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Abstract 

Mathematical models and simulations of the movements of people in a large city can 

provide new insights into understanding and predicting dynamical systems that depend 

on the interactions between people. These applications range from optimizing traffic flow, 

slowing the spread of infectious diseases to predicting the change in cell phone usage in a 

disaster. We analyzed the simulated movements of 1.6 million individuals in a computer 
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(agent-based) model for Portland, OR. The dynamics (movement) of individuals are mod­

eled as discrete events moving people between nodes on a directed weighted graph. The 

181,205 nodes represent physical locations such as buildings and the connecting edges be­

tween the nodes have weights based on the daily traffic (movement of individuals) between 

the locations. The resulting weighted graph is scale-free and has scaling laws consistent 

with an underlying hierarchical structure. The number of edges leaving a node distribu­

tion (out-degree), the edge weights (out-traffic), and the edge-weights per location (total 

out-traffic) are power law distributions. This distribution is observed in subgraphs based 

on work, school, and social/recreational activities, which is consistent with an underlying 

hierarhical structure. We identified a linear correlation between the out-degree and the 

total out-traffic distributions. The short average distance between nodes on this sparsely 

connected network and the significant levels of clustering observed make it a small world 

[3][4]. The predictions of models on a network depend on the behavior power laws and 

hierarchical structure of the mobility of people in a city. Therefore, these distributions 

should be preserved in modeling for the spread of disease and other simulations where 

social dynamics and mixing of the population is important. 

1 Introduction 

Patterns have been detected in networks describing scientific collaboration [6][7][9], cellular 

networks [11][12], the Internet [14], and the World Wide Web [10][13]. These networks exhibit 

the "small world effect," [3][5] where the average number of edges needed to connect any pair 

of nodes is small and the network exhibits high levels of clustering, a characteristic absent in 
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random networks [1]. 

A network node has degree k if it is connected to k other nodes. The local connectivity 

of a network depends on the proportion of the nodes with degree k, P(k), as a function of k. 

The connectivity of many networks based on real world data have a power-law distribution, 

P(k) ex: k-'Y, where the exponent 1 characterizes the underlying scaling of the network. 

The accuracy of computer generated networks used to simulate these systems depends on how 

faithfully they preserve the structure of real world data. Barabasi and Albert (BA) introduced 

a model capable of generating networks with a power-law connectivity distribution with 1 = 3. 

The BA algorithm generates networks where nodes connect, with higher probability, to nodes 

that have a accumulated higher number of connections. This algorithm stochastically generates 

networks with connectivity distributions P(k) ex: k-'Y (in the appropriate scale) where k gives 

the incidence (number of connections) per node. if 1 < 2 the average connectivity k is infinite. 

The variance is infinite whenever 1 < 3. 

We generate a directed graph for the simulated movement of 1.6 million individuals in or 

out of 181, 205locations in Portland, OR. The 181,205 nodes represent locations in the city and 

the edges connections between nodes. The edges are weighted by the daily traffic (movement of 

individuals) in or out of the locations. The statistical analysis of the network topology revealed 

that it is a small world with power-law decay in the out-degree distribution of locations (nodes) 

at different time scales. The out-traffic (weight of the full network) and the total out-traffic 

(total weight of the out edges per node) distributions are also power laws. We also observe that 
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the joint distribution of the out-degree and total out-traffic distributions decays linearly. 

2 Location-based network 

From a "typical" realization by the Transportation Analysis Simulation System (TRANSIMS) 

of the simulated dynamics of 1.6 million individuals in the city of Portland, we create a directed 

network where the nodes represent locations (i.e. buildings, households, schools, etc.) and 

the directed edges (between the nodes) model the movement (traffic) of individuals between 

locations (nodes). The mobility matrix W = ( Wij) is the nonsymmetric square matrix of weights 

assigned to all the directed edges in the network. That is, Wij is the weight of the edge that 

goes from node i to node j (direction matters). We define Wij = 0 when there is no directed 

edge connecting from node i to node j for the location-based network of the city of Portland. 

TRANSIMS [18] is an agent-based simulation for the movement of individuals in a virtual 

region or city using empirical distributions constructed from survey data. A detailed represen­

tation of the region is created, mobility information for each individual is determined (in the 

case of Portland) via surveys and the transportation infrastructure is considered. TRANSIMS 

then simulates the movement of individuals in the virtual region through the transportation 

network via mass transportation or by car. The simulation is tunned to agree with movement 

data, obtained from transportation planning surveys of detailed information on people's move­

ment (daily trips). The data also reflects the activity types (see Figure 1), origins, destinations, 

routes, timing, and forms of transportation used. The TRANSIMS model calculates the sim­

ulated movements of 1.6 million individuals in a typical day [18]. Similarly generated data 
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Figure 1: Activity is the movement of an individual to the location where the activity will be 

carried out. (a)work activities, (b)school activities, (d)social activities, and (d)total number of 

individual activities as a function of time (hours) of a 'typical' day in the city of Portland, OR. 

from the cities of Albuquerque and Dallas will be used in the future and compared with the 

observations in this paper. The simulated Portland data set includes the time at which each 

individual leaves a location and arrives at another. From this, we can calculate the average 

number of people at each location and the traffic between any two locations on a typical day. 

Table 1 shows a sample of a Portland activity file generated by TRANSIMS. 

TRANSIMS estimates of the social network in a large urban area are based on the assump-

tion that the transportation infrastructure constrains people's choices about what activities to 

perform and where to perform them[18]. A synthetic population is endowed with demograph-
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ics matching the joint distributions given in census data. Observations are made on the daily 

activity patterns of several thousand households (survey data). These patterns are used as 

templates and associated with synthetic households with similar demographics. The locations 

at which activities are carried out are estimated taking into account observed land use pat­

terns, travel times, and dollar costs of transportation alternatives. Estimated locations are fed 

into a routing algorithm to find minimum cost paths through the transportation infrastructure 

consistent with constraints on mode choice [22, 23, 24]. The simulation resolves distances down 

to 7.5 meters and times down to 1 second. It provides an updated estimate of time-dependent 

travel times for each edge in the network, including the effects of congestion, to the Router 

and location estimation algorithms, which produce new plans. The resulting traffic patterns 

compare well to observed traffic. The entire process estimates the demand on a transportation 

network from census data, land use data, and activity surveys. It can thus be applied to assess 

the effects of hypothetical changes such as building new infrastructure or changing downtown 

parking prices. Methods based on observing demand cannot handle such situations, since they 

make no claim to understanding what generates the demand. 

Though social network estimates are not strictly speaking part of TRANSIMS, the level of 

detail in the simulation allows us to aggregate the movement of individuals at multiple time and 

space scales to compare with real world observations and search for hierarchical scaling. Until 

recently, it has been difficult to obtain these estimates. Typically, certain classes of random 

graphs (scale-free networks [8], small-world networks [5], Erdos-Renyi random graphs [2][1], or 

ad-hoc networks [?]) have been postulated as good representatives. Alternatively, models have 
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been restricted to small scales where direct observation is feasible [21]. 

Table 1. Sample TRANSIMS's activity file. Hence, one sees that person 115 arrives for 

a social recreational activity at location 33005 at 19.25 o'clock. This person then departs at 

21.00 o'clock. 

Person ID Location ID Arrival time(hrs) Departure time(hrs) Activity type 

115 4225 0.0000 7.00 home 

115 49296 8.00 11.00 work 

115 21677 11.2 13.00 work 

115 49296 13.2 17.00 work 

115 4225 18.00 19.00 home 

115 33005 19.25 21.00 social free 

115 4225 21.3 7.00 home 

220 8200 0.0000 8.50 home 

220 10917 9.00 14.00 school 

220 8200 14.5 18.00 home 

220 3480 18.2 20.00 socfrec 

220 8200 20.3 8.6 home 

3 Power law distributions on the Portland network 

We calculate the statistical properties of the location-based network of the city from the mobility 

data generated by the TRANSIMS simulation for a typical day. The Portland simulation has 
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Location-based network for the movement of people 

Figure 2: The nodes represent locations connected via directed edges based on the traffic or 

movement of individuals between the locations. The weights (wij) represent the daily traffic 

from location i to location j. 

power law distributions for the out-degree, the out-traffic (edge weights) and the total out-

traffic(edge-weights per node). The analysis confirms that there are only a few degrees of 

sparation between any two nodes [3] and the power law decay is preserved in many subnetworks. 

This is consistent with an underlying hierarchical topology. 

The average out-degree, k, is defined as the individual node out-degrees of the whole network 

divided by the total number of nodes, 

n 

k= Lkdn 
i=l 

Here ki is the degree for node i and n is the total number of nodes in the network. The clus-

tering coefficient, C, quantifies the extent to which neighbors of a node are also neighbors of 
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each other [4]. The clustering coefficient of node i, Ci, is given by 

where IE(ri)l is the number of edges in the neighborhood of i (edges connecting the neighbors 

of i not including i itself) and (~) is the maximal number of edges that could be drawn among 

the ki neighbors of node i. The clustering coefficient of the whole network is the average of the 

individual clustering coefficients C/s, that is, C = 2:::~1 Ci/n. 

The average distance between nodes, Li, is defined as the median of the means of the short-

est path lengths connecting a vertex i E V(G) to all other vertices [4]. Lis the median of the 

L/s. 

The out-degree distribution, Pd(k), gives the probability that a randomly chosen node from 

the network has out-degree k. The out-traffic distribution, P0 (u) gives the probability that 

a randomly chosen edge from the network has weight u. That is, P0 (u) is the probability 

distribution of the matrix W of weights. The total out-traffic distribution, Pt(v) denotes the 

probability that a randomly selected node from the network has a total out-traffic v (sum of 

its edge-weights). That is, Pt(u) is the probability distribution of wi given by: 
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Finally, the joint distribution of the degree and the total out-traffic distributions, F(k, v) 

gives the probability that a randomly chosen node from the network has out-degree k and total 

out-traffic v. 

Table 2. Computed statistics of the location-based network of the city of Portland. 

Statistic Value 

Total nodes (n) 181205 

Total directed edges (m) 5416005 

Average degree (k) 29.88 

Clustering coefficient (C) 0. 042 

Average distance between nodes (L) 3.38 

Diameter (D) 9.0 

Watts and Strogatz [3] compute the clustering coefficient C by listing all the neighbors of 

a node, counting the edges that link those neighbors, and dividing by the maximum number 

of edges that could be drawn from all the node's neighbors. The process is repeated on all 

the nodes and then averaged. For a typical random graph with 181, 205 nodes and an average 

degree k = 29.88, this approach gives a clustering coefficient C = 0.000166. The clustering 

coefficient for our location-based network, ignoring edge directions, is C = 0.0584, which is 
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is roughly 350 times larger than the expected clustering coefficient for a random graph of the 

same size and average degree k. This confirms that the location-based network for Portland is 

highly clustered. Highly clustered networks have also been found for other real-world systems 

[3]. For example, the electric power grid of western US has a clustering coefficient C = 0.08, 

about 160 times larger than the expected value for an equivalent random graph [4]. 

For the location-based network of the city of Portland, the average distance between two nodes 

is L :::::; 3.38 and the largest of the shortest paths between locations (diameter of the graph) 

is D = 9. L and D were measured using a BFS (breadth first search) algorithm [25] on a 

randomly selected subgraph of size 90,000 (:::::; 50% the size of the whole network) ignoring 

the edge directions. The few degrees of separation between the nodes on this highly clustered 

network both contribute to the small world effect. 

Many real-world networks exhibit properties that are consistent with an underlying hier­

arhical organization. Hierarchically organized networks have groups of nodes that are highly 

interconnected, but these groups have only a few edges or no edges connected outside of their 

group. Hierarchical structures of this type can be characterized by the clustering coefficient 

function C(k) as a function of the degree k. For the network of movie actors, the semantic web, 

the World Wide Web, the Internet at the autonomous system level is the degree, and metabolic 

networks [19][20], the clustering coefficient scales as k-1 . The clustering coefficient as a function 

of the degree (ignoring edge directions) in the Portland network follows a similar scaling law 

on the whole network and on subnetworks constructed by type of activity (work, school and 
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social/recreational activities, see Figure 3). The clustering coefficient of the resulting subnet-

works from work, school, and social activities are: 0.0571, 0.0557, and 0.0575, respectively. 

The largest clustering coefficient and closest to the overall clustering coefficient ( C = 0.0584) 

correponds to the subnetwork constructed from social/recreational activities. It seems that the 

whole network, as well as the activity subnetworks, exhibit a hierarchical structure but the 

nature of such structure, as defined by the power law exponent, is not universal. This agrees 

with the theoretical observations in [20]. 
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Figure 3: Log-log plots of the clustering coefficient as a function of the out-degree for (a)the 

location-based network constructed from work activities, (b)school activities, (c)social activi-

ties, and ( d)all the activities. The dotted line has slope -1. 
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We computed the out-degree distribution of the network at three different time intervals: 

The morning from 6 a.m to 12 p.m.; the workday from 6 a.m. to 6 p.m.; and the full 24 

hours. For the morning, the out-degree distribution has a tail that decays as a power law 

with 1 ~ 3, for the workday 1 ~ 2.6, and for the full day 1 ~ 2.7. The distribution of the 

out-degree data has two scaling regions. The number of locations is approximately constant 

for out-degree k < 20 and then decays as a power law for high degree nodes (Fig. 4). The 

clustering coefficient is approximately C = 0.057 for work activities but changes during the day 

as people engages in different activities. The daily average eliminates this time dependence and 

may not an appropriate measure of the network connectivity for events that only last a few 

hours. 

The strength of the connections in our location-based network is measured by the traffic 

(flow of individuals) between locations in a "typical" day of the city of Portland. The log-log 

plot of the out-traffic distributions for three different periods of time (the distribution of W) in 

Fig. 5 exhibits power law decay with different exponents, 1 ~ 3.56 for the morning, 1 ~ 3.74 

for the workday, and 1 ~ 3. 76 for the full day. The out-traffic distribution is characterized in 

its entirety by a power law distribution for all values of the weight matrix W = Wij· This is 

not the case for the out-degree distribution of the network (see Figure 4) where a power law 

fits well only for sufficiently large degree k. 

The distribution of the w/s is the distribution of the total out-traffic oflocations. This distribu­

tion has a tail that decays as a power law with exponent 1 = 2.74 (see Figure 6). This power-law 

exponent is almost identical to that of the out-degree distribution which may be expected since 
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Figure 4: There are two distinct scaling regions for the number of nodes as a function of the 

out-degree of the nodes. There are approximately the same number of nodes with out-degree 

k = 1, 2, ... 10 For k > 0 the number of nodes with a given out-degree decays as a power law 

P(k) ex k-"~ with 'Y c:::: 3 for the morning (6 a.m.-12 p.m.), 'Y c:::: 2.6 for the workday (6 a.m.-6 

p.m.) and 'Y c:::: 2.7 for the full day. 

the movement of individuals between locations contributes to both the out-degree and the total 

out-traffic. In the next section, we model the degree of correlation between the out-degree and 

the total out-traffic and we use them to gain some insight into their joint distribution. 
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Figure 5: The out-traffic plots of the location-based network of the city of Portland for different 

time periods of the day: (a)For the first (6 a.m. to 12 p.m.) the power-law exponent 1 ~ 3.56, 

for the second ( 6 a.m. to 6 p.m.) 1 ~ 3. 7 4, and for (b )the 24-hour period 1 ~ 3. 76. This 

power law distributions show high traffic in few connections while low traffic is observed in most 

connections. 

4 Correlation between out-degree and total out-traffic 

Out-degree k and total out-traffic v are highly correlated (Fig. 7) with a correlation coefficient 

p = 0.94 on a log-log scale with 95% of the nodes (locations) having out-degree and total 

out-traffic less than 100. That is, the density of their joint distribution F( k, v) is highly con-

centrated near small values of the out-degree and total out-traffic. This joint distribution is 

characterized by a surface that decays linearly when the density is in loge scale (see Figure 8). 
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Figure 6: Distribution of the total traffic for the location-based network of the city of Portland 

has two scaling regions. There are approximately the same number of locations (nodes) with 

out-traffic=2,3,4, ... 30 people. The number of locations where more than 30 people leave each 

day decays as a power law with 1 c::::. 2.74. 

The degree of correlation between various network properties depend on the social dynamics of 

the population. Understanding the mechanisms behind the correlations will be key to creating 

high fidelity networks to model behavior changes in a population for simulations of special 

situations or events such as modeling disease transmission. 
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Figure 7: The out-degree and the total out-traffic are highly correlated with correlation coef-

ficient p = 0.94 on a log-log scale. Most (95%) of the locations have fewer than 100 people 

leaving during the day. 

5 Conclusions 

We analyzed the movement of 1.6 million individuals in the city of Portland as a weighted 

directed graph where the nodes of the graph correspond to physical locations and the directed 

edges connecting the nodes are weighted by the number of people moving in and out of the loca-

tions during a typical day. The clustering coefficient, measuring the local connectedness of the 

graph, scales as k- 1 (k is the degree of the node) fork > ?. This is consistent with an underlying 

hierarhical structure where a few nodes get most of the action. The out-degree distribution 

network is relatively constant for small k and power law decay afterwards (P(k) <X k-'Y). The 
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distribution of the daily total out-traffic between nodes is also fiat for small k and exhibits 

power law decay afterwards. However, the distribution of the daily out-traffic of individuals 

between nodes scales as a power law even for small k. 

The observed power law distribution in the out-traffic (edge weights) is in agreement with 

the theoretical analysis of Yook et al. [15]. They built weighted scale-free (WSF) dynamic 

networks and proved that the distribution of the total weight per node (total out-traffic in our 

network) is a power law. However, the weights in their WSF model decay exponentially. 

The daily out-degree is highly correlated to the total out-traffic. This correlation is consis­

tent with an underlying hierarhical structure where a few nodes have most of the connections 

and get most of the traffic (weight). We observed that the joint density of out-traffic is linearly 

correlated to the total out-traffic on a log-log scale. The joint probability distribution of the 

characteristics of networks can help guide in identifying the key mechanisms (hierarchy, etc.) 

that must be considered when generating networks for modeling the movement of people in a 

large city. Networks based on these mechanisms for the generation of graphs, will provide more 

"realistic" weghted networks that could be used in the study of various processes such as the 

spread of diseases in a large city. 
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total out-traffo:: 

Figure 8: (a)Joint distribution F(k, v) plot (b)loge density of F(k, v) plot between the out-

degree k and the total out-traffic v in the location-based network of the city of Portland. 
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