SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853-3801

TECHNICAL REPORT NO. 1138

November 1995

On the Computation of
Queue Length Probabilities
~in a Two-Priority Class

M/G/1 Queue'
by

Refik Giillii, Peter Jackson
and Jack Muckstadt

On the Computation of Queue Length
Probabilities in a Two-Priority Class M/G/1

Queue

Refik Gullu
Peter Jackson

Jack Muckstadt

1 Introduction

In this article we present a recursive computational procedure for obtaining the stationary
queue length probabilities in a two-priority class M/G/1 queueing system. We assume
that there are two classes of jobs arriving to a single server queue, following Poisson
processes with arrival rates Ay (for high priority jobs), and Ay (for low priority jobs).
We suppose that the service times of the jobs have general distributions with distribu-
tion functions Fj(z) (for the high priority j(.)bs), and Fi(z) (for the low priority jobs).
We specifically analyze the preemptive-resume priority discipline, where a high priority
joh will interrupt the service of a low priority job, and the low priority job returns to
service from the point it left off once the service for all high priority jobs in the system
have been completed. First-Come First-Served(FCFS) discipline is used within a priority
class. Such queueing systems have a wide variaty of applications in operations research
and computer science. For example, a single-machine, multi-product production envi-

ronment can be modelled using the particular queueing discipline described, where the

high priority jobs correspond to make-to-order, and the low priority jobs correspond to
make-to-stock products (Carr et al.[1993]). In various such applications one often needs
to compute the stationary queue length or the number in the system probababilities cor-
responding to high and low priority classes. Because of the preemptive discipline, the
queuc length process for the jobs belonging to the high priority class behaves exactly as
in a single-priority M/G/1 queue. However, the queue length process for the jobs corre-
sponding to the low priority class behave considerably different than its single priority
M/G/1 correspondance, since the queue length process for those type of jobs is affected
by the high priority type of arrivals. Priority queueing systems have attracted consid-
erable attention of both practitionars and researchers. Jaiswal [1968] is solely devoted
to various aspects of such queueing systems. Other texts, such as Cohen [1969], also
allocate a substantial material to priority queues and its related matters. The steady
state probabilities for the number of low priority jobs in the system are characterized
in Jaiswal [1968] by means of their generating function. Carr et al. [1993] utilized this
generating function to obtain the number in the system probabilities for a system where
both low and high priority jobs have the same unit service times. Here, we extend their
results and develop procedures that yield the number in the system probabilities under
general and possibly non-identical service time distributions for low and high priority
jobs. Qur main contribution is to develope an algorithm which produces exact queue
length probabilities for a wide range of service time distribution functions.

The rest of the paper is organized as follows. In Section 2 we present the notation,
and discuss some preliminary definitions for the preemtive-resume priority queueing sys-
tem. In Section 3, main analytical results of the article are presented. In Section 4, an
algorithm is developed for computing the queue length probabilities for the number of
low priority jobs in the system. We also demonstrate the algorithm on an example. The

conclusions are presented in Section 5.

2 Preliminaries

In this section we define some notation and preliminary definitions. Let L and H denote

the indices for the low and high priority jobs respectively.
A-: arrival rate for r priority class jobs, r € {L, H},
pr: service rate for r priority class jobs, r € {L, H},

PrzAr/ﬂr,T’E {LsH})
P=PL+PHa

Q-: steady state number in the system for r priority class jobs, r € {L,H},
F.(x): service time distribution for r priorority class jobs, r € {L, H}.

We need to define some terminology used in the context of priority queues. The busy
period is defined as the length of time that begins with a customer arriving into an empty
system and ends the next time the system becomes empty. The completion time of a
unit is defined as the period that begins the instant service begins on a unit and ends
the instant the scrver becomes free to take the next unit of that class. In a preemptive
queueing discipline, the completion time of a lower priority job can be much higher
than the job's service time. Let IT,(0) denote the probability generating function of the
stationary number of low priority jobs in the system. Then by Jaiswal, we have, for
p<l,

M0(0) = (1 = py{1 + 2 1= 8O0 = 0)y (1= 0)e(A (1 = 0))

/\L 1-46 c(AL(l—O))—O }, (1)
where ¢(0) and b(6) are the Laplace-Stieltjes transforms (LSTs) for the completion time of

a low priority item, and the busy period if the low priority items are ignored, respectively.

It turns out that c(f) satisfies (see Jaiswal)

c(0) = Ur(Au(1 = b(0)) + 6),

3

and b(0) satisfies
b(6) = Un(Au(1 —b(0)) + 6),

where

U (s) = /0°°e~ardF,(:c), re {L,H)}.

We derive the probability mass function of the low priority jobs in the system from its
generating function through differentiation. That is to say, if
w .
ML(9) := 3 Pr{QL = i}4',
=0
then, forn =0,1,...,
1 40

Pr{Qr =n}= — 757 1O lo=o. (2)

For any function f(z), define f*¥)(a) := d*f(z)/dz*|;=,. Also let fO(z) = f(z).

3 Results for Low Priority Jobs

In this section we provide various results that lead to an algorithm for computing the
queue length probabilities of the low priority items in the two-priority class queueing
system described above. In Proposition 1 we provide a recursive formula for computing
the derivatives of the generating function for the number of low priority jobs in the system.
The recursion is in terms of the derivatives of LSTs for busy period and completion time
random variables. By using the transformation defined in equation (2), we obtain the
queue length probabilities (Corollary (1)). Proposition 2, and Corollary 2 provides a
method for computing the derivatives of the LSTs of the busy period and the completion

time.

Proposition 1 Forall k=1,2,...,

M9 (9)(e(AL(1 - 0)) = 0)

T = (1=p) kI (0)

k-1 .
- 2 (I?)(—)‘L)k-jc(k‘j)(/\L(l - 0z (0))

j=0 \J

4

Ap)E-1 AHZ() BI(AL(L = 60))c* =D (A (1 = 6))
~ k(=AL)F 1D (AL (1 - 0))
A
R -0+ P01 - 0)) (3)
Proof: By induction. Details are provided in the Appendix.O

By setting 6 = 0 in (1) we obtain Pr{Q, = 0}. By setting # = 0 in (3) and dividing by
k! yields the following.

Corollary 1

Pr(@u=0} = (1-p){1+ 320100},

PriQu =k = STE1 - o) kPr{Qu = k- 1)
- k A) Pr{Qs = 31)
" (—m’c-ém};—]—)—b (AL)et=(Ay)

FA L)+ 3E))

(=) (L) +
fork =1,2,....

It should be noted that the recursive form provided in Corollary 1 for Pr{Q, = k}
is not only a function of the probability terms Pr{Q; = i} for : < k — 1, but also a
function of the derivatives of b(0) and ¢(#) evaluated at & = A,. In the remainder of
this section, we develop recursive formulas for the derivatives of these functions. Define
Z(8,7) = Ezp{~[Ay(1-5(8))+0]z}, and Z¥)(a,z) = 0*Z(6, £)/06*|4=o. We can rewrite
b(8), and c(0) as

o0

b(0) = Z(0,z)dFy(z), (4)

o0

Z(0,z)dFy (). (3)

J
J

By taking derivatives of equations (4) and (5) for all k£ > 1, we obtain

690) = [~ 290,2)dFu(2), (6)
) = /0°° Z®)(9, 2)dFy(z). (7)
Let,
Z,(0,5,i) = /0°° 2 29(6, 2)dF,(z),r € {L,H},j > 0,i > 0.

In particular the integrals in (6) and (7) are equal to Zy(8,0, k), and Z.(4,0, k) respec-
tively. It turns out that it is possible to write the kth derivative of Z(0,z) in terms of

combination of Zs with lower order derivatives.

Proposition 2 Fork =1,2,...,

k-1 _)]
ZH(0,z2) = —xz<k-1>(9,x)+/\yz(kj 1)xZ(3)(9,x)b(’°"”(0). (8)
j=0
k-1 .
Z.(0,4.k) = —zr(o,j+1,k—1)+AHZ(;)b‘k*”(@)zr(o,nl,i), (9)
1=0

forallj 20, k>1,re{L,H}.

Proof: Proof of equation (8) can be found in the Appendix. Equation (9) follows by
multiplying both sides of equation (8) with z7 and integrating with respect to dF.(z). O

By letting j = 0 in equation (9), we obtain the following corollary.

Corollary 2 For allk =1,2,.. .,
—ZH(O, 1,k — 1) + Au Zf’c-.-‘ll b(k_i)(o)zi/(o’ l»i)

bM(g) =
(©) 1 -AyZn(6,1,0)
k-1
0) = —Zy(0,1,k=1)+ 2y 3 b*0(0)2,(0,1,1)
1==0

Although the terms Z,(0,1,7), 1 =0,1,...,k — 1 are difficult to evaluate, the term
Zr(gvj» O) = (—I)JU}J)()\H“ - b(g)) + 0)’7' € {L?H}a] 2 1’ (10)

the jth derivative of U, evaluated at Ay (1—b(8)) +6, is easy to compute for a wide range

of distribution functions F, for all j > 0. In the Appendix we provide some important

6

random variables where the term U7 (s) can explicitly be obtained. This property will be
utilized for obtaining an algorithm that computes the necessary Z, terms in a recursive

manncr, and finally evaluates Pr{Q, = k}.

4 The Algorithm

In this section an algorithm is presented that computes the queue length probabilities
for the low priority class jobs. Before stating the algorithm, we review the dynamics of
the computations required. In order to compute Pr{Q, = k} for any k > 1, we need
Pr{Qr =1} for i = 0,1,...,k — 1, and ¢(Ay), b)(A.) for = 0,1,...,k as stated in
Corollary 1. If one progresses computing Pr{Qy = k} from k = 0, it is trivial to verify
that once Pr{@. = k~1} has been computed, the terms Pr{Qy =1} fori = 0,1,... k-1,
and ¢ (Ap), 80(Ap) for i =0,1,... .k —1 are already available. For computing 6()(\,)
we need B (ML) fori=1,2,... k-1 and Zi(Ar,1,5) for j =0,1,2,...,k—1 as stated
in Corollary 2. Obviously, after the computation of Pr{Q, = k — 1} the terms c((A1)
for + = 1,2,....k = 1 and hence the terms Zr(Ap,1,7) for j = 0,1,2,...,k — 2 are
available. Therefore, the only term required for the computation of Pr{Q, = k} is the
term Z1(Az, 1,k — 1). Suppose, we obtain the term Z,(\., k,0) by using equation (10).
Then. using equation (9) successively, we can obtain Z,(A, 1,k — 1) as a combination of

terms with lower order derivatives:

ZLAnk=1,1) = =Z,(A1,k,0) + Ay ZL(Ap, k,0)
200k =22) = —Z(.k 11)+AH2() =) (A 2L (g, k= 1,7)
k-2 (k=1=1)
ZL()\L,I,IC—-I) = "ZL()\LaQ,k“Q)Jf‘)\LZ ; b (/\L)ZL()\L,Q,)
1=0

The algorithm provided below efficiently computes the necessary Z, terms required, and

finally obtains Pr{@, = k}.

Algorithm:
Step 0. Solve

HAL) = [200, 2)dFu(z)
= Un(Au(1=5(AL)) + AL)

cre) = [7Z(0,2)dFu()
UL(Au(l = b(AL)) + AL)

for b(AL) and ¢(A,) respectively by using a numerical equation solver.
Step 1. Compute Pr{Q, = 0}.
Step 2. For k =1,2,.

2.1. Compute Z(A, k,0) and Zy4 (A1, k,0) by using equation (10).

2.2. Compute Z,(Ap,k —j,j) for j =1,2,...,k—1and r € {L, H} by using equation
(9).

2.3. Compute b*1(A1), and ¥ (Ap).

2.4. Compute Pr{Q, = k}.

As it can be observed from the algorithm, at the kth execution of Step 2.1. and 2.2,
it is required to compute Z,(Ap, k,0) forr € {L,H}, and Z,(Ap, k —j,j) for r € {L, H}

and j =1,2,...,k — 1. This requires the computation of 2k terms.

Proposition 3 The terms Z,(Ap,1,j) fori=1,2,...,n,j=0,1,...,n—4, r € {L, H)
are available at the end of the nth ezecution of Step 2.2 of the algorithm. In particular,
Z.(AL,1,n — 1) is obtained, which is required for the computation of Pr{QL = n}.

Proof. By induction. At the end of the first execution (n = 1) we obtain Z,(A.,1,0)
for » € {L, H} as desired. Suppose the assertion is true for n. At the n + lst execution
of Step 2.1, we compute Z.(A ,n + 1,0) for r € {L, H}. In Step 2.2, in order to com-
pute Z.(Ar,n,1) we require Z,(A;,n + 1,0). For computing Z,(Ap,n — 1,2) we require

8

Z.(AL,n, 1), Z.(Ap,n,0), where the latter term is available by the induction hypothesis.
For any : = {1,2,...,n}, in order to compute Z(Az,i,n + 1 — i), equation (9) requires
Z(Ap, i+ l,n—i—j)forj=0,1,...,n —1, where the last n — i terms are available by
the induction hypothesis, and the first term is obtained after the execution of Step 2.2.
Hence, the terms Z,(Ap,n+1—7,5) for j = 1,2,...,n are computed in the n + 1st exe-
cution of the algorithm. The collection of the terms that are obtained after the n + st
execution is Z,(Ar,2,j) for t = 1,2,...,n+ 1, = 0,1,...,n 4+ 1 — 7 as required. In
particular, the term Z.(Ap,1,n) is obtained as desired. O

Example: We compute a few initial probability terms of an example for demonstrating
the algorithm. We choose A\, = 6, Ay = 1.5. Service times are exponentially distributed
with yip = 10 and puy = 5 (p = 09). In this case (see Appendix), U,(s) = prf(r +),
and UM(s) = nlj,(=1)" /(s +)" for n > 1. By using Mathematica, we obtain
b(6) = 0.421299, and ¢(6) = 0.592837. We compute Pr{Q; = 0} = 0.1(1 + 0.25(1 —
0.421299)) = 0.114467.

Appendix: Proofs of Propositions
Proof of Proposition 1: We can rewrite I1;(6) as

ML (0)(c(A(l = 0)) - 0)
l1—p

= (1-0)c(AL(1-6))+ %(1 =b(AL(1=6)))e(AL(1 - 6)). (11)

Taking the first derivative of (11) with respect to 6 yields

P (0)(c(A(1 = 6)) = 8) + (D (AL(1 = 8))(=Ay) — 1)TTL(0)
1—p

e C(/\L(l - 0)) -)\LC(])()\L(I - 9))(1 - 9)
= A1 = 0)(1 = b(AL(1 - 0)) + AgbM(AL(1 = 0))c(Ar (1 - 0)),

which conforms to equation (3) for & = 1. Assume (3) holds for some k > 1. Taking
the derivative of (3) with respect to § yields (after straightforward but tedious algebra)

equation (3) for £ + 1. The main identity used in the derivation is (f) + (Jfl) = (kj’l).

9

Proof of Equation 8: Z(0,z) = Exp[—(Ay(l — b(0)) + Ar)]. The first derivative of
Z(0,z) with respect to 8 is

ZW(0,z) = 2Z(6,) Ay dD(8) = 1),

which is equation (8) for k = 1. Assume equation (8) holds for any k > 1. Taking the

derivative of (8) with respect to 6 again produces

k=1 _) .
Z(k+1) (9 z) = —xZ(k)(G,m) + Ay Z (k . 1):1:{2(””(0,3:)6("")(9)
=0\ J

+ o5+1=9(9)Z0)(h, 1)), (12)

Arrangeing terms in (12) and using the identity (k 1) + (f::) = (f) gives equation (8)

for £ 4+ 1, which completes the proof.

Appendix: UY) for Some Important Service Time Distributions
m-Point Distribution: Service time for class r jobs is equal to u; with probability p;,

forz =1,2,...,m. In this case
m
U(n = Z Su«’pi, n 20

Erlang Distribution: Service time for class r jobs is Erlang-a distributed with mean

afp,. Then, for alln >0

ala+1)---(a+n)ur(=1)"
(ur + s)+e '

Ui(s) =
Uniform Distribution: Service time for class r jobs is uniformly distributed over (0, a,).
In this case U.(s) = (1 — e™**")/a,s, and

__(_ar)n—le—sar - nUr(n—l)(s)
8

Ui(s) =

, n2>1,

10

