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Abstract

In this paper we study the relative succinctness of different
representations of polynomial tlmé languages and 1nve$tigate what
Can and cannot be formally veritied about these representations.
We also show that the relative succinctness of different repre-
scntations of languages is directly relatea to the separation of
the correséoncinq complexity ciasses; for exampie, PTIME y# NPTIME
. if -and only if the relative succinctness of representing languages

An PTIME by deterministic and nondetekminxstic clocked polynomial
-time'machines 1s noe recursively bound which happens if and'only

if the rolatlvo lucclnetnoao of thesc tepresentntxon: is not Ainear&y
bounded.

This research has been supported in part by National Seitnco
roundatlon grant MCS 78-00418. .



1. 1Introduction

In this paper we study the relative succinctness of cifferent
representations of languages with particular attention to the ce-
Presentation ot polynomial time tanguages. We relate the probdlerms
of relative succinctness of representstions of languages to X
classic problem of separating the corresponding corplexity classes
and investigate what can ana cannot be tormally verifiec about =X
represéntations of polynomial time languages.

Let M;,M,,... be a standard enumeration of all deternimstic
iultxta?e Turing mach:né (Tm's), letrntnip denote the language

accepted by M;, let |x| denote the length of x and define

Tx(n) = max{m|m is number of operations performed by ”1 on

input x, |x| = n}.

Similarly, iet Nj/Ny,... De a standard enumeration of all nonaeter-

ministic multitape Tm's.

Let the set of gglxnomiax time T™m's be denoted by
PM = (M, | T (n) s xn®, x z_l)
lndilot
PTIME = {L(M,;) | M, <« PHL.

8imilarly, let NPTIME denote the set of iqnguagcs.ucccptcd in poly-
nomial time by nondeterministic Turing machirnes.

The set PTIME consists of aill languages aczepted by ceteswinist!
T Tm's  in rolynomial time and tho main object ¢f this papzs iz s2

investigate different ropresentacions of this :1riiy of lang:a
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- N standard way of representing languages in PTIME is by clocked
T™m's which -are T™m's with standard furm subroutines wnich for input
x count up to.klx{‘ anda at this count override the Tm and reject
£a¢ irput and hait. It is assumed that thesa clockes are in an
easy to recognize torm so that the set of clocked Tm's is recursive;

denote it by

CH = “‘ou,x) | 4,x = 1,2,...}.

1f we let

LANG[CM) = “’"‘ou,x)] | i,k =1,2,...) = (Llnjl | nj e« CM}
then, clearly

PTIME = LANG[CM]. R

-

In a way, the class of clocked machines, CM, éan be v;cwedbli
a set of machines for which we can easilf supply proofs tpat'ﬁhQQ
run in polynomial time. A more general class of machines running
ir poiyncmial tixe can be obtained by considering atl the machines
toé which we can prove that thej run in polynomial time. To make
this 1dea precise let F be an axiomatizable sound formal mathematical
system in which we can prove elementary facts about Turing machines.

'I£ S 18 a formal statement provable in F we write

F | [s).

Let the class of verified machines, VM, be given by

Vi - l”t | P lnilrunn an polynomial time])}
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LANG[VNM] = {L(M;) | M, ¢ Vn}.
For a léttiélen£i§~powerfu1 sound Eo;nal.lf;ten‘r wd_ha;o that

LANG [CM] = LANG[VM] = PTIME.

Finally, we can rebreleht the sets in PTIME by nondeterministic

polynomial time Tm's. Let CNP denote the class of clocked nondeter=-

ministic machines which accepts sets in PTIME,
CNP = (N (\ ) | LN, i, x)) ¢ PTIMEL.

and let VCN denote the ciass of clockea nondeterministic polyncmial
time machines for which we can prove in F that they accept sets in

PTIME,

VCNP = (np(l‘k, | P k.(ntuo‘i",) ¢ grxuz)).

'

. Again we note that tor sufficiently strong sound formal systea }
LANG [CNP] = LANG[VCNP] = PTIME.

For the representations of sets in PTIME by machines from CM and

PM we say that the relative succinctness is not recursively bound

if there is no recursive function in the size of machines in PM

which can bound the size of the mlnimal equivalent machinés 1n»CH.

Similarly the definition is extended to other pairs of representatio:
" In the farst part of this paper we show that the relative

succinctness of representiﬁq sets in PTIME by machines from CM to

VM cannot be recursively bounaed and that the same is true gor re=

presentations from VM and PM.
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The relative succinctness between deterministic and nondetermin-
istic representations of polynomial time computations is directly re-
lated to the classic problem PTIME= NPTIME? The relative succinctness

of representing PTIME languages by clocked deterministic polynomial

time machines and clocked nondeterministic polynomial time machines
(CM and CNP) 1s recursively bounded iff PTIME = NPTIME. As a matter
of fact, we show that PTIME = NPTIME if and oniy if the relative
succinctness of the deterministic and nondeterministic representa-
tions can be linearly bounded. This result establishes an interest-
ing relation between the relative succinctness of representations
and the separation ot the corresponding complexity classes, thus
linking the dynamic and static properties of programs. This result
can de easily extended to other separation problems including the
classic problem about deterministic inu nondeterministic context-
sensitive languages as well as polynomial time and polynomial tape
languages [1,3,4]).

In the last part bf this paper we consider what can and cannot
be proven in F about these representations. We show that for the
simple representation of sets in PTIME by the clocked machines, CM,

we can prove ain F thai we get the.desired class of languages, namely
F | [LANG[CM] = PTIME].

On the other nhand, thnugh we gain in succinctness of representitlonl
by going from CM to verified machines, VM, we loose our ability to
prove in F that we are getting the rignt family of languages., We
show that

. LANG[VM]} = PTIME

is not provabie an F. Thus, allowing the tull power of F to select

marhinne for which we can nrove in F that they ran 10 nnlvinuaial 1 ima



prevents us from verifying in F that we have defined the right class

of languages.‘

2. Succinctness Results

In this section we show that the relative succinctness between °

the representation of PTIME languages by machines in CM, VM and PM

is not recursively bounded.

Theorem 1: 7The relative succinctness of representing languages in

PTIME by machines in CM and PM is not recursively bounded.

Proof: Let B(r) denote the maximum number of steps performecd before
haiting on blank tape by Tm's of size r. Clearly B(r) is not a re-
cursive tunction and B(r) cannot be recursively bounded in r.

Below we congtruct ¢ ™Tm M

p(r)
and accepts a finite set not accepted by any clocked machine, ¥

which runs in polynomial tix

c({i,x)
-in CM, with i

I"a(l,k)l < B(r).

Since the size ot "p(r) will be seen to be recursively reiated to r
we must conclude that the relative succinctness of these two repre=
sentations is not recursively bounded.

In the construction of Hp(ri we use an auxilijary 1list, Ln' of
machines in CM which have been tound not to be equivalent to M

pix)
by processing inputs up to length n-1.

Description of Mp(r)' Let L1 = f, reject the null string ana
all inputs not in 0*. For w = 0™, n 2 1, iay off [logn] tape
squares and in this amount ot tape try to find the maximal N of nume
bef‘steps berformed by a Tm ot size r before halting; clearly N s B(r)

_and evuntually (for sutticicently large n) an N, N = B(r) wiil b.v



found. (Note that this computation takes a poiynomial number of
teps.) If ro N is found (on the available tape) w in_rejected.
2 a value is found lez N be the maxamum. Reconstruct the list

Ln' ard try to £ind the smallest "a(i,k) in CM such that

Ho(x.k) / L, ana IMo(x.k)l < N.

It no such M can be found on the available tape then reject

cl(1,k)
. input .né set L . =1L. If M;(4,x) 1s‘found then simulate "a(i,k)
on 0 and do the opposite and set Loy =Ly {"o(} k))'

’

It 1s seen that M runs in polynomial time and that 1M

ptr) p(r)l
:s recursively bounded in r, but that the size ot the smallest equiva-
nent xot; ) is not recursively bounced in r. Tnis completes the

’

proof. . a2

Por sufficiently powerfnl axionatizable formal systems F in

whick we can prove that M

o (r) runs in poiynomial time, namely

Hp(t) ¢_VH,

we.can prove our next result:
terra 2: The reiative succinctness of representing sets in PTIME
ty =achines in CM and VM is not recursively bounded.

It turas out that also tne representations VM and PM have non-

recursive succinctness.

. »reorem 33 The relative succinctness of representing sets in PTIME

' 5y machines in VM and ¥ is not recursively bounded.

. proof: By a construction similar to the one irn thcAﬁtoof of

Theoren 1, reciliing that VM is recursively enumerable. [ |



3. . Nondeterministic Representations -

In this section we consider the :claiiv- luceinctnosn_ot repre-
>ienting languages in PTIME by detcrministic and nondeterministic
clocked polyﬁomial time Turing machines. We show that the relative
succinctneés of these representations is directly linkea to thﬁ
'separatxon of the corresponding complexity classes, PTIME and

NPTIME, 1In the tollowxng proof we exploit a technique used in lll.

Theorem 4: If PTIME # NPTIME then the relative succinctness of re-

presenting sets in PTIME by machines in CM and CNP is not recursively
bounded. '

Proof: 1If a recursive succinctness bound G exists for these repre-

sentations, then we can recursively enumerate the set

R= (“oh.k) | LIN, (4,x)) ¢ NPTIME - PTIME)

by l1isting ali the M with .

a(l,.t)
Moy, )l < SUING, x)“

and checking on successive inputs whether "o() )

agree, if "p(i,k) disagrees with a11 listed M

and 'o(l.k)

o(3,t) then “o(i,u) has
no deterministic polynomial time equivalent machine ana it accepts a

dis-

set in NPYIME - PYIME. But, 1f NPTIME # PTIME then set R is not recu
sively enumerable, as shown in the next lemma, and therefore a re-

cursive succinctness bound G does not exist. . N |
Lemma S5: If NPTIME # PTIME then the set

R= N x| L(Nj(4,x)) € MPTINE = PTINE)



1§ not :ecutsivelyAénumerable,

Proot: <To show that R 1s not recursively enumerable let

A < NPTIME - PTIME. Construct “G(r) 56 thaf the input x is acceptéd
ift M_ on bianx tape has not halted in |x] steps and x ¢ A. Clearly

“5(:) operates 1in nondeterministic polynomiai time and accepts a

set not in PTIME 1ff L does not halt on blank tape. Theretfore,

a iecursiée enumeration 6£ the set R would yiexd a recursive enumer-

at:on of

{x: R M, does not halt on blank tape}

which 1s a contraaiction. : . o L

The next result extends tne previous theorem to representations

. of sets in PTIME by'Mnchines from VM and CNP.

Theorem 6: If PTIME ¥ NPTIME then relative succinctness of the N
representation of sets in PTIME by machines in VM and CNP is not

;ecursively'bounded.
Proof: Similar to the proof ot Theorem 4. o

The resuits in Theorems 4 and 6 can easily be extended'to the
representations of sets in PTIME by machines from CM and VCNP.

From the previous results we see that if PTIME ¥ NPTIME then
the use of nondeterministic algorithms to describe determinaistic
prograns can vield recursively unbound succinctness. Therefore,
even :f we know that a nondeterministic polynomial time-algorithm has
an ecquivaient cetcrministic poiynomial time algorithm we may not be

able to use the determinastic polynomaal time algorithm because of .
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its immense size. Clearly, an equivalent deterministic algorithnm
which does not have to run an polynomxal time can be effectively -
computed from the nondeterm;nxstic algorithn and its length will
be recursively related to the length of the nondeterministic algor:‘hﬂ
So far it 1s not known whether there exists nonrecursive su;-‘
cinctness between tne representation of sets in PTIME by machines fﬂ
from PM and CNP. e
Next we show that the nonrecursive succinctness given by Thedzizo
4 and b occurs iff PTIME # NPTIME and that, turthermore, PTINE- = XNPTIN

ift the relative succinctness can be bounced linearly.

Lemma 7;_ If PTIME = NPTIME then there exists a recursive nmapping r
whach maps every Np(i,k) onto an equivajent nc(j't, and there are:

two constants LY and ¢, sucnh that

N LA R N L RV L I L SPoeRy

Proof: Note that the language
U= (N ] w(.'"p(x k)lnk) | accepts w}
pLi,K) - PR pl1,k) P

18 a complete language for NPTIME [4]. If PTIME = NPTIME then U

is accepted by some "u(j.t) - Mio and therefore tor every 89“'X)

_we can write down a deterministic polynomial time machine r‘uo(t,k),

which for any input w first writes down

X
Mo vil¥u,0 1)

and then starts M, on this input. 1It as oaiixy seen that
0 .

L. LIRS ) )

." L“‘D(l:k)
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ara gnat ferc, = ;”iol and acy >0

33‘5:(;,3)‘ M I |?(ND\1.K)’| -'IHO(J.til‘

as was'to te shown (the constant ¢, cah be computed easily 1if we

fix a rcpresentatioﬁ of ™m's). : o o 7||

Cc=cining these results we get a direct relation between the
PTIME = APTIME? problem ana the problem of succinctness of determin-

istic representation of sets in PTIME.

2heorem 3: PTIME ¥ NPTIME 1ff the relative succinctness of repre-
sent.ng languages in PTIME by deterministic and nondeterministic
clocrez po:ynomial time machines (CM and CNP) is not recursively

_boundea ana this happens 1ff the relative succinctness is not lineariy

bourced.
Proct: Fcliows from Taeorem 4 ana Lemma 7. ' | ]

Tais result (Theorem 8) can easily be extenaed to other separa-
'::gn sroplens such as deterministic and nondeterministic cén:ext-
sensitive larguazes, PTIME and PYAPE ana many others (1,3,4].
- The above thcorem could give further 1ﬂsights into the classic
separation problems. First of alli, it we coula show for irbitrazily
large 5 that the size of a deterministic equivaient of some nondeter-

;
ministic machines Np(i,k) must exceed

AL AT I

then we would have shown that PTIME ¥ NPTIME. Similarly, it we

could snow that B in the above equation must be atleast of a givdn



size then we voﬁld have a lower bound tor the size of the poiynomial
txﬁe machine (wnhich may not exist) "1 which recognizes the set U
. (/]
(Lemma 7); 4f B is very large then so must be "1 ., inaicating tnat
0

it will pe very hard to find.

4. An Observation about Optimal Algorithms

. By technigues simiiar to the ones used in the previous section
we can easily prove that for tape or time bounaed computations a
'txigni' increase in the resource bound permits a recursively un-
bounded shortening ot the representations. We state Ju;t one special
-case of this general result, let TAPE[t(n)] aenote the set of lan-

guages accepted on t(n) TAPE (1].

Theorem 9: The reiative succinctness of representing languages in

2+

TAPE[nzl b& machines using nz-gape and machines using n c-tapc,

€ > U, is not recursively bounded.
This result nas some interestaing xupxicatiohs tor optimization
of algorithms. It 1s well known that we can not recursively decide.

3

whether, for example, algorithms running on n”-tape have equivalent

algorithms running on nz-tape. At the same time, there is a feeling

that for any particularly important n?

-tape algorithm by hard work
and cleverness we will find either a proof that a faster algorithm
does not exist or find a faster aigoritnm. ‘The above resuit shows
that this may not always be the case. There are ns-tape aigorithms
tor which equivaient nz-tapo algoritnms exist and we may even be
abie to prove that they exist (1), but we cannot ever obtain them

" because of their immense size. It is not the lack of cieverness or
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or the weakness of cur formal mathematical system (which we are
wiiling to change) which prevents us from using the fast algorithms
for these computations, it 1s their enormous physica; size which
makes them inaccessible fo us.

i Similarly, if PTIME ¥ NPTIME and we use nondeterministic
machines (programs) to specity deterministic polynomial time compu-
tations we may not be able to ever write adown the equivalent deter=
ministic polynomial time ailgorithm because of their size.

It is not clear whether any such functions with “short” inef-
ficient algoritﬁms whose optimal algorithms are impractically long
are of practical interest. un the other hand, we may‘be able to
prove for some "natural” computation that it has tast algorithms
but that their length must exceed a large bound, as it was done in
our proofs for the "unnatural” sets constructed to show the existence .

of recursively unbounded relative succinctness for these representations.

5. Provable Properties ot Representations

In a sound and sufficientiy powerful axiomatizable formal system

T we can prove tor every "clocked” TM M in CM that it runs

ofa,k)
in polynomial time, namely

FI (T tm < knJ.

oii,x)

Furthermore, for "i such that Tl(n) < knx we can prove inP that

L(Ha(i.k), = Llni{.

Therefore, we can prove in F that the clocked machines accept’ exactly

the family of languages PTIME.
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Theorem 1U: ¥ |- [LANG(CM] = PTIME].
Proof: As outlined above. ' a

On the other hand, we now show that the corresponding statement

for verified machines, LAMG[VM] = PTIME, is not provabie in F.
~ Tnis proof was suggested by Neil Immerman of Corneldl Unaiversaty and

utiilizes the fact that the consistency of F cannot pe proven in F.

“Theorem 11: It is not provabie in F tnat
LANG[VM] = PTIME.

Proof: Let PT(M) be tne predicate in F whicn asserts that X runs

in polynomial time. Let TH(x) be the predicate in P wh:ch asserts
that x 1s a theorem in F, i.e. there exists a y which proves x,
PRix,y). Let CUNSIST(F) be a tormal assertion in P that F is con~-
sistent.  If F is sufficiently powerful then we can formulate dx,-
gonalization in F and prove that there are computatioil which caanot

be computed in poiynomial time, i.e.
1) F} 1@M)) [L(M) = LiMy) => - PT(M)].

We will show that it we can prove in P that LANG[VM]) = PTIME
then we can prove in F that some statement in F is not a tneorcn{
which proves in P that F is consistent, i.e. F |- |CONSIST(F)],

wnich is torbidaen by Goedel's secona incompleteness theorem.
Note that ' ‘

LANG [VM] = PTIME
As equivalent to the two statements that

PTIME ¢ LANG[VM] and LANG[VM] < PTiME,
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which can be formulated 1n P 1in tne fouowinq' way:

2) PT(M) => @M')(L(M') = L(M) and TH[PT(M')}) and
TH[PT(M)] => PT(M). '

“ 1
" P | [LANG([VM] = rﬁuz)
then from 2) and the tact that
f}- [A ard B) => ':'- (8l
we gat |
il— [THIPT(M)) => PT(M)]
from which vo get by taking the ;:;)ntxapouti.;.
:‘;_)b r'|- [~ PT(M) => = TH{PT(M)]..
Froa 1) we have that |
‘4) F }-' [~ PT(Mg) ).
uUsing tne fact that -
AP |- (A) and r.'.l-‘m => B]) => r‘}— (8)
@ 3) and 4) wve get
b= TH(MG) ]

" But tnis asserts that we can prove in P that sometning is not a

" theorem in P wnich is equivalent to



P |- consisTIP).

But it is impossible to.provo the consistency of P in P for a sound

P. Therefore,
LANG([VM] = PTIME

V'Vlis not provabie in P.’
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