

in Table 2.2, therefore, we are not going to repeat them here. Phase 1 goes on for(
1 − q2

)−1
m + m

2
3 (2.49)

time instants and if at the end of this phase, either of the queues Q1→1 or Q2→2 is

not empty, we declare error type-I and halt the transmission.

The transmission strategy will be halted and an error type-II will occur, if

any of the following events happens.

Ni,C1 > E[Ni,C1] + m
2
3
4
= ni,C1 , i = 1, 2;

Ni→ j| j̄ > E[Ni→ j| j̄] + m
2
3
4
= ni→ j| j̄, i = 1, 2, and j = i, ī;

Ni→{1,2} > E[Ni→{1,2}] + m
2
3
4
= ni→{1,2}, i = 1, 2. (2.50)

From basic probability, we know that

E[Ni,C1] =
Pr (Case 1)

1 −
∑

i=9,10,13,16 Pr (Case i)
m = (1 − q2)−1 p4m,

E[Ni→i|ī] =

∑
j=14,15 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m = (1 − q2)−1 pq2m,

E[Ni→ī|i] =
Pr (Case 2)

1 −
∑

i=9,10,13,16 Pr (Case i)
m = (1 − q2)−1 p3qm,

E[Ni→{1,2}] =

∑
j=11,12 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m = (1 − q2)−1 p2qm. (2.51)
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Using Chernoff-Hoeffding bound, we can show that the probability of errors

of types I and II decreases exponentially with m.

At the end of Phase 1, we add 0’s (if necessary) in order to make queues Qi,C1 ,

Qi→ j| j̄, and Qi→{1,2} of size equal to ni,C1 , ni→ j| j̄, and ni→{1,2} respectively as defined in

(2.50), i = 1, 2, and j = i, ī. For the rest of this subsection, we assume that Phase

1 is completed and no error has occurred. We now use the ideas described in

Section 2.4 for output feedback, to further create bits of common interest.

• Updating the status of bits in Qi,C1 to bits of common interest: A bit in Qi,C1

can be considered as a bit of common interest. Also note that it is sufficient

to deliver only one of the two bits transmitted simultaneously during Case 1.

Therefore, Tx1 updates the status of the first half of the bits in Q1,C1 to Q1→{1,2},

whereas Tx2 updates the status of the second half of the bits in Q2,C1 to Q2→{1,2}.

Hence, after updating the status of bits in Qi,C1 , we have

(1 − q2)−1
[
p2q +

1
2

p4
]

m +
3
2

m
2
3 (2.52)

bits in Qi→{1,2}, i = 1, 2.

• Upgrading ICs with side information to a two-multicast problem using

OFB: Note that through the output feedback links, each transmitter has access

to the transmitted bits of the other user during Phase 1. As described above,

there are E[Ni→i|ī] + m
2
3 bits in Qi→i|ī at the end of Phase 1. Now, Tx1 creates the

XOR of the first half of the bits in Q1→1|2 and Q2→2|1 and updates the status of the

resulting bits to Q1→{1,2}. Note that as described in Example 6 of Section 2.4, the

XOR of these bits is a bit of common interest. On the other hand, Tx2 creates the

XOR of the second half of the bits in Q1→1|2 and Q2→2|1 and updates the status of
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the resulting bits to Q2→{1,2}. Thus, we have

(1 − q2)−1
[
p2q +

1
2

p4 +
1
2

pq2
]

m + 2m
2
3 (2.53)

bits in Qi→{1,2}, i = 1, 2.

• Upgrading ICs with side information and swapped receivers to a two-

multicast problem using OFB: As described above, there are E[Ni→ī|i] + m
2
3 bits

in Qi→ī|i, Tx1 creates the XOR of the first half of the bits in Q1→2|1 and Q2→1|2 and

updates the status of the resulting bits to Q1→{1,2}. Note that as described in Ex-

ample 7 of Section 2.4, the XOR of these bits is a bit of common interest. On the

other hand, Tx2 creates the XOR of the second half of the bits in Q1→2|1 and Q2→1|2

and updates the status of the resulting bits to Q2→{1,2}. Hence, we have

(1 − q2)−1
[
p2q +

1
2

p4 +
1
2

pq2 +
1
2

p3q
]

m +
5
2

m
2
3 = (1 − q2)−1 p

2
m +

5
2

m
2
3 (2.54)

bits in Qi→{1,2}, i = 1, 2. This completes the description of Phase 1.

Phase 2 [transmitting bits of common interest]: In this phase, we deliver the

bits in Q1→{1,2} and Q2→{1,2} using the transmission strategy for the two-multicast

problem. More precisely, the bits in Qi→{1,2} will be considered as the message

of Txi and they will be encoded as in the achievability scheme of Lemma 2.2,

i = 1, 2. Fix ε, δ > 0, from Lemma 2.2 we know that the rate tuple

(R1,R2) =
1
2

(
(1 − q2) − δ/2, (1 − q2) − δ/2

)
is achievable with decoding error probability less than or equal to ε. Therefore,

transmission of the bits in Q1→{1,2} and Q2→{1,2} requires

ttotal =

(
1 − q2

)−1
pm + 5m2/3

(1 − q2) − δ
(2.55)
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time instants. Therefore, the total transmission time of our two-phase achiev-

ability strategy is equal to

(1 − q2)−1m + m
2
3 +

(
1 − q2

)−1
pm + 5m2/3

(1 − q2) − δ
. (2.56)

The probability that the transmission strategy halts at any point can be

bounded by the summation of error probabilities of types I and II, and the prob-

ability that an error occurs in decoding the encoded bits. This probability ap-

proaches zero for ε, δ→ 0 and m→ ∞.

Hence, if we let ε, δ → 0 and m → ∞, the decoding error probability goes to

zero, and we achieve a symmetric sum-rate of

R1 = R2 = lim
ε,δ→0
m→∞

m
ttotal

=
(1 − q2)

1 + (1 − q2)−1 p
. (2.57)

2.8 Converse Proof of Theorem 2.3 [Delayed-CSIT and OFB]

In this section, we prove the converse for Theorem 2.3. Suppose rate tuple

(R1,R2) is achievable, then by letting β = 1 + q, we have

n (R1 + βR2) = H(W1) + βH(W2)

(a)
= H(W1|W2,Gn) + βH(W2|Gn)
Fano
≤ I(W1; Yn

1 |W2,Gn) + βI(W2; Yn
2 |G

n) + nεn

≤ I(W1; Yn
1 ,Y

n
2 |W2,Gn) + βI(W2; Yn

2 |G
n) + nεn

= H(Yn
1 ,Y

n
2 |W2,Gn) − H(Yn

1 ,Y
n
2 |W1,W2,Gn)︸                     ︷︷                     ︸

= 0

+βH(Yn
2 |G

n) − βH(Yn
2 |W2,Gn) + nεn

= βH(Yn
2 |G

n) + H(Yn
1 ,Y

n
2 |W2,Gn) − βH(Yn

2 |W2,Gn) + nεn

= βH(Yn
2 |G

n) +

n∑
t=1

H(Y1[t],Y2[t]|W2,Y t−1
1 ,Y t−1

2 ,Gn) − β
n∑

t=1

H(Y2[t]|W2,Y t−1
2 ,Gn) + nεn
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(b)
≤ βH(Yn

2 |G
n) +

n∑
t=1

H(Y1[t],Y2[t]|W2,Y t−1
1 ,Y t−1

2 , Xt
2,G

n)

− β

n∑
t=1

H(Y2[t]|W2,Y t−1
2 , Xt

2,G
n) + nεn

= βH(Yn
2 |G

n) +

n∑
t=1

H(G11[t]X1[t],G12[t]X1[t]|W2,Gt−1
11 Xt−1

1 ,Gt−1
12 Xt−1

1 , Xt
2,G

n)

− β

n∑
t=1

H(G12[t]X1[t]|W2,Gt−1
12 Xt−1

1 , Xt
2,G

n) + nεn

(c)
= βH(Yn

2 |G
n) +

n∑
t=1

H(G11[t]X1[t],G12[t]X1[t]|W2,Gt−1
11 Xt−1

1 ,Gt−1
12 Xt−1

1 , Xt
2,G

t)

− β

n∑
t=1

H(G12[t]X1[t]|W2,Gt−1
12 Xt−1

1 , Xt
2,G

t) + nεn

(d)
≤ βH(Yn

2 |G
n) + nεn

≤ p(1 + q)2n + nεn, (2.58)

where (a) holds since the channel gains and the messages are mutually indepen-

dent; (b) follows from the fact that Xt
2 is a deterministic function of

(
W2,Y t−1

2

)
7 and

the fact that conditioning reduces entropy; (c) follows from the fact that condi-

tion on W2, Xt−1
1 , Xt

2, X1[t] is independent of the channel realization at future time

instants, hence, we can replace Gn by Gt; and (d) follows from Lemma 2.4 below.

Dividing both sides by n and let n→ ∞, we get

R1 + (1 + q)R2 ≤ p(1 + q)2. (2.59)

Similarly, we can get (1 + q)R1 + R2 ≤ p(1 + q)2.

Lemma 2.4

n∑
t=1

H(G12[t]X1[t]|W2,Gt−1
12 Xt−1

1 , Xt
2,G

t)

7We have also added Y t−1
1 in the condition for the scenario in which output feedback links

are available from each receiver to both transmitters.
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≥
1

2 − p

n∑
t=1

H(G11[t]X1[t],G12[t]X1[t]|W2,Gt−1
11 Xt−1

1 ,Gt−1
12 Xt−1

1 , Xt
2,G

t). (2.60)

Remark 2.15 Lemma 2.4 is the counterpart of Lemma 2.3 when Output Feedback is

available. Note that in the condition we have Xt
2, and due to the presence of output

feedback the proof is different than that of Lemma 2.3.

Proof: We have

H(G12[t]X1[t]|W2,Gt−1
12 Xt−1

1 , Xt
2,G

t)

= pH(X1[t]|G12[t] = 1,W2,Gt−1
12 Xt−1

1 , Xt
2,G

t−1)

(a)
= pH(X1[t]|W2,Gt−1

12 Xt−1
1 , Xt

2,G
t−1)

(b)
= pH(X1[t]|W2,Gt−1

12 Xt−1
1 , Xt

2,G
t)

=
p

1 − q2 H(G11[t]X1[t],G12[t]X1[t]|W2,Gt−1
12 Xt−1

1 , Xt
2,G

t)

(c)
≥

1
2 − p

H(G11[t]X1[t],G12[t]X1[t]|W2,Gt−1
11 Xt−1

1 ,Gt−1
12 Xt−1

1 , Xt
2,G

t), (2.61)

where (a) and (b) follow from the fact that condition on W2, Gt−1
12 Xt−1

1 , Xt
2 and

Gn, X1[t] is independent of the channel realization at time t; and (c) holds since

conditioning reduces entropy.

Therefore, we have
n∑

t=1

H(G12[t]X1[t]|W2,Gt−1
12 Xt−1

1 , Xt
2,G

t)

≥
1

2 − p

n∑
t=1

H(G11[t]X1[t],G12[t]X1[t]|W2,Gt−1
11 Xt−1

1 ,Gt−1
12 Xt−1

1 , Xt
2,G

t).

�

In the following two sections, we consider the last scenario we are interested

in, i.e. Instantaneous-CSIT and OFB, and we provide the proof of Theorem 2.4.

First, we present the achievability strategy, and we demonstrate how OFB can

enhance our achievable rate region. We then present the converse proof.
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2.9 Achievability Proof of Theorem 2.4 [Instantaneous-CSIT

and OFB]

In this section, we describe our achievability strategy for the case of

Instantaneous-CSIT and output feedback. Note that in this scenario, although

transmitters have instantaneous knowledge of the channel state information,

the output signals are available at the transmitters with unit delay. We first pro-

vide a brief overview of our scheme.

2.9.1 Overview

By symmetry, it suffices to describe the achievability scheme for corner point

(R1,R2) =
(
1 − q2, pq

)
,

as depicted in Figure 2.26. Similarly, we can achieve corner point (R1,R2) =(
pq, 1 − q2

)
, and therefore by time sharing, we can achieve the region.

R1

R2

(1-q2,pq)

(pq,1-q2)

Figure 2.26: Two-user Binary Fading IC: capacity region with
Instantaneous-CSIT and output feedback. By symmetry,
it suffices to describe the achievability scheme for corner
point (R1,R2) =

(
1 − q2, pq

)
.
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Our achievability strategy is carried on over b + 1 communication blocks,

each block with n time instants. Transmitters communicate fresh data bits in the

first b blocks and the final block is to help the receivers decode their correspond-

ing bits. At the end, using our scheme, we achieve a rate tuple arbitrary close

to b
b+1

(
1 − q2, pq

)
as n → ∞. Finally letting b → ∞, we achieve the desired rate

tuple.

2.9.2 Achievability Strategy

Let W j
i be the message of transmitter i in block j, i = 1, 2, and j = 1, 2, . . . , b.

Moreover, let W j
1 = a j

1, a
j
2, . . . , a

j
m, and W j

2 = b j
1, b

j
2, . . . , b

j
m2 , for j = 1, 2, . . . , b,

where data bits a j
i ’s and b j

i ’s are picked uniformly and independently from {0, 1},

i = 1, 2, . . . ,m, and

m2 =
q

1 + q
m. (2.62)

We also set n = m/(1 − q2) + m2/3, where n is the length of each block.

Achievability strategy for block 1: In the first communication block, at each

time instant t, if at least one of the outgoing links from Tx1 is on, then it sends one

of its initial m bits that has not been transmitted before (note that this happens

with probability (1 − q2)). On the other hand, Tx2 communicates a new bit (a bit

that has not been transmitted before) if the link to its receiver is on and it does

not interfere with receiver one (i.e. G22[t] = 1 and G21[t] = 0). In other words, Tx2

communicates a new bit if either one of Cases 2, 4, 9, or 11 in Table 2.2 occurs

(note that this happens with probability pq).

The first block goes on for n time instants. If at the end of the first block,
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there exists a bit at either of the transmitters that has not yet been transmitted,

we consider it as error type-I and halt the transmission.

Assuming that the transmission in not halted, using output feedback links,

transmitter two has access to the bits of transmitter one communicated in the

first block. In particular, Tx2 has access to the bits of Tx1 transmitted in Cases

2, 11, 12, 14, and 15 during block 1. Note that the bits communicated in Cases

11, 12, 14, and 15 from Tx1 have to be provided to Rx1. However, the bits com-

municated in Case 2 from Tx1 are already available at Rx1 but needed at Rx2,

see Figure 2.27. Transmitter two will provide such bits to Rx2 in the following

communication block.

1

2

1

2

Figure 2.27: The bit communicated in Case 2 from Tx1 is already available
at Rx1 but it is needed at Rx2. Transmitter two learns this bit
through the feedback channel and will provide it to Rx2 in the
following communication block.

Now, Tx2 transfers the bits of Tx1 communicated in Cases 2, 11, 12, 14, and

15, during the first communication block to queues Q1
1,C2

, Q1
1,C11

, Q1
1,C12

, Q1
1,C14

,

and Q1
1,C15

respectively.

Let random variable N1
1,C`

denote the number of bits in Q1
1,C`

, ` =

2, 11, 12, 14, 15. Since transition of a bit to this state is distributed as indepen-

dent Bernoulli RV, upon completion of block 1, we have

E[N1
1,C`

] =
Pr (Case `)

1 −
∑

i=9,10,13,16 Pr (Case i)
m = (1 − q2)−1 Pr (Case `) m, (2.63)

73



for ` = 2, 11, 12, 14, 15.

If the event
[
N1

1,C`
≥ E[N1

1,C`
] + m

2
3

]
occurs, we consider it as error type-II and

we halt the transmission. At the end of block 1, we add 0’s (if necessary) to Q1
1,C`

so that the total number of bits is equal to E[N1
1,C`

] + m
2
3 . Furthermore, using

Chernoff-Hoeffding bound, we can show that the probability of errors of types

I and II decreases exponentially with m.

Achievability strategy for block j, j = 2, 3, . . . , b: The transmission strategy

for Tx1 is the same as block 1 for the first b blocks (all but the last block). In

other words, at time instant t, Tx1 transmits one of its initial m bits (that has not

been transmitted before) if at least one of its outgoing links is on. On the other

hand, Tx2 communicates W2
2 using similar strategy as the first block, i.e. Tx2

communicates a new bit if either one of Cases 2, 4, 9, or 11 occurs.

Transmitter two transfers the bits communicated in Cases 2, 11, 12, 14, and

15, during communication block j to queues Q j
1,C2

, Q j
1,C11

, Q j
1,C12

, Q j
1,C14

, and Q j
1,C15

respectively.

Moreover, at time instant t,

• if Case 3 occurs, Tx2 sends one of the bits from Q j−1
1,C2

and removes it from

this queue since it has been delivered successfully to Rx2, see Figure 2.28.

If Case 3 occurs and Q j−1
1,C2

is empty, Tx2 remains silent;

• if Case 10 occurs, Tx2 sends one of the bits from Q j−1
1,C11

and removes it from

this queue, see Figure 2.29. If Case 10 occurs and Q j−1
1,C11

is empty, Tx2 re-

mains silent;

• if Case 12 occurs, it sends one of the bits from Q j−1
1,C12

and removes it from
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Tx1

Tx2

Rx1

Rx2

a

b

a   

a   b

Tx1

Tx2

Rx1

Rx2

1

1

1

1 1

a1

a1

a2
a   a2 1

a1

Figure 2.28: In block j when Case 3 occurs, Tx2 retransmits the bit of Tx1

communicated in Case 2 during block j − 1. Note that this bit
does not cause interference at Rx1 and it is needed at Rx2.

Tx1

Tx2

Rx1

Rx2

a

b a   b

Tx1

Tx2

Rx1

Rx2

1

1 1 1

a1

a1 a1

a1

Figure 2.29: In block j when Case 10 occurs, Tx2 retransmits the bit of Tx1

communicated in Case 11 during block j−1. Note that this bit
is needed at both receivers.

this queue. If Case 12 occurs and Q j−1
1,C12

is empty, Tx2 remains silent;

• if Case 13 occurs, it sends one of the bits from Q j−1
1,C14

and removes it from

this queue. If Case 13 occurs and Q j−1
1,C14

is empty, Tx2 remains silent;

• if Case 15 occurs, it sends one of the bits from Q j−1
1,C15

and removes it from

this queue. If Case 15 occurs and Q j−1
1,C15

is empty, Tx2 remains silent.

If at the end of block j, there exists a bit at either of the transmitters that has

not yet been transmitted, or any of the queues Q j−1
1,C2

, Q j−1
1,C11

, Q j−1
1,C12

, Q j−1
1,C14

, or Q j−1
1,C15

is not empty, we consider this event as error type-I and halt the transmission.

Assuming that the transmission is not halted, let random variable N j
1,C`

de-

note the number of bits in Q j
1,C`

, ` = 2, 11, 12, 14, 15. From basic probability, we
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have

E[N j
1,C`

] =
Pr (Case `)

1 −
∑

i=9,10,13,16 Pr (Case i)
m = (1 − q2)−1 Pr (Case `) m, (2.64)

for ` = 2, 11, 12, 14, 15.

If the event
[
N j

1,C`
≥ E[N j

1,C`
] + m

2
3

]
occurs, we consider it as error type-II and

we halt the transmission. At the end of block 1, we add 0’s (if necessary) to

Q j
1,C`

so that the total number of bits is equal to E[N j
1,C`

] + m
2
3 . Using Chernoff-

Hoeffding bound, we can show that the probability of errors of types I and II

and decreases exponentially with m.

Achievability strategy for block b + 1: Finally in block b + 1, no new data bit

is transmitted (i.e. Wb+1
1 ,Wb+1

2 = 0), and Tx2 only communicates the bits of Tx1

communicated in the previous block in Cases 2, 11, 12, 14, and 15 as described

above. If at the end of block b + 1, any of the queues Qb
1,C2

, Qb
1,C11

, Qb
1,C12

, Qb
1,C14

, or

Qb
1,C15

is not empty, we consider this event as error type-I and halt the transmis-

sion.

The probability that the transmission strategy halts at the end of each block

can be bounded by the summation of error probabilities of types I and II. Using

Chernoff-Hoeffding bound, we can show that the probability that the transmis-

sion strategy halts at any point approaches zero as m→ ∞.

2.9.3 Decoding

At the end of block j + 1, Rx1 has acces to W j
1 with no interference, j = 1, 2, . . . , b.

At the end of block b+1, Rx2 uses the bits communicated in Cases 3 and 10 from

Tx2 to cancel out the interference it has received from Tx1 during the previous
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block in Cases 2 and 11. Therefore, at the end of block b + 1, Rx1 has access to

Wb
2 with no interference. Then, Rx2 follows the same strategy for blocks b and

b − 1. Therefore, using similar idea, Rx2 uses backward decoding to cancel out

interference in the previous blocks to decode all messages.

Now, since each block has n = m/(1−q2)+m2/3 time instants and the probabil-

ity that the transmission strategy halts at any point approaches zero for m→ ∞,

we achieve a rate tuple

b
b + 1

(
1 − q2, pq

)
, (2.65)

as m→ ∞. Finally letting b→ ∞, we achieve the desired rate tuple.

2.10 Converse Proof of Theorem 2.4 [Instantaneous-CSIT and

OFB]

To derive the outer-bound on individual rates, we have

nR1 = H(W1)
(a)
= H(W1|Gn)

(Fano)
≤ I(W1; Yn

1 |G
n) + nεn

= H(Yn
1 |G

n) − H(Yn
1 |W1,Gn) + nεn

≤ H(Yn
1 |G

n) + nεn

≤ (1 − q2)n + nεn, (2.66)

where εn → 0 as n → ∞; (a) holds since message W1 is independent of Gn.

Similarly, we have

nR2 ≤ (1 − q2)n + nεn, (2.67)
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dividing both sides by n and let n→ ∞, we have
R1 ≤ 1 − q2,

R2 ≤ 1 − q2.

(2.68)

The outer-bound on R1 + R2, i.e.

R1 + R2 ≤ 1 − q2 + pq, (2.69)

can be obtained as follows.

n(R1 + R2 − 2εn)
(a)
≤ H(W1|W2,Gn) + H(W2|Gn)
Fano
≤ I(W1; Yn

1 |W2,Gn) + I(W2; Yn
2 |G

n)

= H(Yn
1 |W2,Gn) − H(Yn

1 |W1,W2,Gn)︸                ︷︷                ︸
= 0

+I(W2; Yn
2 |G

n)

= H(Yn
1 |W2,Gn) + H(Yn

2 |G
n) − H(Yn

2 |W2,Gn)

= H(Yn
1 |W2,Gn) + H(Yn

2 |G
n) −

[
H(Yn

1 ,Y
n
2 |W2,Gn) − H(Yn

1 |Y
n
2 ,W2,Gn)

]
= H(Yn

1 |Y
n
2 ,W2,Gn) + H(Yn

2 |G
n)

(b)
= H(Yn

2 |G
n) +

n∑
t=1

H(Y1[t]|W2,Yn
2 ,Y

t−1
1 , Xt

2,G
t
12Xt

1,G
n)

(c)
≤ H(Yn

2 |G
n) + H(Yn

1 |G
n
12Xn

1 ,G
n
21Xn

2 ,G
n)

(d)
≤

n∑
t=1

H(Y2[t]|Gn) +

n∑
t=1

H(Y1[t]|G12[t]X1[t],G21[t]X2[t],Gn)

(e)
≤

(
1 − q2

)
n + pqn, (2.70)

where εn → 0 as n → ∞; and (a) follows from the fact that the messages and Gn

are mutually independent; (b) holds since Xt
2 is a function of W2,Y t−1

1 ,Y t−1
2 , and

Gt; (c) and (d) follow from the fact that conditioning reduces entropy; and (e)

holds since

H(Y2[t]|Gn) ≤ 1 − q2,
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H(Y1[t]|G12[t]X1[t],G21[t]X2[t],Gn) ≤ pq. (2.71)

Dividing both sides by n and let n→ ∞, we get

R1 + R2 ≤ 1 − q2 + pq. (2.72)

We also note this outer-bound on R1 + R2 can be also applied to the case of

Instantaneous-CSIT and no output feedback (i.e. Theorem 2.1).

2.11 Extension to the Non-Homogeneous Setting

In this section, we discuss the extension of our results to the non-homogeneous

case. More precisely, we consider the two-user Binary Fading Interference

Channel of Section 2.2 where

Gii[t]
d
∼ B(pd), Giī[t]

d
∼ B(pc), (2.73)

for 0 ≤ pd, pc ≤ 1, ī = 3 − i, and i = 1, 2. We define qd = 1 − pd and qc = 1 − pc.

We study the non-homogeneous BFIC in two settings: (1) Delayed-CSIT and

output feedback; and (2) Delayed-CSIT (and no output feedback). For the case

of Delayed-CSIT and output feedback, we fully characterize the capacity region

as follows.

Theorem 2.5 The capacity region of the two-user Binary Fading IC with Delayed-

CSIT and output feedback, CDCSIT,OFB (pd, pc) is given by

CDCSIT,OFB(pd, pc) =
{
R1,R2 ∈ R+ s.t. pcRi + (1 − qdqc) Rī ≤ (1 − qdqc)2 , i = 1, 2

}
.

(2.74)
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Proof: We first prove the converse. The converse proof follows similar steps as

the case of the homogeneous setting described in Scetion 2.8 for Theorem 2.3.

Set8

β =
(1 − qdqc)

pc
. (2.75)

We have

n (R1 + βR2) = H(W1) + βH(W2)

(a)
= H(W1|W2,Gn) + βH(W2|Gn)
Fano
≤ I(W1; Yn

1 |W2,Gn) + βI(W2; Yn
2 |G

n) + nεn

≤ I(W1; Yn
1 ,Y

n
2 |W2,Gn) + βI(W2; Yn

2 |G
n) + nεn

= H(Yn
1 ,Y

n
2 |W2,Gn) − H(Yn

1 ,Y
n
2 |W1,W2,Gn)︸                     ︷︷                     ︸

= 0

+βH(Yn
2 |G

n) − βH(Yn
2 |W2,Gn) + nεn

= βH(Yn
2 |G

n) + H(Yn
1 ,Y

n
2 |W2,Gn) − βH(Yn

2 |W2,Gn) + nεn

= βH(Yn
2 |G

n) +

n∑
t=1

H(Y1[t],Y2[t]|W2,Y t−1
1 ,Y t−1

2 ,Gn) − β
n∑

t=1

H(Y2[t]|W2,Y t−1
2 ,Gn) + nεn

(b)
≤ βH(Yn

2 |G
n) +

n∑
t=1

H(Y1[t],Y2[t]|W2,Y t−1
1 ,Y t−1

2 , Xt
2,G

n) − β
n∑

t=1

H(Y2[t]|W2,Y t−1
2 , Xt

2,G
n) + nεn

= βH(Yn
2 |G

n) +

n∑
t=1

H(G11[t]X1[t],G12[t]X1[t]|W2,Gt−1
11 Xt−1

1 ,Gt−1
12 Xt−1

1 , Xt
2,G

n)

− β

n∑
t=1

H(G12[t]X1[t]|W2,Gt−1
12 Xt−1

1 , Xt
2,G

n) + nεn

(c)
= βH(Yn

2 |G
n) +

n∑
t=1

H(G11[t]X1[t],G12[t]X1[t]|W2,Gt−1
11 Xt−1

1 ,Gt−1
12 Xt−1

1 , Xt
2,G

t)

− β

n∑
t=1

H(G12[t]X1[t]|W2,Gt−1
12 Xt−1

1 , Xt
2,G

t) + nεn

(d)
≤ βH(Yn

2 |G
n) + nεn

≤
(1 − qdqc)2

pc
n + nεn, (2.76)

8For pc = 0 the result is trivial, so we assume that β is well defined.
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where (a) holds since the channel gains and the messages are mutually indepen-

dent; (b) follows from the fact that Xt
2 is a deterministic function of

(
W2,Y t−1

2

)
9 and

the fact that conditioning reduces entropy; (c) follows from the fact that condi-

tion on W2, Xt−1
1 , Xt

2, X1[t] is independent of the channel realization at future time

instants, hence, we can replace Gn by Gt; and (d) follows from Lemma 2.5 below.

Dividing both sides by n and let n→ ∞, we get

pcR1 + (1 − qdqc) R2 ≤ (1 − qdqc)2 , (2.77)

and the derivation of the other bound would be similar.

Lemma 2.5 [Non-Homogeneous Entropy Leakage with Output Feedback] For

the broadcast channel described in Fig. 2.24 with parameters pd and pc, and with

Delayed-CSIT and output feedback, for any input distribution, we have

(1 − qdqc)
n∑

t=1

H(G12[t]X1[t]|W2,Gt−1
12 Xt−1

1 , Xt
2,G

t)

≥ pc

n∑
t=1

H(G11[t]X1[t],G12[t]X1[t]|W2,Gt−1
11 Xt−1

1 ,Gt−1
12 Xt−1

1 , Xt
2,G

t). (2.78)

The proof of Lemma 2.5 follows the same steps as the proof of Lemma 2.4.

We note that this lemma, is the generalization of the Entropy Leakage Lemma

to the case where G1[t] d
∼ B(pd) and G2[t] d

∼ B(pc) and where the output feedback

is present.

We now describe the achievability proof. The achievability proof is also sim-

ilar to that of the homogeneous setting described in Section 2.7. Hence, we

provide an outline of the achievability strategy here. The achievability strategy

9We have also added Y t−1
1 in the condition for the scenario in which output feedback links

are available from each receiver to both transmitters.
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of corner points (1 − qdqc, 0) and (0, 1 − qdqc), is based on utilizing the additional

communication paths created by the means of the output feedback links, e.g.,

Tx1 → Rx2 → Tx2 → Rx1.

In the rest of the proof, we provide the outline for the achievability of corner

point

R1 = R2 =
(1 − qdqc)

1 + (1 − qdqc)−1 pc

. (2.79)

The strategy is carried on over two phases similar to Phase 1 and Phase 2 of

Section 2.7. We assume that at the beginning of the communication block, there

are m bits in Qi→i, i = 1, 2. Phase 1 is the uncategorized transmission, and it goes

on for

(1 − qdqc)−1 m + m
2
3 (2.80)

time instants and if at the end of this phase, either of the queues Q1→1 or Q2→2

is not empty, we declare an error and halt the transmission. Upon completion

of Phase 1, using the ideas described in Section 2.4 for output feedback, we fur-

ther create bits of common interest. More precisely, we use the following ideas:

we update the status of bits in Qi,C1 to bits of common interest; as described

in Example 6 of Section 2.4, using output feedback, we combine bits in Q1→1|2

and Q2→2|1 to create bits of common interest; as described in Example 7 of Sec-

tion 2.4, using output feedback, we combine bits in Q1→2|1 and Q2→1|2 to create

bits of common interest.

In the second phase, we deliver the bits in Q1→{1,2} and Q2→{1,2} using the trans-

mission strategy for the two-multicast problem. For

0 ≤ pc ≤
pd

1 + pd
, (2.81)
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the cross links become the bottleneck for the two-multicast network depicted

in Figure 2.23, and as a result, using the two-multicast problem as discussed

in Lemma 2.2 is sub-optimal. However, using the output feedback link, Txi

learns the interfering bit of Txī, i = 1, 2; and considering this side information

available at the transmitters, we can show that a sum-rate of (1 − qdqc) for the

two-multicast problem is in fact achievable. At the end of Phase 2, all bits are

delivered. It takes

(1 − qdqc)−2 pcm + O
(
m

2
3
)

(2.82)

time instants to complete Phase 2. Therefore, we achieve a symmetric sum-rate

of

R1 = R2 =
(1 − qdqc)

1 + (1 − qdqc)−1 pc
, (2.83)

as m→ ∞. �

For the case of Delayed-CSIT (and no output feedback), we partially solve

the problem as described below.

Theorem 2.6 [Capacity Region with Delayed-CSIT and Non-Homogeneous

Channel Gains] The capacity region of the two-user Binary Fading IC with Delayed-

CSIT (and no output feedback), CDCSIT (pd, pc) for

pd

1 + pd
≤ pc ≤ 1, (2.84)

is the set of all rate tuples (R1,R2) satisfying

CDCSIT (pd, pc) =


0 ≤ Ri ≤ pd, i = 1, 2,

pcRi + (1 − qdqc) Rī ≤ (1 − qdqc)2 , i = 1, 2.
(2.85)
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Proof: The proof of converse follows from the previous theorem since the outer-

bound of Theorem 2.5 also serves as an outer-bound for Theorem 2.6. Here,

we discuss the achievability strategy. The achievability proof is similar to that

of the homogeneous setting as described in Section 2.5 for Theorem 2.2. The

corner points are as follows.

(R1,R2) =

(
min

{
pd,

(1 − qdqc)
1 + (1 − qdqc)−1 pc

}
,min

{
pd,

(1 − qdqc)
1 + (1 − qdqc)−1 pc

})
,

(R1,R2) = (pd,min {pd, (1 − qdqc) qd}) ,

(R1,R2) = (min {pd, (1 − qdqc) qd} , pd) . (2.86)

Here, we provide the outline for the achievability of the first corner point,

i.e.

R1 = R2 = min
{

pd,
(1 − qdqc)

1 + (1 − qdqc)−1 pc

}
. (2.87)

We assume that at the beginning of the communication block, there are m bits

in Qi→i, i = 1, 2. Phase 1 is the uncategorized transmission. Upon completion of

Phase 1, using the ideas described in Section 2.4.1, we upgrade the status of the

bits to bits of common interest. We use the following coding opportunities.

• Type I Combining bits in Qi→ī|i and Qi→i|ī to create bits of common interest,

i = 1, 2;

• Type II Combining the bits in Qi,C1 and Qi→i|ī to create bits of common

interest, i = 1, 2;

• Type III Combining the bits in Qi,C1 and Qi→ī|i to create bits of common

interest, i = 1, 2.

Then, in the final phase, we deliver the bits in Q1→{1,2} and Q2→{1,2} using the

transmission strategy for the two-multicast problem. �
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Remark 2.16 We note that in Theorem 2.6, we partially characterized the capacity

region. In fact, for

0 ≤ pc ≤
pd

1 + pd
, (2.88)

our achievability region does not match the outer-bounds. Closing the gap in this regime

could be an interesting future direction. The reason one might think the achievability

could be improved is that in this regime the cross links become the bottleneck for the

two-multicast network depicted in Figure 2.23, and as a result, using the two-multicast

problem might be sub-optimal. On the other hand, as we demonstrated in [64], even

under No-CSIT assumption, this regime requires a different outer-bound compared to

other regimes.

2.12 Conclusion and Future Directions

We studied the impact of delayed knowledge of the channel state informa-

tion at the transmitters, on the capacity region of the two-user binary fading

interference channels. We introduced various coding opportunities, created

by Delayed-CSIT, and presented an achievability strategy that systematically

exploits the coding opportunities. We derived an achievable rate region that

matches the outer-bounds for this problem, hence, characterizing the capacity

region. We have also derived the capacity region of this problem with Delayed-

CSIT and output feedback.

A future direction would be to extend our results to the case of two-user

Gaussian fading interference channel with Delayed-CSIT. As discussed in the

introduction, one can view our binary fading model as a fading interpretation

of the linear deterministic model where the non-negative integer associated to
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each link is at most 1. Therefore, one approach is to extend the current results

to the case of fading linear deterministic interference channel and then, further

extend that result to the case of Gaussian fading interference channel, in order

to obtain approximate capacity characterization. This approach has been taken

for the No-CSIT assumption in [55], in the context of fading broadcast channels,

and in [78] in the context of one-sided fading interference channels. In fact, one

can view our Binary Fading model as the model introduced in [55, 78] with only

one layer.

Another future direction is to consider the k-user setting of the problem.

In [38], authors have shown that for the k-user fading interference channel with

instantaneous knowledge of the channel state information, sum degrees of free-

dom (DoF) of k/2 is achievable. However, in the absence of the CSIT, the achiev-

able sum DoF collapses to 1. As a result a large degradation in network capac-

ity, due to lack of the CSIT, is observed. It has been recently shown that, with

Delayed-CSIT, it is possible to achieve more than one sum DoF [1, 37], how-

ever, the achievable sum DoFs are less than 1.5 for any number of users. This

together with lack of nontrivial DoF upper bounds leaves the problem of sum

DoF characterization of interference channels with Delayed-CSIT still open and

challenging, to the extent that it is even unknown whether the sum DoF of such

networks scales with the number of users or not. A promising direction may be

to study this problem in the context of our simpler binary fading model, to un-

derstand whether the sum capacity of such network with Delayed-CSIT scales

with the number of users or it will saturate.

Finally, motivated by recent results that demonstrate that, with Instantaneous-

CSIT, multi-hopping can significantly increase the capacity of interference net-
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works (e.g., [26, 49] for two-unicast networks and [48] for multi-unicast net-

works), an interesting future direction would be explore the impact of Delayed-

CSIT on the capacity of muti-hop binary interference networks.
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Table 2.2: All possible channel realizations and transitions from the initial
queue to other queues; solid arrow from tranmsitter Txi to re-
ceiver Rx j indicates that Gi j[t] = 1, i, j ∈ {1, 2}, t = 1, 2, . . . , n. Bit
“a” represents a bit in Q1→1 while bit “b” represents a bit in Q2→2.

ID ch. at transition ID ch. at transition

time n time n

1
Tx1

Tx2

Rx1

Rx2


a→ Q1,C1

b→ Q2,C1

9
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2→F

2
Tx1

Tx2

Rx1

Rx2


a→ Q1→2|1

b→ Q2→F

10
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2→F

3
Tx1

Tx2

Rx1

Rx2


a→ Q1→F

b→ Q2→1|2

11
Tx1

Tx2

Rx1

Rx2


a→ Q1→{1,2}

b→ Q2→F

4
Tx1

Tx2

Rx1

Rx2


a→ Q1→F

b→ Q2→F

12
Tx1

Tx2

Rx1

Rx2


a→ Q1→{1,2}

b→ Q2→F

5
Tx1

Tx2

Rx1

Rx2


a→ Q1→F

b→ Q2→2

13
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2→2|1

6
Tx1

Tx2

Rx1

Rx2


a→ Q1→F

b→ Q2→2

14
Tx1

Tx2

Rx1

Rx2


a→ Q1→1|2

b→ Q2→2

7
Tx1

Tx2

Rx1

Rx2


a→ Q1→F

b→ Q2→{1,2}

15
Tx1

Tx2

Rx1

Rx2


a→ Q1→1|2

b→ Q2→2|1

8
Tx1

Tx2

Rx1

Rx2


a→ Q1→F

b→ Q2→{1,2}

16
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2→2
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CHAPTER 3

CAPACITY RESULTS FOR GAUSSIAN NETWORKS WITH DELAYED

CHANNEL STATE INFORMATION

3.1 Introduction

In wireless networks, receivers estimate the channel state information (CSI) and

pass this information to the transmitters through feedback mechanisms. The

extent to which channel state information is available at the transmitters has a

direct impact on the capacity of wireless networks and the optimal strategies.

In fast-fading scenarios where the coherence time of the channel is smaller than

the delay of the feedback channel, providing the transmitters with up-to-date

CSI is practically infeasible. Consequently, we are left with no choice but to

understand the behavior of wireless networks under such constraint.

Our objective is to understand the effect of lack of up-to-date CSI on the ca-

pacity region of wireless networks by considering a fundamental building block,

namely the multiple-input single-output (MISO) broadcast channel (BC). In the

context of MISO BC, it has been shown that even completely stale CSIT (also

known as delayed CSIT) can still be very useful and can change the scale of the

capacity, measured by the degrees of freedom (DoF) [36]. The degrees of free-

dom by definition provides a first order approximation of the capacity, thus it

is mainly useful in understanding the behavior of the capacity in high power

regimes. However, it is not a suitable measure for practical settings with finite

signal-to-noise ratio (SNR).

We first consider the two-user MISO BC and we focus on the effect of de-
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layed CSIT at finite SNR regimes as opposed to the asymptotic DoF analysis.

While there is a strong body of work on broadcast channels with perfect chan-

nel state information (see [40, 72, 73]), no capacity result has been reported for

the delayed CSIT scenario. There are some prior results in the literature (for

example [75]) that have proposed and analyzed several achievability strategies

at finite SNR regimes. Nonetheless, characterizing the capacity region of the

two-user MISO BC with delayed CSIT has remained open.

In this paper, we provide the first constant-gap approximation of the capac-

ity region of the two-user MISO BC with delayed CSIT. We obtain an achievable

scheme and an outer-bound on the capacity region, and we analytically show

that they are within 1.81 bits/sec/Hz per user, for all values of the transmit

power. Our numerical analysis shows that the gap is in fact smaller and in the

worst case, it is at most 1.1 bits/sec/Hz per user.

The proposed achievability scheme for the two-user MISO BC with delayed

CSIT has three phases. In Phase 1 and Phase 2, transmitter respectively sends

messages intended for receivers one and two. In each one of these phases, the

unintended receiver overhears and saves some signal (interference) which is

only useful for the other receiver. At this point, transmitter can evaluate the

overheard signals using the delayed CSI. In the third phase, the transmitter

will swap the overheard signals between the receivers by sending a signal of

common interest. This signal is the quantized version of the summation of the

previously transmitted signals. The swapping is performed by exploiting the

overheard signals as available side-information at receivers side. The overall

information that each receiver collects in the three phases is enough to decode

the intended message. Although the above three phases follows the scheme
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of [36], as we will show, some important additional ingredients are needed to

make an approximately optimal scheme.

To derive the outer-bound, we create a physically degraded BC by provid-

ing the received signal of one user one to the other user. Then, since we know

that feedback does not enlarge the capacity region of a physically degraded

BC [22], we ignore the delayed knowledge of the channel state information at

the transmitter (i.e. no CSIT assumption). We then derive an outer-bound on

the capacity region of this degraded broadcast channel which in turn serves as

an outer-bound on the capacity region of the two-user MISO BC with delayed

CSIT. We show that the achievable rate region and the outer-bound are within

1.81 bits/sec/Hz per user. Using numerical analysis, we can show that the gap

is in fact smaller than 1.1 bits/sec/Hz per user.

We then consider the K-user MISO BC with delayed CSIT and we focus on

the symmetric capacity. We show how to extend our ideas for the achievability

and converse to this setting, and we show that for the symmetric capacity the

gap between the achievable rate and the outer-bound is less than 2 log2(K + 2)

bits/sec/Hz independent of the transmit power.

In the literature, there have been several results on the impact of delayed

CSIT in wireless networks. However, these results are either focused on the DoF

region (e.g, [13, 52, 68]) or capacity results for noiseless channels (e.g., [63, 67]).

The present work provides constant-gap approximation of the capacity region

of the two-user Complex Gaussian MISO BC with delayed CSIT which is of

great importance in practical wireless settings. Existing results on constant-

gap approximation of the capacity region of wireless networks mainly consider

the scenario in which transmitters have perfect instantaneous knowledge of

91



the channel state information (e.g, [11, 50, 59]). Thus the current result opens

the door for constant-gap approximation of the capacity region of wireless net-

works with delayed CSIT.

The rest of the paper is organized as follows. In Section 3.2, we formulate

our problem. In Section 3.3, we present our main results. We describe our

achievability strategy in Section 3.4. Section 3.5 is dedicated to deriving the

outer-bound. In Section 3.6, we show that our inner-bound and outer-bound

are within constant number of bits. We extend our results to the K-user MISO

BC with delayed CSIT in Section 3.7. Finally, Section 3.8 concludes the paper.

3.2 Problem Setting

We start by considering the two-user multiple-input single-output (MISO) com-

plex Gaussian broadcast channel (BC) with Rayleigh fading as depicted in

Fig. 3.1. The channel gains from the transmitter to receivers one and two are

denoted by h[t], g[t] ∈ C2×1, respectively, where the entries of h[t] and g[t] are

distributed as i.i.d. CN(0, 1) (independent across time, antenna, and users). At

each receiver, the received signal can be expressed as follows.

y1[t] = h>[t]x[t] + z1[t], y2[t] = g>[t]x[t] + z2[t], (3.1)

where x[t] ∈ C2×1 is the transmit signal subject to average power constraint P,

i.e. E
[
x†[t]x[t]

]
≤ P for P > 0. The noise processes are independent from the

transmit signal and are distributed i.i.d. as zk[t] ∼ CN(0, 1). Furthermore, we

define

s1[t] = h>[t]x[t], s2[t] = g>[t]x[t], (3.2)
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to be the noiseless versions of the received signals.

Figure 3.1: Two-user Multiple-Input Single-Output (MISO) Complex
Gaussian Broadcast Channel.

Transmitter wishes to reliably communicate independent and uniformly dis-

tributed messages w1 ∈ {1, 2, . . . , 2nR1} and w2 ∈ {1, 2, . . . , 2nR2} to receivers 1 and

2, respectively, during n uses of the channel. We denote the channel state infor-

mation at time t by

(h[t], g[t]) , t = 1, 2, . . . , n. (3.3)

The transmitter has access to the delayed (outdated) channel state informa-

tion, meaning that at time instant t, the transmitter has access to

(h[`], g[`])t−1
`=1 , t = 1, 2, . . . , n. (3.4)

Due to the delayed knowledge of the channel state information, the encoded

signal x[t] is a function of both the messages and the previous channel realiza-

tions.

Each receiver k, k = 1, 2, uses a decoding function ϕk,n to get the estimate ŵk

from the channel outputs {yk[t] : t = 1, . . . , n}. An error occurs whenever ŵk , wk.

The average probability of error is given by

λk,n = E[P(ŵk , wk)], k = 1, 2, (3.5)
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where the expectation is taken with respect to the random choice of the trans-

mitted messages w1 and w2.

We say that a rate pair (R1,R2) is achievable, if there exists a block encoder at

the transmitter, and a block decoder at each receiver, such that λk,n goes to zero

as the block length n goes to infinity, k = 1, 2. The capacity region C is the closure

of the set of the achievable rate pairs.

3.3 Statement of Main Result

Our main contributions are: (1) characterization of the capacity region of

the two-user MISO complex Gaussian BC with delayed CSIT to within 1.6

bits/sec/Hz; and (2) characterizing the symmetric capacity of the K-user MISO

complex Gaussian BC to within 2 log2 (K + 2) bits/sec/Hz.

For the two-user setting, the achievability scheme has three phases. In

Phase 1 and Phase 2, the transmitter respectively sends messages intended for

receiver one and receiver two. In each of these phases, the unintended receiver

overhears and saves some signal (interference), which is only useful for the

other receiver. Later, in the third phase, the transmitter evaluates what each

receiver overheard about the other receiver’s message using the delayed knowl-

edge of the channel state information and provides these overheard signals ef-

ficiently to both receivers exploiting available side information at each receiver.

Transmitter provides the overheard signals to the receivers by sending a signal

of common interest. This way transmitter reduces the overall communication

time and in turn, increases the achievable rate.
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The outer-bound is derived based on creating a physically degraded broad-

cast channel where one receiver is enhanced by having two antennas. In this

channel, feedback and in particular delayed knowledge of the channel state in-

formation, does not increase the capacity region. Thus, we can ignore the de-

layed knowledge of the channel state information and consider a degraded BC

with no CSIT. This would provide us with the outer-bound.

We then show how to extend our arguments for achievability and converse

to the K-user setting to derive approximate symmetric capacity under delayed

CSIT assumption. Before stating our results, we need to define some notations.

Definition 3.1 For a region R ⊆ R2, we define

R 	 (τ, τ) 4= {(R1,R2) |R1,R2 ≥ 0, (R1 + τ,R2 + τ) ∈ R} . (3.6)

Definition 3.2 The ergodic capacity of a point-to-point complex Gaussian channel

with k transmit antennas and ` receive antennas with no CSIT, transmit power P,

and additive zero-mean Gaussian noise process of variance m j at the receive antenna j,

is denoted by

Ck×` (P; m1,m2, . . . ,m`) . (3.7)

For simplicity of notations, we drop P, and whenever noise variances are all equal to 1,

we do not mention them. Fig. 3.2 depicts a point-to-point complex Gaussian channel

with k transmit antennas and k receive antennas.

Definition 3.3 Rate region Ck, k = 1, 2, is defined as

Ck = {R1,R2 ≥ 0 |Rk + 2Rk̄ ≤ 2C2×1 } k = 1, 2, (3.8)
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Figure 3.2: Point-to-point complex Gaussian channel with k transmit and
receive antennas and no CSIT, where z j[t] ∼ CN

(
0,m j

)
. Here,

H[t] denotes the channel transfer matrix at time t; and H (:, j) [t]
denotes the channel gains from all transmit antennas to receive
antenna j at time t.

where k̄ 4= 3 − k, and as shown in [54], we have

C2×1 = E log2

[
1 +

P
2

g†g
]
, (3.9)

where g is a 2 by 1 vector where entries are i.i.d. CN (0, 1).

Remark 3.1 As we will show in Section 3.5, Ck, k = 1, 2, is an outer-bound on the

capacity region of a two-user complex Gaussian MIMO BC with no CSIT where Rxk

has two antennas and Rxk̄ has only one antenna (additive noise processes all having

zero-mean and variance 1). The corner points of C1 are given by (0,C2×1) and (2C2×1, 0).

The following theorem states our contribution for the two-user MISO BC

with delayed CSIT.

Theorem 3.1 The capacity region of the two-user MISO BC with delayed CSIT, C, is

within 1.81 bits/sec/Hz per user of (C1 ∩ C2), i.e.

(C1 ∩ C2) 	 (1.81, 1.81) ⊆ C ⊆ (C1 ∩ C2) , (3.10)
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Achievable Region

Figure 3.3: The outer-bound on the capacity region of the two-user MISO
BC with delayed CSIT is the intersection ofC1 andC2. We prove
that the capacity region is within 1.81 bit/sec/Hz per user of
this outer-bound. The achievable rate region is shown by the
shaded area. C2×1 is defined in (3.9) and C2×2(1, 5) is given in
Definition 3.2.

where C1 and C2 are given in Definition 3.3.

Remark 3.2 Fig. 3.3 pictorially depicts our result for the two-user MISO BC with

delayed CSIT. We have defined C2×1 and C2×2(1, 5) in Definition 3.2. We analytically

show that the achievable region is within 1.81 bits/sec/Hz per user of the outer-bound.

Our numerical analysis shows that the gap is in fact smaller and in the worst case, it is

at most 1.1 bits/sec/Hz per user.

We then consider the K-user MISO BC with delayed CSIT. We only focus on

the symmetric capacity defined as follows.

Definition 3.4 The symmetric capacity of the K-user MISO BC with delayed CSIT,

CK
SYM, is given by

CK
SYM

4
= sup

{
R : R ≤ R j,∀ j = 1, 2, . . . ,K, (R1,R2, . . . ,RK) ∈ CK

}
, (3.11)
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where CK is the capacity region of the K-user MISO BC with delayed CSIT.

The following theorem states our contribution for the K-user setting.

Theorem 3.2 For the K-user MISO BC with delayed CSIT, CK
SYM is lower-bounded by

CK×K (1, 5, . . . , 1 + ( j − 1)( j + 2), . . . , 1 + (K − 1)(K + 2))
K

∑K
j=1 j−1

, (3.12)

and upper-bounded by
(∑K

j=1 j−1
)−1

CK×1.

Remark 3.3 For Theorem 3.2, our numerical analysis shows that the gap is at most 2.3

bits/sec/Hz per user for K ≤ 20 and P ≤ 60dB. In general, we show that the gap is at

most 2 log2(K + 2) bits/sec/Hz.

3.4 Achievability Proof of Theorem 3.1

In this section, we describe the achievability strategy of Theorem 3.1. To charac-

terize the capacity region of the two-user MISO complex Gaussian BC to within

1.81 bits/sec/Hz per user, we need to show that the (C1 ∩ C2) 	 (1.81, 1.81) is

achievable.

We define rate region R(D) for parameter Dγ4 as follows1

R(D) 4=

 (R1,R2)

∣∣∣∣∣∣∣∣∣
0 ≤ R1 +

(
3C2×1

C2×2(1,1+D) − 1
)

R2 ≤ C2×1

0 ≤
(

3C2×1
C2×2(1,1+D) − 1

)
R1 + R2 ≤ C2×1

 . (3.13)

1As we will see later in this section and Section 3.6, we have
(

3C2×1
C2×2(1,1+D) − 1

)
> 0 for Dγ4 and

P > 0dB.
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Later in Section 3.6, we show that (C1 ∩ C2) 	 (1.81, 1.81) ⊆ R(4), and thus, to

characterize the capacity region to within 1.81 bit/sec/Hz per user, it suffices to

show that R(4) is achievable.

The shadowed region in Fig. 3.3 corresponds to R(4), which is a polygon

with corner points A, B, and B′. Corner points B and B′ of R(4), are achievable

using the result on point-to-point MISO Gaussian channels with no CSIT [54].

Therefore, we only need to describe the achievability strategy for corner point

A.

3.4.1 Transmission Strategy for Corner Point A

Here, we present the achievability strategy for corner point A. We show that for

any ε > 0, we can achieve

(R1,R2) =

(
C2×2(1, 5) − ε

3
,
C2×2(1, 5) − ε

3

)
, (3.14)

with vanishing decoding error probability as the communication length goes to

infinity.

The achievability strategy is carried on over n blocks, each block consisting

of 3 phases each of length n channel uses. Denote by wb
k , the message of user k

in block b, k ∈ {1, 2}, b = 1, 2, . . . , n. Fix ε > 0 and set R = C2×2(1, 1 + D) − ε. We

assume that wb
k ∈ {1, 2, . . . , 2

nR} and that the messages are distributed uniformly

and independently. The encoding is carried on as described below.

• Encoding: At the transmitter, the message of user k during block b, i.e. wb
k ,

is mapped to a codeword of length n denoted by xb,n
k where any element of this
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codeword is drawn i.i.d. from CN (0, P/2I2)2.

•Communication during Phase j of block b: During this phase, the transmit-

ter communicates xb,n
j from its two transmit antennas, j = 1, 2, and b = 1, 2, . . . , n.

Receiver one obtains yb,n
1, j and receiver two obtains yb,n

2, j .

• Communication during Phase 3 of block b: Using the delayed CSIT, the

transmitter creates

sb,n = sb,n
2,1 + sb,n

1,2, (3.15)

where sb,n
2,1 is the received signal at Rx2 during Phase 1 of block b, yb,n

2,1, minus the

noise term as defined in (3.2), and sb,n
1,2 is the received signal at Rx1 during Phase

2 of block b, yb,n
1,2, minus the noise term.

Note that sb,n
2,1 + sb,n

1,2 is useful for both receivers since each receiver can subtract

its previously received signal to obtain what the other receiver has (up to the

noise term). Therefore, the goal in this phase, is to provide sb,n
2,1 + sb,n

1,2 to both

receivers with distortion D = 4.

Remark 3.4 We note that the idea of creating quantized version of previously received

signals has been utilized in prior works for asymptotic degrees of freedom analysis.

However for finite SNR regime, we need to take into account the fact that the quan-

tization noise is neither independently distributed over time nor is it independent from

the signal; and we need to overcome these challenges.

The input signal to a lattice quantizer needs to be independently distributed

over time (see [76, 77]). Thus, in order to quantize this signal using lattice quan-

2I2 is the 2 × 2 identity matrix.
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tizer, we need (
sb

2,1[`] + sb
1,2[`]

)n

`=1

to be an independently distributed sequence. However, given message wb
k , the

transmit signal xb,n
k is correlated across time and as a result, the aforementioned

signals are not independent anymore. In order to overcome this issue, we in-

corporate an interleaving step according to the following mapping which is de-

picted in Fig. 3.4.

s̃b[t] = st
2,1[b] + st

1,2[b], (3.16)

where b = 1, 2, . . . , n and t = 1, 2, . . . , n. It is important to notice that with this

interleaving, the resulting signal at different time instants of a given phase at a

given block are independent from each other. This is due to the fact that these

signals are created from independent messages.

Figure 3.4: The interleaving step: the resulting signal at different time in-
stants of a given phase at a given block are independent from
each other.

Note that given the previous channel realizations, the signal in (3.16) at each

time has a Gaussian distribution but its variance varies from each time instant to

the other. Thus, in order to be able to quantize it, we need a generalization of the

rate-distortion function to include non-identically distributed sources. Below,

we discuss this issue.
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Lemma 3.1 [Rate distortion for non-identically distributed Gaussian Source] Consider

a independently non-identically distributed Gaussian source u, where at time instant

t, it has zero mean and variance σ2[t]. Assume that σ2[t] is drawn from some i.i.d.

continuous distribution with E
[
σ2

]
< ∞. The sequence of σ2[t] is non-causally known

by both encoder and decoder. Then, with squared-error distortion, we can quantize the

signal at any rate greater than or equal to

min
Dσ:E[Dσ]≤D

E
[
log2

σ2[t]
Dσ

]+

, (3.17)

and achieve distortion D (per sample), where the expectation is with respect to the dis-

tribution of σ2.

Proof sketch: Suppose σ2 could only take m finite values σ2
i with probabil-

ity pi, i = 1, 2, . . . ,m. The problem would then be similar to that of m par-

allel Gaussian channels where waterfilling gives the optimal solution ((Theo-

rem 10.3.3 [15])). For the time instants where source has variance σ2
i , we choose

a distortion Di such that
∑m

i=1 piDi ≤ D. Note that in order to derive the optimum

answer, we need to optimize over the choice of Di’s. The case where σ2 take val-

ues in a continuous set can be viewed as the limit of the discrete scenario using

standard arguments. �

It is easy to see that any rate greater than or equal to

E
[
log2

(
1 +

σ2[t]
D

)]
, (3.18)

is also achievable at distortion D (per sample). Basically, we have ignored the

optimization over D and added a 1 to remove max{., 0} (or .+).

Moreover, we would like the distortion to be independent of the signals. In

order to have a distortion that is independent of the signal and is uncorrelated
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across time, we can incorporate lattice quantization with “dither” as described

in [76]. Basically, dither is a random vector distributed uniformly over the basic

Voronoi that is added to the signal before feeding it to the quantizer. At the

decoder, this random vector will be subtracted.

From (3.18), we conclude that we can quantize s̃b,n with squared-error dis-

tortion D at rate RQ(D) (per sample), defined as

RQ(D) 4= E
[
log2

(
1 +

P
2D

(
||g||22 + ||h||22

))]
, (3.19)

where g,h ∈ C2×1 with i.i.d. CN(0, 1) entries.

We can reliably communicate the quantization index over⌈
nRQ(4)
C2×1

⌉
(3.20)

time instants. Next, we need to show that given the appropriate choice of pa-

rameters, receivers can recover the corresponding messages with vanishing er-

ror probability as n→ ∞.

3.4.2 Decoding

Upon completion of Phase 3 of block b, each receiver decodes the quantized sig-

nal. We know that as n → ∞, this could be done with arbitrary small decoding

error probability. Therefore, each receiver has access to

s̃b,n + zb,n
Q , (3.21)

where zb,n
Q is the quantization noise with variance D which is independent of the

transmit signals. Note that zb
Q[t1] and zb

Q[t2] are uncorrelated but not necessarily

independent, t1, t2 = 1, 2, . . . , n, t1 , t2.
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Receiver 1 at the end of the nth communication block, reconstructs signals

by reversing the interleaving procedure described above, and removes yb,n
1,2 to

obtain

ỹb,n
2,1 = yb,n

2,1 + z̃b,n
Q , (3.22)

here z̃b,n
Q is the quantization noise with variance D which is independent of the

transmit signals. Moreover, z̃b
Q[`]n

`=1 is an independent sequence.

Note that since the messages are encoded at rate C2×2(1, 1 + D)− ε for ε > 0, if

receiver one has access to yb,n
2,1 up to distortion D, it can recover wb

1 with arbitrary

small decoding error probability as ε → 0 and communication length goes to

infinity. Thus, from yb,n
1,1 and ỹb,n

2,1, receiver one can decode wb
1, b = 1, 2, . . . , n.

Similar argument holds for receiver two.

An error may occur in either of the following steps: (1) if an error occurs in

decoding message wb
k provided required signals to the receiver, k = 1, 2; (2) if an

error occurs in quantizing s̃b,n; and (3) if an error occurs in decoding s̃b,n + zb,n
Q at

either of the receivers, b = 1, 2, . . . , n. The probability of each one of such errors

decreases exponentially in n (see [24, 54] and references therein). Using union

bound and given that we have O
(
n2

)
possible errors and the fact that each error

probability decreases exponentially to zero, the total error probability goes to

zero as n→ ∞.
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3.4.3 Achievable Rate

Using the achievable strategy described above, as n → ∞, we can achieve a

(symmetric) sum-rate point of

(R1,R2) =

(
C2×2(1, 5)

2 + RQ(4)/C2×1
,

C2×2(1, 5)
2 + RQ(4)/C2×1

)
. (3.23)

In Appendix B.2, we show that RQ(4)/C2×1 ≤ 1 for all values of P. Therefore,

Phase 3 of each block has at most n time instants. Thus, we conclude that a

(symmetric) sum-rate point of

(R1,R2) =

(
C2×2(1, 5)

3
,
C2×2(1, 5)

3

)
, (3.24)

is achievable.

3.5 Converse Proof of Theorem 3.1

In this section, we provide the converse proof of Theorem 3.1. The converse

consists of two main parts. In part 1, we show that the capacity region of the

problem is included in the capacity region of a (stochastically) degraded BC,

and in part 2, we derive an outer-bound on the capacity region of the degraded

BC.

Part 1: We create the stochastically degraded BC as follows. We first provide the

received signal of Rx2, i.e. y2[t], to Rx1 as depicted in Fig. 3.5. Note that the result-

ing channel is physically degraded, and we know that for a physically degraded

broadcast channel, feedback does not enlarge the capacity region [22]. There-

fore, we can ignore the delayed knowledge of the channel state information at
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the transmitter (i.e. no CSIT assumption). The resulting channel is stochastically

degraded.

Figure 3.5: By providing yn
2 to Rx1, we create a physically degraded BC.

We then ignore the delayed knowledge of the channel state in-
formation at the transmitter because for a physically degraded
broadcast channel, feedback does not enlarge the capacity re-
gion. The resulting channel is stochastically degraded.

Thus, we form a stochastically degraded channel as shown in Fig. 3.5, and we

formally define it in Definition 3.5 below. Let us denote an outer-bound on the

capacity region of this channel by C1. The argument above shows that C ⊆ C1.

Definition 3.5 The input-output relationship of a two-user stochastically degraded

MIMO BC as depicted in Fig. 3.5, is given by

y1[t] = H[t]x[t] + z1[t], y2[t] = g>[t]x[t] + z2[t], (3.25)

for

H[t] =

 h1[t] h2[t]

g1[t] g2[t]

 , g[t] =

 g1[t]

g2[t]

 , (3.26)

where h j[t] and g j[t] are distributed as i.i.d. (independent over time and from each other)

CN(0, 1) as described in Section 3.2 for j = 1, 2. We have

y1[t] =

 y11[t]

y12[t]

 . (3.27)

106



We assume z1[t] ∈ C2×1 and z2[t] ∼ CN(0, 1), and the transmit signal is subject to

average power constraint P. We further assume that the transmitter has no knowledge

of the channel gains besides their distributions (no CSIT assumption).

Part 2: In this part, we derive an outer-bound, C1, on the capacity region of

the stochastically degraded broadcast channel. For the stochastically degraded

BC defined in Definition 3.5, suppose there exists encoders and decoders at the

transmitter and receivers such that each message can be decoded at its corre-

sponding receiver with arbitrary small decoding error probability.

n (R1 + 2R2 − 3εn)
Fano
≤ I

(
w1; yn

11, y
n
12|w2,Hn, gn) + 2I

(
w2; yn

2|H
n, gn)

(a)
= I

(
w1; yn

11, y
n
12|w2,Hn, gn) + I

(
w2; yn

11|H
n, gn) + I

(
w2; yn

12|H
n, gn)

= h
(
yn

11, y
n
12|w2,Hn, gn) − h

(
yn

11, y
n
12|w1,w2,Hn, gn)

+ h
(
yn

11|H
n, gn) − h

(
yn

11|w2,Hn, gn) + h
(
yn

12|H
n, gn) − h

(
yn

12|w2,Hn, gn)
(b)
= h

(
yn

11|H
n, gn) − h

(
zn

11|H
n, gn) + h

(
yn

12|H
n, gn) − h

(
zn

12|H
n, gn)

+ h
(
yn

11, y
n
12|w2,Hn, gn) − h

(
yn

11|w2,Hn, gn) − h
(
yn

12|w2,Hn, gn)
(c)
≤ 2E log2

[
1 +

P
2

g†g
]
− I

(
yn

11; yn
12|w2,Hn, gn) (d)

≤ 2E log2

[
1 +

P
2

g†g
]

(3.9)
= 2C2×1,

(3.28)

where (a) follows from the fact that due to no CSIT assumption, we have

h
(
w2|yn

11,H
n, gn) ≤ nεn, h

(
w2|yn

12,H
n, gn) ≤ nεn; (3.29)

(b) holds since

h
(
yn

1|w1,w2,Hn, gn) = h
(
yn

1|w1,w2, xn,Hn, gn)
= h

(
zn

11, z
n
12|w1,w2, xn,Hn, gn) = h

(
zn

11|H
n, gn) + h

(
zn

12|H
n, gn) ; (3.30)

(c) follows from the results in [54]; and (d) follows from fact that mutual in-

formation is always positive. Dividing both sides by n and letting n → ∞, we
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obtain the desired result. This completes the derivation of C1. Similarly, we can

derive C2, and we have C ⊆ C1 ∩ C2 which completes the converse proof for

Theorem 3.1.

3.6 Gap Analysis

In this section, we evaluate the gap between our achievable rate-region and the

outer-bound. We analytically prove that the gap is at most 1.81 bits/sec/Hz per

user. We show that

(C1 ∩ C2) 	 (1.81, 1.81) ⊆ R(4). (3.31)

Since the achievable rate region and the outer-bound (see Fig. 3.3) are formed

by time sharing among the corresponding corner points (and thus, character-

ized by straight lines), we only need to consider the symmetric capacity, C2
SYM,

defined in Definition 3.4.

We evaluate the gap between the inner-bound in (3.24), i.e.

(R1,R2) =

(
C2×2(1, 5)

3
,
C2×2(1, 5)

3

)
. (3.32)

and the symmetric point
(
C2

SYM,C
2
SYM

)
, obtained from Theorem 3.1.

A numerical evaluation of the gap between the sum-rate inner-bound and

outer-bound is plotted in Fig. 3.6.

To analyze the gap between the two bounds, we first study the gap between

C2×2(1, 5) and 2C2×1.
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Figure 3.6: Numerical evaluation of the per-user gap between the sum-
rate inner-bound and outer-bound.

Corollary 3.3 Consider a MIMO point-to-point channel with 2 transmit antennas and

2 receive antennas as described in [54]. The only difference is that the additive noise at

one antenna has variance 1 while the additive noise at the other antenna has variance

(1 + D). The ergodic capacity of this channel, C2×2(1, 1 + D), satisfies

C2×2(1, 1 + D) ≥
(
E log2 det

[
I2 +

P
2

HH†
]
− log2 (1 + D)

)+

. (3.33)

Proof:

C2×2(1, 1 + D)

(a)
≥ E log2 det

I2 +
P
2

 h11 h12

h21/
√

1 + D h22/
√

1 + D


 h†11 h†21/

√
1 + D

h†12 h†22/
√

1 + D




= E log2 det

I2 +
P
2

 |h11|
2 + |h12|

2
(
h11h†21 + h12h†22

)
/
√

1 + D(
h†11h21 + h†12h22

)
/
√

1 + D
(
|h21|

2 + |h22|
2
)
/ (1 + D)




= E log2 det

 1 + P
2 |h11|

2 + |h12|
2 P

2

(
h11h†21 + h12h†22

)
/
√

1 + D

P
2

(
h†11h21 + h†12h22

)
/
√

1 + D 1 + P
2

(
|h21|

2 + |h22|
2
)
/ (1 + D)
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≥ E log2 det
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2
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P
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/
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1 + P
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(
|h21|

2 + |h22|
2
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/ (1 + D)


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= E log2 det
[
I2 +

P
2

HH†
]

︸                        ︷︷                        ︸
4
=C2×2

− log2 (1 + D) , (3.34)

where (a) holds since the right hand side is obtained by evaluating the mutual

information between the input and output, for a complex Gaussian input with

covariance matrix E
[
x†x

]
= P/2I2. �

Therefore, the gap between the sum-rate inner-bound and outer-bound can

be upper-bounded by

4C2×1

3
−

2C2×2(1, 1 + D)
3

≤
2
(
2C2×1 −C2×2 + log2 (1 + D)

)
3

, (3.35)

where

C2×2
4
= E log2 det

[
I2 +

P
2

HH†
]
. (3.36)

Remark 3.5 While in this work we evaluate the gap for Rayleigh fading channels, our

expressions for the inner-bounds and the outer-bounds hold for general i.i.d. channel

realizations. The challenege to evaluate the gap for distributions other than Rayleigh

fading, asises from determining the optimal covariance matrix for the transmit signal

and evaluating the capacity result as discussed in [54] Section 4.1.

For P ≤ 2, the sum-rate outer-bound is smaller than 2 bits (smaller than the

gap itself). So, we assume P > 2. We have

2C2×1 −C2×2 = 2E log2

[
1 +

P
2

g†g
]
− E log2 det

[
I2 +

P
2

HH†
]

= 2E log2

[
2
P

+ g†g
]

+ 2 log2

(P
2

)
− E log2 det

[
2
P

I2 + HH†
]
− log2

(
P2

4

)
= 2E log2

[
2
P

+ g†g
]
− E log2 det

[
2
P

I2 + HH†
]

≤ 2E log2

[
1 + g†g

]
− E log2 det

[
HH†

]
. (3.37)
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Figure 3.7: Using numerical analysis, we can show that RQ(3)/C2×1 ≤ 1.

Thus, we have

4C2×1

3
−

2C2×2(1, 1 + D)
3

≤
2
3

(
2E log2

[
1 + g†g

]
− E log2 det

[
HH†

]
+ log2 (1 + D)

)
≤ 3.62, (3.38)

which implies that the gap is less than 1.81 bits per user independent of power

P. We could also use numerical analysis to evaluate the gap. In particular, using

numerical analysis, we can show that RQ(3)/C2×1 ≤ 1 (see Fig. 3.7). We have

plotted

4C2×1

3
−

2C2×2(1, 1 + D)
3

(3.39)

in Fig. 3.6 for D = 4, and for P between 0 dB and 60 dB. As we can see from

Fig. 3.6, the sum-rate inner-bound and outer-bound are at most 2.2 bits (or 1.1

per user) away from each other for P between 0 dB and 60 dB.

3.7 Extension to K-user MISO BC

Now that we have presented our results for the two-user multiple-input single-

output complex Gaussian broadcast channel with delayed CSIT, we consider the
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K antennas

K-1 antennas

Figure 3.8: Left: K-user Multiple-Input Single-Output (MISO) Complex
Gaussian Broadcast Channel; and right: degraded MIMO BC.

K-user setting as depicted in Fig. 3.8. The channel matrix from the transmitter

to the receivers is denoted by H ∈ CK×K , where the entries of H[t] are distributed

as i.i.d. CN(0, 1) (independent across time, antenna, and users). The transmit

signal x[t] ∈ CK×1 is subject to average power constraint P, i.e. E
[
x†[t]x[t]

]
≤ P

for P > 0. The noise processes are independent from the transmit signal and

are distributed i.i.d. as zk[t] ∼ CN(0, 1). The input-output relationship in this

channel is given by 

y1[t]

y2[t]
...

yK[t]


= H[t]x[t] +



z1[t]

z2[t]
...

zK[t]


. (3.40)

3.7.1 Outer-bound

The derivation of the outer-bound in Theorem 3.2 is based on creating a de-

graded MIMO BC where Rx` has access to the received signal of Rx j for jγ`,

` = 1, 2, . . . ,K. This channel is physically degraded, and thus feedback does not
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enlarge the capacity region [22]. Therefore, we can ignore the delayed knowl-

edge of the channel state information at the transmitter (i.e. no CSIT assump-

tion). See Fig. 3.8 for a depiction. For the resulting multiple-input multiple-

output (MIMO) broadcast channel denote the channel matrix by Hn
degraded. Then,

under no CSIT assumption, the following result is known for the MIMO BC.

Lemma 3.2 ([69])

h
(
yn

j |w j+1, . . . ,wK ,Hn
)
≥

K − j + 1
K − j

h
(
yn

j+1|w j+1, . . . ,wK ,Hn
)
, j = 1, . . . ,K − 1.

(3.41)

Using Lemma 3.2, similar to the argument presented in (3.28), we get

n
(
R1 +

K
K − 1

R2 +
K

K − 2
R2 + . . . + KRK − εn

)
= I

(
w1; yn

1|w2, . . . ,wK ,Hn
degraded

)
+

K
K − 1

I
(
w2; yn

2|w3, . . . ,wK ,Hn
degraded

)
+ . . . + KI

(
wK; yn

K |H
n
degraded

)
≤ h

(
yn

1|w2, . . . ,wK ,Hn
degraded

)
−

K
K − 1

h
(
yn

2|w2, . . . ,wK ,Hn
degraded

)
+

K
K − 1

h
(
yn

2|w3, . . . ,wK ,Hn
degraded

)
−

K
K − 2

h
(
yn

3|w3, . . . ,wK ,Hn
degraded

)
+ . . . + Kh

(
yn

K |H
n
degraded

)
Lemma 3.2
≤ Kh

(
yn

K |H
n
degraded

)
≤ KE log2

[
1 +

P
K

g†g
]

(3.9)
= KCK×1, (3.42)

where g is a K by 1 vector where entries are i.i.d. CN (0, 1). Then, for the sym-

metric sum-rate point we have R1 = R2 = . . . = RK = R, which gives us K∑
j=1

j−1

 R ≤ KCK×1, (3.43)

which implies that

CK
SYM ≤

CK×1∑K
j=1 j−1

. (3.44)

This completes the converse proof of Theorem 3.2.
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3.7.2 Achievability

In this subsection, we focus on achievability and discuss the extension of our

achievability results to the K-user MISO BC with delayed CSIT. The transmis-

sion strategy follows the steps of [36], but similar to the two-user case, some

additional ingredients are needed to make an approximately optimal scheme.

We first demonstrate the techniques and the required ingredients for the three-

user MISO BC with delayed CSIT. Then, we discuss how the result is extended

to the general case.

Transmission strategy for the three-user MISO BC: Each communication

block includes eight phases and we focus on a specific block b. Fix ε > 0.

• During Phases 1, 2, and 3 of block b, the message of user k (wb
k) is encoded

as xb,n
k at rate

C3×3 (1, 5, 11) − ε, (3.45)

where any element of this codeword is drawn i.i.d. from CN (0, P/3I3)3; and

C3×3 (1, 5, 11) is given in Definition 3.2.

Remark 3.6 The reason for the encoding rate of (3.45) becomes apparent as we describe

the achievability strategy. Basically the quantization noise accumulates on top of the

previous noises throughout some of the phases and thus, we need to adjust the encoding

rate accordingly.

Definition 3.6 We define sb,n
k, j to be the noiseless version of yb,n

k, j for appropriate choice of

indices. This is similar to Definition 3.2 for the two-user case.

3I3 is the 3 × 3 identity matrix.
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Transmitter communicates these codewords and receiver one obtains yb,n
1, j ,

receiver two obtains yb,n
2, j , and receiver three obtains yb,n

3, j , j = 1, 2, 3. Note that at

the end of the third phase, transmitter has access to sb,n
1, j , sb,n

2, j , and sb,n
3, j . Due to the

rate given in (3.45), if sb,n
2,1 and sb,n

3,1 are provided to receiver one with distortions

4 and 8 respectively, then receiver one will be able to decode its message with

arbitrary small decoding error probability. Similarly receiver two is interested

in sb,n
1,2 and sb,n

3,2; and receiver three is interested in sb,n
1,3 and sb,n

2,3.

Based on the discussion above and the available signal at each receiver, we

observe that sb,n
2,1 + sb,n

1,2 is of common interest to receivers one and two. Similarly,

sb,n
3,1 + sb,n

1,3 is of common interest to receivers one and three; and sb,n
2,3 + sb,n

3,2 is of

common interest to receivers two and three. Therefore, the goal would be to

deliver these signals to their interested receivers during the following phases.

• Communication during Phase 4: Consider the communication during an-

other block b′, and the corresponding signal sb′,n
2,1 + sb′,n

1,2 . Using Lemma 3.1, we

quantize sb,n
2,1 + sb,n

1,2 and sb′,n
2,1 + sb′,n

1,2 at distortion 4, and we create the XOR of the

resulting bits4. Then these bits will be encoded as vb,n
4 at rate C3×2 (1, 5) − ε, and

will be transmitted during Phase 4. C3×2 (1, 5) is given in Definition 3.2.

• Communication during Phase 5: Consider the communication during an-

other block b′, and the corresponding signal sb′,n
3,1 + sb′,n

1,3 . Using Lemma 3.1, we

quantize sb,n
3,1 + sb,n

1,3 and sb′,n
3,1 + sb′,n

1,3 at distortion 4 and we create the XOR of the

resulting bits. Then these bits will be encoded at rate C3×2 (1, 5) − ε denoted by

vb,n
5 and will be transmitted during Phase 5. Receiver two obtains yb,n

2,5 that is of

interest of users one and three.
4We note that we need these signals to be distributed independently, to handle this issue, we

can incorporate an interleaving step similar to Section 3.4.

115



• Communication during Phase 6: Consider the communication during an-

other block b′, and the corresponding signal sb′,n
2,3 + sb′,n

3,2 . Using Lemma 3.1, we

quantize sb,n
2,3 + sb,n

3,2 and sb′,n
2,3 + sb′,n

3,2 at distortion 4 and we create the XOR of the

resulting bits. Then these bits will be encoded at rate C3×2 (1, 5) − ε denoted by

vb,n
6 and will be transmitted during Phase 5. Receiver one obtains yb,n

1,6 that is of

interest of users two and three.

We now create two signals that are of interest of all three receivers:

1
√

2
sb,n

3,4 +
1
√

3
sb,n

2,5 +
1
√

6
sb,n

1,6, and
1
√

6
sb,n

3,4 +
−1
√

3
sb,n

2,5 +
1
√

2
sb,n

1,6. (3.46)

Remark 3.7 The choice of coefficients in (3.46) is such that all users are assigned equal

powers and the linear combinations at the receivers remain independent. We also note

that using such coefficients results in a 1/3 power loss for each user.

Note that any receiver has access to both signals in (3.46), then it can recur-

sively recover the signals it is interested in, and decode the intended message.

• Communication during Phase 7: Using Lemma 3.1, we quantize(
1
√

2
sb,n

3,4 + 1
√

3
sb,n

2,5 + 1
√

6
sb,n

1,6

)
at distortion 5. Then these quantized bits will be en-

coded at rate C3×1 − ε and transmitted during Phase 7.

• Communication during Phase 8: Using Lemma 3.1, we quantize(
1
√

6
sb,n

3,4 + −1
√

3
sb,n

2,5 + 1
√

2
sb,n

1,6

)
at distortion 5. Then these quantized bits will be en-

coded at rate C3×1 − ε and transmitted during Phase 8.

Using the achievability strategy described above and for n → ∞ and ε → 0,

it can be shown that a per-user rate of 2
11C3×3 (1, 5, 11) is achievable.

Transmission strategy for the K-user MISO BC: Now that we have de-
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scribed the transmission strategy for the 3-user MISO BC with delayed CSIT,

we explain the transmission strategy for the general case K > 3. As mentioned

before, the transmission strategy follows the steps of [36]. However, we high-

light the key differences that are needed to derive near optimal results.

The scheme includes K phases. For simplicity, we do not go into details

of the interleaving process. At the beginning of Phase j, transmitter has ac-

cess to signals that are of interest of j receivers, j = 1, 2, . . . ,K. There are

a total of (K − j + 1)
(

K
j

)
such signals. Phase j has

(
K
j

)
time-slots. Consider a

subset S of the receivers where |S| = j. Transmitter accumulates a total of

(K − j + 1) signals that are of interest of all receivers in S using (K − j + 1) dif-

ferent blocks (this is similar to Phase 4 for the 3-user MISO BC with delayed

CSIT). Similar to Lemma 3.1, transmitter quantizes these signals at distortion

( j + 2), and creates the XOR of the resulting bits. The resulting bits are encoded

at rate CK× j (1, 5, . . . , 1 + ( j − 1) ( j + 2))− ε and communicated during time slot tS

of Phase j.

Remark 3.8 The noise variance 1+( j − 1) ( j + 2) results from the fact that each receiver

has to solve ( j − 1) equations of the signals that he is interested in. This step results in

boosting up the noise variance.

Consider any subset S′ of the receivers where |S′| = j + 1. Upon completion

of Phase j, we observe that any receiver in S′ has a signal that is simultaneously

of common interest of all other receivers in S′. Transmitter has access to this

signal (up to noise) using delayed knowledge of the channel state information.

Transmitter forms j random linear combinations of such signals for each subset

S′ where |S′| = j + 1. Then transmitter creates j
(

K
j+1

)
signals that are simultane-

ously of interest of j + 1 receivers. These signals (after being quantized) will be
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delivered in Phases j + 1, j + 2, . . . ,K. The rest of the scheme is identical to that

of [36] and is omitted due to space limitations.

Recursively solving the achievable rate over K phases, we can show that a

per-user rate of

CK×K (1, 5, . . . , 1 + ( j − 1)( j + 2), . . . , 1 + (K − 1)(K + 2))
K

∑K
j=1 j−1

(3.47)

is achievable.

3.7.3 Gap Analysis

In Fig. 3.9, we have plotted the numerical analysis of the per user gap between

the inner-bound and the outer-bound of Theorem 3.2 for P between 0 dB and

60 dB and K = 2, 3, 5, 10, 20.
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Figure 3.9: Numerical evaluation of the per user gap between the inner-
bound and the outer-bound in Theorem 3.2 for P between 0 dB
and 60 dB and K = 2, 3, 5, 10, 20.

For the per user gap, we analytically show that the outer-bound and lower-

bound given in Theorem 3.2 are at most 2 log2(K+2) away from each other. How-
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ever as depicted in Fig. 3.9, we can see that the per-user gap is in fact smaller

than 2 log2(K + 2). The argument is similar to the one we presented in (3.34).

To derive the gap, we first increase the noise term at all receive antennas to

1 + (K − 1)(K + 2). Then similar to (3.34), we obtain

CK×K (1, 5, . . . , 1 + ( j − 1)( j + 2), . . . , 1 + (K − 1)(K + 2))

γCK×K − K log2 (1 + (K − 1)(K + 2)) . (3.48)

Using (3.48) and considering the gap between CK×K and KCK×1, we can show

that the gap between the achievable symmetric rate and the symmetric capacity

is bounded by 2 log2(K + 2).

3.8 Conclusion and Future Directions

In this paper, we studied the capacity region of the multiple-input single-output

complex Gaussian Broadcast Channels with delayed CSIT. We showed that a

modification of the scheme introduced in [36], can be applied in the finite SNR

regime to obtain an inner-bound that is within 2 log2(K + 2) bits of the outer-

bound. Therefore the gap scales as the logarithm of the number of users. This

happens due to noise accumulation during the transmission strategy. Thus, an

interesting future direction would be to figure out whether there exists a trans-

mission strategy that results in constant gap (independent of channel parame-

ters, transmission power and number of users) approximation of the capacity

region.

Another direction is to consider a two-user MISO BC with delayed CSIT

where the noise processes and the channel gains are not distributed as i.i.d. ran-
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dom variables. For example, consider the scenario where the noise processes

have different variances. This model captures the scenario where users are lo-

cated at different distances to the base station. For this setting, even the (gener-

alized) DoF region is not known.
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CHAPTER 4

COMMUNICATION WITH LOCAL NETWORK VIEWS

4.1 Introduction

In dynamic wireless networks, channels between any subset of nodes undergo

constant changes. As a result, the network state information consisting of chan-

nel state information between different nodes is constantly changing. In large

networks, nodes often measure channels in their immediate neighborhood but

may have limited or no information about channels between nodes many hops

away. One reason of only acquiring local information at a node is to ensure scal-

ability of the overall measurement architecture, such that measurement over-

head is independent of network size. The local information architecture implies

that nodes are only aware of local network state. Then the key question is, how

do optimal decentralized decisions perform in comparison to the optimal cen-

tralized decisions which rely on full channel state information.

In this paper, we consider multi-source multi-destination two-layer wireless

networks and seek fundamental limits of communications when sources have

access to limited local CSI. To model local views at the nodes in this sequel, we

consider the case where each source-destination (S-D) pair has enough informa-

tion to perform optimally when other pairs do not interfere. Beyond that, the

only other information available at each node is the global network connectivity.

We refer to this model of local network knowledge as “local view.” The moti-

vation for this model stems from coordination protocols like routing which are

often employed in multi-hop networks to discover S-D routes in the network.
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In the absence of global channel state information, the only feasible solution

seems to be the orthogonalization of interfering information sessions. How-

ever, surprisingly we show that with inter-session coding, we can outperform

the interference avoidance (orthogonalization) techniques. In fact, we show that

the gain we obtain from inter-session coding over interference avoidance tech-

niques can be unbounded.

Our main contributions then are as follows. We propose an algebraic frame-

work for inter-session coding that only requires local view at the nodes and

combines coding with interference avoidance scheduling. The scheme is a com-

bination of three main techniques: (1) per layer interference avoidance; (2) rep-

etition coding to allow overhearing of interference; and (3) network coding to

allow interference neutralization. Our work reveals the important role of relays

in interference management over two-layer wireless networks with local view.

We characterize the achievable normalized sum-rate of our proposed

scheme. We note that the transmission strategy solely relies on the local view

assumption and guarantees the achievability of a fraction of the network ca-

pacity with full channel state knowledge, regardless of the actual values of the

unknown parameters at each node. We then analyze the optimality of the pro-

posed scheme for some classes of networks. We consider two-layer networks:

(1) with two relays and any number of source-destination pairs; (2) with three

source-destination pairs and three relays; and (3) with folded-chain structure

(defined in Section 4.5). We also show that the gain from inter-session coding

over interference avoidance scheduling can be unbounded in L-nested folded-

chain networks (defined in Section 4.5). To derive information-theoretic outer-

bounds in these networks, we seek a worst case channel realization in which
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achieving beyond a certain fraction of the network capacity would be infeasible

with local view.

It is worth noting that since each channel gain can range from zero to a max-

imum value, our formulation is similar to compound channels [10, 44] with

one major difference. In the multi-terminal compound network formulations,

all nodes are missing identical information about the channels in the network,

whereas in our formulation, the local view results in asymmetric information

about channels at different nodes.

In the literature, many models for imprecise network information have been

considered for interference networks. These models range from having no chan-

nel state information at the sources, delayed channel state information, or rate-

limited feedback links. Most of these works assume fully connected network

topology or a small number of users. A study to understand the role of limited

network knowledge, was first initiated in [5, 6] for general single-layer networks

with arbitrary connectivity, where the authors used a message-passing abstrac-

tion of network protocols to formalize the notion of local view of the network at

each node. The key result was that local-view-based (decentralized) decisions

can be either sum-rate optimal or can be arbitrarily worse than the global-view

(centralized) sum-capacity. In this work, we focus on two-layer setting and we

show that several important additional ingredients are needed compared to the

single-layer scenario.

The rest of the paper is organized as follows. In section 4.2, we introduce

our network model and the new model for partial network knowledge. In Sec-

tion 4.3, via a number of examples, we motivate our transmission strategies and

the algebraic framework. In Section 4.4, we formally define the algebraic frame-
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work and we characterize the performance of the transmission strategy based

on this framework. In Section 4.5, we prove the optimality of our strategies for

several network topologies. Finally, Section 4.6 concludes the paper.

4.2 Problem Formulation

In this section, we introduce our model for channel and network knowledge

at nodes. We also define the notion of normalized sum-capacity which will be

used as the performance metric for strategies with local network knowledge.

4.2.1 Network Model and Notations

A network is represented by a directed graph

G = (V,E, {hi j}(i, j)∈E) (4.1)

where V is the set of vertices representing nodes in the network, E is the set of

directed edges representing links among the nodes, and {hi j}(i, j)∈E represents the

channel gains associated with the edges and we have hi j ∈ C.

We focus on two-layer networks where out of |V| nodes in the network, K

are denoted as sources and K are destinations. We label these source and desti-

nation nodes by Si’s and Di’s respectively, i = 1, 2, . . . ,K. The remaining |V|−2K

nodes are relay nodes. The layered structure of the network imposes that a

source can be only connected to a subset of relays, and a relay can be only con-

nected to a subset of destinations.
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The channel input at node Vi at time t is denoted by XVi[t] ∈ C, and the

received signal at node V j at time t is denoted by YV j[t] ∈ C given by

YV j[t] =
∑

i

hi jXVi[t] + Z j[t], (4.2)

where Z j[t] is the additive white complex Gaussian noise with unit variance.

The noise processes are distributed independently across space and time, and

are independent from the transmit signals. We also assume a power constraint

of 1 at all nodes, i.e.

lim
n→∞

1
n
E

 n∑
t=1

|XVi[t]|
2

 ≤ 1. (4.3)

A route from a source Si to a destination D j is a set of nodes such that there

exists an ordering of these nodes where the first one is Si, last one is D j, and any

two consecutive nodes in this ordering are connected by an edge in the graph.

S1

S2

S3

D1

D2

D3

B

A

(a)

S2 D2

B

A

(b)

Figure 4.1: (a) A two-layer wireless network with three S-D pairs and two relays,
and (b) the induced subgraph G22.

Definition 4.1 Induced subgraph Gi j is a subgraph of G with its vertex set being the

union of all routes from source Si to a destination D j, and its edge set being the subset

of all edges in G between the vertices of Gi j. Fig. 4.1(b) depicts the induced subgraph

G22 for the network in Fig. 4.1(a).

We say that S-D pair i and S-D j are non-interfering if Gii and G j j have disjoint

vertex sets.
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The in-degree function din(Vi) is the number of in-coming edges connected

to node Vi. Similarly, the out-degree function dout(Vi) is the number of out-going

edges connected to node Vi. Note that the in-degree of a source and the out-

degree of a destination are both equal to 0. The maximum degree of the nodes

in G is defined as

dmax
4
= max

i∈{1,...,|V|}
(din(Vi), dout(Vi)) . (4.4)

4.2.2 Model for Partial Network Knowledge

We now describe our model for the partial network knowledge that we refer to

as local view.

• All nodes have full knowledge of the network topology, (V,E) (i.e. they

know which links are in G, but not necessarily their channel gains). The

network topology knowledge is denoted by side information SI;

• Each source, Si, knows the gains of all the channels that are in Gii, i =

1, 2, . . . ,K. This channel knowledge at a source is denoted by LSi ;

• Each node Vi (which is not a source) has the union of the information of

all those sources that have a route to it, and this knowledge at node is

denoted by LVi .

For a depiction, consider the network in Fig. 4.2(a). Source S1 has the knowl-

edge of the channel gains of the links that are denoted by solid red arrows in

Fig. 4.2(a). On the other hand, relay A has the union of the information of

sources S1 and S2. The partial knowledge of relay A is denoted by solid red

arrows in Fig. 4.2(b).
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Remark 4.1 Our formulation is a general version of compound channel formulation

where nodes have mismatched asymmetric lack of knowledge.

S1

S2

S3

D1

D2

D3

B

A

(a)

S1

S2

S3

D1

D2

D3

B

A

(b)

Figure 4.2: (a) The partial knowledge of the channel gains available at source S1

is denoted by solid red arrows, and (b) the partial knowledge of the
channel gains available at relay A denoted by solid red arrows.

4.2.3 Performance Metric

As mentioned before, our goal is to find out the minimum number of time-

slots such that each S-D pair is able to reconstruct any transmission snapshot in

their induced subgraph over the original network. It turns out that the afore-

mentioned objective is closely related to the notion of normalized sum-capacity

introduced in [3, 4]. The connection between the two concepts will be made

clear in Section 4.3. Here, we define the notion of normalized sum-capacity

which is going to be our metric for evaluating network capacity with local view.

Normalized sum-capacity represents the maximum fraction of the sum-capacity

with full knowledge that can be always achieved when nodes only have partial

knowledge about the network and is defined as follows.

Consider the scenario in which source Si wishes to reliably communicate

message Wi ∈ {1, 2, . . . , 2NRi} to destination Di during N uses of the channel, i =

1, 2, . . . ,K. We assume that the messages are independent and chosen uniformly.
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For each source Si, let message Wi be encoded as XN
Si

using the encoding function

ei(Wi|LSi ,SI), which depends on the available local network knowledge, LSi , and

the global side information, SI.

Each relay in the network creates its input to the channel XVi , using the

encoding function fVi[t](Y
(t−1)
Vi
|LVi ,SI), which depends on the available network

knowledge, LVi , and the side information, SI, and all the previous received sig-

nals at the relay Y (t−1)
Vi

=
[
YVi[1],YVi[2], . . . ,YVi[t − 1]

]
. A relay strategy is defined

as the union of all encoding functions used by the relays, { fVi[t](Y
(t−1)
Vi
|LVi ,SI)},

t = 1, 2, . . . ,N.

Destination Di is only interested in decoding Wi and it will decode the mes-

sage using the decoding function Ŵi = di(YN
Di
|LDi ,SI), where LDi is the destination

Di’s network knowledge. Note that the local view can be different from node to

node.

Definition 4.2 A Strategy SN is defined as the set of: (1) all encoding functions at the

sources; (2) all decoding functions at the destinations; and (3) the relay strategy, i.e.

SN =


ei(Wi|LSi ,SI)

fVi[t](Y
(t−1)
Vi
|LVi ,SI)

di(YN
Di
|LDi ,SI)


(4.5)

for t = 1, 2, . . . ,N, and i = 1, 2, . . . ,K.

An error occurs when Ŵi ,Wi and we define the decoding error probability,

λi, to be equal to P(Ŵi ,Wi). A rate tuple (R1,R2, . . . ,RK) is said to be achievable,

if there exists a set of strategies {S j}
N
j=1 such that the decoding error probabilities

λ1, λ2, . . . , λK go to zero as N → ∞ for all network states consistent with the side
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information. Moreover, for any S-D pair i, denote the maximum achievable rate

Ri with full network knowledge by Ci. The sum-capacity Csum, is the supremum

of
∑K

i=1 Ri over all possible encoding and decoding functions with full network

knowledge.

We will now define the normalized sum-rate and the normalized sum-

capacity.

Definition 4.3 ([4]) Normalized sum-rate of α is said to be achievable, if there exists

a set of strategies {S j}
N
j=1 such that following holds. As N goes to infinity, strategy SN

yields a sequence of codes having rates Ri at the source Si, i = 1, . . . ,K, such that the

error probabilities at the destinations, λ1, · · · λK , go to zero, satisfying

K∑
i=1

RiγαCsum − τ

for all the network states consistent with the side information, and for a constant τ that

is independent of the channel gains.

Definition 4.4 ([4]) Normalized sum-capacity α∗, is defined as the supremum of all

achievable normalized sum-rates α. Note that α∗ ∈ [0, 1].

Remark 4.2 While it may appear that the notion of normalized sum-capacity is pes-

simistic, the results presented here are much like any other compound channel analysis

that aims to optimize the worst case scenario. We adopted the normalized capacity as

our metric which opens the door for exact (or near-exact) results for several cases as we

will see in this paper. We view our current formulation as a step towards the general

case, much like the commonly-accepted methodology where channel state information

is assumed known perfectly in first steps of a new problem (e.g., MIMO, interference
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channels, scaling laws), even though the assumption of perfectly known channel state

information is almost never possible.

4.3 Motivating Example

Before diving into the main results, we use an example to illustrate the mech-

anisms that allow us outperform interference avoidance with only local view.

Consider the two-layer network depicted in Fig. 4.3(a). For simplicity, we refer

to the relays as relay A, relay B, and relay C. It is straightforward to see that

interference avoidance requires the three information sessions to be orthogo-

nalized. Thus, it takes three time-slots to reconstruct the induced subgraphs of

Fig. 4.3(b), 4.3(c), and 4.3(d), which results in a normalized sum-rate of α = 1
3 .

However, we now show that with inter-session coding, it is possible to

achieve α = 1
2 and reconstruct any transmission snapshot over the three induced

subgraphs in only two time-slots with local view. Therefore, a normalized sum-

rate of 1
2 is achievable1. In a sense, inter-session coding allows interfering infor-

mation sessions to co-exist. The key ingredient is the mixing of signals at the

relays as we describe shortly.

Consider any strategy for S-D pairs 1, 2, and 3 as illustrated in

Fig. 4.3(b), 4.3(c), and 4.3(d). We split the communication block into two time-

1The reason for achieving a normalized sum-rate of 1
2 if we can reconstruct any transmission

snapshot over the three induced subgraphs in only two time-slots, is as follows. Since any
transmission strategy for the induced subgraphs can be implemented in the original network
by using only two time-slots, we can implement the strategies that achieve the capacity for any
S-D pair i with full network knowledge, i.e. Ci, over two time-slots up to a constant term which
is due to the difference in noise variances. Hence, we can achieve 1

2 (C1 + C2 + C3) − τ. On the
other hand, we have Csum ≤ C1 + C2 + C3. As a result, we can achieve a set of rates such that∑3

i=1 Ri ≥
1
2Csum − τ, and by the definition of normalized sum-rate, we achieve α = 1

2 .

130



(a)

S1 D1

A

B

X1 h11

h
12

g
11

g21

XA

1

XB

1

1

1

YA = h11 X1 + ZA

YB = h12 X1 + ZB

Y1 = g11 XA + 
g21 XB  + Z1

(b)

S2 D2

B

C

X2 h22

h
23

g
22

g32

XB

2

XC

2

2

2

YB = h22 X2 + ZB

YC = h23 X2 + ZC

Y2 = g22 XB + 
g32 XC  + Z2

(c)

S3 D3

C

A

X3 h33

h
31

g
33

g13

XC

3

XA

3

3

3

YC = h33 X3 + ZC

YA = h31 X3 + ZA

Y3 = g33 XC + 
g13 XA  + Z3

(d)

Figure 4.3: (a) a two-layer network in which we need to incorporate network
coding to achieve the normalized sum-capacity, (b), (c) and (d) the
induced subgraphs of S-D pairs 1,2,and 3 respectively.

slots of equal length and we describe the scheme for each layer separately.

Transmission scheme for the first layer: Over the first time-slot, source S1

transmits the same codeword as if it was in the induced subgraph, and S2 trans-

mits the same codeword as if it was in the induced subgraph multiplied by −1.

Over the second time-slot, S3 transmits the same codeword as if it was in

the induced subgraph and S2 repeats its transmitted signal from the previous

time-slot.

Time-slot 1 Time-slot 2

X1

-X2 X2

X3

+

S1

S2

S3

A
h11
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h33

h
12

h
23

h 3
1

S1

S2

S3

h11

h22

h33

h
12

h
23

h 3
1

B

C

A

B

C

+

YA[1] = h11 X1 + ZA[1]

YB[1] = h12 X1 - h22 X2 

+ ZB[1]
YB[2] = h22 X2 + ZB[2]

h22 X2 + ZB[2], h12 X1 + ZB

~

YC[1] = -h23 X2 + ZC[1] YC[2] = h23 X2 + 

h33 X3 + ZC[2]

h23 X2 + ZC, h33 X3 + ZC

~ ~~

YA[2] = h31 X3 + ZA[2]

Figure 4.4: Achievability strategy for the first layer of the network in Fig-
ure 4.3(a).
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Transmission scheme for the first layer: During first time-slot, relays A and

B transmit X1
A and X1

B respectively, whereas relay C transmits 1
√

2

(
X3

C − X2
C

)
as

depicted in Fig. 4.5.

During second time-slot , relays B and C transmit X2
B and X2

C respectively,

whereas relay A transmits 1
√

2

(
X3

A − X1
A

)
.

Recovering signals at relays: At the end of the first time-slot, relay A re-

ceives the signal from source S1, and relay C receives the signal from source S2.

Relay B receives the summation of the signals from sources S1 and S2.

Upon completion of the second time-slot, relay B receives the signal from

source S2 and it can use its received signals over the two time-slots to recover

the signal of source S1 as well. Now, if relay C adds its received signals over the

two time-slots, it also recovers the signal2 of source S3 as depicted in Fig. 4.4.

D1

D2
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D3

Time-slot 1 Time-slot 2

XA
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XC - XC
3 2
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3 1
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2

XC
2
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g33

g
13

g 21

g 31

g11

g22

g33

g
13

g 21

g 31

1

1

Y1 = g11 XA + 

g21 XB  + Z1

Y3[1] = g13 XA – g33 

XC+ g33 XC  + Z3[1]

2

2

Y2 = g22 XB + 

g31 XC  + Z2

1

2 3

Y3[2] = g13 XA – g13 

XA+ g33 XC  + Z3[2]

3

1 2

g13 XA + g33 XC  + Z3
3 3 ~

Figure 4.5: Achievability strategy for the second layer of the network in Fig-
ure 4.3(a).

Decoding at destinations: At the end of the first time-slot, destination D1

receives the same signal as in Fig. 4.3(b) (with different noise variance).

2We note that the effective noise variance at relays B and C would be twice the noise vari-
ance of its induced subgraph for sources S1 and S3 respectively. However, by the definition of
normalized sum-capacity, this does not affect the achievable normalized sum-rate
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Finally, at the end of the second time-slot, destination D2 receives the same

signal as in Fig. 4.3(c) (with different noise variance). If destination D3 adds

its received signals over the two time-slots, it recovers the same signal as in

Fig. 4.3(d) (up to noise term). Therefore, each destination receives the same

signal as if it was only in its corresponding diamond network over two time-

slots. Hence, the normalized sum-rate of α = 1
2 is achievable.

In the following section, we generalize the ideas presented in this section by

introducing an algebraic framework for inter-session coding.

4.4 An Algebraic Framework for

Inter-Session Coding with Local View

In this section, we present an algebraic framework for inter-session coding with

local view in two-layer wireless networks over T ∈ N time-slots. We first go

over some notations and definitions. Consider a two-layer wireless network

G = (V,E, {hi j}(i, j)∈E) with K source-destination pairs and |V| − 2K relay nodes.

We label the sources as S1, . . . ,SK , the destinations as D1, . . . ,DK , and the

relays as V1, . . . ,V|V|−2K .

Definition 4.5 We assign a number NV j to relay V j defined as

NV j

4
=

∣∣∣∣{i|V j ∈ Gii

}∣∣∣∣ , (4.6)

and we assign a number ND j to destination D j defined as

ND j

4
=

K∑
i=1

(
number of routes from Si to D j

)
. (4.7)
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We now describe the assignment of transmit and receive matrices to each

node in the network where all entries to these matrices are in {−1, 0, 1}. These

matrices form the basis for inter-session coding as described later in this section.

• We assign a transmit vector TSi of size T × 1 to source Si where each row

corresponds to a time-slot;

• To each relay V j, we assign a receive matrix RV j of size T × din(V j), and we

label each column with a source that has a route to that relay. The entry at

row t and column labeled by Si in RV j is equal to the entry at row t of TSi ;

• We assign a transmit matrix TV j of size T × NV j to each relay where each

column corresponds to a S-D pair i where the relay belongs to Gii;

• Finally, to each destination Di, we assign a receive matrix RDi of size T ×NDi

where each column corresponds to a route from a source S j through a

specific relay V j′ and is labeled as S j : V j′ . The entry at row t and column

labeled by S j : V j′ in RDi is equal to the entry at row t and column labeled

by S j of TV j′ .

Remark 4.3 Since nodes have only local view, they are unaware of the interfering chan-

nel gains. Thus, the entries to the vectors and matrices are only chosen to be −1, 0, or 1.

This way they do not rely on the actual value of the interfering channel gains but rather

the topology.

We say that an assignment of transmit and receive matrices to the nodes in

the network is valid if the following conditions are satisfied:

C.1 [Source Condition] For i = 1, 2, . . . ,K,

Rank
(
TSi

)
= 1. (4.8)
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Intuitively, condition C.1 guarantees that every transmitter communicates its

signal at least once during the T time-slots.

C.2 [Relay Condition] For any relay V j, if V j ∈ Gii, then

( Si

1 0 . . . 0

)
∈ rowspan

(
RV j

)
. (4.9)

Intuitively, if condition C.2 is satisfied, then each relay has access to the signal

of any S-D pair that has a route through that relay.

C.3 [Destination Condition] For destination Di, if relays V j1 , . . . ,V jNDi
are on

routes from Si to Di, then

( Si : V j1 . . . Si : V jNDi

1 . . . 1 0 . . . 0

)
∈ rowspan

(
RDi

)
. (4.10)

Finally, condition C.3 guarantees the feasibility of interference neutralization at

each destination.

Furthermore, we limit all linear operations in conditions C.2 and C.3 re-

quired to obtain (4.9) and (4.10), to simply be a summation of a subset of rows.

Remark 4.4 It is straightforward to show that a necessary condition for C.3 is for

each TV j to have full column rank. This gives us a lower bound on T which is

maxV j

∣∣∣∣{i|V j ∈ Gii

}∣∣∣∣. Moreover, TDMA is always a lower bound on the performance of

any strategy and thus, provides us with an upper bound on T . In other words, we have

max
V j

∣∣∣∣{i|V j ∈ Gii

}∣∣∣∣ ≤ T ≤ K, (4.11)
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which implies that for two-layer wireless networks, we have

1
K
≤ α∗ ≤

1

maxV j

∣∣∣∣{i|V j ∈ Gii

}∣∣∣∣ . (4.12)

Consider a transmission snapshot in each of the K induced subgraphs in the

absence of all other S-D pairs where

• Node Vi (similarly a source) in the induced subgraph G j j transmits X j
Vi

,

• Node Vi (similarly a destination) in the induced subgraph G j j receives

Y j
Vi

=
∑

i′:(i′,i)∈E

hi′iX
j
Vi′

+ Z j
Vi
. (4.13)

We define a transmission strategy based on the assigned transmit and receive

matrices as follows. At any time-slot t:

• Source Si transmits

XSi[t] = TSi(t)X
i
Si
, (4.14)

• Each relay V j transmits

XV j[t] =
1
√

T

K∑
i=1

TV j(t,Si)Xi
V j

(4.15)

where t = 1, . . . ,T , and the coefficient 1
T is to guarantee the power con-

straint at nodes.

Before stating our main results, we show how to interpret the transmission

strategy of Section 4.3 in the algebraic framework presented above. We assign a

transmit vector TSi of size 2 × 1 to source Si.

TS1 =

 1

0

 , TS2 =

 −1

1

 , TS3 =

 0

1

 . (4.16)
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To each relay, we assign a receive matrix of size 2 × 2 where each row corre-

sponds to a time-slot, and each column corresponds to a source that has a route

to that relay. This receive matrix is formed by concatenating the transmit vectors

of the sources that are connected to the relay. In our example, we have

RA =


S1 S3

t = 1 1 0

t = 2 0 1

, RB =


S1 S2

t = 1 1 −1

t = 2 0 1

,

RC =


S2 S3

t = 1 −1 0

t = 2 1 1

. (4.17)

From the receive matrices in (4.17), we can easily check whether each relay

has access to the same received signals as if it was in the diamond networks of

Figures 4.3(b), 4.3(c), and 4.3(d). In fact all three matrices in (4.17) are full rank.

We also assign a transmit matrix of size 2×2 to each relay where each column

corresponds to a S-D pair i such that the relay belongs to Gii. During time-slot t,

the relay communicates the signal it has for S-D pair i multiplied by the entry at

row t and column Si of its transmit matrix. In our example, we have

TA =


S1 S3

t = 1 1 0

t = 2 −1 1

, TB =


S1 S2

t = 1 1 0

t = 2 0 1

,

TC =


S2 S3

t = 1 −1 1

t = 2 1 0

. (4.18)
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Here, if in row t more than one non-zero entry appears, then the relay creates

the normalized linear combination of the signals it has for the S-D pairs that

have a non-zero entry in their column and transmits it.

Now, to each destination Di, we assign a receive matrix RDi of size 2 × 4

where each row corresponds to a time-slot, and each column corresponds to a

route from a source through a specific relay (e.g., a route from S1 through relay

V1 is denoted by S1 : A). In fact, RDi is formed by concatenating (and reordering

columns of) the transmit matrices of the relays that are connected to Di. In our

example, we have

RD1 =


S1 : A S1 : B S2 : B S3 : A

t = 1 1 1 0 0

t = 2 −1 0 1 1

,

RD2 =


S1 : B S2 : B S2 : C S3 : C

t = 1 1 0 −1 1

t = 2 0 1 1 0

,

RD3 =


S1 : A S2 : C S3 : A S3 : C

t = 1 1 −1 0 1

t = 2 −1 1 1 0

. (4.19)

From the receive matrices in (4.19), we can verify whether each destination

can recover its corresponding signals or not. For instance, from RD1 , we know

that in time-slot 1, the signals from S1 through relays A and B are received

interference-free. From RD3 , we see that at each time-slot one of the two sig-

nals that D3 is interested in is received. However with a linear row-operation,

we can create a row where 1’s only appear in the columns associated with S3.
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More precisely,

RD3 (1, :) + RD3 (2, :) (4.20)

=

( S1 : A S2 : C S3 : A S3 : C

0 0 1 1

)
,

or equivalently

( S1 : A S2 : C S3 : A S3 : C

0 0 1 1

)
∈ rowspan

(
RD3

)
. (4.21)

Thus, each destination can recover its intended signal interference-free (up to

noise term).

The following theorem characterizes the achievable normalized sum-rate of

transmission strategy described above for a valid choice of transmit and receive

matrices.

Theorem 4.1 For a K-user two-layer network G = (V,E, {hi j}(i, j)∈E) with local view,

if there exists a valid assignment of transmit and receive matrices, then a normalized

sum-rate of α = 1
T is achievable.

Proof: Network G has K S-D pairs. We need to show that any transmission

snapshot over these induced subgraphs can be implemented in G over T time-

slots such that all nodes receive the same signal as if they were in the induced

subgraphs (up to noise terms) using the transmission strategy described above.

At any time instant t ∈ {1, 2, . . . ,T }, relay Vi (similarly a destination) receives

YVi[t] =
∑

i′:(i′,i)∈E

hi′iXVi′ [t] + ZVi[t], t = 1, . . . ,T. (4.22)
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Reconstructing the received signals: Based on the transmission strategy de-

scribed above, we need to show that at any relay Vi (similarly a destination), the

received signal Y j
Vi

can be obtained up to the noise term.

Based on Relay Condition C.2, we know that there exists a matrix GVi of size

NVi × T with entries in {0, 1}, and a choice of `, such that if Vi ∈ G j j then

GVi(`, :)RVi =

( Si

1 0 . . . 0

)
. (4.23)

Therefore, we have

T∑
t=1

GVi(`, t)YVi[t] = Y j
Vi

+ Z̃ j
Vi
, (4.24)

where Z̃ j
Vi

is a zero-mean noise term that is independent form the signals and has

variance
(∑T

t=1 G(`, t)
)
− 1. It is easy to see that the variance of Z̃ j

Vi
is bounded by

T − 1. This implies that Vi is able to cancel out all interference by appropriately

summing the received signals at different time-slots (at the cost of a higher noise

variance).

Similar argument holds for any destination Di. Based on Destination Con-

dition C.3, we know that there exists a matrix GDi of size NDi × T with entries in

{0, 1}, and a choice of `, such that if relays V j1 , . . . ,V jNDi
are on routes from Si to

Di, then

GDi(`, :)RVi =

( Si : V j1 . . . Si : V jNDi

1 . . . 1 0 . . . 0

)
. (4.25)

Therefore, we have

√
T

T∑
t=1

GDi(`, t)YDi[t] = Y i
Vi

+ Z̃i
Di
, (4.26)
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where Z̃i
Vi

is a zero-mean noise term that is independent form the signals and

has variance less than or equal to T 2 − 1. In a sense, each destination is able

to cancel out all interference by appropriately summing the received signals at

different time-slots (at the cost of a higher noise variance).

As we have seen in (4.24) and (4.26), due to the row operations, the resulting

signal may have a noise variance that is different from the original noise process.

However, the resulting variance is independent of the channel gains. Thus, we

need to show that with the row operations performed on transmit and received

signals, the capacity for each S-D pair remains within a constant of the capacity

of the induced subgraphs when there is no interference. The following lemma

which is proved in Appendix C.2 provides us with this result.

Lemma 4.1 Consider a complex multi-hop Gaussian relay network with one source

S and one destination D represented by a directed graph G = (V,E, {hi j}(i, j)∈E) where

{hi j}(i, j)∈E represent the channel gains associated with the edges.

We assume that at each receive node the additive white complex Gaussian noise

has variance σ2. We also assume a power constraint of P at all nodes, i.e.

limn→∞
1
nE(

∑n
t=1 |XVi[t]|

2) ≤ P. Denote the capacity of this network by C(σ2, P). Then

for any κ ≥ 1, κ ∈ R, we have

C(σ2, P) − τ ≤ C(κσ2, P/κ) ≤ C(σ2, P), (4.27)

where τ = |V|
(
2 log κ + 17

)
is a constant independent of channel gains, P, and σ2.

Note that if we increase the noise variance at all nodes to
(
T 2 − 1

)
, we can

only decrease the capacity. Next, applying Lemma 4.1 (with κ = T 2 − 1), we

conclude that the achievable rate for each S-D pair after using inter-session cod-

ing, remains within a constant of the capacity of the induced subgraphs when

141



there is no interference. The constant is independent of the channel gains and

the transmit power as described in Lemma 4.1. This completes the proof of

Theorem 4.1. �

In the following section, we analyze the optimality of the proposed scheme

for some classes of networks. We consider two-layer networks: (1) with

two relays and any number of source-destination pairs; (2) with three source-

destination pairs and three relays; and (3) with folded-chain structure. We

also show that the gain from inter-session coding over interference avoidance

scheduling can be unbounded in L-nested folded-chain networks.

4.5 Optimality of the Strategies

In this section, we consider several classes of networks and derive the mini-

mum number of time-slots such that any transmission snapshot over induced

subgraphs can be reconstructed as if there is no interference present. In other

words, we characterize the normalized sum-capacity of such networks. We

derive information-theoretic outer-bounds on the normalized sum-capacity in

these networks by providing a worst case channel realization in which achiev-

ing beyond a certain fraction of the network capacity would be infeasible with

local view.

As mentioned before, a key ingredient in inter-session coding is the role of

relays and the mixing of the signals that takes place at the relays. To gain a

better perspective of the role of relays in two-layer wireless networks with local

view, we consider several network topologies with different number of relays

and gradually increase this number. We first provide an overview of our results.
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4.5.1 Overview

We start by considering a class of two-layer networks with only two relays in

Section 4.5.2. The normalized sum-capacity of such networks is one over the

maximum node degree in the network dmax given by

dmax
4
= max

i∈{1,...,|V|}
(din(Vi), dout(Vi)) . (4.28)

It turns out that to achieve this normalized sum-capacity, relays have to smartly

schedule the information flows and no coding is necessary. However, we point

out that the performance of a naive orthogonalization scheme can be very poor.

In fact, the scheduling of information sessions in the two layers can be different

and this task is carried on by the relays.

We then increase the number of relays to three and consider networks with

three information sessions in Section 4.5.3. As we already know from Sec-

tion 4.3, there exists a network topology in this family where without inter-

session coding, achieving the normalized sum-capacity is not possible. We show

that for this class of networks, the normalized sum-capacity can only take values

in {1, 1/2, 1/3}.

Beyond three relays, we consider a class of two-layer wireless networks in

Section 4.5.4 that we refer to as two-layer (K,m) folded-chain networks. In such

networks, we have k information sessions and k relays connected in a specific

ordering such that the maximum degree is m. For this class, we show that

the normalized sum-capacity is equal to 1/m. To achieve this normalized sum-

capacity, inter-session coding is required and the performance of orthogonaliza-

tion schemes can be far from optimal. This class can be considered as a general-

ization of the network we considered in Section 4.3.
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Finally, in order to show that the gain of inter-session coding over inter-

ference avoidance techniques can be unbounded, we consider a single-layer

topology that we refer to as L-nested folded-chain network in Section 4.5.5.

We show that the gain of inter-session coding over interference avoidance tech-

niques grows exponentially with parameter L which depends on the number of

users in the network.

4.5.2 K × 2 × K Networks

We now move to two-layer networks and start with a special class of networks

with two relays as defined below.

Definition 4.6 A K×2×K network is a two-layer network (as defined in Section 4.2.1)

with |V| − 2K = 2.

We establish the normalized sum-capacity of such networks in the following

theorem.

Theorem 4.2 The normalized sum-capacity of a K × 2 × K network with local view, is

α∗ =
1

dmax
, (4.29)

where dmax is defined in (4.4).

Proof:

The result for K = 1 is trivial, so we assume K > 1. We refer to the two relays

as A1 and A2, see Fig. 4.6.
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Figure 4.6: Illustration of a K × 2 × K network.

Achievability: We divide the S-D pair ID’s into 3 disjoint subsets as follows:

• Ji is the set of all the S-D pair ID’s such that the corresponding source is

connected only to relay Ai, i = 1, 2;

• J12 is the set of all the other S-D pair ID’s. In other words, J12 is the set of

all the S-D pair ID’s where the corresponding source is connected to both

relays.

Without loss of generality assume that din(A2) ≥ din(A1), and rearrange

sources such that

J1 = {1, 2, . . . , din(A1)} ,

J2 = {din(A1) + 1, . . . , din(A1) + din(A2)} ,

J12 = {din(A1) + din(A2) + 1, . . . ,K} . (4.30)

We pick the smallest member of J1 and the smallest member of J2, and we

set the first entry of the corresponding transmit vectors equal to 1 and all other

entries equal to zero. We remove these members from J1 and J2. Then, we

pick two smallest members of J1 and J2 and we set the second entry of the

corresponding transmit vectors equal to 1 and all other entries equal to zero.

We continue this process until J1 is empty. For any remaining S-D pair ID j,
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we set the jth entry of the corresponding transmit vector equal to 1 and all other

entries equal to zero.

In the second layer, we divide S-D pair ID’s based on the connection of des-

tinations to relays, i.e. J ′i is the set of all the S-D pair ID’s such that the corre-

sponding destination is connected to relay Ai, i = 1, 2, and J ′12 is the set of all

the other S-D pair ID’s. To Ai, we assign a transmit matrix of size T ×
(
J ′i +J ′12

)
,

i = 1, 2, as described below.

Without loss of generality assume that dout(A2) ≥ dout(A1). We pick one mem-

ber ofJ ′1 and one member ofJ ′2 randomly, and at the first row of TA1 and TA2 , we

set the entry at the column corresponding to the picked indices equal to 1 and

all other entries at those rows equal to zero. We remove these members fromJ ′1

and J ′2. We then pick one member of J ′1 and one member of J ′2 randomly, and

at the second row of TA1 and TA2 , we set the entry at the column corresponding

to the picked indices equal to 1 and all other entries at those rows equal to zero.

We continue this process till J ′1 is empty.

We then pick one of the remaining S-D pair IDs (members of J ′12 and the

remaining members of J ′2) and assign a 1 at the next available row and to the

column corresponding to the picked index in the corresponding transmit matrix

and all other entries at those rows equal to zero. We continue the process until

no S-D pair ID is left.

Condition C.1 is trivially satisfied. The corresponding transmission strategy

in this case would be a “per layer” interference avoidance, i.e. if in the first hop

two sources are connected to the same relay, they do not transmit simultane-

ously, and if in the second hop two destinations are connected to the same relay,
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they are not going to be served simultaneously. Therefore, since the scheme

does not allow any interference to be created, no row operations on the receive

matrices is required and conditions C.2 and C.3 are satisfied.

Note that according to the assignment of the vectors and matrices, we re-

quire

T = max {din(A2), dout(A2)} = dmax. (4.31)

Hence from Theorem 4.1, we know that a normalized sum-rate of α = 1
dmax

is

achievable.

Converse: Assume that a normalized sum-rate of α is achievable, we show that

α ≤ 1
dmax

. It is sufficient to consider two cases: (1) dmax = din(A1), and (2) dmax =

dout(A1). Here, we provide the proof for case (1) and we postpone the proof for

case (2) to Appendix C.1.

The proof is based on finding a worst case scenario. Thus to derive the upper

bound, we use specific assignment of channel gains. Consider D j for j ∈ J1;

any such destination is either connected to relay A1 or to both relays. If it is

connected to both, then set the channel gain from relay A2 equal to 0. Follow

similar steps for the members ofJ2 (if the destination is connected to both, then

set the channel gain from relay A1 equal to 0).

Now, consider D j for j ∈ J12; such destination is either connected to only one

relay or to both relays. If such destination is connected to both relays, assign the

channel gain of 0 to one of the links connecting it to a relay (pick this link at

random). For all other links in the network, assign a channel gain of h ∈ C.
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With the channel gain assignment described above, it is straight forward to

see that

∀ j ∈ J1 : H
(
W j|Yn

A1
, LA1 ,SI

)
≤ nεn, (4.32)

where εn → 0 as n → ∞. Thus, relay A1 is able to decode all messages coming

from sources corresponding to the members of J1.

A similar claim holds for relay A2 and all messages coming from J2. Relays

A1 and A2 decode the messages coming from members ofJ1 andJ2 respectively,

and remove their contributions from the received signals.

Now, it is easy to see that

∀ ` ∈ J12 : H
(
W`|Yn

A1
, Xn

j∈J1
, LA1 ,SI

)
≤ nεn. (4.33)

Thus each relay is able to decode the rest of the messages (they receive same

signals with different noise terms). This means that relay A1 is able to decode all

the messages from J1 and J12, i.e.∑
j∈(J1∪J12)

H
(
W j|Yn

A1
, LA1 ,SI

)
≤ nεn, (4.34)

which in turn implies that

n

 ∑
j∈(J1∪J12)

R j − εn

 ≤ h
(
Yn

A1
|LA1 ,SI

)
. (4.35)

Note that din(A1) = |J1| + |J12|.

Given the assumption of local view, in order to achieve a normalized sum-

rate of α, each source should transmit at a rate greater than or equal to α log(1 +

|h|2) − τ since from each source’s point of view, it is possible that the other S-D

pairs have capacity 0. From the MAC capacity at relay A1, we get

din(A1)(α log(1 + |h|2) − τ) ≤ log(1 + din(A1) × |h|2), (4.36)
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(a) (b) (c)

Figure 4.7: The normalized sum-capacity of a 3×3×3 network with 1-local view,
α∗, is equal to 1/3 if and only if one of the graphs in this figure is a
subgraph of G.

which results in

din(A1)(α log(1 + |h|2) − τ) ≤ log(din(A1)) + log(1 + ×|h|2). (4.37)

Hence, we have

(din(A1)α − 1) log(1 + |h|2) ≤ log(din(A1)) + din(A1)τ. (4.38)

Since this has to hold for all values of h, and α and τ are independent of h, we

get α ≤ 1
din(A1) .

Combining the argument presented above with the result in Appendix C.1,

we get

α ≤
1

dmax
. (4.39)

This completes the proof of the converse.

�

4.5.3 3 × 3 × 3 Networks

We then consider two-layer networks with three source-destination pairs and

three relays. Interestingly, we face networks in which we need to incorporate
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network coding techniques in order to achieve the normalized sum-capacity

with local view. The coding comes in the form of repetition coding at sources

and a combination of repetition and network coding at relays.

Definition 4.7 A 3×3×3 network is a two-layer network (as defined in Section 4.2.1)

with K = 3 and |V| − 2K = 3.

Theorem 4.3 The normalized sum-capacity of a 3 × 3 × 3 network with local view, α∗,

is equal to

(a) 1 if and only if Gii ∩ G j j = ∅ for i , j;

(b) 1/3 if and only if one of the graphs in Fig. 4.7 is a subgraph of the network

connectivity graph G;

(c) 1/2 otherwise.

As we show in this section, the transmission strategy is a combination of

three main techniques:

(a) per layer interference avoidance;

(b) repetition coding to allow overhearing of the interference;

(c) network coding to allow interference neutralization.

Remark 4.5 From Theorem 4.2 and Theorem 4.3, we conclude that for all single-layer

networks (not the main focus of this work), K×2×K, and 3×3×3 networks with 1-local

view, the normalized sum-capacity α∗ = 1/K (i.e. TDMA is optimal), if and only if

when all channel gains are equal and non-zero, then there exists a node that can decode
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all messages. We refer to such node as an “omniscient” node. We conjecture that this

observation holds for much more general network connectivities with local view or in

fading networks with no channel state information at the transmitters. However, this is

a different line of research and it is beyond the scope of this paper.

Proof:

Achievability: The achievability proof for networks in category (a) is trivial as

there is no interference present in such networks. For networks in category (b),

a simple TDMA achieves a normalized sum-rate of 1/3. Thus, we only need to

prove the result for networks in category (c).

Suppose none of the graphs in Fig. 4.7 is a subgraph of the network connec-

tivity graph G and the network does not fall in category (a). This immediately

implies that

dmax = 2. (4.40)

Definition 4.8 The first layer conflict graph of a 3 × 3 × 3 network has three vertices

each corresponding to a source. Two vertices are connected by an undirected edge if

and only if the corresponding sources are both connected to a relay. Similarly, the sec-

ond layer conflict graph of a 3 × 3 × 3 network has three vertices each corresponding

to a destination. Two vertices are connected by an undirected edge if and only if the

corresponding destinations are both connected to a relay.

We have the following claim for a 3 × 3 × 3 network with dmax = 2.

Claim 4.1 For a 3 × 3 × 3 network with dmax = 2, the only connectivity that results in

a per layer fully connected conflict graph, is the one shown in Fig. 4.8.
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Figure 4.8: The only connectivity that results in a per layer fully connected con-
flict graph in a 3 × 3 × 3 network with dmax = 2.

Proof of Claim 4.1 is straightforward and can be obtained by contradiction.

If neither of the layer conflict graphs is fully connected and the network

does not fall in category (a), then a normalized sum-rate of α = 1/2 is easily

achievable using per layer interference avoidance. Moreover from Claim 4.1,

we know that with dmax = 2, the folded-chain structure of Fig. 4.8 exists in at

least one of the layers and in Section 4.3, we showed that a normalized sum-rate

of α = 1/2 is achievable.

We note that these cases can be easily described within the algebraic frame-

work of Section 4.4. In fact, if the folded-chain structure of Fig. 4.8 exists in

at least one of the layers, as shown in Section 4.3, the transmission can be ex-

pressed as a valid assignment of transmit and receive matrices; and if the per

layer conflict graphs are not fully connected and the network does not fall in

category (a), then the scheme is a per layer interference avoidance which can be

easily expressed in terms of a valid assignment of transmit and receive matrices.

Converse: The forward direction of the proof for networks in category (a) is

trivial as there is no interference present in such networks. For the reverse di-

rection, as shown in Lemma 4.2 below, for any network that does not fall into

category (a), an upper bound of 1/2 on the normalized sum-capacity can be eas-
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ily obtained. In fact, Lemma 4.2 also provides the outer-bound for networks in

category (c). Thus, we only need to consider 3 × 3 × 3 networks in category (b).

Lemma 4.2 In a 3 × 3 × 3 network with local view, if there exists a path from Si to D j,

for some i , j, then the normalized sum-capacity is upper-bounded by α = 1/2.

Proof of Lemma 4.2 is presented in Appendix C.3.

For 3×3×3 networks in category (b), we first consider the forward direction.

One of the graphs in Fig. 4.7 is a subgraph of the network connectivity graph

G, say the graph in Fig. 4.7(b). Assign channel gain of h ∈ C to the links of

the subgraph, and channel gain of 0 to the links that are not in the graph of

Fig. 4.7(b).

With this assignment of the channel gains, it is straightforward to see that

H
(
Wi|Yn

Ai
, LAi ,SI

)
≤ nεn, i = 1, 2, 3. (4.41)

Basically, each destination Di is only connected to relay Ai, and each relay Ai has

all the information that destination Di requires in order to decode its message,

i = 1, 2, 3.

Thus, Relay A1 can decode W1. After removing the contribution of S1, relay

A1 is able to decode W2. Continuing this argument, we conclude that

n

 3∑
j=1

R j − εn

 ≤ h
(
Yn

A1
|LA1 ,SI

)
. (4.42)

The MAC capacity at relay A1, gives us

3(α log(1 + |h|2) − τ) ≤ log(1 + 3 × |h|2), (4.43)
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which results in

(3α − 1) log(1 + |h|2) ≤ log(3) + 3τ. (4.44)

Since this has to hold for all values of h, and α and τ are independent of h, we

get α ≤ 1
3 . The proof for the graphs in Fig. 4.7(a) and Fig. 4.7(c) is very similar.

For the reverse direction, as shown above, if none of the graphs in Fig. 4.7

is a subgraph of the network connectivity graph G, a normalized sum-rate of

α = 1
2 is achievable. This completes the converse proof. �

4.5.4 Folded-Chain Networks

We now consider a class of networks for which we need to incorporate network

coding in order to achieve the normalized sum-capacity with local view.

Definition 4.9 A two-layer (K,m) folded-chain network (1 ≤ m ≤ K) is a two-layer

network with K S-D pairs and K relays in the middle. Each S-D pair i has m disjoint

paths, through relays with indices 1 +
[
{(i − 1)+ + ( j − 1)} mod K

]
where i = 1, . . . ,K,

j = 1, . . . ,m.

Theorem 4.4 The normalized sum-capacity of a two-layer (K,m) folded-chain network

with local view is α∗ = 1
m .

Remark 4.6 In order to achieve the normalized sum-capacity of a two-layer (K,m)

folded-chain network with local view, we need to incorporate repetition coding at sources

and network coding at relays. Also, we note that a two-layer (K,K) folded-chain net-

work is basically the fully-connected structure and in that case with local view, interfer-

ence avoidance achieves the normalized sum-capacity of 1/K.
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Proof:

Achievability: The result is trivial for m = 1. For m = K, the upper bound of

α = 1
K can be achieved simply by using TDMA. Suppose m < K < 2m (we will

later generalize the achievability scheme for arbitrary K). Let m′ = K − m. To

each source Si, i = 1, . . . ,K, we assign a transmit vector TSi as follows.

TSi( j) = 1⇔ j ≤ i ≤ j + m′, j = 1, . . . ,m. (4.45)

It is straight forward to verify that this assignment satisfies conditions C.1

and C.2:

• C.1 is trivially satisfied since for any source Si, there exists at least one

value of j such that TSi( j) = 1.

• C.2 is satisfied since for 1 ≤ i ≤ m, RVi has a single 1 in row i and the

column labeled as Si; and for m < i < 2m, the matrix is in is in echelon

form.

For the second layer, we have K + 1 steps.

• Steps 1 through m: During step i, 1 ≤ i ≤ m, our goal is to provide destination

Di with its desired signal without any interference. Therefore, row i of any relay

connected to Di has a single 1 in the column associated with S-D pair i and 0’s

elsewhere;

• Steps m + 1 through K: During step i, m + 1 ≤ i ≤ K, our goal is to provide

destination Di with its desired signal (interference will be handled later). To do

so, consider the transmit matrix of any relay connected to Di; we place a 1 in the

column associated with S-D pair i and the row with the least number of 1’s and
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Figure 4.9: A (5, 3) two-layer folded-chain network.

the smallest index (we first find the rows with the least number of 1’s and then

among these rows, we pick the row that has the smallest index);

• Step K+1: During this step our goal is to resolve interference and goes through

the following loop:

(a) Let L j denote the set of row indices for which there exists at least a 1 in

the column associated with S-D pair j of the transmit matrix of a relay

connected to D j, m + 1 ≤ j ≤ K;

(b) Set j = m + 1. For any j′ , j, j′ ∈ {1, 2, . . . ,K}, if

∑
Vp connected to D j

∑
`∈L j

TVp

(
`,S j′

)
, 0, (4.47)

then make this summation 0 by making any of the TVp

(
`,S j′

)
’s that is not

previously assigned, equal to 1 or −1 as needed3. Note that since each

route contributes at most once to any receive matrix, the summation in

(4.47) can only take values in {−1, 0, 1};

3If TVp

(
`,S j′

)
is not yet assigned a value, treat it as 0 in the summation.
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End of Step: m K K + 1

TV1 :


S1 S4 S5

1 0 0
− − −

− − −




S1 S4 S5

1 0 0
− 1 −

− − 1




S1 S4 S5

1 0 0
−1 1 0
1 −1 1



TV2 :


S1 S2 S5

1 0 0
0 1 0
− − −




S1 S2 S5

1 0 0
0 1 0
0 1 1




S1 S2 S5

1 0 0
0 1 0
0 −1 1



TV3 :


S1 S2 S3

1 0 0
0 1 0
0 0 1




S1 S2 S3

1 0 0
0 1 0
0 0 1




S1 S2 S3

1 0 0
0 1 0
0 0 1



TV4 :


S2 S3 S4

− − −

1 0 0
0 1 0




S2 S3 S4

− − 1
1 0 0
0 1 0




S2 S3 S4

−1 0 1
1 0 0
0 1 0



TV5 :


S3 S4 S5

− − −

− − −

1 0 0




S3 S4 S5

− 1 −

− − 1
1 0 0




S3 S4 S5

1 1 −1
−1 0 1
1 0 0



Figure 4.10: The evolution of the relays’ transmit matrices at the end of steps m,
K, and K + 1. In this example, the loop in Step K + 1 is repeated
three times.

(c) Set j = j+1; If j > K and the during previous loop no change has occurred,

then set all entries that are not yet defined equal to zero and terminate;

otherwise, go to line 2 of the loop.
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
S1 : V1 S2 : V4 S3 : V4 S3 : V5 S4 : V1 S4 : V4 S4 : V5 S5 : V1 S5 : V5

1 −1 0 1 0 1 1 0 −1
−1 1 0 −1 1 0 0 0 1
1 0 1 1 1 0 0 1 0


(4.46)

We need to show that the assignment of transmit and receive matrices de-

scribed above satisfies Conditions C.1, C.2 and C.3. Conditions C.1 and C.2 are

satisfied as shown before. Due to the construction described above, any interfer-

ing signal will be provided to the receive node such that it can be canceled out

later. This is guaranteed by making sure the summation in (4.47) remains equal

to zero. As a result, Condition C.3 is also satisfied. Thus, we only need to show

that the algorithm terminates in finite time. Note that each destination is only

served once via a relay that is connected to it and if that signal is retransmitted,

it is for interference neutralization purposes. Thus, if the summation in (4.47)

is not zero, then there exists an unassigned entry such that the summation can

be made zero. Since there are a total of mK2 entries, the algorithm terminates

in finite time. This completes the description of transmit and receive matrices.

Using Theorem 4.1, we know that a normalized sum-rate of α = 1
m is achievable.

For general K the achievability works as follows. Suppose, K = c(2m− 1) + r,

where c ≥ 1 and 0 ≤ r < (2m − 1), we implement the scheme for S-D pairs

1, 2, . . . , 2m − 1 as if they are the only pairs in the network. The same for source-

destination pairs 2m, 2m + 1, . . . , 4m − 2, etc. Finally, for the last r S-D pairs, we

implement the scheme with m′ = max{r − m + 1, 1}. This completes the proof of

achievability.
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We now describe the K + 1 steps via an example of (5, 3) two-layer folded-

chain network of Fig. 4.9. In Fig. 4.10, we have demonstrated the evolution of

the relays’ transmit matrices at the end of steps m, K, and K+1. For this example,

the loop in Step K + 1 is repeated three times.

It is easy to verify Condition C.3 for destination D1, D2 and D3. We have

provided RD4 in (4.46), and as we can see by adding the first and the second row,

we can have a row that has only 1’s in the columns corresponding to source S4.

Similarly, we can show that the condition holds for D5.

Converse: Assume that a normalized sum-rate of α is achievable, i.e. there exists

a transmission strategy with local view, such that for all channel realizations, it

achieves a sum-rate satisfying

K∑
i=1

RiγαCsum − τ, (4.48)

with error probabilities going to zero as N → ∞ and for some constant τ ∈ R

independent of the channel gains.

Consider the first layer of the two-layer (K,m) folded-chain network, where

the channel gain of a link from source i to relays i, i + 1, . . . ,m is equal to h ∈ C,

i = 1, 2, . . . ,m, and all the other channel gains are equal to zero. In the second

layer, we set the channel gain from relay i to destination i equal to h, and all

other channel gains equal to 0, i = 1, 2, . . . ,m. See Figure 4.11 for a depiction.

With this configuration, each destination Di is only connected to relay Ai,

and each relay Ai has all the information that destination Di requires in order to

decode its message, i = 1, . . . ,m. We have

H
(
Wi|Yn

Ai
, LAi ,SI

)
≤ nεn, i = 1, . . . ,m. (4.49)
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m+1

Figure 4.11: Channel gain assignment in a two-layer (K,m) folded-chain net-
work. All solid links have capacity h, and all dashed links have ca-
pacity 0.

At relay Am after decoding and removing the contribution of Sm, relay Am is

able to decode Wm−1. With a recursive argument, we conclude that

n

 ∑
j=1,2,...,m

R j − εn

 ≤ h
(
Yn

Am
|LAm ,SI

)
. (4.50)

The MAC capacity at relay Am, gives us

m(α log(1 + |h|2) − τ) ≤ log(1 + m × |h|2), (4.51)

which results in

(mα − 1) log(1 + |h|2) ≤ log(m) + mτ. (4.52)

Since this has to hold for all values of h, and α and τ are independent of h, we

get α ≤ 1
m . �

4.5.5 Gain of Coding over Interference Avoidance: Nested

Folded-Chain Networks

In this subsection, we show that the gain from using coding over interference

avoidance techniques can be unbounded. To do so, we first define the following
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class of networks.

Definition 4.10 An L-nested folded-chain network is a single-layer network with K =

3L S-D pairs, {S1, . . . ,S3L} and {D1, . . . ,D3L}. For L = 1, an L-nested folded-chain

network is the same as a single-layer (3, 2) folded-chain network. For L > 1, an L-

nested folded-chain network is formed by first creating 3 copies of an (L − 1)-nested

folded-chain network. Then,

• The i-th source in the first copy is connected to the i-th destination in the second

copy, i = 1, . . . , 3L−1,

• The i-th source in the second copy is connected to the i-th destination in the third

copy, i = 1, . . . , 3L−1,

• The i-th source in the third copy is connected to the i-th destination in the first

copy, i = 1, . . . , 3L−1.

Fig. 4.12 illustrates a 2-nested folded-chain network.

Consider an L-nested folded-chain network. The conflict graph of this net-

work is fully connected, and as a result, interference avoidance techniques can

only achieve a normalized sum-rate of
(

1
3

)L
. However, we know that for a single-

layer (3, 2) folded-chain network, a normalized sum-rate of 1
2 is achievable.

Hence, applying our scheme to an L-nested folded-chain network, a normal-

ized sum-rate of
(

1
2

)L
is achievable. For instance, consider the 2-nested folded-

chain network in Fig. 4.12. We show that any transmission strategy over the

induced subgraphs can be implemented in the original network by using only

four time-slots, such that all nodes receive the same signal as if they were in the

induced subgraphs.
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Figure 4.12: A 2-nested folded-chain network.

To achieve a normalized sum-rate of α =
(

1
2

)2
, we split the communication

block into 4 time-slots of equal length. During time-slot 1, sources 1, 2, 4, and 5

transmit the same codewords as if they are in the induced subgraphs. During

time-slot 2, sources 3 and 6 transmit the same codewords as if they are in the

induced subgraphs and sources 2 and 5 repeat their transmit signal from the

first time-slot. During time-slot 3, sources 7 and 8 transmit the same codewords

as if they are in the induced subgraphs and sources 4 and 5 repeat their transmit

signal from the first time-slot. During time-slot 4, source 9 transmits the same

codewords as if it is in the induced subgraph and sources 5, 6, and 8 repeat their

transmit signal.

It is straight forward to verify that with this scheme, all destinations receive

the same signal as if they were in the induced subgraphs. Hence, a normalized

sum-rate of α =
(

1
2

)2
is achievable for the network in Figure 4.12. Therefore, the

gain of using coding over interference avoidance is
(

3
2

)L
which goes to infinity

as L → ∞. See Fig.4.13 for a depiction. As a result, we can state the following
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Figure 4.13: (a) Achievable normalized sum-rate of inter-session coding and in-
terference avoidance in an L-nested folded-chain network; and (b)
the performance gain of inter-session coding scheme over interfer-
ence avoidance.

lemma.

Lemma 4.3 Consider an L-nested folded-chain network. The gain of using MCL

scheduling over MIL scheduling is
(

3
2

)L
which goes to infinity as L→ ∞.

The scheme required to achieve a normalized sum-rate of α =
(

1
2

)L
for an L-

nested folded-chain network, can be viewed as a simple extension of the results

presented in Section 4.4. In a sense instead of reconstructing a single snapshot,

we reconstruct L snapshots of the network. The following discussion is just for

the completion of the results.
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To each source Si, we assign a transmit vector TSi of size (LT ) × 1 where

each row corresponds to a time-slot. If we denote the transmit signal of node

Si in the `th snapshot by X`
Si

, then if TSi( j) = 1 and cT + 1 ≤ j < (c + 1)T for

c = 0, 1, . . . , L − 1, then Si communicates Xc+1
Si

. The other transmit and receive

matrices can be described similarly. Conditions C.2 and C.3 have to be satisfies

for submatrices of RV j corresponding to rows cT + 1, cT + 2, . . . , (c + 1)T − 1 for

c = 0, 1, . . . , L − 1.

4.6 Concluding Remarks

In this paper, we studied the fundamental limits of communications over two-

layer wireless networks where each node has only limited knowledge of the

channel state information. We proposed an algebraic framework for inter-

session coding in such networks. We developed new transmission strategies

based on the algebraic framework that combines multiple ideas including in-

terference avoidance and network coding. We established the optimality of our

proposed strategy for several classes of networks in terms of achieving the nor-

malized sum-capacity. We also demonstrated several connections between net-

work topology, normalized sum-capacity, and the achievability strategies.

One major direction is to characterize the increase in normalized sum-

capacity as nodes learn more and more about the channel state information.

We have also focused on the case that the nodes know the network-connectivity

globally, but the actual values of the channel gains are only known for a sub-

set of flows. Another important direction would be to understand the effects of

local knowledge about network connectivity on the capacity and develop dis-
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tributed strategies to optimally route information with partial knowledge about

network connectivity.
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CHAPTER 5

COMMUNICATION WITH RATE-LIMITED FEEDBACK LINKS

5.1 Introduction

The history of feedback in communication systems traces back to Shannon. It is

well-known that feedback does not increase the capacity of discrete memoryless

point-to-point channels. However, feedback can enlarge the capacity region of

multi-user networks, even in the most basic case of the two-user memoryless

multiple-access channel [20, 39]. Hence, there has been a growing interest in

developing feedback strategies and understanding the fundamental limits of

communication over multi-user networks with feedback, in particular the two-

user interference channel (IC). See [23, 31–33, 45, 50, 53] for example.

Especially in [50], the infinite-rate feedback capacity of the two-user Gaus-

sian IC has been characterized to within a 2-bit gap. One consequence of this re-

sult is that interestingly feedback can provide an unbounded capacity increase.

This is in contrast to point-to-point and multiple-access channels where feed-

back provides no gain and bounded gain respectively.

While the feedback links are assumed to have infinite capacity in [50], a more

realistic feedback model is one where feedback links are rate-limited. In this

paper, we study the impact of the rate-limited feedback in the context of the

two-user IC. We focus on two fundamental questions: (1) what is the maximum

capacity gain that can be obtained with access to feedback links at a specific

rate of CFB? (2) what are the transmission strategies that exploit the available

feedback links efficiently? Specifically, we address these questions under three
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channel models: the El Gamal-Costa deterministic model [16], the linear deter-

ministic model of [7], and the Gaussian model.

Under the El Gamal-Costa deterministic model, we derive inner-bounds and

outer-bounds on the capacity region. As a result, we show that the capacity re-

gion can be enlarged using feedback by at most the amount of available feed-

back, i.e., “one bit of feedback is at most worth one bit of capacity”. Our achiev-

able scheme employs three techniques: (1) Han-Kobayashi message splitting;

(2) quantize-and-binning; and (3) decode-and-forward. Unlike the infinite-rate

feedback case [50], in the rate-limited feedback case, a receiver cannot provide

its exact received signal to its corresponding transmitter; therefore, the main

challenge is how to smartly decide what to send back through the available

rate-limited feedback links. We overcome this challenge as follows. We first split

each transmitter’s message into three parts: the cooperative common, the non-

cooperative common, and the private message. Next, each receiver quantizes its

received signal and then generates a binning index so as to capture part of the

other user’s common message (that we call the cooperative common message)

which causes interference to its own message. The receiver will then send back

this binning index to its intended transmitter through the rate-limited feedback

links. With this feedback, each transmitter decodes the other user’s cooperative

common message by exploiting its own message as side information. This way

transmitters will be able to cooperate by means of the feedback links, thereby

enhancing the achievable rates. This result will be described in Section 5.4.

We then study the problem under the linear deterministic model [7] which

captures the key properties of the wireless channel, and thus provides insights

that can lead to an approximate capacity of Gaussian networks [7, 11, 12, 46, 50].
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We show that our inner-bounds and outer-bounds match under this linear de-

terministic model, thus establishing the capacity region. While this model is a

special case of the El Gamal-Costa model, it has a significant role to play in mo-

tivating a generic achievable scheme for the El Gamal-Costa model. Moreover,

the explicit achievable scheme in this model provides a concrete guideline to the

Gaussian case. We will explain this result in Section 5.5.

Inspired by the results in the deterministic models, we develop an achievable

scheme and also derive new outer-bounds for the Gaussian channel. In order to

translate the main ideas in our achievability strategy for the deterministic mod-

els into the Gaussian case, we employ lattice coding which enables receivers

to decode superposition of codewords. Specifically at each transmitter, we em-

ploy lattice codes for cooperative messages. By appropriate power assignment

of the codewords, we make the desired lattice codes arrive at the same power

level, hence, receivers being able to decode the superposition of codewords.

Each receiver will then decode the index of the lattice code corresponding to

the superposition and sends it back to its corresponding transmitter where the

cooperative common message of the other user will be decoded. For symmetric

channel gains, we show that the gap between the achievable sum-rate and the

outer-bounds can be bounded by a constant, independent of the channel gains.

This will be explained in Section 5.6.

5.2 Problem Formulation and Network Model

We consider a two-user interference channel (IC) where a noiseless rate-limited

feedback link is available from each receiver to its corresponding transmitter.
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See Figure 5.1. The feedback link from receiver k to transmitter k is assumed to

have a capacity of CFBk, k = 1, 2. on.

Tx 1

Tx 2

Interference 
Channel

X1

X2

Y1

Y2

W1

W2

W1

W2

CFB1

CFB2

N

N

N

N

Rx 1

Rx 2

Figure 5.1: Two-user interference channel with rate-limited feedback.

Transmitters 1 and 2 wish to reliably communicate independent and uni-

formly distributed messages W1 ∈ {1, 2, . . . , 2NR1} and W2 ∈ {1, 2, . . . , 2NR2} to re-

ceivers 1 and 2 respectively, during N uses of the channel. The transmitted

signal of transmitter k, k = 1, 2, at time i, 1 ≤ i ≤ N, and the received signal of

receiver k, k = 1, 2, at time i, 1 ≤ i ≤ N, are respectively denoted by Xk,i and Yk,i.

There are two feedback encoders at the receivers that create the feedback signals

from the received signals:

Ỹk,i = ẽk,i(Yk,1, . . . ,Yk,i−1) = ẽk,i(Y
(i−1)
k ), k = 1, 2. (5.1)

where we use shorthand notation to indicate the sequence up to i − 1.

Due to the presence of feedback, the encoded signal Xk,i of user k at time i is

a function of both its own message and previous outputs of the corresponding

feedback encoder:

Xk,i = ek,i(Wk, Ỹ
(i−1)
k ), k = 1, 2. (5.2)

Each receiver k, k = 1, 2, uses a decoding function dk,N to get the estimate Ŵk,

from the channel outputs {Yk,i : i = 1, . . . ,N}. An error occurs whenever Ŵk , Wk.
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The average probability of error is given by

λk,N = E[P(Ŵk , Wk)], k = 1, 2, (5.3)

where the expectation is taken with respect to the random choice of the trans-

mitted messages W1 and W2.

We say that a rate pair (R1,R2) is achievable, if there exists a block encoder

at each transmitter, a block encoder at each receiver that creates the feedback

signals, and a block decoder at each receiver as described above, such that the

average error probability of decoding the desired message at each receiver goes

to zero as the block length N goes to infinity. The capacity region C is the closure

of the set of the achievable rate pairs.

We will consider the following three channel models to investigate this prob-

lem.

1- El Gamal-Costa Deterministic Interference Channel:

Tx 1

g2(.)
f1(.,.)

Tx 2

g1(.)
f2(.,.)

V2

V1

Y1

Y2

CFB1

CFB2

W2

W1W1

W2

N

N

N

N

X1
N

X2
N

Rx 1

Rx 2

Figure 5.2: The El Gamal-Costa deterministic IC with rate-limited feed-
back.

Figure 5.2 illustrates the El Gamal-Costa deterministic IC [16] with rate-

limited feedback. In this model the outputs Y1 and Y2 and the interferences
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V1 and V2 are (deterministic) functions of inputs X1 and X2 [16]:

Y1,i = f1(X1,i,V2,i),

Y2,i = f2(X2,i,V1,i),

V1,i = g1(X1,i),

V2,i = g2(X2,i),

(5.4)

where f1(., .) and f2(., .) are such that

H(V2,i|Y1,i, X1,i) = 0,

H(V1,i|Y2,i, X2,i) = 0.
(5.5)

Here Vk is a part of Xk (k = 1, 2), visible to the unintended receiver. This

implies that in any system where each decoder can decode its message with ar-

bitrary small error probability, V1 and V2 are completely determined at receivers

2 and 1, respectively, i.e., these are common signals.

2- Linear Deterministic Interference Channel:

This model, which was introduced in [7], captures the effect of broadcast

and superposition in wireless networks. We study this model to bridge from

general deterministic networks into Gaussian networks. In this model, there

is a non-negative integer nk j representing channel gain from transmitter k to

receiver j, k = 1, 2, and j = 1, 2. In the linear deterministic IC, we can write

the channel input to the transmitter k at time i as Xk,i = [X1
k,i X2

k,i . . . X
q
k,i]

T ∈ Fq
2,

k = 1, 2, such that X1
k,i and Xq

k,i represent the most and the least significant bits of

the transmitted signal respectively. Also, q is the maximum of the channel gains

in the network, i.e., q = maxk, j

(
nk j

)
. At each time i, the received signals are given
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by

Y1,i = Sq−n11 X1,i ⊕ Sq−n21 X2,i,

Y2,i = Sq−n12 X1,i ⊕ Sq−n22 X2,i,

(5.6)

where S is the q×q shift matrix and operations are performed in F2 (i.e., modulo

two). See Figure 5.3 for an example.

Tx 1

Tx 2 Rx 2

Rx 1

CFB1

CFB2

n11

n21

n22

n12

Figure 5.3: An example of a linear deterministic IC with rate-limited feed-
back, where n11 = n22 = 3, n12 = 2, n21 = 1, and q = 3.

It is easy to see that this model also satisfies the conditions of (5.5), hence it

is a special class of the El Gamal-Costa deterministic IC.

3- Gaussian Interference Channel:

In this model, there is a complex number hk j representing the channel from

transmitter k to receiver j, k = 1, 2, and j = 1, 2. The received signals are

Y1,i = h11X1,i + h21X2,i + Z1,i,

Y2,i = h12X1,i + h22X2,i + Z2,i,

(5.7)

where {Z j,i}
N
i=1 is the additive white complex Gaussian noise process with zero

mean and unit variance at receiver j, j = 1, 2. Without loss of generality, we
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assume a power constraint of 1 at all nodes, i.e.,

1
N
E(

N∑
i=1

|Xk,i|
2) ≤ 1 k = 1, 2, (5.8)

where N is the block length. We will use the following notations:

SNR1 = |h11|
2, SNR2 = |h22|

2,

INR12 = |h12|
2, INR21 = |h21|

2.

(5.9)

5.3 Motivating Example

We start by analyzing a motivating example. Consider the linear deterministic

IC with rate-limited feedback as depicted in Figure 5.4(a). As we will see in

Section 5.5, the capacity region of this network is given by the region shown

in Figure 5.4(b). Our goal in this section is to demonstrate how feedback can

help increase the capacity. In particular, we describe the achievability strategy

for one of the corner points, i.e., (R1,R2) = (4, 1). From this example, we will

make important observations that will later provide insights into the achievable

scheme.

The achievability strategy works as follows. In the first time slot, transmitter

1 sends four bits a1, . . . , a4 and transmitter 2 sends only one bit b1 at the third

level, see Figure 5.4(a). This way receiver 1 can decode its intended four bits

interference free, while receiver 2 has access to only a1 ⊕ b1 and a2. In the second

time slot, through the feedback link, receiver 2 feeds a1 ⊕ b1 back to transmitter

2 who can remove b1 from it to decode a1. Also during the second time slot,

transmitter 1 sends four fresh bits a5, . . . , a8, whereas transmitter 2 sends one

new bit b2. In the third time slot, through the feedback link, receiver 2 feeds

b2 ⊕ a5 back to transmitter 2 who can remove b2 from it to decode a5. Moreover,
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Figure 5.4: (a) A two-user linear deterministic IC with channel gains n11 = n22 =

4, n12 = n21 = 2 and feedback rates CFB1 = CFB2 = 1, and (b) its
capacity region.

during the third time slot, transmitter 1 sends four new bits a9, . . . , a12, while

transmitter 2 sends one new bit b3 and at the level shown in Figure 5.4(a), sends

the other user’s information bit a1 decoded in the second time slot with the help

of feedback. With this strategy receiver 2 has now access to a1 and can use it

to decode b1. Note that receiver 1 already knows a1 and hence can decode a12.

This procedure will be repeated over the next time slots. During the last two

time slots, only transmitter 2 sends the other user’s information decoded before,

while transmitter 1 sends nothing. Therefore, after B time slots, we achieve a

rate of (R1,R2) = B−2
B (4, 1), which converges to (4, 1) as B goes to infinity.

Based on this simple capacity-achieving strategy, we can now make several

observations:

• The messages coming from transmitter 1 can be split into three parts: (1)

“cooperative common”: this message is visible to both receivers, while interfer-

ing with the other user’s signals (e.g., a1 at transmitter 1 in the first time slot).
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R1 ≤ I(U,V2, X1; Y1) (5.10a)
R1 ≤ I(X1; Y1|U,U1,V2) + min(I(U1; Y2|U, X2),CFB2 − δ2) (5.10b)
R2 ≤ I(U,V1, X2; Y2) (5.10c)
R2 ≤ I(X2; Y2|U,U2,V1) + min(I(U2; Y1|U, X1),CFB1 − δ1) (5.10d)

R1 + R2 ≤ I(X1; Y1|U,V1,V2) + I(U,V1, X2; Y2) (5.10e)
R1 + R2 ≤ I(X2; Y2|U,V1,V2) + I(U,V2, X1; Y1) (5.10f)
R1 + R2 ≤ min(I(U2; Y1|U, X1),CFB1 − δ1) + min(I(U1; Y2|U, X2),CFB2 − δ2)

+I(X1,V2; Y1|U,U1,U2) + I(X2; Y2|U,V1,V2) (5.10g)
R1 + R2 ≤ min(I(U2; Y1|U, X1),CFB1 − δ1) + min(I(U1; Y2|U, X2),CFB2 − δ2)

+I(X2,V1; Y2|U,U1,U2) + I(X1; Y1|U,V1,V2) (5.10h)
R1 + R2 ≤ min(I(U2; Y1|U, X1),CFB1 − δ1) + min(I(U1; Y2|U, X2),CFB2 − δ2)

+I(X1,V2; Y1|U,V1,U2) + I(X2,V1; Y2|U,V2,U1) (5.10i)
2R1 + R2 ≤ I(U,V2, X1; Y1) + I(X1; Y1|U,V1,V2) + I(X2,V1; Y2|U,U1,V2) (5.10j)

+ min(I(U1; Y2|U, X2),CFB2 − δ2)
2R1 + R2 ≤ 2 min(I(U1; Y2|U, X2),CFB2 − δ2) (5.10k)

+ min(I(U2; Y1|U, X1),CFB1 − δ1)
+I(X1,V2; Y1|U,U1,U2) + I(X1; Y1|U,V1,V2) + I(X2,V1; Y2|U,U1,V2)

R1 + 2R2 ≤ I(U,V1, X2; Y2) + I(X2; Y2|U,V2,V1) + I(X1,V2; Y1|U,U2,V1) (5.10l)
+ min(I(U2; Y1|U, X1),CFB1 − δ1)

R1 + 2R2 ≤ 2 min(I(U2; Y1|U, X1),CFB1 − δ1) (5.10m)
+ min(I(U1; Y2|U, X2),CFB2 − δ2)
+I(X2,V1; Y2|U,U1,U2) + I(X2; Y2|U,V1,V2) + I(X1,V2; Y1|U,U2,V1)

over all joint distributions

p(u)p(u1|u)p(u2|u)p(v1|u, u1)p(v2|u, u2)p(x1|u, u1, v1)p(x2|u, u2, v2)p(ŷ1|y1)p(ŷ2|y2),

where

δ1 = I(Ŷ1; Y1|U,U2, X1),

δ2 = I(Ŷ2; Y2|U,U1, X2).

This should be fed back to the transmitter so that it can be used later in refin-

ing the desired signals corrupted by the interfering signal; (2) “non-cooperative

common”: this message is visible to both receivers, however it does not cause
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any interference (e.g., a2 at transmitter 1 in the first time slot); (3) “private”: this

message is visible only to the intended receiver (e.g., a3 and a4 at transmitter 1

in the first time sot). Denote these messages by wkcc, wknc, and wkp, respectively,

where k = 1, 2 is the transmitter index.

• To refine the desired signal corrupted by the cooperative common signal of

transmitter 1 (i.e., a1), receiver 2 utilizes the feedback link to send the interfered

signal (i.e., a1 ⊕ b1) back to transmitter 2. Transmitter 2 then employs a partial

decode-and-forward to help receiver 1 decode its messages, i.e., the cooperative

message of transmitter 1 is decoded at transmitter 2 and it will be forwarded to

receiver 2 during another time slot.

• As we can see in this example, encoding operations at each time slot de-

pend on previous operations, thereby motivating us to employ block Markov

encoding. As for the decoding, we implement backward decoding at receivers.

Each receiver waits until the last time B and we use the last received signal to

decode the message received at time B−2. We then decode the message received

at time B − 3 and all the way down to the message received at time 1.

These observations will form the basis for our achievable schemes in the

following sections.

5.4 Deterministic Interference Channel

In this section, we consider the El Gamal-Costa deterministic IC with rate-

limited feedback, described in Section 4.2. The motivating example in the pre-

vious section leads us to develop a generic achievable scheme based on three
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ideas: (1) Han-Kobayashi message splitting [27]; (2) quantize-and-binning; and

(3) decode-and-forward [14]. As mentioned earlier, we split the message into

three parts: the cooperative common message; non-cooperative common mes-

sage; and private message. We employ quantize-and-binning to feed back part

of the interfered signals through the rate-limited feedback link. With feedback,

each transmitter decodes part of the other user’s common information (coop-

erative common) that interfered with its desired signals. We accomplish this

by using the partial decode-and-forward scheme. We also derive a new outer

bound based on the genie-aided argument [16] and the dependence-balance-

bound technique [28, 53, 74].

5.4.1 Achievable Rate Region

Theorem 5.1 The capacity region of the El Gamal-Costa deterministic IC with rate-

limited feedback includes the set R of (R1,R2) satisfying inequalities (5.10a)–(5.10m).

Proof: We first provide an outline of our achievable scheme. We employ block

Markov encoding with a total size B of blocks. In block 1, transmitter 1 splits its

own message into cooperative common, non-cooperative common and private

parts and then sends a codeword superimposing all of these messages. The co-

operative common message is sent via the codeword uN,(1)
1 . The non-cooperative

common message is added to this, being sent via vN,(1)
1 . The private message is

then superimposed on top of the previous messages, being sent via xN,(1)
1 . Sim-

ilarly, transmitter 2 sends xN,(1)
2 . In block 2, receiver 1 quantizes its received

signal yN,(1)
1 into ŷN,(1)

1 with the rate of R̂1. Next it generates a bin index by con-

sidering the capacity of its feedback link and then feeds the bin index back to its
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corresponding transmitter. Similarly, receiver 2 feeds back the corresponding

bin index. In block 3, with feedback, each transmitter decodes the other user’s

cooperative common message (sent in block 1) that interfered with its desired

signals. The following messages are then available at the transmitter: (1) its

own message; and (2) the other user’s cooperative common message decoded

with the help of feedback. Using its own cooperative common message as well

as the other user’s counterpart, each transmitter generates the codeword uN,(3).

This captures the correlation between the two transmitters that might induce

the cooperative gain. Conditioned on these previous cooperative common mes-

sages, each transmitter generates new cooperative common, non-cooperative

common, and private messages. It then sends the corresponding codeword.

This procedure is repeated until block B − 2. In the last two blocks B − 1 and

B, to facilitate backward decoding, each transmitter sends the predetermined

common messages and a new private message. Each receiver waits until total B

blocks have been received and then performs backward decoding.

Codebook Generation: Fix a joint distribution

p(u)p(u1|u)p(u2|u)p(x1|u1, u)p(x2|u2, u)p(ŷ1|y1)p(ŷ2|y2).

We will first show that p(x1|u, u1, v1) and p(x2|u, u2, v2) are functions of the above

distributions. To see this, let us write a joint distribution p(u, u1, u2, v1, v2, x1, x2)

in two different ways:

p(u, u1, u2, v1, v2, x1, x2)

= p(u)p(u1|u)p(u2|u)p(x1|u, u1)p(x2|u, u2)δ(v1 − g1(x1))

× δ(v2 − g2(x2))

= p(u)p(u1|u)p(u2|u)p(v1|u, u1)p(v2|u, u2)p(x1|u, u1, v1)

× p(x2|u, u2, v2),

(5.11)
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where δ(·) indicates the Kronecker delta function. Notice that by the El Gamal-

Costa model assumption (5.4), p(v1|u, u1, x1) = δ(v1 − g1(x1)) and p(v2|u, u2, x2) =

δ(v2 − g2(x2)). From this, we can easily see that

p(x1|u, u1, v1) =
p(x1|u, u1)δ(v1 − g1(x1))

p(v1|u, u1)
,

p(x2|u, u2, v2) =
p(x2|u, u2)δ(v2 − g2(x1))

p(v2|u, u2)
. (5.12)

We now generate codewords as follows. Transmitter 1 generates

2N(R1cc+R2cc) independent codewords uN(i, j) according to
∏N

i=1 p(ui)1, where

i ∈ {1, · · · , 2NR1cc} and j ∈ {1, · · · , 2NR2cc}. For each codeword uN(i, j), it

generates 2NR1cc independent codewords uN
1 ((i, j), k) according to

∏N
i=1 p(u1i|ui)

where k ∈ {1, · · · , 2NR1cc}. Subsequently, for each pair of codewords(
uN(i, j), uN

1 ((i, j), k)
)
, generate 2NR1nc independent codewords vN

1 ((i, j), k, l) accord-

ing to
∏N

i=1 p(v1i|ui, u1i) where l ∈ {1, · · · , 2NR1nc}. Lastly, for each triple of code-

words
(
uN(i, j), uN

1 ((i, j), k), vN
1 ((i, j), k, l)

)
, generate 2NR1p independent codewords

xN
1 ((i, j), k, l,m) according to

∏N
i=1 p(x1i|ui, u1i, v1i) where m ∈ {1, · · · , 2NR1p}. On the

other hand, receiver 1 generates 2NR̂1 sequences ŷN
1 (q) according to

∏N
i=1 p(ŷ1i)

where q ∈ {1, · · · , 2NR̂1}. In the feedback strategy (to be described shortly), we

will see how this codebook generation leads to the joint distribution p(ŷ1|y1).

Similarly, receiver 2 generates ŷN
2 .

As it will be clarified later, for a given block b, indices i and j in uN(i, j) cor-

respond to the cooperative common message of transmitter 1 and transmitter 2

sent during block (b − 2) respectively. Then
∏N

i=1 p(u1i|ui) is used to create 2NR1cc

independent codewords corresponding to the cooperative common message of

transmitter 1 in {1, · · · , 2NR1cc}. Similarly, 2NR1nc independent codewords are cre-

1With a slight abuse of notation, we use the same index i to represent time.
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ated according to
∏N

i=1 p(v1i|ui, u1i), corresponding to the non-cooperative com-

mon message of transmitter 1 in {1, · · · , 2NR1nc}. Finally,
∏N

i=1 p(x1i|ui, u1i, v1i) is

used to create 2NR1p independent codewords corresponding to the private mes-

sage of transmitter 1 in {1, · · · , 2NR1p}.

Notation: Notations are independently used only for this section. The index

k indicates the cooperative common message of user 1 instead of user index.

The index i is used for both purposes: (1) indicating the previous cooperative

common message of user 1; (2) indicating time index. It could be easily differ-

entiated from contexts.

Feedback Strategy (Quantize-and-Binning): Focus on the b-th transmission

block. First receiver 1 quantizes its received signal yN,(b)
1 into ŷN,(b+1)

1 with the

rate of R̂. Next it finds an index q such that
(
ŷN,(b+1)

1 (q), yN,(b)
1

)
∈ T

(N)
ε , where

q ∈ [1 : 2NR̂1] and T (N)
ε indicates a jointly typical set. The quantization rate R̂1

is chosen so as to ensure the existence of such an index with probability 1. The

covering lemma in [21] guides us to choose R̂1 such that

R̂1 ≥ I(Ŷ1; Y1), (5.13)

since under the above constraint, the probability that there is no such an index

becomes arbitrarily small as N goes to infinity. Notice that with this choice of

R̂1, the codebook ŷN
1 (q) according to

∏N
i=1 p(ŷ1i) would match the codeword ac-

cording to
∏N

i=1 p(ŷ1i|y1i).

We then partition the set of indices q ∈ [1 : 2NR̂1] into the number 2NCFB1 of

equal-size subsets (that we call bins):
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B(r) =
[
(r − 1)2N(R̂1−CFB1) + 1 : r2N(R̂1−CFB1)

]
,

r ∈ [1 : 2NCFB1].

Now the idea is to feed back the bin index r such that q ∈ B(r). This

helps transmitter 1 to decode the quantized signal ŷN,(b)
1 . Specifically, us-

ing the bin index r, transmitter 1 finds a unique index q ∈ B(r) such that(
ŷN,(b+1)

1 (q), xN,(b)
1 , uN,(b)

)
∈ T

(N)
ε . Notice that by the packing lemma in [21], the de-

coding error probability goes to zero if

R̂1 −CFB1 ≤ I(Ŷ1; X1,U). (5.14)

Using (5.13) and (5.14), transmitter 1 can now decode the quantized signal as

long as

I(Ŷ1; Y1|X1,U) ≤ CFB1, (5.15)

Similarly, transmitter 2 can decode ŷN,(b+1)
2 (q) if

I(Ŷ2; Y2|X2,U) ≤ CFB2. (5.16)

Encoding: Given ŷN,(b−1)
1 (decoded with the help of feedback), transmitter 1 finds

a unique index ŵ(b−2)
2cc = k̂ (sent from transmitter 2 in the (b − 2)-th block) such

that

(
uN (·) , uN

1 (·) , vN
1 (·), xN

1 (·), uN
2 (·, k̂), ŷN,(b−1)

1

)
∈ T (N)

ε ,

where (·) indicates the known messages (w(b−4)
1cc , ŵ(b−4)

2cc ,w(b−2)
1nc ,w(b−2)

1p ). Notice that

due to the feedback delay, the fed back signal contains information of the (b−2)-

th block. We assume that ŵ(b−2)
2cc is correctly decoded from the previous block.
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By the packing lemma [21], the decoding error probability becomes arbitrarily

small (as N goes to infinity) if

R2cc ≤ I(U2; Ŷ1|X1,U)

= I(Ŷ1; Y1|U, X1) − I(Ŷ1; Y1|U,U2, X1)

≤ min(CFB1 − δ1, I(U2; Y1|X1,U)), (5.17)

where the last inequality follows from (5.15), δ1 := I(Ŷ1; Y1|U,U2, X1) and

I(U2; Ŷ1|X1,U) ≤ I(U2; Y1|X1,U).

Based on (w(b−2)
1cc , ŵ(b−2)

2cc ), transmitter 1 generates a new cooperative-common

message w(b)
1cc, a non-cooperative-common message w(b)

1nc and a private mes-

sage w(b)
1p . It then sends xN

1 . Similarly transmitter 2 decodes ŵ(b−2)
1cc , generates

(w(b)
2cc,w

(b)
2nc,w

(b)
2p ) and then sends xN

2 .

Decoding: Each receiver waits until total B blocks have been received and then

does backward decoding. Notice that a block index b starts from the last B and

ends to 1. For block b, receiver 1 finds the unique indices (î, ĵ, k̂, l̂) such that for

some m ∈ [1 : 2NR2nc](
uN(î, ĵ), uN

1 ((î, ĵ), ŵ(b)
1cc), v

N
1 ((î, ĵ), ŵ(b)

1cc, k̂), xN
1 ((î, ĵ), ŵ(b)

1cc

, k̂, l̂), uN
2 ((î, ĵ), ŵ(b)

2cc), v
N
2 ((î, ĵ), ŵ(b)

2cc,m), yN,(b)
1

)
∈ T (N)

ε ,

where we assumed that a pair of messages (ŵ(b)
1cc, ŵ

(b)
2cc) was successively decoded

from the future blocks. Similarly receiver 2 decodes (ŵ(b−2)
1cc , ŵ(b−2)

2cc , ŵ(b)
2nc, ŵ

(b)
2p ).

Analysis of Probability of Error: By symmetry, we consider the probability of

error only for block b and for a pair of transmitter 1 and receiver 1. We assume

that (w(b−2)
1cc ,w(b−2)

2cc ,w(b)
1nc,w

(b)
1p ) = (1, 1, 1, 1) was sent through the blocks; and there

was no backward decoding error from the future blocks, i.e., (ŵ(b)
1cc, ŵ

(b)
2cc) are suc-

cessfully decoded.
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Define an event:

Ei jklm =
{(

uN(i, j), uN
1 ((i, j), ŵ(b)

1cc), v
N
1 ((i, j), ŵ(b)

1cc, k)

, xN
1 ((i, j), ŵ(b)

1cc, k, l), u
N
2 ((i, j), ŵ(b)

2cc), v
N
2 ((i, j), ŵ(b)

2cc,m)

, yN,(b)
1

)
∈ T (N)

ε

}
.

Let Ec
1111m be the complement of the set E1111m. Then, by AEP, Pr(Ec

1111m) → 0 as

N goes to infinity. Hence, we focus only on the following error event.

Pr

 ⋃
(i, j,k,l),(1,1,1,1),m

Ei jklm


≤

∑
(i, j),(1,1)

Pr

⋃
k,l,m

Ei jklm

︸                     ︷︷                     ︸
,Pr(E1)

+
∑
k,1

Pr

⋃
l

E11kl1

︸                ︷︷                ︸
,Pr(E2)

+
∑

k,1,m,1

Pr

⋃
l

E11klm

︸                     ︷︷                     ︸
,Pr(E3)

+
∑
l,1

Pr (E111l1)︸           ︷︷           ︸
,Pr(E4)

+
∑

l,1,m,1

Pr (E111lm)︸               ︷︷               ︸
,Pr(E5)

.

(5.18)

Here we have:

Pr(E1) ≤ 24

× 2N(R1cc+R2cc+R1nc+R2nc+R1p−I(U,X1,V2;Y1)+5ε)

Pr(E2) ≤ 2 × 2N(R1nc+R1p−I(X1;Y1 |U,U1,V2)+2ε)

Pr(E3) ≤ 2 × 2N(R1nc+R2nc+R1p−I(X1,V2;Y1 |U,U1,U2)+3ε)

Pr(E4) ≤ 2N(R1p−I(X1;Y1 |U,V1,V2)+ε)

Pr(E5) ≤ 2N(R2nc+R1p−I(X1,V2;Y1 |U,V1,U2)+2ε).
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Notice in Pr(E1) that as long as (i, j) , (1, 1), all of the cases (decided depending

on whether or not k , 1, l , 1 and m , 1) are dominated by the worst case bound

that occurs when k , 1, l , 1 and m , 1. Since (i, j) , (1, 1) covers three different

cases and we have eight different cases depending on the values of (k, l,m), we

have 24 cases in total. This number reflects the constant 24 in the above first

inequality. Similarly, we get the other four inequalities as above.

Hence, the probability of error can be made arbitrarily small if

R2cc ≤ min(I(U2; Y1|U, X1),CFB1 − δ1)

R1p ≤ I(X1; Y1|U,V1,V2)

R1p + R2nc ≤ I(X1,V2; Y1|U,V1,U2)

R1p + R1nc ≤ I(X1; Y1|U,U1,V2)

R1p + R1nc + R2nc ≤ I(X1,V2; Y1|U,U1,U2)

R1p + R1cc + R2cc + R1nc + R2nc ≤ I(U,V2, X1; Y1),

(5.19)



R1cc ≤ min(I(U1; Y2|U, X2),CFB2 − δ2)

R2p ≤ I(X2; Y2|U,V1,V2)

R2p + R1nc ≤ I(X2,V1; Y2|U,V2,U1)

R2p + R2nc ≤ I(X2; Y2|U,U2,V1)

R2p + R2nc + R1nc ≤ I(X2,V1; Y2|U,U1,U2)

R2p + R2cc + R1cc + R1nc + R2nc ≤ I(U,V1, X2; Y2).

(5.20)

Employing Fourier-Motzkin-Elimination, we finally get the bounds of (5.10a)–

(5.10m). �

Remark 5.1 (Connection to Related Work [43, 56]) The three-fold message split-

ting in our achievable scheme is a special case of the more-than-three-fold message split-

ting introduced in [43, 56]. Also our scheme has similarity to the schemes in [43, 56] in

a sense that the three techniques (message-splitting, block Markov encoding and back-
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ward decoding) are jointly employed. However, due to a fundamental difference between

our rate-limited feedback problem and the conferencing encoder problem in [43, 56], a

new scheme is required for feedback strategy and this is reflected as the quantize-and-

binning scheme in the El Gamal-Costa deterministic model. It turns out this distinction

leads to a new lattice-code-based scheme in the Gaussian case, as will be explained in

Section VI.

5.4.2 Outer-bound

Theorem 5.2 The capacity region of the two-user El Gamal-Costa deterministic IC

with rate limited feedback (as described in Section 4.2) is included by the set C̄ of (R1,R2)

such that

R1 ≤ min{H(Y1),H(Y1|V1,V2,U1) (5.21a)

+ H(Y2|X2,U1)}

R1 ≤ H(Y1|X2,U1) + CFB2 (5.21b)

R2 ≤ min{H(Y2),H(Y2|V1,V2,U2) (5.21c)

+ H(Y1|X1,U2)}

R2 ≤ H(Y2|X1,U2) + CFB1 (5.21d)

R1 + R2 ≤ H(Y1|V1,V2,U1) + H(Y2) (5.21e)

R1 + R2 ≤ H(Y2|V1,V2,U2) + H(Y1) (5.21f)

R1 + R2 ≤ H(Y1|V1) + H(Y2|V2) (5.21g)

+ CFB1 + CFB2

2R1 + R2 ≤ H(Y1) + H(Y1|V1,V2,U1) (5.21h)

+ H(Y2|V2) + CFB2
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R1 + 2R2 ≤ H(Y2) + H(Y2|V1,V2,U2) (5.21i)

+ H(Y1|V1) + CFB1,

for joint distributions p(u1, u2)p(x1|u1, u2)p(x2|u1, u2). As depicted in Figure 5.2, CFB1

and CFB2 indicate the capacity of each feedback link.

Remark 5.2 In the non-feedback case, i.e., CFB1 = CFB2 = 0, by setting U1 = U2 = ∅,

we recover the outer-bounds of Theorem 1 in [16]. Note that in this case, H(Y1|X2) =

H(Y1|V2) and H(Y2|X1) = H(Y2|V1). In fact, our achievable region of Theorem 5.1

matches the outer-bound under this model, thereby achieving the non-feedback capacity

region.

Remark 5.3 (Feedback gain under symmetric feedback cost) Notice from (5.21g)

that the sum-rate capacity can be at most increased by the rate of available feedback, i.e.,

one bit of feedback provides a capacity increase of at most one bit. Therefore, if the cost of

using the feedback link is the same as that of using the forward link, there is no feedback

gain under the feedback cost. However, it turns out that there is indeed feedback gain

when the costs are asymmetric. This will be discussed in more details in Remark 5.5 of

Section 5.5.

Proof: By symmetry, it suffices to prove the bounds of (5.21a), (5.21b), (5.21e),

(5.21g), and (5.21h). The bounds of (5.21a) and (5.21b) are nothing but the cut-

set bounds (see Appendix D.1 for details). Also (5.21e) is the bound when the

feedback link has infinite capacity [50]. Hence, proving the bounds of (5.21g)

and (5.21h) is the main focus of the proof. We will present the proof of (5.21g)

here and for completeness, the proof for all other bounds is provided in Ap-

pendix D.1.
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Proof of (5.21g):

N(R1 + R2 − εN) ≤ I(W1; YN
1 ) + I(W2; YN

2 )

= H(YN
1 ) − H(YN

1 |W1) + H(YN
2 ) − H(YN

2 |W2)

(a)
= H(YN

1 ) − H(VN
1 |W2) + H(YN

2 ) − H(VN
2 |W1)

= H(YN
1 ) − [H(VN

1 ) − I(VN
1 ; W2)] + H(YN

2 )

− [H(VN
2 ) − I(VN

2 ; W1)]
(b)
≤ I(VN

1 ; W2) + I(VN
2 ; W1) + H(YN

1 ,V
N
1 ) − H(VN

1 )

+ H(YN
2 ,V

N
2 ) − H(VN

2 )

= I(VN
1 ; W2) + I(VN

2 ; W1) + H(YN
1 |V

N
1 ) + H(YN

2 |V
N
2 )

(c)
≤ I(VN

1 ,W1, ỸN
1 ; W2) + I(VN

2 ,W2, ỸN
2 ; W1)

+ H(YN
1 |V

N
1 ) + H(YN

2 |V
N
2 )

(d)
= I(W1, ỸN

1 ; W2) + I(W2, ỸN
2 ; W1) + H(YN

1 |V
N
1 )

+ H(YN
2 |V

N
2 )

= I(ỸN
1 ; W2|W1) + I(ỸN

2 ; W1|W2) + H(YN
1 |V

N
1 )+

H(YN
2 |V

N
2 )

= H(ỸN
1 |W1) + H(ỸN

2 |W2) + H(YN
1 |V

N
1 ) + H(YN

2 |V
N
2 )

(e)
≤ N(CFB1 + CFB2) +

∑
H(Y1i|V1i) +

∑
H(Y2i|V2i),

where (a) follows from H(YN
1 |W1) = H(VN

2 |W1) and H(YN
2 |W2) = H(VN

1 |W2) (see

Claim 5.1 below); (b) follows from providing VN
1 and VN

2 to receiver 1 and 2, re-

spectively; (c) follows from the fact that adding information increases mutual

information; (d) follows from the fact that VN
k is a function of (Wk, ỸN−1

k ); (e) fol-

lows from the fact that H(ỸN
k |Wk) ≤ NCFBk and conditioning reduces entropy.

Claim 5.1 H(YN
1 |W1) = H(VN

2 |W1) and H(YN
2 |W2) = H(VN

1 |W2).
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Proof: By symmetry, it suffices to prove the first one.

H(YN
1 |W1) =

∑
H(Y1i|Y i−1

1 ,W1)

(a)
=

∑
H(V2i|Y i−1

1 ,W1)

(b)
=

∑
H(V2i|Y i−1

1 ,W1, Xi
1,V

i−1
2 )

(c)
=

∑
H(V2i|W1,V i−1

2 ) = H(VN
2 |W1),

where (a) follows from the fact that Y1i is a function of (X1i,V2i) and X1i is a func-

tion of (W1,Y i−1
1 ); (b) follows from the fact that Xi

1 is a function of (W1,Y i−1
1 ) and

V i−1
2 is a function of (Y i−1

1 , Xi−1
1 ); (c) follows from the fact that Y i−1

1 is a function of

(Xi−1
1 ,V i−1

2 ) and Xi
1 is a function of (W1,V i−1

2 ) (see Claim 5.2 below). �

Claim 5.2 For i ≥ 1, Xi
1 is a function of (W1,V i−1

2 ). Similarly, Xi
2 is a function of

(W2,V i−1
1 ).

Proof: By symmetry, it is enough to prove the first one. Since the channel is

deterministic, Xi
1 is a function of (W1,W2). In Figure 5.2, we see that information

of W2 to the first link pair must pass through V2i. Also note that X1i depends on

the past output sequences until i − 1. Therefore, Xi
1 is a function of (W1,V i−1

2 ). �

�

5.5 Linear Deterministic Interference Channel

In this section, we consider the linear deterministic IC with rate-limited feed-

back described in Section 4.2. Since this model is a special case of the El Gamal-

Costa model, our inner and outer bounds derived in the previous section also
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apply to this model. We show that the inner-bound and the outer bound de-

rived in Theorem 5.1 and 5.2 respectively, coincide under this linear determin-

istic model, thus establishing the capacity region.

Theorem 5.3 The capacity region of the linear deterministic IC with rate-limited feed-

back is the set of non-negative (R1,R2) satisfying

R1 ≤ min {max(n11, n21),max(n11, n12)} (5.22a)

R1 ≤ n11 + CFB2 (5.22b)

R2 ≤ min {max(n22, n12),max(n22, n21)} (5.22c)

R2 ≤ n22 + CFB1 (5.22d)

R1 + R2 ≤ (n11 − n12)+ + max(n22, n12) (5.22e)

R1 + R2 ≤ (n22 − n21)+ + max(n11, n21) (5.22f)

R1 + R2 ≤ max
{
n21, (n11 − n12)+} (5.22g)

+ max
{
n12, (n22 − n21)+} + CFB1 + CFB2

2R1 + R2 ≤ (n11 − n12)+ + max(n11, n21) (5.22h)

+ max
{
n12, (n22 − n21)+} + CFB2

R1 + 2R2 ≤ (n22 − n21)+ + max(n22, n12) (5.22i)

+ max
{
n21, (n11 − n12)+} + CFB1.

Remark 5.4 In the non-feedback case, i.e., CFB1 = CFB2 = 0, this theorem recovers the

result of [12, 16]. In the infinite feedback case, i.e., CFB1 = CFB2 = ∞, this recovers

the result of [50, 51]. Considering the sum-rate capacity under symmetric setting, i.e.,

n11 = n22 = n, n12 = n21 = m, CFB1 = CFB2, this recovers the result of [57].

Proof: The converse proof is trivial due to Theorem 5.2. For achievability, we

will use the result in Theorem 5.1. By choosing the following input distribution,
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we will show the tightness of the outer bound. ∀k ∈ {1, 2} and j , k, we choose

U = ∅,

Uk = U ⊕ Xkcc,

Vk = Uk ⊕ Xknc,

Xk = Vk ⊕ Xkp,

Ŷk = LSBmin(nk j,CFBj)(Yk),

(5.23)

where for any column vector A, LSBn(A) takes the bottom n (n ≤ |A|) entries

of A while returning zeros for the remaining part; and Xkcc, Xknc, and Xkp are

independent random vectors of size max{nkk, nk j}, such that

• The random vector Xkp consists of (nkk − nk j)+ i.i.d. Ber
(

1
2

)
random vari-

ables at the bottom, denoted by ∗ in (5.24), corresponding to the number

of private signal levels of transmitter k.

• The random vector Xkcc consists of (nkk−nk j)+ i.i.d. Ber
(

1
2

)
random variables

in the middle (above the private signal levels), denoted by ∗ in (5.24), cor-

responding to the number of common signal levels that will be re-sent

cooperatively through the other commuication link with the help of feed-

back.

• The random vector Xknc consists of (nk j − CFBj)+ i.i.d. Ber
(

1
2

)
random vari-

ables at the top, denoted by ∗ in (5.24), corresponding to the number of

non-cooperative common signal levels.

As we show in Appendix D.2, with this choice of random variables, the achiev-

able region of Theorem 5.1 matches the outer-bounds in Theorem 5.2.
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Xk =



0
...

0

0
...

0

∗

...

∗

︸︷︷︸
Xkp

⊕



0
...

0

∗

...

∗

0
...

0

︸︷︷︸
Xkcc

⊕



∗

...

∗

0
...

0

0
...

0

︸︷︷︸
Xknc

, k = 1, 2.
(5.24)

�

It is worth utilizing Theorem 5.3 to illustrate the impact of feedback on the

sum-rate capacity of the linear deterministic IC. Consider a symmetric case

where n11 = n22 = n, n12 = n21 = αn, and CFB1 = CFB2 = βn. Using Theorem 5.3, we

can derive the sum-rate capacity of this network (normalized by n)

Csum

n
=



min(2 − 2α + 2β, 2 − α) for α ∈ [0, 0.5]

min(2α + 2β, 2 − α) for α ∈ [0.5, 2
3 ]

2 − α for α ∈ [2
3 , 1]

α for α ∈ [1, 2 + 2β]

2 + 2β for α ∈ [2 + 2β,∞)

(5.25)

Figure 5.5 illustrates the (normalized) sum-rate capacity as a function of α,

for different values of β = 0 (i.e., no feedback), β = ∞ (i.e., infinite feedback), and

β = 0.125. We note the following cases:

• Case 1 (α ∈
[
0, 1

2

]
): In this regime the sum-rate capacity is increased by the
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total amount of feedback rates and saturates at 2 − α once the rate of each

feedback link is larger than αn
2 .

• Case 2 (α ∈
[

1
2 ,

2
3

]
): In this regime the sum-rate capacity is increased by the

total amount of feedback rates and saturates at 2α once the rate of each

feedback link is larger than (2n−3αn)
2 .

• Case 3 (α ∈
[

2
3 , 2

]
): In this regime feedback does not increase the capacity.

• Case 4 (α ∈ [2 + 2β,∞)): In this regime the sum-rate capacity is increased

by at most the total amount of feedback rates.

Remark 5.5 (Feedback gain under asymmetric feedback cost) As it can be seen

in (5.25) the sum-rate capacity is increased by at most the total amount of feedback rates.

Let the cost be the amount of resources (e.g., time, frequency) paid for sending one bit.

With this cost in mind, let us consider the effective gain of using feedback which counts

the cost. Notice that by Case 1,2, and 4, there are many channel parameter scenarios

where one bit of feedback can provide a capacity increase of exactly one bit. This implies

that the effective feedback gain depends on the cost difference between feedback and for-

ward links. So if the feedback cost is cheaper than that of using forward link, then there

is indeed feedback gain. The cellular network may be this case. Suppose that downlink

is used for feedback purpose, while uplink is used as a forward link. Then, this is the

scenario where the feedback cost is cheaper than the cost of using the forward link, as

downlink power is typically larger than uplink power, thus inducing cheaper feedback

cost.
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Figure 5.5: Normalized sum-rate capacity for β = 0, β = 0.125 and β = ∞.

5.6 Gaussian Interference Channel

In this section, we consider the Gaussian IC with rate-limited feedback, de-

scribed in Section 4.2. We first derive an outer-bound on the capacity region

of this network. We then develop an achievability strategy based on the tech-

niques discussed in the previous sections and then show that for symmetric

channel gains it achieves a sum-rate within a constant gap to the optimality.

5.6.1 Outer-bound

Theorem 5.4 The capacity region of the Gaussian IC with rate-limited feedback is in-

cluded in the closure of the set C̄ of (R1,R2) satisfying inequalities (5.26a)–(5.26k) over

0 ≤ ρ ≤ 1.

Proof: By symmetry, it suffices to prove the bounds of (5.26a), (5.26b), (5.26c),

(5.26g), (5.26h) and (5.26j). The bounds of (5.26a), (5.26b) and (5.26c) are nothing

but cutset bounds. The bound of (5.26h) corresponds to the case of infinite feed-

back rate and was derived in [50]. Hence, proving the bounds of (5.26g) and
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R1 ≤ log
(
1 + SNR1 + INR21 + 2ρ

√
SNR1 · INR21

)
(5.26a)

R1 ≤ log
(
1 +

(1 − ρ2)SNR1

1 + (1 − ρ2)INR12

)
+ log

(
1 + (1 − ρ2)INR12

)
(5.26b)

R1 ≤ log
(
1 + (1 − ρ2)SNR1

)
+ CFB2 (5.26c)

R2 ≤ log
(
1 + SNR2 + INR12 + 2ρ

√
SNR2 · INR12

)
(5.26d)

R2 ≤ log
(
1 +

(1 − ρ2)SNR2

1 + (1 − ρ2)INR21

)
+ log

(
1 + (1 − ρ2)INR21

)
(5.26e)

R2 ≤ log
(
1 + (1 − ρ2)SNR2

)
+ CFB1 (5.26f)

R1 + R2 ≤ log
(
1 + (1 − ρ2)INR21 +

(1 − ρ2)SNR1

1 + (1 − ρ2)INR12

)
+ log

(
1 + (1 − ρ2)INR12 +

(1 − ρ2)SNR2

1 + (1 − ρ2)INR21

)
+ CFB1 + CFB2 (5.26g)

R1 + R2 ≤ log
(
1 +

(1 − ρ2)SNR1

1 + (1 − ρ2)INR12

)
+ log

(
1 + SNR2 + INR12 + 2ρ

√
SNR2 · INR12

)
(5.26h)

R1 + R2 ≤ log
(
1 +

(1 − ρ2)SNR2

1 + (1 − ρ2)INR21

)
+ log

(
1 + SNR1 + INR21 + 2ρ

√
SNR1 · INR21

)
(5.26i)

2R1 + R2 ≤ log
(
1 + SNR1 + INR21 + 2ρ

√
SNR1 · INR21

)
+ log

(
1 +

(1 − ρ2)SNR1

1 + (1 − ρ2)INR12

)
(5.26j)

+ log
(
1 + (1 − ρ2)INR12 +

(1 − ρ2)SNR2

1 + (1 − ρ2)INR21

)
+ CFB1 + CFB2

R1 + 2R2 ≤ log
(
1 + SNR2 + INR12 + 2ρ

√
SNR2 · INR12

)
+ log

(
1 +

(1 − ρ2)SNR2

1 + (1 − ρ2)INR21

)
(5.26k)

+ log
(
1 + (1 − ρ2)INR21 +

(1 − ρ2)SNR1

1 + (1 − ρ2)INR12

)
+ CFB1 + CFB2

(5.26j) is the main focus of this proof. We will present the proof of (5.26g) here,

and defer the proof for remaining bounds to Appendix D.3.
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Proof of (5.26g): The proof idea mostly follows the deterministic case proof

of 5.21g. The only difference in the Gaussian case is that we define a noisy

version of h12XN
1 corresponding to VN

1 in the deterministic case: S N
1 := h12XN

1 +ZN
2 .

Similarly we define S N
2 := h21XN

2 + ZN
1 to mimic VN

2 . With this, we can now get:

N (R1 + R2 − εN)
(a)
≤ I

(
W1; YN

1

)
+ I

(
W2; YN

2

)
(b)
= h

(
YN

1

)
+ h

(
YN

2

)
− h

(
S N

1 |W2

)
− h

(
S N

2 |W1

)
= I

(
S N

1 ; W2

)
+ I

(
S N

2 ; W1

)
− h

(
S N

1 |Y
N
1

)
− h

(
S N

2 |Y
N
2

)
+ h

(
YN

1 |S
N
1

)
+ h

(
YN

2 |S
N
2

)︸                       ︷︷                       ︸
T

(c)
≤ T + I

(
S N

1 , Ỹ
N
1 ,W1; W2

)
+ I

(
S N

2 , Ỹ
N
2 ,W2; W1

)
− h

(
S N

1 |Y
N
1 ,W1, ỸN

1

)
− h

(
S N

2 |Y
N
2 ,W2, ỸN

2

)
(d)
= T + I

(
ỸN

1 ; W2|W1

)
+ I

(
S N

1 ; W2|W1, ỸN
1

)
+ I

(
ỸN

2 ; W1|W2

)
+ I

(
S N

2 ; W1|W2, ỸN
2

)
− h

(
ZN

1 |S
N
1 ,W2, ỸN

2

)
− h

(
ZN

2 |S
N
2 ,W1, ỸN

1

)
(e)
= T − h

(
ZN

1

)
− h

(
ZN

2

)︸                   ︷︷                   ︸
T ′

+I
(
ỸN

1 ; W2|W1

)
+ I

(
ỸN

2 ; W1|W2

)
+ I

(
ZN

2 ; S N
2 |W1, ỸN

1

)
+ I

(
ZN

1 ; S N
1 |W2, ỸN

2

)
− h

(
ZN

1 |W1,W2, ỸN
2

)
+ h

(
ZN

1

)
− h

(
ZN

2 |W1,W2, ỸN
1

)
+ h

(
ZN

2

)
( f )
= T ′ + I

(
ỸN

1 ; W2|W1

)
+ I

(
ỸN

2 ; W1|W2

)

+ I
(
ZN

2 ; S N
2 |W1, ỸN

1

)
+ I

(
ZN

1 ; S N
1 |W2, ỸN

2

)
+ I

(
ZN

1 ; ỸN
2 |W1,W2

)
+ I

(
ZN

2 ; ỸN
1 |W1,W2

)
= T ′ + I

(
ỸN

1 ; W2,ZN
2 |W1

)
+ I

(
ỸN

2 ; W1,ZN
1 |W2

)
+ I

(
ZN

2 ; S N
2 |W1, ỸN

1

)
+ I

(
ZN

1 ; S N
1 |W2, ỸN

2

)
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= T ′ + I
(
ỸN

1 ; W2|W1,ZN
2

)
+ I

(
ỸN

2 ; W1|W2,ZN
1

)
+ I

(
ỸN

1 , S
N
2 ; ZN

2 |W1

)
+ I

(
ỸN

2 , S
N
1 ; ZN

1 |W2

)
(g)
≤ T ′ + I

(
ỸN

1 ; W2|W1,ZN
2

)
+ I

(
ỸN

2 ; W1|W2,ZN
1

)
+ I

(
ZN

2 ; ỸN
1 ,W2, ỸN

2 ,Z
N
1 |W1

)
+ I

(
ZN

1 ; ỸN
2 ,W1, ỸN

1 ,Z
N
2 |W2

)
(h)
= T ′ + I

(
ỸN

1 ; W2|W1,ZN
2

)
+ I

(
ỸN

2 ; W1|W2,ZN
1

)
+ I

(
ỸN

2 ; ZN
2 |W1,W2,ZN

1

)
+ I

(
ỸN

1 ; ZN
1 |W1,W2,ZN

2

)
+ I

(
ỸN

1 ; ZN
2 |W1,W2,ZN

1 , Ỹ
N
2

)
+ I

(
ỸN

2 ; ZN
1 |W1,W2,ZN

2 , Ỹ
N
1

)
(i)
= T ′ + I

(
ỸN

1 ; W2|W1,ZN
2

)
+ I

(
ỸN

2 ; W1|W2,ZN
1

)
+ I

(
ỸN

2 ; ZN
2 |W1,W2,ZN

1

)
+ I

(
ỸN

1 ; ZN
1 |W1,W2,ZN

2

)
= h

(
YN

1 |S
N
1

)
− h

(
ZN

1

)
+ h

(
YN

2 |S
N
2

)
− h

(
ZN

2

)
+ I

(
ỸN

1 ; W2,ZN
1 |W1,ZN

2

)
+ I

(
ỸN

2 ; W1,ZN
2 |W2,ZN

1

)
≤

N∑
i=1

[h (Y1i|S 1i) − h (Z1i)] +

N∑
i=1

[h (Y2i|S 2i) − h (Z2i)]

+ H
(
ỸN

1 |W1,ZN
2

)
+ H

(
ỸN

2 |W2,ZN
1

)
≤

N∑
i=1

[h (Y1i|S 1i) − h (Z1i)] +

N∑
i=1

[h (Y2i|S 2i) − h (Z2i)]

+

N∑
i=1

H
(
Ỹ1i|X1i

)
+

N∑
i=1

H
(
Ỹ2i|X2i

)
, (5.27)

where (a) follows from Fano’s inequality; (b) follows from the fact that

h(YN
1 |W1) = h(S N

2 |W1) and h(YN
2 |W2) = h(S N

1 |W2) (see Claim 5.3 below); (c) follows

from the non-negativity of mutual information and the fact that conditioning

reduces entropy; (d) follows from the fact that XN
k is a function of (Wk, ỸN−1

k ), and

the fact that W1 and W2 are independent; (e) follows from the fact that XN
k is a

function of (Wk, ỸN−1
k ); ( f ) follows from the fact that ZN

k is independent of W1 and
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W2; (g) holds since S N
k is a function of (Wk, ỸN−1

k ,ZN
3−k); (h) holds since W1, W2, ZN

1 ,

and ZN
2 are mutually independent; (i) holds since

I
(
ỸN

1 ; ZN
2 |W1,W2,ZN

1 , Ỹ
N
2

)
=

N∑
i=1

I
(
Ỹ1i; ZN

2 |W1,W2,ZN
1 , Ỹ

N
2 , Ỹ

i−1
1

)

=

N∑
i=1

I
(
Ỹ1i; ZN

2 |W1,W2,ZN
1 , Ỹ

N
2 , Ỹ

i−1
1 , XN

2 , X
i
1

)
=

N∑
i=1

I
(
Ỹ1i; ZN

2 |W1,W2,ZN
1 , Ỹ

N
2 , Ỹ

i−1
1 , XN

2 , X
i
1,Y

i
1

)
=

N∑
i=1

I
(
Ỹ1i; ZN

2 |W1,W2,ZN
1 , Ỹ

N
2 , Ỹ

i
1, X

N
2 , X

i
1,Y

i
1

)
= 0. (5.28)

Claim 5.3 h(S N
1 |W2) = h(YN

2 |W2).

Proof:

h(YN
2 |W2) =

∑
h(Y2i|Y i−1

2 ,W2)

(a)
=

∑
h(S 1i|Y i−1

2 ,W2)

(b)
=

∑
h(S 1i|Y i−1

2 ,W2, Xi
2, S

i−1
1 )

(c)
=

∑
h(S 1i|W2, S i−1

1 ) = h(S N
1 |W2),

where (a) follows from the fact that Y2i is a function of (X2i, S 1i) and X2i is a

function of (W2,Y i−1
2 ); (b) follows from the fact that Xi

2 is a function of (W2,Y i−1
2 )

and S i−1
1 is a function of (Y i−1

2 , Xi−1
2 ); (c) follows from Claim 5.4 (see below). �

Claim 5.4 For all i ≥ 1, Xi
1 is a function of (W1, S i−1

2 ) and Xi
2 is a function of (W2, S i−1

1 ).
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Proof: By symmetry, it is enough to prove only one. Notice that Xi
2 is a func-

tion of (W2,Y i−1
2 ) and Y i−1

2 is a function of (Xi−1
2 , S i−1

1 ). Hence, Xi
2 is a function of

(W2, Xi−1
2 , S i−1

1 ). Iterating the same argument, we conclude that Xi
2 is a function of

(W2, X21, S i−1
1 ). Since X21 depends only on W2, we complete the proof. �

From the above, we get

R1 + R2 ≤ h(Y1|S 1) − h(Z1) + h(Y2|S 2) − h(Z2)

+ CFB1 + CFB2.

(5.29)

where we have used the fact that H(Ỹki|Xki) ≤ CFBk and conditioning reduces

entropy.

Finally note that for ρ = E[X1X∗2], we have2

h(Y1|S 1) ≤ log 2πe
(
1 + (1 − ρ2)INR21 +

(1 − ρ2)SNR1

1 + (1 − ρ2)INR12

)
. (5.30)

Using (5.30), we get the desired upper bound in (5.26g). �

If we consider the symmetric channel gains, i.e.,

|h11| = |h22| = |hd|,

|h12| = |h21| = |hc|,

(5.31)

and

SNR1 = SNR2 = SNR = |hd|
2,

INR12 = INR21 = INR = |hc|
2,

(5.32)

we get the following outer-bound result.

Corollary 5.5 The sum-rate capacity of the symmetric Gaussian IC with rate-limited

feedback is included by the set C̄sym of R1 + R2 satisfying

R1 + R2 ≤ 2 log (1 + SNR) + CFB1 + CFB2 (5.33a)
2ρ captures the power gain that can be achieved by making the transmit signals correlated.
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R1 + R2 ≤ log
(
1 +

SNR
1 + INR

)
(5.33b)

+ log
(
1 + SNR + INR + 2

√
SNR · INR

)
R1 + R2 ≤ 2 log

(
1 + INR +

SNR
1 + INR

)
(5.33c)

+ CFB1 + CFB2.

Proof: The proof is straight forward and is a direct consequence of the bounds in

(5.26c), (5.26f), (5.26g), and (5.26h). For instance, (5.33a) is derived by combining

(5.26c) and (5.26f) for ρ = 0. Note that ρ = 0 maximizes (5.26c) and (5.26f). �

5.6.2 Acievability Strategy

We first provide a brief outline of the achievability. Our achievable scheme is

based on block Markov encoding with backward decoding where the scheme is

implemented over B blocks. In each block (with the exception of the last two),

new messages are transmitted. At the end of a block, each receiver creates a

feedback signal and sends it back to its corresponding transmitter. This will

provide each transmitter with part of the other user’s information that caused

interference. Each transmitter encodes this interfering message and transmit

it to its receiver during a different block. Through this part of the transmitted

signal, receivers will be able to complete the decoding of the previously received

messages. During the last two blocks, no new messages will be transmitted and

each transmitter provides its receiver with the interfering message coming from

the other transmitter. Later, we let B go to infinity to get our desired result.

As we have seen in Section 5.3, each receiver may need to decode the super-

position of the two codewords (corresponding to the other user’s cooperative
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common message and part of its own private message). In order to accomplish

this in the Gaussian case, we employ lattice codes.

Lattice Coding Preliminaries

We briefly go over some preliminaries on lattice coding and summerize the re-

sults that will be used later. A lattice is a discrete additive subgroup of Rn. The

fundamental volume V f (Λ) of a lattice Λ is the reciprocal of the number of lattice

points per unit volume.

Given integer p, denote the set of integers modulo p by Zp. Let Zn → Zn
p :

v 7→ v̄ be the componentwise modulo p operation over integer vectors. Also, let

C be a linear (n, k) code over Zp. The lattice ΛC defined as

ΛC = {v ∈ Zn : v̄ ∈ C}, (5.34)

is generated with respect to the linear code C (see [34] for details). In [34], it has

been shown that there exists good lattice codes for point-to-point communica-

tion channels, i.e., codes that achieve a rate close to the capacity of the channel

with arbitrary small decoding error probability. We summarize the result here.

Consider a point-to-point communication scenario over an additive noise

channel

Y = X + Z, (5.35)

where X is the transmitted signal with power constraint P, Y is the received

signal and Z is the additive noise process with zero mean and variance σ2.

A set B of linear codes over Zp is called balanced if every nonzero element
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of Zn
p is contained in the same number of codes in B. Define LB as

LB = {ΛC : C ∈ B}. (5.36)

Lemma 5.1 ([34]) Consider a point-to-point additive noise channel described in (5.35).

Let B be a balanced set of linear (n, k) codes over Zp. Averaged over all lattices from the

set LB defined in (5.36), each scaled by γ > 0 and with a fundamental volume V , we

have that for any δ > 0, the average probability of decoding error is bounded by

P̄e < (1 + δ)
n1

2 log
(
2πeσ2

)
V

, (5.37)

for sufficiently large p and small γ such that γn pn−k = V .

See [34] for the proof. The next lemma describes the existence of a good

lattice code for a point-to-point AWGN channel.

Lemma 5.2 ([34]) Consider a point-to-point additive noise channel described in (5.35)

such that the transmitter satisfies a power constraint of P. Then, we can choose a lattice

Λ generated using construction A, a shift s3 and a shaping region S 4 such that the

codebook (Λ + s) ∩ S achieves a rate R with arbitrarily small probability of error if

R ≤
1
2

log
( P
σ2

)
. (5.38)

In other words, Lemma 5.2 describes the existence of a lattice code with suf-

ficient codewords. See [34] for the proof. For a more comprehensive review of

lattice codes see [18, 34, 42].
3Shift s is a vector in Rn and it is required in order to prove of existence of good lattice codes,

see [34] for more details.
4We need to consider the intersection of a lattice with some shaping region S ⊂ Rn to satisfy

the power constraint.
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Remark 5.6 In this paper, we consider complex AWGN channels. Similar to

Lemma 5.2, one can show that using lattice codes, a rate of log
(

P
σ2

)
is achievable in

the complex channel setting.

Acievability Strategy for CFB1 = CFB and CFB2 = 0

We describe our strategy for the extreme case where CFB1 = CFB and CFB2 = 0

(interchanging user IDs, one can get similar results for CFB2 = CFB and CFB1 = 0).

Our strategy for any other feedback configuration will be based on a combina-

tion of the strategies for these extreme cases.

Codebook Generation and Encoding: The communication strategy consists

of B blocks, each of length N channel uses. In block b, b = 1, 2, . . . , B − 2,

transmitter 1 has four messages W (1,b)
1 ,W (2,b)

1 ,W (3,b)
1 and W (4,b)

1 , where W (i,b)
1 ∈

{1, 2, . . . , 2NR(i)
1 }. Out of these four messages, W (1,b)

1 ,W (2,b)
1 and W (4,b)

1 are new mes-

sages and in particular W (1,b)
1 and W (2,b)

1 form the private message of transmitter

1 while W (4,b)
1 is the non-cooperative message (as it will be clarified shortly for

the feedback strategy, the reason for splitting the private message of transmitter

1 into two parts is that in order to be able to use lattice codes, we would like the

codeword corresponding to the cooperative common message of transmitter 2

to be received at the same power level as part of the codeword corresponding to

the parivate message of transmitter 1). We will describe W (3,b)
1 when we explain

the feedback strategy. On the other hand, transmitter 2 has three new indepen-

dent messages W (1,b)
2 ,W (2,b)

2 and W (3,b)
2 , the private, the cooperative common, and

the non-cooperative common message of transmitter 2 respectively.

At transmitter k, message W (i,b)
k is mapped to a Gaussian codeword X(i,b)

k
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picked from a codebook of size 2NR(i)
k and any element of this codebook is drawn

i.i.d. from CN(0, P(i)
k ), (k, i) ∈ {(1, 1), (1, 3), (1, 4), (2, 1), (2, 3)}. For notational sim-

plicity, we have removed the superscript N.

Message W (2,b)
k is mapped to X(2,b)

k encoded by lattice Λ
(2,b)
k with shift s(2,b)

k and

spherical shaping region S (2,b)
k . This gives a codebook of size 2NR(2)

k with power

constraint of P(2)
k , k = 1, 2. Denote this codebook by (Λ(2,b)

k + s(2,b)
k ) ∩ S (2,b)

k .

Transmitter k will superimpose all of its transmitted signals to create X(b)
k ,

its transmitted signal during block b, i.e., X(b)
1 = X(1,b)

1 + X(2,b)
1 + X(3,b)

1 + X(4,b)
1 and

X(b)
2 = X(1,b)

2 + X(2,b)
2 + X(3,b)

2 .

The power assignments should be such that they are non-negative and sat-

isfy the power constraint at each transmitter:

P1 = P(1)
1 + P(2)

1 + P(3)
1 + P(4)

1 ≤ 1,

P2 = P(1)
2 + P(2)

2 + P(3)
2 ≤ 1.

(5.39)

Feedback Strategy: Our feedback strategy is inspired by the motivating ex-

ample in Section 5.3. Remember that in this example, receiver 2 had to feed

back the superposition of the two codewords (corresponding to transmitter 1’s

cooperative common message and part of its private message). To realize this

in the Gaussian case, we incorporate lattice coding with appropriate power as-

signment as part of our strategy.

We set SNRP(2)
1 = INRP(2)

2 , so that X(2,b)
1 and X(2,b)

2 arrive at the same power

level at receiver 1 and therefore hdX(2,b)
1 + hcX(2,b)

2 is a lattice point. We refer to this

lattice index as I(b)
Λ1,2

. Receiver 1 then feeds
(
I(b)
Λ1,2

mod 2NCFB
)

back to transmitter 1.

Given
(
I(b)
Λ1,2

mod 2NCFB
)
, transmitter 1 removes hdX(2,b)

1 and decodes the mes-
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sage index of W (2,b)
2 . This can be done as long as the total number of lattice points

for either of the two aligned messages is less than 2NCFB , i.e., R(2,b)
1 ,R(2,b)

2 ≤ CFB.

Since the feedback transmission itself lasts a block, we set W (3,b+2)
1 = W (2,b)

2 .

Decoding: For notational simplicity, we ignore the block index and from

our description it is clear whether the two signals belong to the same block or

different ones. We also use the following shorthand notation:

P(1: j)
k = P(1)

k + P(2)
k + . . . + P( j)

k k = 1, 2. (5.40)

Our achievable scheme employs different decoding orders depending on the

channel gains. In other words, based on the channel gains the number of re-

quired messages to achieve the desired sum-rate might vary. In fact based on

the channel gains, it might be sufficient to consider fewer messages than sug-

gested above. In such cases, we assume the unnecessary messages to be deter-

ministic (i.e., the corresponding rate to be zero). In particular, we have three

different cases.

Case (a) log (INR) ≤ 1
2 log (SNR):

In this case, we set R(4)
1 = R(3)

2 = 0. In other words, W (4)
1 and W (3)

2 are determin-

istic messages. We then get

Y1 = hd

(
X(1)

1 + X(2)
1 + X(3)

1

)
+ hc

(
X(1)

2 + X(2)
2

)
+ Z1. (5.41)

At the end of each block, receiver 1 first decodes X(3)
1 by treating all other

codewords as noise. X(3)
1 can be decoded with small error probability if

R(3)
1 ≤ log

1 +
SNRP(3)

1

1 + INRP2 + SNRP(1:2)
1

 . (5.42)
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It then removes hdX(3)
1 from the received signal and decodes X(1)

1 by treating

other codewords as noise. X(1)
1 is decodable at receiver 1 with arbitrary small

error probability if

R(1)
1 ≤ log

1 +
SNRP(1)

1

1 + INRP2 + SNRP(2)
1

 . (5.43)

After removing hdX(1)
1 , receiver 1 has access to hdX(2)

1 +hcX(2)
2 +hcX(1)

2 +Z1. Since

we have set SNRP(2)
1 = INRP(2)

2 , hdX(2)
1 + hcX(2)

2 is a lattice point with some index

I(b)
Λ1,2

. Receiver 1 decodes I(b)
Λ1,2

by treating other codewords as noise, and sends

back
(
I(b)
Λ1,2

mod 2NCFB
)

to transmitter 1. From Lemma 5.2, decoding with arbitrary

small error probability is feasible if

R(2)
1 ≤

log

 SNRP(2)
1

1 + INRP(1)
2

+

,

R(2)
2 ≤

log

 INRP(2)
2

1 + INRP(1)
2

+

,

(5.44)

Here [·]+ = max{·, 0}.

The decoding at receiver 2 proceeds as follows. At the end of each block,

receiver 2 removes hcX(3)
1 from its received signal. Note that X(3)

1 is in fact a func-

tion of W (2,b−2)
2 and thus it is known to receiver 2 (assuming successful decoding

in the previous blocks). Therefore, after removing hcX(3)
1 , we get

Y2 = hd

(
X(1)

2 + X(2)
2

)
+ hc

(
X(1)

1 + X(2)
1

)
+ Z2. (5.45)

Receiver 2 now decodes X(2)
2 and X(1)

2 by treating other codewords as noise.

This can be done with arbitrary small error probability if

R(2)
2 ≤

log

 SNRP(2)
2

1 + SNRP(1)
2 + INRP(1:2)

1

+

,

R(1)
2 ≤ log

1 +
SNRP(1)

2

1 + INRP(1:2)
1

 .
(5.46)
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The decoding strategy presented above describes a set of constraints on the

rates, which is summarized as follows:

R(1)
1 ≤ log

(
1 +

SNRP(1)
1

1+INRP2+SNRP(2)
1

)
R(2)

1 ≤ min
{
log

(
SNRP(2)

1

1+INRP(1)
2

)+

,CFB

}
R(3)

1 ≤ log
(
1 +

SNRP(3)
1

1+INRP2+SNRP(1:2)
1

)
R(1)

2 ≤ log
(
1 +

SNRP(1)
2

1+INRP(1:2)
1

)
R(2)

2 ≤ min
{[

log
(

INRP(2)
2

1+INRP(1)
2

)]+

,CFB

}
(5.47)

Therefore, we can achieve a sum-rate

R(a)
SUM = R(1)

1 + R(2)
1 + R(1)

2 + R(2)
2 ,

arbitrary close to5

R(a)
SUM = log

1 +
SNRP(1)

1

1 + INRP2 + SNRP(2)
1


+ min


log

 SNRP(2)
1

1 + INRP(1)
2

+

,CFB


+ log

1 +
SNRP(1)

2

1 + INRP(1:2)
1


+ min


log

 INRP(2)
2

1 + INRP(1)
2

+

,CFB

 . (5.48)

Case (b) 1
2 log (SNR) ≤ log (INR) ≤ 2

3 log (SNR): In this case, we have

Y1 = hd

(
X(1)

1 + X(2)
1 + X(3)

1 + X(4)
1

)
+ hc

(
X(1)

2 + X(2)
2 + X(3)

2

)
+ Z1. (5.49)

5Note that X(3,b)
1 is a function of the cooperative common message of transmitter 2, i.e.,

W (2,b−2)
2 , hence, it does not contain any new information and it is not considered in the sum-

rate.
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At the end of each block, receiver 1 first decodes X(4)
1 by treating all other code-

words as noise, and removes hdX(4)
1 from the received signal. This can be de-

coded with small error probability if

R(4)
1 ≤ log

1 +
SNRP(4)

1

1 + INRP2 + SNRP(1:3)
1

 . (5.50)

Next, it decodes X(3)
1 by treating other codewords as noise and removes hdX(3)

1

from the received signal. This can be decoded with arbitrary small error proba-

bility if

R(3)
1 ≤ log

1 +
SNRP(3)

1

1 + INRP2 + SNRP(1:2)
1

 . (5.51)

We proceed by decoding the non-cooperative common message of transmit-

ter 2, i.e., X(3)
2 by treating other codewords as noise. This can be decoded with

arbitrary small error probability if

R(3)
2 ≤ log

1 +
INRP(3)

2

1 + INRP(1:2)
2 + SNRP(1:2)

1

 . (5.52)

It then removes hcX(3)
2 from the received signal, having now access to hdX(2)

1 +

hcX(2)
2 + hdX(1)

1 + hcX(1)
2 + Z1. We decode the lattice index of hdX(2)

1 + hcX(2)
2 , i.e.,

I(b)
Λ1,2

, by treating other codewords as noise. It then sends back
(
I(b)
Λ1,2

mod 2NCFB
)

to

transmitter 1. From Lemma 5.2, decoding with arbitrary small error probability

is feasible if

R(2)
1 ≤

log

 SNRP(2)
1

1 + INRP(1)
2 + SNRP(1)

1

+

,

R(2)
2 ≤

log

 INRP(2)
2

1 + INRP(1)
2 + SNRP(1)

1

+

.

(5.53)

After decoding and removing hdX(2)
1 + hcX(2)

2 , receiver 1 decodes X(1)
1 . This can

be done with arbitrary small error probability if

R(1)
1 ≤ log

1 +
SNRP(1)

1

1 + INRP(1)
2

 . (5.54)
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Similar to the previous case, receiver 2 removes X(3)
1 from its received sig-

nal. The decoding at receiver 2 proceeds as follows. Receiver 2 decodes X(3)
2 by

treating other codewords as noise and removes hdX(3)
2 from the received signal.

Next, X(2)
2 , the non-cooperative common message of transmitter 1, will be de-

coded while treating other codewords as noise. Receiver 2 removes hdX(2)
2 from

the received signal and then, decodes X(4)
1 by treating other codewords as noise.

After removing hcX(4)
1 , we now decode the private message of transmitter 2, i.e.,

X(1)
2 . This can be done with arbitrary small error probability if

R(3)
2 ≤ log

1 +
SNRP(3)

2

1 + SNRP(1:2)
2 + INR(P1 − P(3)

1 )

 ,
R(2)

2 ≤

log

 SNRP(2)
2

1 + SNRP(1)
2 + INR(P1 − P(3)

1 )

+

,

R(4)
1 ≤ log

1 +
INRP(4)

1

1 + INRP(1:2)
1 + SNRP(1)

2

 ,
R(1)

2 ≤ log

1 +
SNRP(1)

2

1 + INRP(1:2)
1

 .

(5.55)

The decoding strategy presented above describes a set of constraints on the

rates, which is summarized as follows:

R(1)
1 ≤ log

(
1 +

SNRP(1)
1

1+INRP(1)
2

)
R(2)

1 ≤ min
{[

log
(

SNRP(2)
1

1+INRP(1)
2 +SNRP(1)

1

)]+

,CFB

}
R(3)

1 ≤ log
(
1 +

SNRP(3)
1

1+INRP2+SNRP(1:2)
1

)
R(4)

1 ≤ log
(
1 +

INRP(4)
1

1+INRP(1:2)
1 +SNRP(1)

2

)
R(1)

2 ≤ log
(
1 +

SNRP(1)
2

1+INRP(1:2)
1

)
R(2)

2 ≤ min
{[

log
(

INRP(2)
2

1+INRP(1)
2 +SNRP(1)

1

)]+

,CFB

}
R(3)

2 ≤ log
(
1 +

INRP(3)
2

1+INRP(1:2)
2 +SNRP(1:2)

1

)
.

(5.56)

Therefore, we can achieve a sum-rate

R(b)
SUM = R(1)

1 + R(2)
1 + R(4)

1 + R(1)
2 + R(2)

2 + R(3)
2 ,
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arbitrary close to6

R(b)
SUM = log

1 +
SNRP(1)

1

1 + INRP(1)
2

 (5.57)

+ min


log

 SNRP(2)
1

1 + INRP(1)
2 + SNRP(1)

1

+

,CFB


+ log

1 +
INRP(4)

1

1 + INRP(1:2)
1 + SNRP(1)

2


+ log

1 +
SNRP(1)

2

1 + INRP(1:2)
1


+ min


log

 INRP(2)
2

1 + INRP(1)
2 + SNRP(1)

1

+

,CFB


+ log

1 +
INRP(3)

2

1 + INRP(1:2)
2 + SNRP(1:2)

1

 .
Case (c) 2 log (SNR) ≤ log (INR):

In this case, there is no need to decode the superposition of the two mes-

sages. So set R(1)
1 ,R(2)

1 and R(1)
2 equal to zero. We then get

Y1 = hd

(
X(3)

1 + X(4)
1

)
+ hc

(
X(2)

2 + X(3)
2

)
+ Z1, (5.58)

Y2 = hd

(
X(2)

2 + X(3)
2

)
+ hc

(
X(3)

1 + X(4)
1

)
+ Z2. (5.59)

As for the feedback strategy, receiver 1 decodes X(2)
2 by treating other code-

words as noise, and sends the lattice index of W (2)
2 back to transmitter 1 dur-

ing the following block. Transmitter 1 later encodes this message as X(3)
1 and

transmits it. It is worth mentioning that in this case, it is in fact receiver 2 who

wants to exploit the feedback link of user 1 to get part of its message. In other

words, we have two paths for information flow from transmitter 2 to receiver 2;

6Note that X(3,b)
1 is a function of the cooperative common message of transmitter 2, i.e.,

W (2,b−2)
2 , hence it is not considered in the sum-rate.
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one through the direct link between them and the other one through receiver 1,

feedback link and transmitter 1. The decoding works very similar to what we

described above and we get the following set of constraints to guarantee small

error probability at the decoders.

R(3)
1 ≤ log

(
1 +

INRP(3)
1

1+SNRP2

)
R(4)

1 ≤ log
(
1 +

SNRP(4)
1

1+SNRP(3)
1

)
R(2)

2 ≤ min
{[

log
(

INRP(2)
2

1+SNRP1

)]+

,CFB

}
R(3)

2 ≤ log
(
1 +

SNRP(3)
2

1+SNRP(2)
2

)
(5.60)

As before X(3,b)
1 is a function of W (2,b−2)

2 . Therefore, we can achieve a sum-rate

R(c)
SUM = R(4)

1 + R(2)
2 + R(3)

2 ,

arbitrary close to

R(c)
SUM = log

1 +
SNRP(4)

1

1 + SNRP(3)
1


+ min


log

 INRP(2)
2

1 + SNRP1

+

,CFB


+ log

1 +
SNRP(3)

2

1 + SNRP(2)
2

 . (5.61)

Case (d) 2
3 log (SNR) ≤ log (INR) ≤ 2 log (SNR):

As we will show in Appendix D.4, in this regime feedback can at most in-

crease the sum-rate capacity by 4 bits/sec/Hz. Hence, we ignore the feedback

and use the non-feedback transmission strategy in [19] (i.e., having only one

private and one common message at each transmitter and jointly decoding at

receivers).
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General Feedback Assignment

We now describe our achievable scheme for general feedback capacity assign-

ment based on a combination of the achievability schemes for the extreme cases.

Let CFB1 = λCFB and CFB2 = (1−λ)CFB, such that 0 ≤ λ ≤ 1. We call the achievable

sum-rate of the extreme case CFB1 = CFB and CFB2 = 0 by RCFB2=0
SUM , and similarly,

we refer to the achievable sum-rate of the other extreme case by RCFB1=0
SUM . We split

N

λ N

Feedback Transmission
for the previous block

N

λ N

Block b Block b+1

Figure 5.6: Achievability strategy for CFB1 = λCFB and CFB2 = (1 − λ)CFB.

any block b, b = 1, 2, . . . , B − 2, of length N into two sub-blocks: b1 of length λN

and b2 of length (1− λ)N. See Figure 5.6 for a depiction. During block b1, we im-

plement the transmission strategy of the extreme case CFB1 = CFB and CFB2 = 0,

with a block length of λN; and during block b2, the achievability scheme of the

extreme case CFB1 = 0 and CFB2 = CFB, with a block length of (1 − λ) N.

At the end of each sub-block, receivers decode the messages as described

before and create the feedback messages. During block b + 1 the feedback mes-

sages of sub-blocks b1 and b2 will be sent back to corresponding transmitters,

as shown in Figure 5.6. Note that we use CFB1 during the entire length of block

b + 1, hence the effective feedback rate of user 1 (total feedback use divided by

number of transmission time slots), would be

Ceff
FB1 =

NCFB1

λN
=
λNCFB

λN
= CFB. (5.62)

Hence, we can implement the achievability strategy corresponding to the
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extreme case CFB1 = CFB and CFB2 = 0. Similar argument is valid for the other

extreme case. With this achievability scheme, as N goes to infinity, we achieve a

sum-rate of λRCFB2=0
SUM + (1 − λ) RCFB1=0

SUM .

Power Splitting

We have yet to specify the values of the powers associated with the codewords

at the transmitters (i.e., P(i)
k : k ∈ {1, 2}, i ∈ {1, 2, 3, 4}). In general, one can solve

an optimization problem to find the optimal choice of power level assignments

that maximizes the achievable sum-rate. We have performed numerical analysis

for this optimization problem. Figure 5.7 shows the gap between our proposed

achievable scheme and the outer-bounds in Corollary 5.5 at (a) SNR = 20dB, (b)

SNR = 40dB, and (c) SNR = 60dB, for CFB = 10 bits. In fact through our numeri-

cal analysis, we can see that the gap is at most 4, 5, and 5.5 bits/sec/Hz for the

given values of SNR, respectively. Note that sharp points in Figure 5.7 are due

to the change of achievability scheme for different values of INR as described

before.

In Appendix D.4, we present an explicit choice of power assignments such

that the gap between the achievability scheme and the outer-bounds does not

scale with SNR. As a result, we get the following Theorem.

Theorem 5.6 The sum-rate capacity of the Gaussian IC with rate-limited feedback is

within at most 14.8 bits/sec/Hz of the maximum R1 + R2 satisfying

0 ≤ R1 + R2 ≤ 2 log (1 + SNR) + CFB1 + CFB2 (5.63a)

0 ≤ R1 + R2 ≤ log
(
1 +

SNR
1 + INR

)
(5.63b)
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Figure 5.7: Numerical analysis: gap between achievable scheme and the
outer-bounds in Corollary 5.5 at (a) SNR = 20dB, (b) SNR =

40dB, and (c) SNR = 60dB for CFB = 10 bits.

+ log
(
1 + SNR + INR + 2

√
SNR · INR

)
0 ≤ R1 + R2 ≤ 2 log

(
1 + INR +

SNR
1 + INR

)
(5.63c)

+ CFB1 + CFB2.

Remark 5.7 Note that the given choice of power assignment in Appendix D.4 is not

necessarily optimal, and our analysis is pessimistic in the sense that we consider the

worst case scenario, and we calculate the gap for the worst case.

As a corollary, we characterize the symmetric capacity of the two-user Gaus-

sian IC with rate-limited feedback, as defined below, to within a constant num-

ber of bits.
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Definition 5.1 The symmetric capacity is defined by

Csym = sup{R : (R,R) ∈ C}, (5.64)

where C is the capacity region.

Corollary 5.7 For the symmetric Gaussian IC with equal feedback link capacities,

i.e., CFB1 = CFB2, the presented achievability strategy achieves to within at most 7.4

bits/sec/Hz/user to the symmetric capacity Csym defined in (5.64), for all channel gains.

Proof: Theorem 5.6 says that we can achieve to within at most 14.8 bits/sec/Hz

of the outerbounds in Corollary 5.5 for any feedback assignment. Therefore,

in symmetric IC with equal feedback link capacities CFB1 = CFB2 = 1
2CFB1,

the gap between the achievability and the symmetric capacity is at most 7.4

bits/sec/Hz/user. �

5.7 Concluding Remarks

We have addressed the two-user interference channel with rate-limited feed-

back under three different models: the El Gamal-Costa deterministic model [16],

the linear deterministic model [7], and the Gaussian model. We developed

new achievable schemes and new outer-bounds for all of the three models. We

showed the optimality of our scheme under the linear deterministic model. Un-

der the Gaussian model, we established new outer-bounds on the capacity re-

gion with rate-limited feedback, and we proposed a transmission strategy em-

ploying lattice codes and the ideas developed in the first two models. Further-

more, we proved that the gap between the achievable sum-rate of the proposed
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scheme and the outer-bound is bounded by a constant number of bits, indepen-

dent of the channel gains.

One of the future directions would be to extend this result to the capacity

region of the asymmetric two-user Gaussian interference channel with rate-

limited feedback. The same achievability scheme can be applied there, however,

the gap analysis will be cumbersome. Therefore, one interesting direction is to

find out new techniques to bound the gap between the achievable region and

the outer-bounds on the capacity region of the asymmetric two-user Gaussian

interference channel with rate-limited feedback.
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APPENDIX A

CHAPTER 1 OF APPENDIX

A.1 Achievability Proof of Theorem 2.1 [Instantaneous-CSIT]

In this appendix, we provide the achievability proof of Theorem 2.1. Below, we

have stated the capacity region of the two-user BFIC with Instantaneous-CSIT

(and no OFB).

CICSIT =


0 ≤ Ri ≤ p, i = 1, 2,

R1 + R2 ≤ 1 − q2 + pq.
(A.1)

Remark A.1 For 0 ≤ p ≤ 0.5, the capacity region is given by

CICSIT =
{
R1,R2 ∈ R+ s.t. Ri ≤ p, i = 1, 2

}
. (A.2)

while for 0.5 < p ≤ 1, the outer-bound on R1 + R2 is also active, see Figure A.1.

With Instantaneous-CSIT, each transmitter knows what channel realization

occurs at the time of transmission. Transmitters can take advantage of such

knowledge and by pairing different realizations, the optimal rate region as

given in Theorem 2.1 can be achieved. We will first describe the achievabil-

ity strategy for 0 ≤ p ≤ 0.5, since it is easier to follow. We then complete the

proof by describing the achievability strategy for 0.5 < p ≤ 1.

A.1.1 Achievabiliy Strategy for 0 ≤ p ≤ 0.5

Note that the result for p = 0 is trivial, so we assume 0 < p ≤ 0.5. Below, we

describe the possible pairing opportunities that are useful in this regime and
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R1

R2

p

p

A =

(a)

R1

R2

p

p

R1+R2 = 1  q2 + pq

A =

B =

(b)

Figure A.1: Capacity region of the two-user BFIC with Instantaneous-CSIT and
for (a) 0 ≤ p ≤ 0.5, and (b) 0.5 < p ≤ 1.

then, we describe the achievability scheme. The possible pairing opportunities

are as follows.

• Type A [Cases 1 and 15]: In Case 15, only the corss links are equal to 1,

therefore, by pairing bits in Case 1 with bits in Case 15, we can cancel out

interference in Case 1, see Figure A.2. In other words by pairing the two

cases, we can communicate 2 bits interference free.

Tx1

Tx2

Rx1

Rx2

a

b

a    b

a    b

a

b

b

a

Tx1

Tx2

Rx1

Rx2

Figure A.2: Pairing opportunity Type A: By pairing Cases 1 and 15, we can
communicate two bits interference-free. For instance, receiver
one has access to bits a ⊕ b and b and as a result, it can decode
its desired bit.

• Type B [Cases 2 and 14]: We can pair up Cases 2 and 14 to cancel out

interference in Case 2 as depicted in Figure A.3.
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Tx1

Tx2

Rx1

Rx2

a

b a    b

a

a

Tx1

Tx2

Rx1

Rx2

a

Figure A.3: Pairing opportunity Type B: By pairing Cases 2 and 14, we can
communicate two bits interference-free. For instance, receiver
two has access to bits a ⊕ b and a and as a result, it can decode
its desired bit.

• Type C [Cases 3 and 13]: Similar to Type B with swapping user IDs.

We are now ready to provide the achievability scheme for the Instantaneous-

CSIT model and for 0 ≤ p ≤ 0.5. We first provide an overview of our scheme.

Overview

Our achievability strategy is carried on over b + 1 communication blocks, each

block with n time instants. We describe the achievability strategy for rate tuple

(R1,R2) = (p, p) . (A.3)

Transmitters communicate fresh data bits in the first b blocks and the final

block is to help the receivers decode their corresponding bits. At the end, using

our scheme, we achieve rate tuple b
b+1 (p, p) as n→ ∞. Finally, letting b→ ∞, we

achieve the desired rate tuple. In our scheme the messages transmitted in block

j, j = 1, 2, . . . , b, will be decoded at the end of block j + 1.
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Achievability strategy

Let W j
i be the message of transmitter i in block j, i = 1, 2, j = 1, 2, . . . , b. More-

over, let W j
1 = a j

1, a
j
2, . . . , a

j
m, and W j

2 = b j
1, b

j
2, . . . , b

j
m, where a j

i ’s and b j
i ’s are picked

uniformly and independently from {0, 1}, i = 1, 2, . . . ,m, j = 1, 2, . . . , b, and some

positive integer m. We set

n = m/p +
(
2/p4

)
m2/3. (A.4)

Achievability strategy for block 1: In the first communication block, at each

time instant t, Txi sends a new data bit (from its initial m bits) if Gii[t] = 1,

i = 1, 2. In other words, Tx1 sends a new data bit either of the following chan-

nel realizations occurs (see Table 2.2): Cases 1, 2, 3, 4, 5, 6, 7, and 8; while Tx2

sends a new data bit if either of the following channel realizations occurs: Cases

1, 2, 3, 4, 9, 10, 11, and 12.

If not specified, the transmitters remain silent. Tx1 transfers its transmitted

bits in Cases 1 and 2 to queues Q1
1,C1 and Q1

1,C2 respectively; and Tx2 transfers its

transmitted bits in Cases 1 and 3 to queues Q1
2,C1 and Q1

2,C3 respectively.

If at the end of block 1, there exists a bit at either of the transmitters that has

not yet been transmitted, we consider it as error type-I and halt the transmission.

Remark A.2 Note that the transmitted bits in Cases 4, 5, 6, 7, 8, 9, 10, 11, and 12 are

available at their corresponding receivers without any interference. In other words, they

are communicated successfully and no retransmission is required.

Assuming that the transmission is not halted, let random variable N1
i,C`

de-

note the number of bits in Q1
i,C`

, (i, `) = (1, 1), (1, 2), (2, 1), (2, 3). Since transition of
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a bit to this queue is distributed as independent Bernoulli RV, upon completion

of block 1, we have

E[N1
i,C`

] =
Pr (Case `)

1 −
∑

i=9,10,...,16 Pr (Case i)
m =

1
p

Pr (Case `) m. (A.5)

If the event
[
N1

i,C`
≥ E[N1

i,C`
] + m

2
3

]
occurs, we consider it as error type-II and

we halt the transmission. At the end of block 1, we add 0’s (if necessary) to

Q1
i,C`

so that the total number of bits is equal to E[N1
i,C`

] + m
2
3 . Furthermore, using

Chernoff-Hoeffding bound, we can show that the probability of errors of types

I and II decreases exponentially with m.

Achievability strategy for block j, j = 2, 3, . . . , b: In communication block j,

j = 2, 3, . . . , b, at each time instant t, Txi sends a new data bit (from its initial m

bits) if Gii[t] = 1, i = 1, 2. Transmitter one transfers its transmitted bit in Cases

1 and 2 to queues Q j
1,C1 and Q j

1,C2 respectively; and Tx2 transfers its transmitted

bit in Cases 1 and 3 to queues Q j
2,C1 and Q j

2,C3 respectively. Note that so far the

transmission scheme is similar to the first communication block.

Now if at a given time instant Case 15 occurs, Txi sends a bit from queue Q j−1
i,C1

and removes it from the this queue. If at time instant t Case 15 occurs and Q j−1
i,C1

is empty, then Txi remains silent. This way, similar to pairing Type A described

previously, the transmitted bits in Case 1 of the previous block can be decoded

at the corresponding receiver.

Furthermore, if at a given time instant Case 14 (13) occurs, Tx1 (Tx2) sends

a bit from queue Q j−1
1,C2 (Q j−1

2,C3) and removes it from the this queue. This is moti-

vated by pairing Type B (C) described previously.

If at the end of block j, there exists a bit at either of the transmitters that has
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not yet been transmitted, or any of the queues Q j−1
1,C1

, Q j−1
1,C2

, Q j−1
2,C1

, or Q j−1
2,C3

is not

empty, we consider this event as error type-I and we halt the transmission.

Assuming that the transmission is not halted, let random variable N j
i,C`

de-

note the number of bits in Q j
i,C`

, (i, `) = (1, 1), (1, 2), (2, 1), (2, 3). Since transition of

a bit to this state is distributed as independent Bernoulli RV, upon completion

of block j, we have

E[N j
i,C`

] =
Pr (Case `)

1 −
∑

i=9,10,...,16 Pr (Case i)
m =

1
p

Pr (Case `) m. (A.6)

If the event
[
N j

i,C`
≥ E[N j

i,C`
] + m

2
3

]
occurs, we consider it as error type-II and

we halt the transmission. At the end of block 1, we add 0’s (if necessary) to

Q j
i,C`

so that the total number of bits is equal to E[N j
i,C`

] + m
2
3 . Using Chernoff-

Hoeffding bound, we can show that the probability of errors of types I and II

decreases exponentially with m.

Achievability strategy for block b + 1: In the final communication block,

transmitters do not communicate any new data bit.

If at time instant t Case 15 occurs, Txi sends a bit from queue Qb
i,C1 and re-

moves it from the this queue. If at time instant t Case 15 occurs and Qb
i,C1 is

empty, then Txi remains silent. If at time instant t Case 14 (13) occurs, Tx1 (Tx2)

sends a bit from queue Qb
1,C2 (Qb

2,C3) and removes it from the this queue.

If at the end of block b + 1, any of the states Qb
1,C1

, Qb
1,C2

, Qb
2,C1

, or Qb
2,C3

is not

empty, we consider this event as error type-I and we halt the transmission.

Note that if the transmission is not halted, any bit is either available at its

intended receiver interference-free, or the interfering bit is provided to the re-

ceiver in the following block. The probability that the transmission strategy
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halts at the end of each block can be bounded by the summation of error prob-

abilities of types I and II. Using Chernoff-Hoeffding bound, we can show that

the probability that the transmission strategy halts at any point approaches zero

as m→ ∞.

Now, since each block has n = m/p +
(
2/p4

)
m2/3 time instants and the prob-

ability that the transmission strategy halts at any point approaches zero as

m→ ∞, we achieve a rate tuple

b
b + 1

(p, p) , (A.7)

as m→ ∞. Finally letting b→ ∞, we achieve the desired rate tuple.

A.1.2 Achievabiliy Strategy for 0.5 < p ≤ 1

For p = 1, the capacity region is the same with no, delayed, or instantaneous

CSIT. So in this section, we assume 0.5 < p < 1. By symmetry, it suffices to de-

scribe the strategy for point A = (p, 2pq). In this regime, we will take advantage

of another pairing opportunity as described below.

• Type D [Cases 2, 3, and 12]: This type of pairing is different from what we

have described so far. In all previous types, we paired up cases that had zero

capacity to cancel out interference in other cases. However, here all three cases

have capacity 1. By pairing all three cases together, we can communicate 4 bits

as depicted in Figure A.4.

Remark A.3 This coding opportunity can be applicable to DoF analysis of wireless

networks with linear schemes in the context of 2× 2× 2 layered networks (Section III.A

of [30]).
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a    b
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c    d

Tx1

Tx2

Rx1

Rx2

Tx1

Tx2

Rx1

Rx2

Tx1

Tx2

Rx1

Rx2

c

b

b

c    b

Figure A.4: Pairing opportunity Type D: Cases 2, 3, and 12. Tx1 uses c to
recover b and then it decodes a, similar argument holds for
Tx2. All three cases have capacity 1, and by pairing them, we
can communicate 4 bits.

Overview

The achievability is again carried on over b+1 communication blocks, each block

with n time instants. We describe the achievability strategy for rate tuple

(R1,R2) = (p, 2pq) , (A.8)

see Figure A.1(b).

Transmitters communicate fresh data bits in the first b blocks and the final

block is to help receivers decode their corresponding bits. At the end, using our

scheme, we achieve rate tuple b
b+1 (p, 2pq) as n → ∞. Finally, letting b → ∞, we

achieve the desired corner point. In our scheme, the transmitted bits in block j,

j = 1, 2, . . . , b, will be decoded by the end of block j + 1.

Achievability strategy

Let W j
i be the message of transmitter i in block j. We assume W j

1 = a j
1, a

j
2, . . . , a

j
m,

and W j
2 = b j

1, b
j
2, . . . , b

j
m2 for j = 1, 2, . . . , b, where a j

i ’s and b j
i ’s are picked uni-

formly and independently from {0, 1}, for some positive value of m and m2 = 2qm
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(note that 2q < 1). We set

n = m/p +
(
2/q4

)
m2/3. (A.9)

Achievability strategy for block 1: In the first communication block, at each

time instant t, transmitter one sends a new data bit if G11[t] = 1 except Case

1. In other words, Tx1 sends a new data bit if either of the following channel

realizations occurs (see Table 2.2): Cases 2, 3, 4, 5, 6, 7, and 8. Transmitter two

sends a new data bit if G22[t] = 1 except Cases 1 and 12. In other words, Tx2

sends a new data bit if either of the following channel realizations occurs: Cases

2, 3, 4, 9, 10, and 11.

If at time instant t where t ≤ q2

p2 n, Case 1 occurs, then each transmitter sends

out a new data bit. Then, Txi transfers its transmitted bit in Case 1 to queue

Q1
i,C1 for t ≤ q2

p2 n. If t > q2

p2 n and Case 1 occurs, then Tx1 sends out a new data

bit while Tx2 remains silent, see Figure A.5. Note that these bits are delivered to

Rx1 interference-free.

both transmitters 
communicate

only transmitter one 
communicates

Communication block 1
n time instants

Figure A.5: If Case 1 occurs during communication block 1, then if t ≤ q2

p2 n,

each transmitter sends out a new data bit. However, if t > q2

p2 n,
then Tx1 sends out a new data bit while Tx2 remains silent.

If t ≤ q2

p2 n, and Case 12 occurs, then Tx2 sends out a new data bit while Tx1

remains silent. Note that these bits are delivered to Rx2 interference-free.
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If not specified, the transmitters remain silent. Note that Tx1 sends a bit if

G11[t] = 1 (i.e. with probability p). On the other hand, Tx2 sends a bit with

probability

∑
j=2,3,4,9,10,11

Pr
(
Case j

)
+

q2

p2

∑
j=1,12

Pr
(
Case j

)
= 2pq. (A.10)

Transmitter one transfers its transmitted bit in Case 2 to queue Q1
1,C2; and Tx2

transfers its transmitted bit in Case 3 to queue Q1
2,C3. If at the end of block 1,

there exists a bit at either of the transmitters that has not yet been transmitted,

we consider it as error type-I and halt the transmission.

Remark A.4 Note that the transmitted bits in Cases 4, 5, 6, 7, 8, 9, 10, and 11 are avail-

able at their corresponding receivers without any interference.

Assuming that the transmission is not halted, let random variable N1
i,C`

de-

note the number of bits in Q1
i,C`

, (i, `) = (1, 1), (1, 2), (2, 1), (2, 3). Since transition of

a bit to this state is distributed as independent Bernoulli RV, upon completion

of block 1, we have

E[N1
1,C1

] =

(
q2/p2

)
Pr (Case 1)

1 −
∑

j=9,10,...,16 Pr
(
Case j

)m = pq2m,

E[N1
1,C2

] =
Pr (Case 2)

1 −
∑

j=9,10,...,16 Pr
(
Case j

)m = p2qm,

E[N1
2,C1

] =

(
q2/p2

)
Pr (Case 1)∑

j=2,3,4,9,10,11 Pr
(
Case j

)
+

q2

p2

∑
j=1,12 Pr

(
Case j

)2qm = pq2m,

E[N1
2,C3

] =
Pr (Case 3)∑

j=2,3,4,9,10,11 Pr
(
Case j

)
+

q2

p2

∑
j=1,12 Pr

(
Case j

)2qm = p2qm. (A.11)

If the event
[
N1

i,C`
≥ E[N1

i,C`
] + m

2
3

]
occurs, we consider it as error type-II and

we halt the transmission. At the end of block 1, we add 0’s (if necessary) to
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Q1
i,C`

so that the total number of bits is equal to E[N1
i,C`

] + m
2
3 . Using Chernoff-

Hoeffding bound, we can show that the probability of errors of types I and II

decreases exponentially with m.

Achievability strategy for block j, j = 2, 3, . . . , b: In communication block

j, j = 2, 3, . . . , b, at each time instant t, transmitter one sends a new data bit if

G11[t] = 1 except Case 1, while transmitter two sends a new data bit if G22[t] = 1

except Cases 1 and 12.

If t ≤ q2

p2 n and Case 1 occurs, then each transmitter sends out a new data bit.

Then Txi transfers its transmitted bit in Case 1 to queue Q j
i,C1 for t ≤ q2

p2 n. If t > q2

p2 n

and Case 1 occurs, then Tx1 sends out a new data bit while Tx2 remains silent.

Note that these bits are delivered to Rx1 interference-free.

If t ≤ q2

p2 n and Case 12 occurs, then Tx2 sends out a new data bit while Tx1

remains silent. We will exploit channel realization 12 for t > q2

p2 n, to perform

pairing Type D.

Transmitter one transfers its transmitted bit in Case 2 to queue Q j
1,C2; and

transmitter two transfers its transmitted bit in Case 3 to queue Q j
2,C3. Note that

so far the transmission scheme is similar to the first communication block.

Now, if at time instant t Case 15 occurs, Txi sends a bit from queue Q j−1
i,C1 and

removes it from the this queue. If at time instant t Case 15 occurs and Q j−1
i,C1 is

empty, then Txi remains silent. This way, similar to pairing Type A described

previously, the transmitted bits in Case 1 of the previous block can be decoded

at the corresponding receiver.

Furthermore, if at time instant t Case 14 (13) occurs, Tx1 (Tx2) sends a bit
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from queue Q j−1
1,C2 (Q j−1

2,C3) and removes it from the this queue. This is motivated

by pairing Type B (C) described previously.

Finally, if t > q2

p2 n and Case 12 occurs, Tx1 sends a bit from queue Q j−1
1,C2 and

Tx2 sends a bit from queue Q j−1
2,C3. Each transmitter removes the transmitted bit

from the corresponding queue. This is motivated by pairing Type D described

above.

If at the end of block j, there exists a bit at either of the transmitters that has

not yet been transmitted, or any of the states Q j−1
1,C1, Q j−1

1,C2, Q j−1
2,C1, or Q j−1

2,C3 is not

empty, we consider it as error type-I and halt the transmission.

Assuming that the transmission is not halted, let random variable N j
i,C`

de-

note the number of bits in Q j
i,C`

, (i, `) = (1, 1), (1, 2), (2, 1), (2, 3). Since transition of

a bit to this state is distributed as independent Bernoulli RV, upon completion

of block j, we have

E[N j
1,C1

] =

(
q2/p2

)
Pr (Case 1)

1 −
∑

j=9,10,...,16 Pr
(
Case j

)m = pq2m,

E[N j
1,C2

] =
Pr (Case 2)

1 −
∑

j=9,10,...,16 Pr
(
Case j

)m = p2qm,

E[N j
2,C1

] =

(
q2/p2

)
Pr (Case 1)∑

j=2,3,4,9,10,11 Pr
(
Case j

)
+

q2

p2

∑
j=1,12 Pr

(
Case j

)2qm = pq2m,

E[N j
2,C3

] =
Pr (Case 3)∑

j=2,3,4,9,10,11 Pr
(
Case j

)
+

q2

p2

∑
j=1,12 Pr

(
Case j

)2qm = p2qm. (A.12)

If the event
[
N j

i,C`
≥ E[N j

i,C`
] + m

2
3

]
occurs, we consider it as error type-II and

we halt the transmission. At the end of block 1, we add 0’s (if necessary) to

Q j
i,C`

so that the total number of bits is equal to E[N j
i,C`

] + m
2
3 . Using Chernoff-

Hoeffding bound, we can show that the probability of errors of types I and II

decreases exponentially with m.
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Achievability strategy for block b + 1: In the final communication block,

transmitters do not communicate any new data bit.

If at time instant t Case 15 occurs, Txi sends a bit from queue Qb
i,C1 and re-

moves it from the this queue. If at time instant t Case 15 occurs and Qb
i,C1 is

empty, then Txi remains silent. If at time instant t Case 14 (13) or 12 occurs, Tx1

(Tx2) sends a bit from queue Qb
1,C2 (Qb

2,C3) and removes it from the this queue.

If at the end of block j any of the states Qb
1,C1, Qb

1,C2, Qb
2,C1, or Qb

2,C3 is not empty,

we consider it as error type-I and halt the transmission.

Note that if the transmission is not halted, any bit is either available at its

intended receiver interference-free, or the interfering bits is provided to the re-

ceiver in the following block. The probability that the transmission strategy

halts at the end of each block can be bounded by the summation of error prob-

abilities of types I and II. Using Chernoff-Hoeffding bound, we can show that

the probability that the transmission strategy halts at any point approaches zero

for m→ ∞.

Now, since each block has n = m/p+
(
2/q4

)
m2/3 time instants and the probabil-

ity that the transmission strategy halts at any point approaches zero for m→ ∞,

we achieve a rate tuple

b
b + 1

(p, 2pq) , (A.13)

as m→ ∞. Finally letting b→ ∞, we achieve the desired rate tuple.
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A.2 Converse Proof of Theorem 2.1 [Instantaneous-CSIT]

The derivation of the outer-bound on individual rates is simple, however for the

completeness of the results, we include the proof here. This outer-bound can be

used for other theorems as needed. To derive the outer-bound on R1, we have

nR1 = H(W1)
(a)
= H(W1|Gn)

(b)
= H(W1|Xn

2 ,G
n)

(Fano)
≤ I(W1; Yn

1 |X
n
2 ,G

n) + nεn

(data proc.)
≤ I(Xn

1 ; Yn
1 |X

n
2 ,G

n) + nεn

= H(Yn
1 |X

n
2 ,G

n) − H(Yn
1 |X

n
1 , X

n
2 ,G

n) + nεn

= H(Gn
11Xn

1 |X
n
2 ,G

n) + nεn

≤ pn + nεn, (A.14)

where εn → 0 as n → ∞; (a) holds since message W1 is independent of Gn; and

(b) holds since given Gn, W1 is independent of Xn
2 , see (2.44). Similarly, we have

nR2 ≤ pn + nεn. (A.15)

dividing both sides by n and let n→ ∞, we have
R1 ≤ p

R2 ≤ p
(A.16)

The outer-bound on R1 + R2 follows from the proof of Theorem 2.4 in Sec-

tion 2.10.
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A.3 Achievability Proof of Theorem 2.2: Sum-rate for 0 ≤ p <

0.5

In this appendix, we provide the achievability proof of Theorem 2.2 with

Delayed-CSIT and for 0 ≤ p < 0.5. We provide the an achievability strategy

for rate tuple

R1 = R2 = min
{

p,
(1 − q2)

1 + (1 − q2)−1 p

}
. (A.17)

Let the messages of transmitters one and two be denoted by W1 =

a1, a2, . . . , am, and W2 = b1, b2, . . . , bm, respectively, where ai’s and bi’s are picked

uniformly and independently from {0, 1}, i = 1, . . . ,m. We show that it is possible

to communicate these bits in

n = max
{
m/p,

(
1 − q2

)−1
m +

(
1 − q2

)−2
pm

}
+ O

(
m2/3

)
(A.18)

time instants with vanishing error probability (as m → ∞). Therefore achieving

the rates given in (A.17) as m→ ∞.

Phase 1 [uncategorized transmission]: At the beginning of the communication

block, we assume that the bits at Txi are in queue Qi→i, i = 1, 2. At each time

instant, Txi sends out a bit from Qi→i and this bit will either stay in the initial

queue or a transition to a new queue will take place. Table A.1 summarizes the

transitions for each channel realization. The arguments are very similar to our

discussion in Section 2.5, and the only difference is the way we handle Cases

7, 8, 11, and 12. We provide some details about these cases.

For Cases 7
(
↗⇀

)
and 8

(
↗↘⇀

)
, in Section 2.5, we updated the status of the trans-

mitted bit of Tx2 to Q2→{1,2}. However, this scheme is suboptimal for 0 ≤ p < 0.5,
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and instead we update the status of the transmitted bit of Tx2 to an intermediate

queue Q2,INT . Then in Phase 2, we retransmit these bits and upgrade their status

once more. Similar story holds for Cases 11 and 12. The main reason for doing

this is as follows. As we discussed in Section 2.4, there are many opportunities

to combine bits in order to improve the achievable rates. However, we could

never combine the bits that were transmitted in Cases 7, 8, 11, or 12 with other

bits. This was not an issue for 0.5 ≤ p ≤ 1, however for 0 ≤ p < 0.5, we need to

find a way to combine these bits with other bits in future time instants. To do

so, the only way is to keep them in an intermediate queue and retransmit them

again in Phase 2.

Phase 1 goes on for

(
1 − q2

)−1
m + m

2
3 (A.19)

time instants and if at the end of this phase either of the queues Qi→i is not

empty, we declare error type-I and halt the transmission.

Assuming that the transmission is not halted, upon completion of Phase 1,

we have

E[N1,C1] =
Pr (Case 1)

1 −
∑

i=9,10,13,16 Pr (Case i)
m = (1 − q2)−1 p4m,

E[N1→2|1] =
Pr (Case 2)

1 −
∑

i=9,10,13,16 Pr (Case i)
m = (1 − q2)−1 p3qm,

E[N1→1|2] =

∑
j=14,15 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m = (1 − q2)−1 pq2m,

E[N1,INT ] =

∑
j=11,12 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m = (1 − q2)−1 p2qm, (A.20)

similarly, we have

E[N2,C1] =
Pr (Case 1)

1 −
∑

i=9,10,13,16 Pr (Case i)
m = (1 − q2)−1 p4m,
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E[N2→1|2] =
Pr (Case 3)

1 −
∑

i=9,10,13,16 Pr (Case i)
m = (1 − q2)−1 p3qm,

E[N2→2|1] =

∑
j=13,15 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m = (1 − q2)−1 pq2m,

E[N2,INT ] =

∑
j=7,8 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m = (1 − q2)−1 p2qm, (A.21)

If the event
[
N ≥ E[N] + m

2
3

]
for N = Ni,C1 ,Ni→i|ī,Ni→ī|i,Ni,INT , i = 1, 2, occurs,

we consider it as error type-II and we halt the transmission strategy. At the end

of Phase 1, we add 0’s (if necessary) in order to make queues Qi,C1 , Qi→ j| j̄, and

Qi,INT of size equal to E[Ni,C1] + m
2
3 , E[Ni→ j| j̄] + m

2
3 , and E[Ni,INT ] + m

2
3 respectively,

i = 1, 2, and j = i, ī. Furthermore, using Chernoff-Hoeffding bound, we can

show that the probability of errors of types I and II decreases exponentially with

m.

Phase 2 [upgrading status of interfering bits in Q1,C j]: In this phase, we focus on

the bits in Q1,INT and Q2,INT . At each time instant, Txi picks a bit from Qi,INT and

sends it. This bit will either stay in Qi,INT or a transition to a new queue will take

place. Table A.2 describes what happens to the status of the bits if either of the

16 possible cases occurs. Due to symmetry, we only describe the transitions for

bits in Q1,INT . Consider bit “a” in Q1,INT .

• Cases 1, 2, 3, 4, and 5: The transitions for these cases are consistent with

our previous discussions.

• Cases 9, 10, 11, 12, 13, and 16: In these cases, it is easy to see that no change

occurs in the status of bit a.

• Case 6: In this case, bit a is delivered to both receivers and hence, no fur-

ther transmission is required. Therefore, it joins Q1,F .
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• Case 7: Here with slight abuse of, Q1,C1 represents the bits of Tx1 that are

received at both receivers with interference but not necessarily in Case 1,

i = 1, 2. For instance if at a given time, Tx1 sends a bit from Q1,INT and

Case 7 occurs, then this bit joins Q1,C1 since now both receivers have re-

ceived this bit with interference.

• Case 8: In this case, bit a is available at Rx2 but it is interfered at Rx1 by bit

b. However, in Case 8 no change occurs for the bits in Q2,INT . Therefore,

since bit b will be retransmitted until it is provided to Rx1, no retransmis-

sion is required for bit a and it joins Q1,F .

• Cases 14 and 15: If either of these cases occur, bit a becomes available at

Rx2 and is needed at Rx1. Thus, we update the status of such bits to Q1→1|2.

Phase 2 goes on for1 − ∑
i=9,10,11,12,13,16

Pr (Case i)


−1 (

1 − q2
)−1

p2qm + 2m
2
3

=
(
1 −

[
p2q + q2

])−1 (
1 − q2

)−1
p2qm + 2m

2
3 (A.22)

time instants and if at the end of this phase either of the states Qi,INT is not empty,

we declare error type-I and halt the transmission.

Assuming that the transmission is not halted, upon completion of Phase 2,

the states Q1,INT and Q2,INT are empty and we have

E[Ni,C1] = (1 − q2)−1 p4m +

∑
j=1,7 Pr

(
Case j

)
1 −

∑
i=9,10,11,12,13,16 Pr (Case i)

(p2qm + m2/3)

= (1 − q2)−1 p4m +
(
1 −

[
p2q + q2

])−1 (
p4 + p2q2

) (
p2qm + m2/3

)
, (A.23)

similarly, we have

E[Ni→ī|i] = (1 − q2)−1 p3qm +

∑
j=2,4,5 Pr

(
Case j

)
1 −

∑
i=9,10,11,12,13,16 Pr (Case i)

(p2qm + m2/3)
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= (1 − q2)−1 p3qm +
(
1 −

[
p2q + q2

])−1 (
p2q + p2q2

) (
p2qm + m2/3

)
, (A.24)

and

E[Ni→i|ī] = (1 − q2)−1 pq2m +

∑
j=14,15 Pr

(
Case j

)
1 −

∑
i=9,10,11,12,13,16 Pr (Case i)

(p2qm + m2/3)

= (1 − q2)−1 pq2m +
(
1 −

[
p2q + q2

])−1
pq2

(
p2qm + m2/3

)
. (A.25)

If the event
[
N ≥ E[N] + m

2
3

]
for N = Ni,C1 ,Ni→i|ī,Ni→ī|i, i = 1, 2, occurs, we

consider it as error type-II and we halt the transmission strategy. At the end of

Phase 2, we add 0’s (if necessary) in order to make queues Qi,C1 and Qi→ j| j̄ of size

equal to E[Ni,C1] + m
2
3 , and E[Ni→ j| j̄] + m

2
3 respectively, i = 1, 2, and j = i, ī. Using

Chernoff-Hoeffding bound, we can show that the probability of errors of types

I and II decreases exponentially with m.

Phase 3 [encoding and retransmission]: In this phase, Txi communicates the bits

in Qi→i|ī to Rxi, i = 1, 2. However, it is possible to create XOR of these bits with

the bits in Qi→ī|i and the bits in Qi,C1 to create bits of common interest. To do

so, we first encode the bits in these states using the results of [17], and then we

create the XOR of the encoded bits.

In other words, given ε, δ > 0, Txi encodes all the bits in Qi→i|ī at rate p − δ

using random coding scheme of [17]. Similarly, Txi encodes q
(
E[Ni→i|ī] + m

2
3

)
bits from Qi→ī|i and Qi,C1 at rate pq − δ (if there are less bits in Qi→ī|i and Qi,C1 ,

then encode all of the bits in these queues). More precisely, first Txi encodes bits

from Qi→ī|i, and if the number of bits in Qi→ī|i is less than q
(
E[Ni→i|ī] + m

2
3

)
, then

Txi uses bits in Qi,C1 . Txi will then communicate the XOR of these encoded bits.

Note that since Rxi already knows the bits in Qi→ī|i, it can remove the corre-

sponding part of the received signal. Then since the channel from Txī to Rxi can
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be viewed as a binary erasure channel with success probability of pq, from [17],

we know that Rxi can decode Qī,C1 with decoding error probability less than or

equal to ε. Thus, Rxi can decode the transmitted bits from Qī,C1 and use them to

decode the bits in Qi,C1 . Then, Rxi removes the contribution of the bits in Qi,C1

the received signal. Finally, since the channel from Txi to Rxi can be viewed as

a binary erasure channel with success probability of p, from [17], we know that

Rxi can decode Qi→i|ī with decoding error probability less than or equal to ε.

If an error occurs in decoding of the encoded bits, we halt the transmission.

Assuming that the transmission is not halted, at the end of Phase 3, Qi→i|ī be-

comes empty and there are

(
E[Ni→ī|i] + E[Ni,C1] + 2m

2
3 − q

(
E[Ni→i|ī] + m

2
3
))+

(A.26)

bits left in Qi→ī|i and Qi,C1 .

If Qi→ī|i and Qi,C1 are also empty, the transmission strategy ends here. Oth-

erwise, we merge the remaining bits in Qi→ī|i (if any) with the bits in Qi,C1 as

Type-III (see Section 2.4) and put the XOR of them in Qi→{1,2}, i = 1, 2. Finally,

we need to describe what happens to the remaining bits in Qi,C1 . As mentioned

before, a bit in Qi,C1 can be viewed as a bit of common interest by itself. For the

remaining bits in Q1,C1 , we put the first half in Q1→{1,2} (suppose m is picked such

that the remaining number of bits is even). Note that if these bits are delivered

to Rx2, then Rx2 can decode the first half of the bits in Q2,C1 . Therefore, the first

half of the bits in Q2,C1 join Q2,F .

Phase 4 [communicating bits of common interest]: During Phase 4, we deliver

the bits in Q1→{1,2} and Q2→{1,2} using the transmission strategy for the two-source

multicast problem. More precisely, the bits in Qi→{1,2} will be considered as the
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message of transmitter Txi and they will be encoded as in the achievability

scheme of Lemma 2.2, i = 1, 2. Fix ε, δ > 0, from Lemma 2.2 we know that

the rate tuple

(R1,R2) =
1
2

(
(1 − q2) − δ, (1 − q2) − δ

)
is achievable with decoding error probability less than or equal to ε. Thus, using

Lemma 2.2, we can communicate the remaining bits at rate (1 − q2) − δ with

decoding error probability less than or equal to ε. If an error occurs in decoding

of the encoded bits, we halt the transmission.

Using Chernoff-Hoeffding bound and the results of [17], we can show that

the probability that the transmission strategy halts at any point approaches zero

for ε, δ→ 0 and m→ ∞. Moreover, it is easy to verify that for 0 ≤ p ≤
(
3 −
√

5
)
/2,

at the end of Phase 3, Qi→ī|i and Qi,C1 are empty and the transmission strategy

ends there. However, for
(
3 −
√

5
)
/2 < p < 0.5, the transmission strategy contin-

ues to Phase 4. Therefore, we can show that if no error occurs, the transmission

strategy end in

n = max
{
m/p,

(
1 − q2

)−1
m +

(
1 − q2

)−2
pm

}
+ O

(
m2/3

)
(A.27)

time instants. Therefore achieving the rates given in (A.17).

A.4 Achievability Proof of Theorem 2.2: Corner Point C

In this appendix, we describe the achievability strategy for corner point C de-

picted in Figure 2.17(b), i.e.

(R1,R2) = (pq(1 + q), p) . (A.28)
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Let the messages of transmitters one and two be denoted by W1 =

a1, a2, . . . , am1 , and W2 = b1, b2, . . . , bm, respectively, where data bits ai’s and bi’s

are picked uniformly and independently from {0, 1}, and m1 = q(1+q)m (suppose

the parameters are such that m,m1 ∈ Z). Note that for
(
3 −
√

5
)
/2 < p ≤ 1, we

have q(1 + q) < 1. We show that it is possible to communicate these bits in

n =
1
p

m + O
(
m2/3

)
(A.29)

time instants with vanishing error probability (as m→ ∞). Therefore, achieving

corner point C as m → ∞. Our transmission strategy consists of five phases as

described before.

Phase 1 [uncategorized transmission]: This phase is similar to Phase 1 of the

achievability strategy for the optimal sum-rate point A. The main difference is

due to the fact that the transmitters start with unequal number of bits. At the

beginning of the communication block, we assume that the bits a1, a2, . . . , am1 at

Tx1 and the bits b1, b2, . . . , bm1 at Tx2 are in queues Q1→1 and Q2→2 respectively.

Remark A.5 Note that Tx2 has m initial bits, however, only m1 of them are in Q2→2 at

the beginning of the communication block.

At each time instant t, Txi sends out a bit from Qi→i, and this bit will either

stay in the initial queues or a transition will take place. Based on the channel

realizations, a total of 16 possible configurations may occur at any time instant.

Table A.3 summarizes the transition from the initial queue for each channel re-

alization.

In comparison to the achievability strategy of the sum-rate point A, we have

new queues for the bits:
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(a) Qi,OP denotes the bits that have caused interference at the unintended re-

ceiver and this interference has to get resolved.

(b) Q1,INT denotes an intermediate queue of the bits at Tx1 that were transmit-

ted when channel realizations 11 or 12 occurred.

(c) Qi,INT denotes an intermediate queue of the bits at Tx2 that were transmit-

ted when channel realizations 7 or 8 occurred.

Phase 1 goes on for

(1/p − 1) m + m
2
3 (A.30)

time instants and if at the end of this phase, either of queues Qi→i is not empty,

we declare error type-I and halt the transmission.

Assuming that the transmission is not halted, let random variable N1,C1 , Ni,OP,

Ni→i|ī, and Ni,INT denote the number of bits in Q1,C1 , Qi,OP, Qi→i|ī, and Qi,INT respec-

tively i = 1, 2. The transmission strategy will be halted and an error (that we

refer to as error type-II) will occur, if any of the following events happens.

N1,C1 > E[N1,C1] + m
2
3
4
= n1,C1;

Ni,OP > E[Ni,OP] + m
2
3
4
= ni,OP, i = 1, 2;

Ni→i|ī > E[Ni→i|ī] + m
2
3
4
= ni→i|ī, i = 1, 2;

Ni,INT > E[Ni,INT ] + m
2
3
4
= ni,INT , i = 1, 2. (A.31)

From basic probability, and we have

E[N1,C1] =
Pr (Case 1)

1 −
∑

i=9,10,13,16 Pr (Case i)
m1 = (1 − q2)−1 p4m1 = p3qm,

E[N1,OP] =
Pr (Case 2)

1 −
∑

i=9,10,13,16 Pr (Case i)
m1 = (1 − q2)−1 p3qm1 = p2q2m,
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E[N2,OP] =
Pr (Case 3)

1 −
∑

i=5,6,14,16 Pr (Case i)
m1 = (1 − q2)−1 p3qm1 = p2q2m,

E[Ni→i|ī] =

∑
j=14,15 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m1 = (1 − q2)−1
(
pq3 + p2q2

)
m1 = q3m,

E[Ni,INT ] =

∑
j=11,12 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m1 = (1 − q2)−1
(
p3q + p2q2

)
m1 = pq2m.

(A.32)

Furthermore, using Chernoff-Hoeffding bound, we can show that the prob-

ability of errors of types I and II decreases exponentially with m.

At the end of Phase 1, we add 0’s (if necessary) in order to make queues Q1,C1 ,

Qi,OP, Qi→i|ī, and Qi,INT of size equal to n1,C1 , ni,OP, ni→i|ī, and ni,INT respectively as

defined in (A.31), i = 1, 2. For the rest of this appendix, we assume that Phase 1

is completed and no error has occurred.

Phase 2 [updating status of the bits in Qi,INT ]: In this phase, we focus on the

bits in Qi,INT , i = 1, 2. The ultimate goal is to deliver the bits in Qi,INT to both

receivers. At each time instant, Txi picks a bit from Qi,INT and sends it. This bit

will either stay in Qi,INT or a transition to a new queue will take place. Table A.4

describes what happens to the status of the bits if either of the 16 cases occurs.

Here, we describe what happens to the status of a bit in Q1,INT if either of the

16 channel realizations occur. The description for a bit in Q2,INT is very similar

and is summarized in Table A.4. Consider a bit “a” in Q1,INT . At each time

instant, 16 possible cases may occur:

• Cases 9,10,11,12,13, and 16: In these cases, it is easy to see that no change

occurs in the status of bit a.

• Case 6: In this case, bit a is delivered to both receivers and hence, no fur-
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ther transmission is required. Therefore, it joins Q1,F .

• Case 8: In this case, bit a is available at Rx2 but it is interfered at Rx1 by bit

b. However, in Case 8 no change occurs for the bits in Q2,INT . Therefore,

since bit b will be retransmitted until it is provided to Rx1, no retransmis-

sion is required for bit a and it joins Q1,F .

• Cases 14 and 15: If either of these cases occur, bit a becomes available at

Rx2 and is needed at Rx1. Thus, we update the status of such bits to Q1→1|2.

• Cases 1,2,3,4,5, and 7: If either of these cases occur, we upgrade the status

of bit a to the opportunistic state Q1,OP, meaning that from now on bit a

has to be provided to either Rx2 or both receivers such that it causes no

further interference. For instance, if Case 2 occurs, providing bit a to both

receivers is suffiecient to decode the simultaneously transmitted bits.

Phase 2 goes on for

(
1 −

[
p3q + 2pq2 + q4

])−1
pq2m + 2m

2
3 (A.33)

time instants, and if at the end of this phase either of the states Qi,INT is not

empty, we declare error type-I and halt the transmission.

Assuming that the transmission is not halted, since transition of a bit to this

state is distributed as independent Bernoulli RV, upon completion of Phase 2,

we have

E[N1,C1] = p3qm +

∑
j=1,3 Pr

(
Case j

)
1 −

∑
i=9,10,11,12,13,16 Pr (Case i)

(pq2m + m2/3)

= p3qm +
(
1 −

[
p3q + 2pq2 + q4

])−1
p3(pq2m + m2/3),

E[N1,OP] = p2q2m +
(
1 −

[
p3q + 2pq2 + q4

])−1
pq(pq2m + m2/3),

E[N2,OP] = p2q2m +
(
1 −

[
p3q + 2pq2 + q4

])−1
pq(1 + p2)(pq2m + m2/3),
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E[Ni→i|ī] = q3m +
(
1 −

[
p3q + 2pq2 + q4

])−1
pq2

(
pq2 + m2/3

)
, i = 1, 2. (A.34)

The transmission strategy will halt and an error (that we refer to as error

type-II) will occur, if any of the following events happens.

N1,C1 > E[N1,C1] + m
2
3
4
= n1,C1;

Ni,OP > E[Ni,OP] + m
2
3
4
= ni,OP, i = 1, 2;

Ni→i|ī > E[Ni→i|ī] + m
2
3
4
= ni→i|ī, i = 1, 2. (A.35)

Using Chernoff-Hoeffding bound, we can show that the probability of errors

of types I and II decreases exponentially with m.

Again, at the end of Phase 2, we add 0’s (if necessary) in order to make

queues Q1,C1 , Qi,OP, and Qi→i|ī of size equal to n1,C1 , ni,OP, and ni→i|ī respectively as

defined in (A.35), i = 1, 2. For the rest of this appendix, we assume that Phase 2

is completed and no error has occurred.

Note that Tx2 initially had m fresh data bits but during Phase 1 it only com-

municated m1 of them. The rest of those bits will be transmitted during Phase 3

as described below.

Phase 3 [uncategorized transmission vs interference management]: During

Phase 3, Tx1 (the secondary user) communicates q
1+q (p − q2)m bits from states

Q1,C1 and Q1,OP at a rate such that both receivers can decode them at the end of

Phase 3, regardless of the transmitted signal of Tx2. In fact, at Rx1, we have

Pr [G11[t] = 1,G21[t] = 0] = pq, (A.36)

and at Rx2, we have

Pr [G22[t] = 0,G12[t] = 1] = pq. (A.37)
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Hence, using the results of [17], we know that given any ε, δ > 0, Tx1 can use

a random code of rate pq − δ to encode q
1+q (p − q2)m bits from states Q1,C1 and

Q1,OP, and transmits them such that both receivers can decode the transmitted

message with error probability less than or equal to ε for sufficiently large block

length (Tx1 picks bits from Q1,C1 and if this state becomes empty it starts picking

from the bits in Q1,OP). Since Rx2 can decode the transmitted signal of Tx1 in

this phase, we can assume that the encoded bits of Tx1, do not create any new

interference during Phase 3.

We now describe what Tx2 does during Phase 3. At the beginning of Phase 3,

we assume that the bits bm1+1, bm1+2, . . . , bm at Tx2 are in state Q2→2. At each time

instant, Tx2 picks a bit from Q2→2 and sends it. This bit will either stay in Q2→2

or a transition occurs as described below.

• Cases 1, 2, 3, 4, 9, 10, 11, and 12: In these cases the direct link from Tx2 to

Rx2 is on. Therefore, since at the end of block (assuming large enough

block length), we can decode and remove the transmitted signal of Tx1,

the transmitted bit of Tx2 leaves Q2→2 and joins Q2,F .

• Cases 7, 8, 13, and 15: In these cases (assuming the transmitted signal of

Tx1 can be removed), the transmitted bit of Tx2 becomes available at Rx1

while it is required at Rx2. Thus, the transmitted bit of Tx2 leaves Q2→2 and

joins Q2→2|1.

• Cases 5, 6, 14, and 16: In these cases, no change hanppens in the status of

the transmitted bit from Tx2.

Phase 3 goes on for

(p − q2)
(1 − q2)

m + m
2
3 (A.38)
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time instants and if at the end of this phase there is a bit left in Q2→2 or an error

occurs in decoding the transmitted signal of Tx1, we declare error type-I and

halt the transmission. Note that during Phase 3, the number of bits in Q1→1|2

and Q2,OP remain unchanged.

Assuming that the transmission is not halted, since transition of a bit to this

state is distributed as independent Bernoulli RV, upon completion of Phase 2,

we have

E[N1,C1] =

[
p3qm +

(
1 −

[
p3q + 2pq2 + q4

])−1
p3(pq2m + m2/3) −

q
1 + q

(p − q2)m
]+

,

E[N1,OP] = p2q2m +
(
1 −

[
p3q + 2pq2 + q4

])−1
pq(pq2m + m2/3)

−

[
q

1 + q
(p − q2)m − p3qm −

(
1 −

[
p3q + 2pq2 + q4

])−1
p3(pq2m + m2/3)

]+

.

(A.39)

For
(
3 −
√

5
)
/2 ≤ p ≤ 1, E[N1,OP] is non-negative. The transmission strategy

will halt and an error (that we refer to as error type-II) will occur, if any of the

following events happens.

(a) N1,C1 > E[N1,C1] + m
2
3 ;

(b) N1,OP > E[N1,OP] + m
2
3 ;

(c) N2→2|1 > E[N2→2|1] + m
2
3 .

Using Chernoff-Hoeffding bound, we can show that the probability of errors

of types I and II decreases exponentially with m.

Phase 4 [delivering interference-free bits and interference management]: In

Phase 4, Tx1 will communicate all the bits in Q1→1|2. However, it is possible

to create XOR of these bits with bits in Q1,OP in order to create bits of common

243



interest. To do so, we first encode the bits in these states using the results of [17],

and then we create the XOR of the encoded bits. On the other hand, Tx2 will do

the same to part of the bits in Q2→2|1 and Q2,OP.

More precisely, for any ε, δ > 0, Tx1 encodes all the bits in Q1→1|2 at rate p − δ

using random coding scheme of [17]. Similarly, Tx1 encodes

q4 +
(
1 −

[
p3q + 2pq2 + q4

])−1
p2q5 (A.40)

bits from Q1,OP at rate pq − δ. Then Tx1 will communicate the XOR of these

encoded bits.

During Phase 3, Tx2 encodes same number of the bits as in Q1→1|2 from Q2→2|1

at rate p − δ and

q4 +
(
1 −

[
p3q + 2pq2 + q4

])−1
p2q5

bits from Q2,OP at rate pq− δ using random coding scheme of [17]. Then Tx2 will

communicate the XOR of these encoded bits.

Since Rx2 already has access to the bits in Q1→1|2 and Q2,OP, it can remove their

contribution from the received signals. Then for sufficiently large block length,

Rx2 can decode the transmitted bits from Q1,OP with decoding error probability

less than or equal to ε. After decoding and removing this part, Rx2 can decode

the encoded bits from Q2→2|1 with decoding error probability less than or equal

to ε.

On the other hand, since Rx1 already has access to the bits in Q2→2|1 and

Q1,OP, it can remove their contribution from the received signals. Then for suf-

ficiently large block length, Rx1 can decode the transmitted bits from Q2,OP with

decoding error probability less than or equal to ε. Finally, after decoding and
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removing this part, Rx1 can decode the encoded bits from Q1→1|2 with decoding

error probability less than or equal to ε.

Phase 4 goes on for[
q3m +

(
1 −

[
p3q + 2pq2 + q4

])−1
pq2

(
pq2 + m2/3

)]
/ (p − δ) (A.41)

time instants. If an error occurs in decoding any of the encoded signals in Phase

4, we consider it as error and we halt the transmission strategy.

At the end of Phase 4, Q1→1|2 becomes empty. Define

β = (pq − δ)
[
q3m +

(
1 −

[
p3q + 2pq2 + q4

])−1
pq2

(
pq2 + m2/3

)]
/ (p − δ) , (A.42)

note that as ε, δ→ 0, β agrees with the expression given in (A.40).

Upon completion of Phase 4, we have

E[N1,OP] = p2q2m +
(
1 −

[
p3q + 2pq2 + q4

])−1
pq(pq2m + m2/3)

−

[
q

1 + q
(p − q2)m − p3qm −

(
1 −

[
p3q + 2pq2 + q4

])−1
p3(pq2m + m2/3)

]+

−
q

1 + q
(p − q2)m − β,

E[N2,OP] = p2q2m +
(
1 −

[
p3q + 2pq2 + q4

])−1
pq(1 + p2)(pq2m + m2/3) − β,

E[N2→2|1] =
pq

(1 − q2)

(
p − q2

)
m. (A.43)

The transmission strategy will halt and an error of type-II will occur, if any

of the following events happens.

(a) Ni,OP > E[Ni,OP] + m
2
3 , i = 1, 2;

(b) N2→2|1 > E[N2→2|1] + m
2
3 .
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Using Chernoff-Hoeffding bound, we can show that the probability of errors

of type II decreases exponentially with m. Furthermore, the probability that an

error occurs in decoding any of the encoded signals in Phase 4 can be made

arbitrary small as m→ ∞.

Phase 5 [delivering interference-free bits and interference management]: In

Phase 5, the transmitters will communicate the remaining bits in Q1,OP, Q1,C1 ,

Q2→2|1, and Q2,OP. Tx1 will communicate all the bits in Q1,OP and Q1,C1 such that

for sufficiently large block length, both receivers can decode them with arbitrary

small error. On the other hand, Tx2 will communicate the bits in Q2→2|1 and Q2,OP

similar to Phase 4 with one main difference. Since both receivers can completely

remove the contribution of Tx1 at the end of the block, Tx2 can send the bits in

Q2,OP at a higher rate of p as opposed to pq during Phase 4.

More precisely, for any ε, δ > 0, Tx1 using random coding scheme of [17],

encodes all the bits in Q1,OP and Q1,C1 at rate pq− δ and communicates them. On

the other hand, Tx2 using random coding, encodes all the bits in Q2→2|1 and all

bits in Q2,OP at rate p − δ. Then, Tx2 communicates the XOR of its encoded bits.

Since Rx1 already has access to the bits in Q2→2|1 and Q1,OP, it can remove the

corresponding parts of the transmitted signals. Then for sufficiently large block

length, Rx1 can decode the transmitted bits from Q1,C1 and Q2,OP with decoding

error probability less than or equal to ε.

Finally, since Rx2 already has access to the bits in Q2,OP, it can remove the

corresponding part of the transmitted signal. Then for sufficiently large block

length, Rx2 can decode the transmitted bits from Q1,OP and Q1,C1 with decoding

error probability less than or equal to ε. After decoding and removing this part,
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Rx2 can decode the encoded bits from Q2→2|1 with decoding error probability

less than or equal to ε.

Phase 5 goes on for[
pq

(1 − q2)

(
p − q2

)
m + 2m2/3

]
/ (p − δ) (A.44)

time instants. If an error occurs in decoding any of the encoded signals in Phase

5, we consider it as error and halt the transmission strategy. It is straight forward

to verify that at the end of Phase 5, if the transmission is not halted, all states are

empty and all bits are successfully delivered.

The probability that the transmission strategy halts at any point can be

bounded by the summation of error probabilities of types I-II and the probabil-

ity that an error occurs in decoding the encoded bits. Using Chernoff-Hoeffding

bound and the results of [17], we can show that the probability that the trans-

mission strategy halts at any point approaches zero for ε, δ → 0 and m → ∞.

Moreover, the total transmission requires

1
p

m + 6m2/3 (A.45)

time instants. Thus, Tx1 achieves a rate of pq(1 + q) while Tx2 achieves a rate of

p.

This completes the achievability proof of Theorem 2.2.

A.5 Proof of Lemma 2.2

In this appendix, we provide the proof of Lemma 2.2. We first derive the outer-

bound and then we describe the achievability. The outer-bound on Ri is the
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same as in Section A.2.

Suppose there are encoders and decoders at the transmitters and receivers

respectively, such that each receiver can decode both messages with arbitrary

small decoding error probability as the block length goes to infinity. We have

n(R1 + R2 − εn)
(a)
≤ I(W1,W2; Yn

1 |G
n)

= H(Yn
1 |G

n) − H(Yn
1 |W1,W2,Gn)

(b)
= H(Yn

1 |G
n)

(c)
≤

n∑
t=1

H(Y1[t]|Gn)

≤
(
1 − q2

)
n, (A.46)

where εn → 0 as n → ∞; and (a) follows from the fact that the messages and

Gn are mutually independent, Fano’s inequality, and the fact that Rx1 should be

able to decode both messages; (b) holds since the received signal Yn
1 is a deter-

ministic function of W1, W2, and Gn; and (c) follows from the fact that condi-

tioning reduces entropy. Dividing both sides by n and let n→ ∞, we get

R1 + R2 ≤ 1 − q2. (A.47)

Below, we provide the achievability proof of Lemma 2.2. Let Wi ∈

{1, 2, . . . , 2nRi} denote the message of user i.

In [17], it has been shown that for a binary erasure channel with success

probability p, and for any ε, δ > 0, as long as the communication rate is less than

or equal to p − δ, we can have decoding error probability less than or equal to ε.

Codebook generation is as follows. Transmitter i creates 2nRi (R1 = p − δ

and R2 = pq − δ) independent codewords where each entry of the codewords
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is an i.i.d. Bernoulli 0.5 RV. For message index j, transmitter i will send the

jth codeword. Note that we can view the channel from Tx2 to Rx1 as a binary

erasure channel with success probability pq (whenever G11[t] = 0 and G21[t] = 1,

we get a clean observation of X2[t]). Therefore, since R2 = pq− δ, Rx1 can decode

W2 with arbitrary small decoding error probability as n → ∞ and remove Xn
2

from its received signal. After removing Xn
2 , we can view the channel from Tx1 to

Rx1 as a binary erasure channel with success probability p (whenever G11[t] = 1,

we get a clean observation of X1[t]). Therefore, since R1 = p − δ, Rx1 can decode

W1 with arbitrary small decoding error probability as n→ ∞. Similar argument

holds for Rx2. This completes the achievability proof of corner point

(R1,R2) = (p, pq) . (A.48)

Similarly, we can achieve corner point

(R1,R2) = (pq, p) . (A.49)

Therefore with time sharing, we can achieve the entire region as described

in Lemma 2.2.

A.6 Achievability Proof of Theorem 2.3: Corner Point
(
1 − q2, 0

)
By symmetry, it suffices to describe the achievability strategy for corner ponit

(R1,R2) =
(
1 − q2, 0

)
, (A.50)

when transmitters have delayed knowledge of channel state information and

noiseless output feedback links are available from the receivers to the transmit-

ters.
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Our achievability strategy is carried on over b+1 communication blocks each

block with n time instants. Transmitter one communicates fresh data bits in the

first b blocks and the final block is to help receiver one decode its corresponding

bits. Transmitter and receiver two act as a relay to facilitate the communication

between transmitter and receiver one. At the end, using our scheme we achieve

rate tuple b
b+1

(
1 − q2, 0

)
as n→ ∞. Finally, letting b→ ∞, we achieve the desired

corner point.

Let W j
1 be the message of Tx1 in block j, j = 1, 2, . . . , b. We assume W j

1 =

a j
1, a

j
2, . . . , a

j
m. We set

n =
(
1 − q2

)−1
m + m2/3. (A.51)

Achievability strategy for block 1: At the beginning of the communication

block, we assume that the bits at Tx1 are in queue (or state) Q1
1→1. At each time

instant t, Tx1 sends out a bit from Q1
1→1, and this bit will leave this queue if at least

one of the outgoing links from Tx1 was equal to 1 at the time of transmission. On

the other hand, Tx2 remains silent during the first communication block. If at

the end of the communication block, queue Q1
1→1 is not empty, we declare error

type-I and halt the transmission.

At the end of first block, using output feedback links, transmitter two has

access to the bits of Tx1 communicated in the first block. More precisely, Tx2

has access to the bits of Tx1 communicated in Cases 11, 12, 14, and 15 during the

first communication block. Note that the bits communicated in these cases are

available at Rx2 and have to be provided to Rx1. Transmitter two transfers these

bits to Q1
2→1|2.

Assuming that the transmission is not halted, let N1
2→1|2 denote the number
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of bits in queue Q1
2→1|2. The transmission strategy will be halted and an error

type-II will occur, if N1
2→1|2 > E[N1

2→1|2] + pqm
2
3 . From basic probability, we know

that

E[N1
2→1|2] =

∑
j=11,12,14,15 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m = (1 − q2)−1 pqm. (A.52)

Using Chernoff-Hoeffding bound, we can show that the probability of errors

of types I and II and decreases exponentially with m.

Achievability strategy for block j, j = 2, 3, . . . , b: In the communication

block j, Tx2 treats the bits in Q j−1
2→1|2 as its message and it uses a random code

of rate pq − δ to transmit them. Note that the channel from Tx2 to Rx1 can be

modeled as a point-to-point erasure channel (any time G11[t] = 1 or G21[t] = 0,

we consider an erasure has taken place). Hence from [17], we know that for any

ε, δ > 0 and sufficiently large block length, a rate of pq− δ is achievable from Tx2

to Rx1 with decoding error probability less than or equal to ε. Note that at rate

pq − δ, both receivers will be able to decode and hence remove the transmitted

signal of Tx2 at the end of communication block. If an error occurs in decoding

the transmitted signal of Tx2, we consider it as error and halt the transmission

strategy.

On the other hand, the transmission strategy for Tx1 is the same as block

1 for the first b blocks (all but the last block). At the end of communication

block j, using output feedback links, transmitter two has access to the bits of

Tx1 communicated in Cases 11, 12, 14, and 15 during the communication block

j. Transmitter two transfers these bits to Q j
2→1|2. If at the end of the commu-

nication block, queue Q j
1→1 is not empty, we declare error type-I and halt the

transmission.
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Assuming that the transmission is not halted, let N j
2→1|2 denote the number

of bits in queue Q j
2→1|2. The transmission strategy will be halted and an error

type-II will occur, if N j
2→1|2 > E[N j

2→1|2] + pqm
2
3 . From basic probability, we know

that

E[N j
2→1|2] =

∑
j=11,12,14,15 Pr

(
Case j

)
1 −

∑
i=9,10,13,16 Pr (Case i)

m = (1 − q2)−1 pqm. (A.53)

Using Chernoff-Hoeffding bound, we can show that the probability of errors

of types I and II and decreases exponentially with m.

Achievability strategy for block b + 1: Finally in block b + 1, no new data bit

is transmitted and Tx2 only communicates the bits of Tx1 communicated in the

previous block in Cases 11, 12, 14, and 15 as described before.

We can show that the probability that the transmission strategy halts at any

point approaches zero as m→ ∞.

Decoding: At the end of block j + 1, Rx1 decodes the transmitted message of

Tx2 in block j + 1 and removes it from the received signal. Together with the bits

it has obtained during block j, it can decode message W j
1. Using similar idea,

Rx2 uses backward decoding to cancel out interfernce in the previous blocks to

decode all messages.

This completes the achievability proof for corner ponit

(R1,R2) =
(
1 − q2, 0

)
.

252



Table A.1: Summary of Phase 1 for the Achievability Scheme of Corner
Point B. Bit “a” represents a bit in Q1→1 while bit “b” represents
a bit in Q2→2.

ID ch. at transition ID ch. at transition

time n time n

1
Tx1

Tx2

Rx1

Rx2


a→ Q1,C1

b→ Q2,C1

9
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2,F

2
Tx1

Tx2

Rx1

Rx2


a→ Q1→2|1

b→ Q2,F

10
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2,F

3
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2→1|2

11
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,F

4
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,F

12
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,F

5
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2→2

13
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2→2|1

6
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2→2

14
Tx1

Tx2

Rx1

Rx2


a→ Q1→1|2

b→ Q2→2

7
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,INT

15
Tx1

Tx2

Rx1

Rx2


a→ Q1→1|2

b→ Q2→2|1

8
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,INT

16
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2→2
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Table A.2: Summary of Phase 2 for the Achievability Scheme of Corner
Point B. Bit “a” represents a bit in Q1,INT while bit “b” represents
a bit in Q2,INT .

ID ch. at transition ID ch. at transition

time n time n

1
Tx1

Tx2

Rx1

Rx2


a→ Q1,C1

b→ Q2,C1

9
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2→1|2

2
Tx1

Tx2

Rx1

Rx2


a→ Q1→2|1

b→ Q2,F

10
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,F

3
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2→1|2

11
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,C1

4
Tx1

Tx2

Rx1

Rx2


a→ Q1→2|1

b→ Q2→1|2

12
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,F

5
Tx1

Tx2

Rx1

Rx2


a→ Q1→2|1

b→ Q2,INT

13
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2→2|1

6
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,INT

14
Tx1

Tx2

Rx1

Rx2


a→ Q1→1|2

b→ Q2,INT

7
Tx1

Tx2

Rx1

Rx2


a→ Q1,C1

b→ Q2,INT

15
Tx1

Tx2

Rx1

Rx2


a→ Q1→1|2

b→ Q2→2|1

8
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,INT

16
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,INT
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Table A.3: Summary of Phase 1 for the Achievability Scheme of Corner
Point C. Bit “a” represents a bit in Q1→1 while bit “b” represents
a bit in Q2→2.

ID ch. at transition ID ch. at transition

time n time n

1
Tx1

Tx2

Rx1

Rx2


a→ Q1,C1

b→ Q2,F

9
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2,F

2
Tx1

Tx2

Rx1

Rx2


a→ Q1,OP

b→ Q2,F

10
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2,F

3
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,OP

11
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,F

4
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,F

12
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,F

5
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2→2

13
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2→2|1

6
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2→2

14
Tx1

Tx2

Rx1

Rx2


a→ Q1→1|2

b→ Q2→2

7
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,INT

15
Tx1

Tx2

Rx1

Rx2


a→ Q1→1|2

b→ Q2→2|1

8
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,INT

16
Tx1

Tx2

Rx1

Rx2


a→ Q1→1

b→ Q2→2
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Table A.4: Summary of Phase 2 for the Achievability Scheme of Corner
Point B. Bit “a” represents a bit in Q1,INT while bit “b” represents
a bit in Q2,INT .

ID ch. at transition ID ch. at transition

time n time n

1
Tx1

Tx2

Rx1

Rx2


a→ Q1,C1

b→ Q2,F

9
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,OP

2
Tx1

Tx2

Rx1

Rx2


a→ Q1,OP

b→ Q2,OP

10
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,F

3
Tx1

Tx2

Rx1

Rx2


a→ Q1,C1

b→ Q2,OP

11
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,OP

4
Tx1

Tx2

Rx1

Rx2


a→ Q1,OP

b→ Q2,OP

12
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,F

5
Tx1

Tx2

Rx1

Rx2


a→ Q1,OP

b→ Q2,INT

13
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2→2|1

6
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,INT

14
Tx1

Tx2

Rx1

Rx2


a→ Q1→1|2

b→ Q2,INT

7
Tx1

Tx2

Rx1

Rx2


a→ Q1,OP

b→ Q2,INT

15
Tx1

Tx2

Rx1

Rx2


a→ Q1→1|2

b→ Q2→2|1

8
Tx1

Tx2

Rx1

Rx2


a→ Q1,F

b→ Q2,INT

16
Tx1

Tx2

Rx1

Rx2


a→ Q1,INT

b→ Q2,INT
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APPENDIX B

CHAPTER 2 OF APPENDIX

B.1 Lattice Quantizer

We will incorporate lattice quantization in our transmission stratgey. Here, we

provide the basic concepts and the result we need. For an elaborated discussion

see [76, 77].

An n-dimensional lattice Λ is defined by a set of n basis column vectors

g1, g2, . . . , gn in Rn. The lattice Λ is composed of all integral combinations of

the basis vectors, i.e.

Λ = {` = G.i : i ∈ Zn} (B.1)

where the n × n generator matrix G is given by G =
[
g1|g2| . . . |gn

]
.

A quantizer is defined by a set of code points and a partition which is as-

sociated with it. The code points of an n-dimensional lattice quantizer form an

n-dimensional lattice Λ = {`i}, i.e.

`i ∈ Rn, `0 = 0, `i + ` j ∈ Λ ∀i, j. (B.2)

The partition P = {Pi} associated with the lattice quantizer is a collection of

disjoint regions (whose union covers Rn) which satisfy

Pi = `i + P0 = {xn : xn − `i ∈ P0} (B.3)

i.e. the ith cell is a shift of the basic cell P0 by the ith point of the lattice. The

lattice quantizer Qn = {Λ,P} : Rn → Rn maps every vector xn ∈ Rn into the lattice
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point that is associated with the cell containing xn, i.e.

Qn(xn) = `i, if xn ∈ Pi. (B.4)

The quantization noise is defined as Zn
Q = Qn(xn + u) −

(
xn + u

)
, where u is the

dither for dithered quantization.

In [76], authors have shown that the optimal lattice quantizer is white and

the autocorrelation of its quantization noise is

AZ = Gopt
n V2/nI, (B.5)

where V is the volume of the basic cell and I is the identity matrix. Furthermore,

as n → ∞, Gopt
n → 1/2πe (i.e. that there exist good lattice quantizers). Due to the

dither, the distortion in this procedure is independent of the source signal.

B.2 Determining D such that RQ(D)/C2×1 ≤ 1

As mentioned in Section 3.6, we are interested in P > 2. Using Jensen’s inequal-

ity, we have

RQ(D) = E
[
log2

(
1 +

P
2D

(
||g||22 + ||h||22

))]
≤ log2

(
1 +

P
2D

E
[
||g||22 + ||h||22

])
= log2

(
1 +

2P
D

)
. (B.6)

Moreover, from [54], we have

C2×1 =

∫ ∞

0
log2 (1 + Pλ/2) λe−λdλ

=

∫ 1

0
log2 (1 + Pλ/2) λe−λdλ +

∫ ∞

1
log2 (1 + Pλ/2) λe−λdλ
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=

∞∑
m=1

∫ 21−m

2−m
log2 (1 + Pλ/2) λe−λdλ +

∫ 2

1
log2 (1 + Pλ/2) λe−λdλ

+

45∑
j=1

∫ 2+.1 j

2+.1( j−1)
log2 (1 + Pλ/2) λe−λdλ +

∫ ∞

6.5
log2 (1 + Pλ/2) λe−λdλ

(a)
≥ log2 (1 + P/2)

∫ 1

0
λe−λdλ −

∞∑
m=1

m
∫ 21−m

2−m
λe−λdλ︸                   ︷︷                   ︸

<0.4

+ log2 (1 + P/2)
∫ 2

1
λe−λdλ

+ log2 (1 + P/2)
∫ 6.5

2
λe−λdλ +

45∑
j=1

log2

[
1 + (2 + .1( j − 1))P/2

1 + P/2

] ∫ 2+.1 j

2+.1( j−1)
λe−λdλ︸                                                            ︷︷                                                            ︸

>0.4

+

∫ ∞

6.5
log2 (1 + Pλ/2) λe−λdλ > log2 (1 + P/2)

∫ ∞

0
λe−λdλ = log2 (1 + P/2) . (B.7)

where (a) holds since

∞∑
m=1

∫ 21−m

2−m
log2 (1 + Pλ/2) λe−λdλ

≥

∞∑
m=1

∫ 21−m

2−m
log2

(
1 + 2−mP/2

)
λe−λdλ (B.8)

≥

∞∑
m=1

∫ 21−m

2−m

[
log2 (1 + P/2) − log2 (2m)

]
λe−λdλ

= log2 (1 + P/2)
∫ 1

0
λe−λdλ −

∞∑
m=1

m
∫ 21−m

2−m
λe−λdλ,

and
∑∞

m=1 m
∫ 21−m

2−m λe−λdλ converges sincem
∫ 21−m

2−m
λe−λdλ


∞

m=1

, (B.9)

is a Cauchy sequence. Thus, we have RQ(4)/C2×1 < 1.
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APPENDIX C

CHAPTER 3 OF APPENDIX

C.1 Converse Proof for Case (2) of Theorem 4.2

Converse proof for case (2): If a destination is only connected to relay A2, assign

channel gain of 0 to the link from A2 to such destination. Set all the other channel

gains equal to h ∈ C. We claim that in such network, a destination connected

to both relays should be able to decode all messages (note that with our choice

of channel gains, there is no message for destinations that are only connected to

relay A2).

Destinations that are connected to both relays receive same signals with dif-

ferent noise terms. Therefore, since each one of them is able to decode its mes-

sage, then it should be able to decode the rest of the messages intended for

destinations that are connected to both relays. They decode and remove such

messages from the received signal. The remaining signal is the same (up to

noise terms) as that of destinations that are only connected to relay A1. There-

fore, those messages are also decodable at a destination that is connected to both

relays.

We assume local view at the sources, therefore to achieve a normalized sum-

rate of α, each source should transmit at a rate greater than or equal to α log(1 +

|h|2) − τ, since from each source’s point of view, it is possible that the other S-D

pairs have capacity 0. We get

dout(A1)(α log(1 + |h|2) − τ) ≤ log(1 + dout(A1) × |h|2), (C.1)
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or equivalently

(dout(A1)α − 1) log(1 + |h|2) ≤ log(dout(A1)) + dout(A1)τ. (C.2)

Since this has to hold for all values of h, and α and τ are independent of h, we

get α ≤ 1
dout(A1) .

C.2 Proof of Lemma 4.1

First note that by increasing noise variances and decreasing power constraint,

we only decrease the capacity. Thus, we get C(κσ2, P/κ) ≤ C(σ2, P). To prove the

other inequality, we use the results in [9]. The cut-set bound C̄ is defined as

C̄(σ2, P) = max
p({X j}V j∈V)

min
Ω∈ΛD

I(YΩc; XΩ|XΩc), (C.3)

where ΛD = {Ω : S ∈ Ω,D ∈ Ωc} is the set of all S-D cuts. 1 Also C̄i.i.d(σ2, P) =

minΩ∈ΛD log |I + P
σ2 GΩG∗

Ω
| is the cut-set bound evaluated for i.i.d. N(0, P) input

distributions and GΩ is the transfer matrix associated with the cut Ω, i.e. the

matrix relating the vector of all the inputs at the nodes in Ω, denoted by XΩ, to

the vector of all the outputs in Ωc, denoted by YΩc , as in YΩc = GΩXΩ +ZΩc where

ZΩc is the noise vector. In [9], it has been shown that

C̄i.i.d(σ2, P) − 15|V| ≤ C(σ2, P) ≤ C̄i.i.d(σ2, P) + 2|V|, (C.4)

where |V| is the total number of nodes in the network. Similarly, we have

C̄i.i.d(κσ2, P/κ) − 15|V| ≤ C(κσ2, P/κ)

C(κσ2, P/κ) ≤ C̄i.i.d(κσ2, P/κ) + 2|V|. (C.5)

1A cut Ω is a subset ofV such that S ∈ Ω,D < Ω, and Ωc = V \Ω.
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Now, we will show that

C(σ2, P) −C(κσ2, P/κ) ≤ |V|
(
2 log κ + 17

)
. (C.6)

For any S-D cut Ω ∈ ΛD, P
σ2 GΩG∗

Ω
is a positive semi-definite matrix. Hence, there

exists a unitary matrix U such that UGdiagU∗ = P
σ2 GΩG∗

Ω
where Gdiag is a diagonal

matrix. Refer to the non-zero elements in Gdiag as gii’s. We then have

log |I +
P
σ2 GΩG∗Ω| − log |I +

P
κ2σ2 GΩG∗Ω|

= log |I + UGdiagU∗| − log |I +
1
κ2 UGdiagU∗|

= log |UU∗ + UGdiagU∗| − log |UU∗ +
1
κ2 UGdiagU∗|

= log
(
|U||I + Gdiag||U∗|

)
− log

(
|U||I +

1
κ2 Gdiag||U∗|

)
= log |I + Gdiag| − log |I +

1
κ2 Gdiag|

= tr log
(
I + Gdiag

)
− tr log

(
I +

1
κ2 Gdiag

)
=

∑
i

log (1 + gii) −
∑

i

log
(
1 +

1
κ2 gii

)

=
∑

i

log
 1 + gii

1 + 1
κ2 gii


(a)
≤

∑
i

lim
gii→∞

log
 1 + gii

1 + 1
κ2 gii


=

∑
i

log κ2 ≤ 2|V| log κ, (C.7)

where (a) follows from the fact that 1+gii

1+ 1
κ2

gii
is monotonically increasing in gii.

Now suppose that minΩ∈ΛD log |I + P
κ2σ2 GΩG∗

Ω
| = log |I + P

κ2σ2 GΩ′G∗Ω′ |. Hence,

from (C.7), we have

min
Ω∈ΛD

log |I +
P
σ2 GΩG∗Ω| − min

Ω∈ΛD
log |I +

P
κ2σ2 GΩG∗Ω|

= min
Ω∈ΛD

log |I +
P
σ2 GΩG∗Ω| − log |I +

P
κ2σ2 GΩ′G∗Ω′ |
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≤ log |I +
P
σ2 GΩ′G∗Ω′ | − log |I +

P
κ2σ2 GΩ′G∗Ω′ |

(a)
≤ 2|V| log κ, (C.8)

where (a) follows from (C.7). Hence, from (C.4) and (C.5) we have

C(σ2, P) −C(κσ2, P/κ) ≤ min
Ω∈ΛD

log |I +
P
σ2 GΩG∗Ω|

− min
Ω∈ΛD

log |I +
P

κ2σ2 GΩG∗Ω| + 17|V|
(a)
≤ |V|

(
2 log κ + 17

)
, (C.9)

where (a) follows from (C.8). Therefore, we get

C(σ2, P) − τ ≤ C(κσ2, P/κ) ≤ C(σ2, P), (C.10)

where τ = |V|
(
2 log κ + 17

)
is a constant independent of channel gains.

C.3 Proof of Lemma 4.2

Consider a 3 × 3 × 3 network where there exists a path from Si to D j, for some

i , j, without loss of generality suppose i = 2 and j = 1. Then, one of the graphs

in Fig. C.1 is a subgraph of the network connectivity graph G. First, suppose the

graph in Fig. C.1(a) is a subgraph of G. Assign channel gain of h ∈ C to the links

of the subgraph, and channel gain of 0 to the links that are not in the graph of

Fig. C.1(a).

With this assignment of the channel gains, it is straightforward to see that

H
(
Wi|Yn

Ai
, LAi ,SI

)
≤ nεn, i = 1, 2. (C.11)

Basically, relay A1 has all the information that destinations D1 and D2 require in

order to decode their messages. We conclude that

n (R1 + R2 − εn) ≤ h
(
Yn

A1
|LA1 ,SI

)
, (C.12)
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D2
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A3

S1

S2
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D1

D2

D3

(b)

Figure C.1: If a path exists from Si to D j, for some i , j, then the network con-
nectivity graph has the graph in (a) or (b) as subgraph.

where εn → 0 as n→ ∞.

The MAC capacity at relay A1, gives us

2(α log(1 + |h|2) − τ) ≤ log(1 + 2 × |h|2), (C.13)

which results in

(2α − 1) log(1 + |h|2) ≤ log(2) + 2τ. (C.14)

Since this has to hold for all values of h, and α and τ are independent of h, we

get α ≤ 1
2 . The proof for the graph in Fig. C.1(b) is very similar and omitted.
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APPENDIX D

CHAPTER 4 OF APPENDIX

D.1 Proof of Theorem 5.2

Proof of (5.21a) (cutset bound): Starting with Fano’s inequality, we get

N(R1 − εN) ≤ I(W1; YN
1 ) ≤

∑
H(Y1i),

where the second inequality follows from the fact that conditioning reduces en-

tropy. If (R1,R2) is achievable, then εN → 0 as N → ∞. Thus we obtain the left

term of the bound. Notice that this is a cutset bound, as the bound is obtained

assuming that the two transmitters fully collaborate.

To obtain the right term, we consider

N(R1 − εN) ≤ I(W1; YN
1 ,Y

N
2 ,W2)

(a)
=

∑
H(Y1i,Y2i|W2,Y i−1

1 ,Y i−1
2 , Xi

2)

=
∑

H(Y1i|W2,Y i−1
1 ,Y i

2, X
i
2)

+
∑

H(Y2i|W2,Y i−1
1 ,Y i−1

2 , Xi
2)

(b)
=

∑
H(Y1i|W2,Y i−1

1 ,Y2i, X2i,U1i)

+
∑

H(Y2i|W2,Y i−1
1 , X2i,U1i)

(c)
≤

∑
H(Y1i|X2i,Y2i,U1i) +

∑
H(Y2i|X2i,U1i)

(d)
≤

∑
H(Y1i|V1i,V2i,U1i) +

∑
H(Y2i|X2i,U1i),

where (a) follows from the fact that W1 is independent from W2, and Xi
2 is a

function of (W2,Y i−1
2 ); (b) follows from the fact that U1i := (Xi−1

2 , Ỹ i−1
2 ) and Ỹ i−1

2 is a

function of Y i−1
2 ; (c) follows from the fact that conditioning reduces entropy; (d)

follows from the fact that (V1i is a function of (X2i,Y2i), Y2i is a function of (X2i,V1i)
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and V2i is a function of X2i. Thus we get the right term of the bound. Notice that

this is a cutset bound, as the bound is obtained assuming that the two receivers

fully collaborate.

Proof of (5.21b) (cutset bound): Starting with Fano’s inequality, we get:

N(R1 − εN) ≤ I(W1; YN
1 , Ỹ

N
2 ,W2)

(a)
=

∑
H(Y1i, Ỹ2i|W2,Y i−1

1 , Ỹ i−1
2 , Xi

2)

=
∑

H(Y1i|W2,Y i−1
1 , Ỹ i−1

2 , Xi
2)

+
∑

H(Ỹ2i|W2,Y i
1, Ỹ

i−1
2 , Xi

2)
(b)
≤

∑
H(Y1i|X2i,U1i) +

∑
H(Ỹ2i|Y1i, X2i)

(c)
≤

∑
H(Y1i|X2i,U1i) + NCFB2,

where (a) follows from the fact that W1 is independent from W2, and Xi
2 is a

function of (W2, Ỹ i−1
2 ); (b) follows from the fact that conditioning reduces entropy;

(d) follows from H(Ỹ2i|Y1i, X2i) ≤ CFB2. Therefore, we get the desired bound.

Proof of (5.21e): Starting with Fano’s inequality, we get

N(R1 + R2 − εN) ≤ I(W1; YN
1 |W2) + I(W2; YN

2 )

= H(YN
1 |W2) + I(W2; YN

2 )

= H(YN
1 |W2) + H(YN

2 )

−
{
H(YN

1 ,Y
N
2 |W2) − H(YN

1 |Y
N
2 ,W2)

}
= H(YN

1 |Y
N
2 ,W2) − H(YN

2 |Y
N
1 ,W2) + H(YN

2 )

(a)
=

∑
H(Y1i|W2,Y i−1

1 ,YN
2 , X

i
2,V1i) + H(YN

2 )
(b)
≤

∑
[H(Y1i|V2i,V1i,U1i) + H(Y2i)] ,

where (a) follows from the fact that Xi
2 is a function of (W2,Y i−1

2 ) and V1i is a

function of (X2i,Y2i); (b) follows from the fact that U1i is a function of (Xi−1
2 ,Y i−1

2 )

and conditioning reduces entropy.
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Proof of (5.21h):

N(2R1 + R2 − εN)

≤ I(W1; YN
1 ) + I(W1; YN

1 |W2) + I(W2; YN
2 )

(a)
≤ [H(YN

1 ) − H(YN
1 |W1)]

+ I(W1; YN
1 ,V

N
1 |W2) + [H(YN

2 ) − H(YN
2 |W2)]

(b)
= [H(YN

1 ) − H(VN
2 |W1)] + H(VN

1 |W2)

+ H(YN
1 |W2,VN

1 ) + [H(YN
2 ) − H(VN

1 |W2)]

= H(YN
1 ) + H(YN

1 |W2,VN
1 )

+ H(YN
2 ) − [H(VN

2 ) − I(W1; VN
2 )]

(c)
≤ I(W1; VN

2 ) + H(YN
1 ) + H(YN

1 |W2,VN
1 )

+ H(YN
2 ,V

N
2 ) − H(VN

2 )
(d)
≤ I(W1; VN

2 ,W2, ỸN
2 ) + H(YN

1 )

+ H(YN
1 |W2,VN

1 ) + H(YN
2 |V

N
2 )

(e)
= I(W1; ỸN

2 |W2) + H(YN
1 )

+ H(YN
1 |W2,VN

1 , X
N
2 , Ỹ

N
2 ) + H(YN

2 |V
N
2 )

( f )
≤ NCFB2 +

∑
H(Y1i) +

∑
H(Y2i|V2i)

+
∑

H(Y1i|V1i,V2i,U1i),

where (a) follows from the fact that adding information increases mutual infor-

mation; (b) follows from Claim 5.1; (c) follows from providing VN
2 to receiver

2; (d) follows from the fact that adding information increases mutual informa-

tion; follows from the fact that VN
k is a function of (Wk, ỸN−1

k ); (e) follows from

the fact that XN
2 is a function of (W2,VN−1

1 ) (by Claim 5.2) and ỸN
2 is a function

of (XN
2 ,V

N
1 ); ( f ) follows from the fact that U1i := (Xi−1

2 , Ỹ i−1
2 ), U2i := (Xi−1

1 , Ỹ i−1
1 ),

H(ỸN
2 |W2) ≤ NCFB2 and conditioning reduces entropy.
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To complete the proof, we will show that given Ui := (U1i,U2i), X1i and X2i

are conditionally independent. Remember that our input distribution is of the

form of p(u1, u2)p(x1|u1, u2)p(x2|u1, u2).

Claim D.1 Given Ui := (U1i,U2i) = (Xi−1
2 , Ỹ i−1

2 , Xi−1
1 , Ỹ i−1

1 ), X1i and X2i are condition-

ally independent.

Proof: The proof is based on the dependence-balance-bound technique [28, 74].

For completeness we describe details. We first show that I(W1; W2|Ui) = 0, im-

plying that W1 and W2 are independent given Ui. We will then show that X1i and

X2i are conditionally independent given Ui.

Consider

0 ≤ I(W1; W2|Ui)
(a)
= I(W1; W2|Ui) − I(W1; W2)

(b)
= −H(W1) − H(W2) − H(Ui) + H(W1,W2)

+ H(W1,Ui) + H(W2,Ui) − H(W1,W2,Ui)

(c)
= −H(Ui) + H(Ui|W1) + H(Ui|W2)

(d)
=

i−1∑
j=1

[
−H(X1 j, X2 j|X

j−1
1 , X j−1

2 )

+H(X1 j, X2 j|W1, X
j−1
1 , X j−1

2 )

+H(X1 j, X2 j|W2, X
j−1
1 , X j−1

2 )
]

(e)
=

i−1∑
j=1

[
−H(X1 j, X2 j|X

j−1
1 , X j−1

2 )

+H(X2 j|W1, X
j
1, X

j−1
2 ) + H(X1 j|W2, X

j−1
1 , X j

2)
]

=

i−1∑
j=1

[
−H(X1 j|X

j−1
1 , X j−1

2 ) + H(X1 j|W2, X
j−1
1 , X j

2)

−H(X2 j|X
j
1, X

j−1
2 ) + H(X2 j|W1, X

j
1, X

j−1
2 )

] ( f )
≤ 0,
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where (a) follows from I(W1; W2) = 0; (b) follows from the chain rule; (c) fol-

lows from the chain rule and H(Ui|W1,W2) = 0; (d) follows from the fact that

(Ỹ1 j, Ỹ2 j) is a function of (X̃1 j, X̃2 j); (e) follows from the fact that Xk j is a function

of (Wk, X
j−1
1 , X j−1

2 ); ( f ) follows from the fact that conditioning reduces entropy.

Therefore, I(W1; W2|Ui) = 0, which shows the independence of W1 and W2 given

Ui.

Notice that Xki is a function of (Wk, Xi−1
1 , Xi−1

2 ). Hence, it easily follows that

I(X1i; X2i|Ui) = I(X1i; X2i|Xi−1
1 , Xi−1

2 ) = 0. This proves the independence of X1i and

X2i given Ui. �

D.2 Achievability Proof of Theorem 5.3

With the choice of distribution given in (5.23), we have

δ1 = I(Ŷ1; Y1|U,U2, X1) = 0, (D.1a)

δ2 = I(Ŷ2; Y2|U,U1, X2) = 0, (D.1b)

I(U,V2, X1; Y1) = max(n11, n21), (D.1c)

I(U,V1, X2; Y2) = max(n22, n12), (D.1d)

I(X1; Y1|U,V1,V2) = (n11 − n12)+, (D.1e)

I(X2; Y2|U,V1,V2) = (n22 − n21)+, (D.1f)

I(U2; Y1|U, X1) = min(n21,CFB1), (D.1g)

I(U1; Y2|U, X2) = min(n12,CFB2), (D.1h)

I(X1; Y1|U,U1,V2) = (n11 − n12)+

+ min
{
n11, (n12 −CFB2)+} , (D.1i)

I(X2; Y2|U,U2,V1) = (n22 − n21)+
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+ min
{
n22, (n21 −CFB1)+} , (D.1j)

I(X1,V2; Y1|U,V1,U2) = (D.1k)

(n21 −CFB1)+ +
[
(n11 − n12)+ − n21

]+

+ min
{
(n11 − n12)+,min(n21,CFB1)

}
,

I(X2,V1; Y2|U,V2,U1) = (D.1l)

(n12 −CFB2)+ +
[
(n22 − n21)+ − n12

]+

+ min
{
(n22 − n21)+,min(n12,CFB2)

}
,

I(X1,V2; Y1|U,U1,U2) = (D.1m)

(n11 − n12)+ + min
{
n11, (n12 −CFB2)+}

+ [n21 −max {n11,min(n21,CFB1)}]+

+
[
min

{
n21,

[
n11 − (n12 −CFB2)+]+

}
−max

{
min(n21,CFB1), (n11 − n12)+}]+

,

I(X2,V1; Y2|U,U1,U2) = (D.1n)

(n22 − n21)+ + min
{
n22, (n21 −CFB1)+}

+ [n12 −max {n22,min(n12,CFB2)}]+

+
[
min

{
n12,

[
n22 − (n21 −CFB1)+]+

}
−max

{
min(n12,CFB2), (n22 − n21)+}]+

.

Using this computation, one can show that the inequalities of (5.10g) and (5.10h)

are implied by (5.10b), (5.10d), (5.10e) and (5.10f); the inequality (5.10k) is im-

plied by (5.10b), (5.10d) and (5.10j); and the inequality (5.10m) is implied by

(5.10b), (5.10d) and (5.10l). We omit the tedious calculation. With further com-

putation, we get:

R1 ≤ max(n11, n21) (D.2a)

R1 ≤ (n11 − n12)+ + min
{
n11, (n12 −CFB2)+}
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+ min(n12,CFB2) (D.2b)

R2 ≤ max(n22, n12) (D.2c)

R2 ≤ (n22 − n21)+ + min
{
n22, (n21 −CFB1)+}

+ min(n21,CFB1) (D.2d)

R1 + R2 ≤ (n11 − n12)+ + max(n22, n12) (D.2e)

R1 + R2 ≤ (n22 − n21)+ + max(n11, n21) (D.2f)

R1 + R2 ≤ max
{
(n11 − n12)+, n21

}
(D.2g)

+ max
{
(n22 − n21)+, n12

}
+ min

{
(n11 − n12)+, n21,CFB1

}
+ min

{
(n22 − n21)+, n12,CFB2

}
2R1 + R2 ≤ (n11 − n12)+ + max(n11, n21) (D.2h)

+ max
{
(n22 − n21)+, n12

}
+ min

{
(n22 − n21)+, n12,CFB2

}
R1 + 2R2 ≤ (n22 − n21)+ + max(n22, n12) (D.2i)

+ max
{
(n11 − n12)+, n21

}
+ min

{
(n11 − n12)+, n21,CFB1

}
.

We will show that the inequalities developed above are equivalent to the

capacity region in Theorem 5.3. Note that (D.2b) can be written as

R1 ≤


n11 + CFB2, n11 + CFB2 ≤ n12;

max(n11, n12), otherwise.

This shows that this inequality is implied by (5.22a) and (5.22b). Similarly,

(D.2d) is implied by (5.22c) and (5.22d). Next consider (D.2g),
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• if CFB1 ≤ min {(n11 − n12)+, n21},

CFB2 ≤ min {(n22 − n21)+, n12}:

R1 + R2 ≤ max
{
(n11 − n12)+, n21

}
(D.3)

+ max
{
(n22 − n21)+, n12

}
+ CFB1 + CFB2,

• if CFB1 > min {(n11 − n12)+, n21},

CFB2 > min {(n22 − n21)+, n12}:

R1 + R2 ≤ max(n11, n12) + max(n21, n22), (D.4)

• if CFB1 ≤ min {(n11 − n12)+, n21},

CFB2 > min {(n22 − n21)+, n12}:

R1 + R2 ≤ max
{
(n11 − n12)+, n21

}
+ CFB1 + n12 (D.5)

+ (n22 − n21)+,

• and finally, if CFB1 > min {(n11 − n12)+, n21},

CFB2 ≤ min {(n22 − n21)+, n12}:

R1 + R2 ≤ max
{
(n22 − n21)+, n12

}
+ CFB2 + n21 (D.6)

+ (n11 − n12)+.

Note that the first case is implied by (5.22g); and the second case is implied

by (5.22a) and (5.22c). Also notice that the third case is implied by (5.22c) and

(5.22i); and the last case is implied by (5.22a) and (5.22h). Lastly, we consider
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(D.2h):

2R1 + R2 ≤



(n11 − n12)+ + max(n11, n21)

+ max {(n22 − n21)+, n12} + CFB2,

if CFB2 ≤ min {(n22 − n21)+, n12};

max(n11, n12) + max(n11, n21)

+(n22 − n21)+,

if CFB2 > min {(n22 − n21)+, n12}.

Note that the first case is implied by (5.22h); and the second case is implied

by (5.22a) and (5.22f). Similarly, it can be shown that (D.2i) is implied by (5.22i),

(5.22c) and (5.22e). Therefore, the inequalities of (D.2a)-(D.2i) are equivalent to

those of (5.22a)-(5.22i), thus proving the achievablity of Theorem 5.3.

D.3 Proof of Theorem 5.4

Proof of (5.26a) and (5.26b): Starting with Fano’s inequality, we get

N(R1 − εN) ≤ I(W1; YN
1 )

≤
∑

[h(Y1i) − h(Y1i|W1,Y i−1
1 , X1i)]

=
∑

[h(Y1i) − h(Z1i)],

where the second inequality follows from the fact that conditioning reduces en-

tropy and X1i is a function of (W1,Y i−1
1 ); and the third equality follows from the

memoryless property of the channel. If (R1,R2) is achievable, then εN → 0 as

N → ∞. Assume that X1 and X2 have covariance ρ, i.e., ρ = E[X1X∗2]. We can then

obtain (5.26a).
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To obtain (5.26b), consider

N(R1 − εN) ≤ I(W1; YN
1 ,Y

N
2 |W2)

=
∑

h(Y1i,Y2i|W2,Y i−1
1 ,Y i−1

2 ) − h(YN
1 ,Y

N
2 |W1,W2)

(a)
=

∑
h(Y1i,Y2i|W2,Y i−1

1 ,Y i−1
2 , X2i)

−
∑

[h(Z1i) + h(Z2i)]

(b)
=

∑
h(Y2i|W2,Y i−1

1 ,Y i−1
2 , X2i)

+
∑

h(Y1i|W2,Y i
2, X2i, S 1i) −

∑
[h(Z1i) + h(Z2i)]

(c)
≤

∑
[h(Y2i|X2i) − h(Z2i)]

+
∑

[h(Y1i|X2i, S 1i) − h(Z1i)] ,

where (a) follows from the fact that Xi
2 is a function of (W2,Y i−1

2 ) and

h(YN
1 ,Y

N
2 |W1,W2) =

∑
[h(Z1i) + h(Z2i)] (see Claim D.2 below); (b) follows from the

fact that S i
1 := h12Xi

1 + Zi
2 is a function of (Y i

2, X
i
2); (c) follows from the fact that

conditioning reduces entropy. Hence, we get

R1 ≤ h(Y2|X2) − h(Z2) + h(Y1|X2, S 1) − h(Z1)
(a)
≤ log

(
1 + (1 − |ρ|2)INR12

)
+ log

(
1 +

(1 − |ρ|2)SNR1

1 + (1 − |ρ|2)INR12

)
,

where (a) follows from the fact that

h(Y2|X2) ≤ log 2πe
(
1 + (1 − |ρ|2)INR12

)
, (D.7)

h(Y1|X2, S 1) ≤ log 2πe
(
1 +

(1 − |ρ|2)SNR1

1 + (1 − |ρ|2)INR12

)
. (D.8)

The inequality of (D.8) is obtained as follows. Given (X2, S 1), the variance of Y1

is upper-bounded by

Var [Y1|X2, S 1] ≤ KY1 − KY1(X2,S 1)K−1
(X2,S 1)K

∗
Y1(X2,S 1),
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where

KY1 = E
[
|Y1|

2
]

= 1 + SNR1 + INR21 + ρh∗11h21 + ρ∗h11h∗21,

KY1(X2,S 1) = E
[
Y1[X∗2, S

∗
1]
]

=
[
ρh11 + h21, h∗12h11 + ρ∗h21h∗12

]
,

K(X2,S 1) = E


 |X2|

2 X2S ∗1

X∗2S 1 |S 1|
2




=

 1 ρ∗h∗12

ρh12 1 + INR12

 .

(D.9)

By further calculation, we can get (D.8).

Claim D.2 h(YN
1 ,Y

N
2 |W1,W2) = h(YN

1 , S
N
1 |W1,W2) =

∑
[h(Z1i) + h(Z2i)].

Proof:

h(YN
1 ,Y

N
2 |W1,W2) =

∑
h(Y1i,Y2i|W1,W2,Y i−1

1 ,Y i−1
2 )

(a)
=

∑
h(Y1i,Y2i|W1,W2,Y i−1

1 ,Y i−1
2 , X1i, X2i)

(b)
=

∑
h(Z1i,Z2i|W1,W2,Y i−1

1 ,Y i−1
2 , X1i, X2i)

(c)
=

∑
[h(Z1i) + h(Z2i)] ,

where (a) follows from the fact that X1i is a function of (W1,Y i−1
1 ) and X2i is a

function of (W2,Y i−1
2 ); (b) follows from the fact that Y1i = h11X1i + h21X2i + Z1i

and S 1i := h12X1i + Z2i; (c) follows from the memoryless property of the channel

and the independence assumption of Z1i and Z2i. Similarly, one can show that

h(YN
1 , S

N
1 |W1,W2) =

∑
[h(Z1i) + h(Z2i)]. �

275



Proof of (5.26c): Starting with Fano’s inequality, we get

N(R1 − εN) ≤ I(W1; YN
1 , Ỹ

N
2 |W2)

=
∑

h(Y1i, Ỹ2i|W2,Y i−1
1 , Ỹ i−1

2 ) − h(YN
1 , Ỹ

N
2 |W1,W2)

(a)
≤

∑
h(Y1i, Ỹ2i|W2,Y i−1

1 , Ỹ i−1
2 , X2i) −

∑
h(Z1i)

=
∑

H(Ỹ2i|W2,Y i−1
1 , Ỹ i−1

2 , X2i)

+
∑

h(Y1i|W2,Y i−1
1 , Ỹ i

2, X2i) −
∑

h(Z1i)
(b)
≤ NCFB2 +

∑
[h(Y1i|X2i) − h(Z1i)],

where (a) follows from the fact that h(YN
1 , Ỹ

N
2 |W1,W2) ≥

∑
h(Z1i) (see Claim D.3

below) and X2i is a function of (W2, Ỹ i−1
2 ); (c) follows from the fact that H(Ỹ2i) ≤

CFB2 and conditioning reduces entropy. So we get

R1 ≤ h(Y1|X2) − h(Z1) + CFB2

≤ log
(
1 + (1 − |ρ|2)SNR1

)
+ CFB2.

Claim D.3 h(YN
1 , Ỹ

N
2 |W1,W2) ≥

∑
h(Z1i).

Proof:

h(YN
1 , Ỹ

N
2 |W1,W2) = H(ỸN

2 |W1,W2)

+ h(YN
1 |W1,W2, ỸN

2 )
(a)
≥

∑
h(Y1i|W1,W2,Y i−1

1 , Ỹ i−1
2 , X1i, X2i)

=
∑

h(Z1i|W1,W2,Y i−1
1 , Ỹ i−1

2 , X1i, X2i)

(b)
=

∑
h(Z1i),

where (a) follows from the fact that entropy is nonnegative and X1i is a function

of (W1,Y i−1
1 ) and X2i is a function of (W2, Ỹ i−1

2 ); (b) follows from the memoryless

property of the channel. �

276



Proof of (5.26h):

N(R1 + R2 − εN) ≤ I(W1; YN
1 ) + I(W2; YN

2 )
(a)
≤ I(W1; YN

1 , S
N
1 ,W2) + I(W2; YN

2 )

(b)
= h(YN

1 , S
N
1 |W2) − h(YN

1 , S
N
1 |W1,W2) + I(W2; YN

2 )

(c)
= h(YN

1 , S
N
1 |W2) −

∑
[h(Z1i) + h(Z2i)] + I(W2; YN

2 )

(d)
= h(YN

1 |S
N
1 ,W2) −

∑
h(Z1i) + h(YN

2 ) −
∑

h(Z2i)

(e)
= h(YN

1 |S
N
1 ,W2, XN

2 ) −
∑

h(Z1i) + h(YN
2 ) −

∑
h(Z2i)

( f )
≤

N∑
i=1

[h(Y1i|S 1i, X2i) − h(Z1i) + h(Y2i) − h(Z2i)] ,

where (a) follows from the fact that adding information increases mutual infor-

mation (providing a genie); (b) follows from the independence of W1 and W2;

(c) follows from h(YN
1 , S

N
1 |W1,W2) =

∑
[h(Z1i) + h(Z2i)] (see Claim D.2); (d) follows

from h(S N
1 |W2) = h(YN

2 |W2) (see Claim 5.3); (e) follows from the fact that XN
2 is a

function of (W2, S N−1
1 ) (see Claim 5.4); ( f ) follows from the fact that conditioning

reduces entropy. Hence, we get

R1 + R2 ≤ h(Y1|S 1, X2) − h(Z1) + h(Y2) − h(Z2).

Note that

h(Y2) ≤ log 2πe
(
1 + SNR2 + INR12 + 2|ρ|

√
SNR2 · INR12

)
. (D.10)

From (D.8) and (D.10), we get the desired upper bound.

Proof of (5.26j):

N(2R1 + R2 − εN) ≤ I(W1; YN
1 )

+ I(W1; YN
1 |W2) + I(W2; YN

2 )
(a)
≤ [h(YN

1 ) − h(YN
1 |W1)] + I(W1; YN

1 , S
N
1 |W2)
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+ [h(YN
2 ) − h(YN

2 |W2)]

(b)
= [h(YN

1 ) − h(YN
1 |W1)] + h(YN

1 , S
N
1 |W2)

−
∑

[h(Z1i) + h(Z2i)] + [h(YN
2 ) − h(YN

2 |W2)]

(c)
= [h(YN

1 ) − h(S N
2 |W1)] + h(YN

2 ) + h(YN
1 |W2, S N

1 )

−
∑

[h(Z1i) + h(Z2i)]

= h(YN
1 ) −

∑
[h(Z1i) + h(Z2i)] + h(YN

1 |W2, S N
1 )

+ I(W1; S N
2 ) − h(S N

2 ) + h(YN
2 )

= h(YN
1 ) −

∑
[h(Z1i) + h(Z2i)] + h(YN

1 |W2, S N
1 )

+ I(W1; S N
2 ) + I(S N

2 ; YN
2 ) + h(YN

2 |S
N
2 )

− I(S N
2 ; YN

2 ) − h(S N
2 |Y

N
2 )

(d)
≤ h(YN

1 ) − h(ZN
1 ) − h(ZN

2 ) + h(YN
1 |W2, S N

1 ) + h(YN
2 |S

N
2 )︸                                                                ︷︷                                                                ︸

T

+ I
(
S N

2 , Ỹ
N
2 ,W2; W1

)
− h

(
S N

2 |Y
N
2 ,W2, ỸN

2

)
= T + I

(
ỸN

2 ; W1|W2

)
+ I

(
S N

2 ; W1|W2, ỸN
2

)
− h

(
S N

2 |Y
N
2 ,W2, ỸN

2

)
= T + I

(
ỸN

2 ; W1|W2

)
+ I

(
ZN

1 ; W1|W2, ỸN
2

)
− h

(
ZN

1 |S
N
1 ,W2, ỸN

2

)
= T − h(ZN

1 )︸      ︷︷      ︸
T ′

+I
(
ỸN

2 ; W1|W2

)
+ h(ZN

1 )

− h
(
ZN

1 |W1,W2, ỸN
2

)
+ I(ZN

1 ; S N
1 |W2, ỸN

2 )

(e)
= T ′ + I(ZN

1 ; S N
1 |W2, ỸN

2 ) + I
(
ỸN

2 ; W1,ZN
1 |W2

)
= T ′ + I(ZN

1 ; S N
1 , Ỹ

N
2 |W2) + I

(
ỸN

2 ; W1|W2,ZN
1

)
( f )
≤ T ′ + I

(
ỸN

2 ; W1|W2,ZN
1

)
+ I(ZN

1 ; ỸN
2 ,W1, ỸN

1 ,Z
N
2 |W2)
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(g)
= T ′ + I

(
ỸN

2 ; W1|W2,ZN
1

)
+ I(ZN

1 ; ỸN
1 |W1,W2,ZN

2 )

(h)
= h(YN

1 ) − h(ZN
1 ) + h(YN

2 |S
N
2 ) − h(ZN

2 )

+ h(YN
1 |W2, S N

1 , X
N
2 ) − h(ZN

1 )

+ I
(
ỸN

2 ; W1|W2,ZN
1

)
+ I(ỸN

1 ; ZN
1 |W1,W2,ZN

2 )
(i)
≤ NCFB1 + NCFB2 +

∑
[h(Y1i) − h(Z1i)]

+
∑

[h(Y1i|S 1i, X2i) − h(Z1i)]

+
∑

[h(Y2i|S 2i) − h(Z2i)], (D.11)

where (a) follows from the non-negativity of mutual information; (b) follows

from h(YN
1 , S

N
1 |W1,W2) =

∑
[h(Z1i) + h(Z2i)] (by Claim D.2); (c) follows from

Claim 5.3; (d) follows from the non-negativity of mutual information and

the fact that conditioning reduces entropy; (e) is true since ZN
k , W1, and W2

are mutually independent; ( f ) follows from the fact that S N
1 is a function of

(W1, ỸN
1 ,Z

N
2 ); (g) can be obtained by taking similar steps as in (5.28); (h) follows

from Claim 5.4; (i) follows from the fact that H(ỸN
k ) ≤ NCFBk and conditioning

reduces entropy.

Also note that

h(Y1|X2, S 1) ≤ log 2πe
(
1 +

(1 − |ρ|2)SNR1

1 + (1 − |ρ|2)INR12

)
. (D.12)

Therefore, we get the desired bound.
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D.4 Gap Analysis of Theorem 5.6

We show that our proposed achievability strategy in Section 5.6.2 results in a

sum-rate to within at most 14.8 bits/sec/Hz of the outerbounds in Corollary 5.5.

It is sufficient to prove this for the extreme case of feedback capacity assign-

ment, i.e., where CFB1 = CFB and CFB2 = 0 (or symmetrically CFB1 = 0 and

CFB2 = CFB). The reason is as follows. Consider our achievability strategy for

the general feedback strategy described previously, and let CFB1 = λCFB and

CFB2 = (1 − λ)CFB, such that 0 ≤ λ ≤ 1. Under these assumptions, for any value

of λ, the outerbounds on sum-rate in (5.33a),(5.33b), and (5.33c) would be the

same, call the minimum of them C∗. Assuming that we can achieve to within

14.8 bits/sec/Hz of this outer-bound in the extreme cases, then, with the de-

scribed achievability scheme for general feedback assignment, we can achieve

RSUM = λRCFB2=0
SUM + (1 − λ) RCFB1=0

SUM (D.13)

≥ λ (C∗ − 14.8) + (1 − λ) (C∗ − 14.8) = (C∗ − 14.8) .

We now prove our claim for the extreme cases. By symmetry, we only need

to analyze the gap in one case, say CFB1 = CFB and CFB2 = 0. We assume that

INR ≥ 1, since for the case when INR < 1, by ignoring the feedback and treating

interference as noise, we can achieve a sum-rate of

2 log
(
1 +

SNR
1 + INR

)
, (D.14)

which is at most within 2.6 bits of outerbound (5.33b) in Corollary 5.5:

log
(
1 +

SNR
1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
− 2 log

(
1 +

SNR
1 + INR

)
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(INR≤1)
≤ log

(
1 + SNR + INR + 2

√
SNR · INR

)
− log

(
1 +

SNR
2

)
(INR≤1)
≤ log (2 + 3SNR) − log (1 + SNR) + 1

= log
(
2 + 3SNR
1 + SNR

)
+ 1

≤ log (3) + 1 ≤ 2.6. (D.15)

We consider five different subcases.

Case (a) log (INR) ≤ 1
2 log (SNR):

For this case, we pick the following set of power levels1:

P(1)
1 =

(
1

INR −
1

SNR min{2CFB , INR − 1}
)+

P(2)
1 = 1

SNR min{2CFB , INR − 1}

P(3)
1 = 1

INR min{2CFB , INR − 1}

P(1)
2 = 1

INR

P(2)
2 = 1

2INR min{2CFB , INR − 1}

(D.16)

Note that the power levels are non-negative, and at transmitter 1, we have

P1 = P(1)
1 + P(2)

1 + P(3)
1

=

(
1

INR
−

1
SNR

min{2CFB , INR − 1}
)+

+
1

SNR
min{2CFB , INR − 1} +

1
INR

min{2CFB , INR − 1}

(a)
=

1
INR

−
1

SNR
min{2CFB , INR − 1}

+
1

SNR
min{2CFB , INR − 1} +

1
INR

min{2CFB , INR − 1}

=
1

INR
+

1
INR

min{2CFB , INR − 1}

1Remember that starting the beginning of Section 5.6.2, we have assumed that INR ≥ 1.
Hence, we are not encountering division by zero in power assignments of (D.16).
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≤
1

INR
+

INR − 1
INR

≤ 1, (D.17)

where (a) follows from the fact that

1
SNR

min{2CFB , INR − 1} ≤
INR − 1

SNR

(INR2≤SNR)
≤

1
INR

. (D.18)

At transmitter 2,

P2 = P(1)
2 + P(2)

2

=
1

INR
+

1
2INR

min{2CFB , INR − 1}

≤
1

INR
+

INR − 1
INR

≤ 1. (D.19)

By plugging the given values of power levels into our achievable sum-rate

R(a)
SUM defined in (5.48), we get

R(a)
SUM = log

1 +
SNRP(1)

1

1 + INRP(1:2)
2 + SNRP(2)

1


+ log

SNRP(2)
1

2

+

+ log

1 +
SNRP(1)

2

2


+ log

 INRP(2)
2

1 + INRP(1)
2

+

= log

2 + INRP(2)
2 + SNRP(1:2)

1

2 + INRP(2)
2 + SNRP(2)

1


+ log

SNRP(2)
1

2

+

+ log
(
1 +

SNR
2INR

)
+ log

 INRP(2)
2

1 + INRP(1)
2

+

(a)
≥ log

2 + INRP(2)
2 + SNRP(1:2)

1

2
(
1 + SNRP(2)

1

) ×
1 + SNRP(2)

1

4


+ log

(
1 +

SNR
2INR

)
+ log

 INRP(2)
2

1 + INRP(1)
2

+

= log
(
2 + INRP(2)

2 + SNRP(1:2)
1

)
+ log

(
1 +

SNR
2INR

)
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+ log
(
min{2CFB , INR − 1}

4

)+

− 3

≥ log
(
2 + INRP(2)

2 + SNRP(1:2)
1

)
+ log

(
1 +

SNR
INR

)
+ min{CFB, log (INR − 1)+

} − 6

≥ log
(
2 + INRP(2)

2 + SNRP(1:2)
1

)
+ log

(
1 +

SNR
INR

)
+ min{CFB, log (1 + INR)} − log (3) − 6, (D.20)

where (a) follows from the assumption SNR ≥ INR ≥ 1, and the last inequality

holds since

log (INR − 1)+
≥ log (1 + INR) − 3 ∀ INR ≥ 1. (D.21)

• If CFB ≤ log (1 + INR): Considering the outerbound in (5.33c), in this case we

can write

R1 + R2 ≤ 2 log
(
1 + INR +

SNR
1 + INR

)
+ CFB

≤ 2 log
(
1 + INR +

SNR
INR

)
+ CFB

= 2 log
(
1 +

INR2 + SNR
INR

)
+ CFB

(INR2≤SNR)
≤ 2 log

(
1 +

2SNR
INR

)
+ CFB

≤ 2 log
(
1 +

SNR
INR

)
+ CFB + 2. (D.22)

The gap between the achievable sum-rate of (D.20) and the outerbound in
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(D.22), is upper bounded by

8 + log (3) + 2 log
(
1 +

SNR
INR

)
+ CFB

− log
(
2 + INRP(2)

2 + SNRP(1:2)
1

)
− log

(
1 +

SNR
INR

)
−CFB

≤ 8 + log (3) + log
(
1 +

SNR
INR

)
− log

(
2 +

SNR
INR

)
≤ 8 + log (3) .

• If CFB > log (1 + INR): Considering the outerbound in (5.33b), in this case we

can write

R1 + R2 ≤ log
(
1 +

SNR
1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
≤ log

(
1 +

SNR
INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
. (D.23)

The gap between the achievable sum-rate of (D.20) and the outerbound in
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(D.23), is upper bounded by

6 + log (3) + log
(
1 +

SNR
INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
− log

(
1 +

SNR
INR

)
− log

(
2 +

SNR
INR

)
− log (1 + INR)

≤ 6 + log (3) − log
(
2 +

SNR
INR

)
+ log

1 +
SNR + 2

√
SNR · INR

INR


≤ 6 + log (3) − log

(
2 +

SNR
INR

)
+ log

(
1 +

3SNR
INR

)
≤ 6 + 2 log (3) .

Hence, we conclude that the gap between the inner-bound and the outer-

bound is at most 8 + log (3) ≤ 9.6 bits/sec/Hz.

Case (b) 1
2 log (SNR) ≤ log (INR) ≤ 2

3 log (SNR):

For this case, we pick the following set of power levels2:

P(1)
1 =

(
1

INR −
1

SNR min{2CFB , SNR2

INR3 − 1}
)+

P(2)
1 = 1

SNR min{2CFB , SNR2

INR3 − 1}

P(3)
1 = 1

INR min{2CFB , SNR2

INR3 − 1}

P(4)
1 =

(
1 − P(1:3)

1

)+

P(1)
2 = 1

INR

P(2)
2 = 1

2INR min{2CFB , SNR2

INR3 − 1}

P(3)
2 =

(
1 − P(1:2)

2

)+

(D.24)

2INR ≥ 1.
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All the power levels are non-negative. Also, we have

P(1)
1 + P(2)

1 + P(3)
1

=

(
1

INR
−

1
SNR

min{2CFB ,
SNR2

INR3 − 1}
)+

+
1

SNR
min{2CFB ,

SNR2

INR3 − 1} +
1

INR
min{2CFB ,

SNR2

INR3 − 1}

(a)
=

1
INR

−
1

SNR
min{2CFB ,

SNR2

INR3 − 1}

+
1

SNR
min{2CFB ,

SNR2

INR3 − 1} +
1

INR
min{2CFB ,

SNR2

INR3 − 1}

=
1

INR
+

1
INR

min{2CFB ,
SNR2

INR3 − 1}

≤
SNR2

INR4

(
√

SNR≤INR)
≤

√
SNR
INR

≤ 1, (D.25)

where (a) follows from the fact that

1
SNR

min{2CFB ,
SNR2

INR3 − 1} ≤
1

√
SNR

≤
1

INR
. (D.26)

Since P(4)
1 =

(
1 − P(1:3)

1

)+
, we conclude that P1 ≤ 1. Similarly, we can show that

P2 ≤ 1.

By plugging the given values of power levels into our achievable sum-rate

R(b)
SUM defined in (5.57), we have

R(b)
SUM = log

1 + INRP(1)
2 + SNRP(1:2)

1

1 + INRP(1)
2


+ log

(
2INR + SNR + INR2

− 2INR
2INR + SNR

)
+ log

(
1 +

SNR
2INR

)
+ log

(
2INR + SNR + INR2

− 3/2INR
2INR + SNR

)
+ min{CFB, log

(
SNR2

INR3 − 1
)+

} − 3
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≥ log

2 + SNRP(1:2)
1

2


+ log

(
1 +

SNR
2INR

)
+ 2 log

(
INR2

3SNR

)
+ min{CFB, log

(
SNR2

INR3 − 1
)+

} − 3

≥ 2 log
(
1 +

SNR
2INR

)
+ 2 log

(
INR2

3SNR

)
+ min{CFB, log

(
SNR2

INR3 − 1
)+

} − 3

≥ 2 log
(
1 + SNR

2INR

)
+ 2 log

(
INR2

)
− 2 log (3SNR)

+ min{CFB, log
(
SNR2

INR3 − 1
)+

} − 3

= 2 log (1 + SNR) − 2 log (INR)

+ 4 log (INR) − 2 log (3SNR)

+ min{CFB, log
(
SNR2

INR3 − 1
)+

} − 3

≥ 2 log (1 + INR)

+ min{CFB, log
(
SNR2

INR3 − 1
)+

} − 5 − 2 log (3) . (D.27)

We first simplify the outerbounds in (5.33b) and (5.33c). Considering the

outerbound in (5.33c), for this case we can write

R1 + R2 ≤ 2 log
(
1 + INR +

SNR
1 + INR

)
+ CFB

≤ 2 log
(
1 + INR +

SNR
INR

)
+ CFB

(SNR≤INR2)
≤ 2 log (1 + INR + INR) + CFB

= 2 log (1 + 2INR) + CFB

≤ 2 log (1 + INR) + CFB + 2, (D.28)
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and for the outerbound in (5.33b), we have

R1 + R2 ≤ log
(
1 +

SNR
1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
(INR≤SNR)
≤ log (1 + INR + SNR) − log (1 + INR)

+ log (1 + 4SNR)
(INR≤SNR)
≤ 2 log (1 + SNR) − log (1 + INR) + 3. (D.29)

We consider two possible scenarios based on CFB,

(1) CFB ≤ log
(

SNR2

INR3 − 1
)+

:

With this assumption, we have

R(b)
SUM ≥ 2 log (1 + INR) + CFB − 5 − 2 log (3) , (D.30)

note that, in this case

CFB ≤ log
(
SNR2

INR3 − 1
)+

≤ log
(
1 +

SNR2

INR3

)
(
√

SNR≤INR)
≤ log (1 + INR) , (D.31)

therefore, from (D.28) we get

R1 + R2 ≤ 2 log (1 + INR) + CFB + 2. (D.32)

Hence, the gap between the achievable sum-rate of (D.30) and the outer-

bound in (D.32) is at most 7 + 2 log (3) ≤ 10.2 bits/sec/Hz.

(2) CFB ≥ log
(

SNR2

INR3 − 1
)+

:

We have

R(b)
SUM ≥ 2 log (1 + INR) + log

(
1 +

SNR2

INR3

)+

− 5 − 3 log (3)
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≥ 2 log (1 + INR) + 2 log (SNR)

− 3 log (INR) − 5 − 3 log (3) (D.33)

≥ 2 log (1 + INR) + 2 log (1 + SNR)

− 3 log (1 + INR) − 7 − log (3)

= 2 log (1 + SNR) − log (1 + INR) − 7 − 3 log (3) .

Hence, the gap between the achievable sum-rate of (D.33) and the outer-

bound in (D.29) is at most 10 + 3 log (3) ≤ 14.8 bits/sec/Hz. As a result, the gap

between the inner-bound and the minimum of the outer-bounds in (5.33b) and

(5.33c) is at most 14.8 bits/sec/Hz.

Case (c) 2 log (SNR) ≤ log (INR):

• If SNR ≤ 1, pick

P(2)
2 = P(3)

1 =
1

INR
min{2CFB , INR},

and set all other power levels equal to zero. By plugging the given values of

power levels into our achievable sum-rate R(c)
SUM defined in (5.61), we get

R(c)
SUM = log

(
min{2CFB , INR}

2

)
= min{CFB, log (INR)} − 1

≥ min{CFB, log (1 + INR)} − 2. (D.34)

Consider the outerbounds in (5.33a) and (5.33b), under the assumptions of

case (c) and SNR ≤ 1, we have

R1 + R2 ≤ min{2 log (1 + SNR) + CFB,

log
(
1 +

SNR
1 + INR

)
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+ log
(
1 + SNR + INR + 2

√
SNR · INR

)
}

≤ min{2 log (2) + CFB, log (2) + log (2 + 3INR)}

≤ min{2 + CFB, 1 + log (3) + log (1 + INR)}

≤ min{CFB, log (1 + INR)} + 2.6. (D.35)

Therefore, with the given choice of power levels the achievable sum-rate of

(D.34) is within 2.6 bits/sec/Hz of the minimum of the outerbounds in (5.33a)

and (5.33b).

• If SNR ≥ 1, pick

Pick the following set of power levels:

P(1)
1 = 0

P(2)
1 = 0

P(3)
1 = SNR

INR min{2CFB , INR
SNR2 }

P(4)
1 = 1 − P(3)

1

P(1)
2 = 0

P(2)
2 = 1

INR min{2CFB , INR
SNR2 }

P(3)
2 = 1 − P(2)

2

(D.36)

It is straight forward to check that the power levels are non-negative and

they satisfy the power constraint at the transmitters. By plugging the given

values of power levels into our achievable sum-rate R(c)
SUM defined in (5.61), we

get

R(c)
SUM = log

1 +
SNR(1 − 1

SNR )
2


+ log

1 +
SNR(1 − 1

SNR )
2

 + log

min{2CFB , INR
SNR2 }

2


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≥ 2 log (1 + SNR) + min{CFB, log
(

INR

SNR2

)
} − 3

= min{2 log (1 + SNR) + CFB,

2 log (1 + SNR) + log
(

INR

SNR2

)
} − 3

≥ min{2 log (1 + SNR) + CFB, log (1 + INR)} − 4. (D.37)

Consider the outerbounds in (5.33a) and (5.33b), under the assumptions of

case (c), we have

R1 + R2 ≤ min{2 log (1 + SNR) + CFB,

log
(
1 +

SNR
1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
}

≤ min{2 log (1 + SNR) + CFB,

log (2) + log (1 + 4INR)}

≤ min{2 log (1 + SNR) + CFB, 3 + log (1 + INR)}

≤ min{2 log (1 + SNR) + CFB, log (1 + INR)} + 3. (D.38)

Therefore, with the given choice of power levels the achievable sum-rate of

(5.61) is within 7 bits/sec/Hz of the minimum of the outerbounds in (5.33a) and

(5.33b).

Case (d) 2
3 log (SNR) ≤ log (INR) ≤ log (SNR):

In this case feedback is not needed. The achievability scheme of [19] for

Gaussian IC without feedback, results in a sum-rate to within 1 bit/sec/Hz of

log (1 + SNR) + log
(
1 +

SNR
1 + INR

)
. (D.39)
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For the outerbound in (5.33b), in this case we have

R1 + R2 ≤ log
(
1 +

SNR
1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
≤ log

(
1 +

SNR
1 + INR

)
+ log (1 + 4SNR)

≤ log
(
1 +

SNR
1 + INR

)
+ log (1 + SNR) + 2. (D.40)

Therefore, the achievable sum-rate of [19] is within 3 bits/sec/Hz of the out-

erbound in (5.33b).

Case (e) log (SNR) ≤ log (INR) ≤ 2 log (SNR):

In this case feedback is not needed. The achievability scheme of [19] for

Gaussian IC without feedback, results in a sum-rate to within 1 bit/sec/Hz of

log (1 + SNR + INR) . (D.41)

For the outerbound in (5.33b), in this case we have

R1 + R2 ≤ log
(
1 +

SNR
1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
(SNR≤INR)
≤ log (2) + log (1 + 4INR)

≤ log (1 + INR) + 3. (D.42)

Therefore, the achievable sum-rate of [19] is within 4 bits/sec/Hz of the out-

erbound in (5.33b).
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