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Abstract. We illuminate the boundary between decidability and undecidability for
hybrid systems. Adding any of the following decorations to a timed automaton makes
the reachability problem undecidable:

a single stopwatch with weak (<, >) edge guards,

a single skewed clock with variable equality tests,

a single two-slope clock with weak edge guards,
e a single memory cell with weak edge guards.

As a corollary, we obtain undecidability for linear hybrid systems with triangular dif-
ferential inclusions, which have invariants of the form & < g.

1 Introduction

Hybrid automata—an extension of timed automata [AD90]—have become a standard model for
hybrid systems [ACHH93, AHH93, NOSY93, HH94|. There have been several decidability results
[Cer92, ACHH93, KPSY93, PV94] and several undecidability results [ACHH93, KPSY93] for hybrid
automata. In particular, in [PV94] it is shown that the reachability problem is decidable if the
dynamics (slope, or slope interval) of all variables remain constant throughout the automaton, and
the transition guards may not compare the values of variables. Both requirements are necessary:
in [KPSY93], the reachability problem for hybrid automata with two three-slope variables (slopes
0, 1, and —1) is shown to be undecidable; in [ACHH93], the reachability problem with two slope-2
variables and variable equality tests. In [ACH93, BES93, KPSY93, BER94], it is shown that, under
various strong side conditions, reachability is decidable for timed automata with one stopwatch,
but the general problem is left open. We sharpen these results, laying bare the precise boundary
between decidability and undecidability: a single stopwatch or other two-slope variable with weak
transition guards causes undecidability, as does a single skewed clock with variable equality tests.
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As a corollary, we obtain undecidability for hybrid systems with triangular differential inclusions
(z <9).

The undecidability proofs are based on doubling the value of one clock while keeping the value of
another clock constant. With this capability, we may reduce the halting problem for two-counter
machines to the reachability problem for the given class of hybrid automata, rendering the latter
unsolvable. Because we use only weak predicates in our constructions, the digitization technique
[HMP92], used in [KPSY93, BER94] to prove decidability of certain one-stopwatch automata, does
not generalize to the full class.

2 Hybrid Automata

Hybrid predicates

Let V be a finite set of elements called hybrid variables. A weak hybrid constraint is a formula of
the form @ < n or x > n, where z € V and n € N. A variable equality test is a formula of the form
z =y, where z,y € V. A conjunction of weak hybrid constraints is called a weak predicate. The
set of weak predicates is denoted W(V'). A conjunction of weak hybrid constraints and variable
equality tests is called a weak predicate with variable equality tests, and the set of all such is denoted
W=(V). A weak doubling predicate with equality tests is a formula from W (V') with some instances
of variables z replaced by 2z. The set of weak doubling predicates with equality tests is denoted
W—2(V). A weak addition predicate with equality testsis a formula from W_ (V') with some instances
of variables z replaced by x + y, where y is also a variable. The set of weak addition predicates
with equality tests is denoted W—_ (V). We will usually omit the V', and write simply W, or W—o,
etc. We refer to any of these formulas generically as a predicate.

Valuations

A valuation is a function from V into R. Let u be a valuation, and ¢ a predicate. We write u = @,
and say u satisfies ¢, if the statement obtained by replacing each variable z in ¢ by the value u(z)
is true. A wariable assignment is a function mapping each variable either to a variable or to zero.
Let p be a valuation, and A a variable assignment. Define A(u) to be the valuation v such that for
each z € V, i) if A(z) € V, then v(z) = p(A(z)); and ii) if A(z) = 0, then v(z) = 0.

We classify variable assignments by their actions on indiviual variables. Mapping variable z to
itself is called a pass. Mapping variable z to 0 is called a reset. Mapping variable x to a variable y,
where y # x, is called a variable switch. Now then, a reset assignment consists solely of passes and
resets, and a variable-to-variable assignment consists of passes, resets, and variable switches. The
sets of all reset assignments and variable-to-variable assignments are denoted respectively R(V)
and V(V). We will write simply R and V.

Hybrid automata

We begin by defining hybrid automata in some generality. For our undecidability results, we will
not need much more power than that afforded by timed automata. Given a variable z, an activity
constraint on z is either a differential equation in z, or a statement of the form & € [a, ], where a
and b are integers. A hybrid automaton consists of the following components:

e A finite set S of elements called vertices, or nodes,



A subset Sy of S of initial vertices,

A finite set V of hybrid variables,

A function dif mapping each element of V' x S to an activity constraint,
e A finite set E of edges,
e An initial configuration [ : V — Z.

An edge is a quadruple (s,s’, o, A), where s and s’ are vertices called respectively the source and
target; o is a predicate called the enabling condition; and A is a variable assignment called the reset
condition. Occasionally it is convenient to equip a hybrid automaton with an invariant mapping
1mv mapping each vertex s to a predicate which must be maintained whenever control lies at s.

Let (S, So,V, dif , E,I) be a hybrid automaton. We classify the variables by the activity constraints
imposed by dif. A clock is a variable z such that for each s € S, dif (x,s) is £ = 1. A variable z is
a skewed clock if there is some g € R4 with g # 0,1, such that for each s € S, dif (z,s) is & = g.
A variable z is a memory cell if for each s € S, dif (z,s) is ¢ = 0. Memory cells are interesting in
conjunction with variable-to-variable assignments. A stopwatch is a variable z such that for each
s € S, dif(z,s) is either # = 0 or ¢ = 1. A variable z is a two-slope variable if there exist two
distinct real numbers g,h > 0, such that for each s € S, dif(z,s) is either £ = g or & = h. A
variable z is linear if for each s € S, there exists an interval [a,b] such that dif (z,s) is € [a, b].

A timed automaton is a hybrid automaton in which each variable is a clock. A multirate automaton
is a hybrid automaton in which each variable is a skewed clock whose slope is a nonnegative natural
number. A hybrid automaton is linear if each of its variables is linear. A linear hybrid automaton
with rectangular differential inclusions is a linear hybrid automaton such that for each variable
x, dif (x,s) is a constant function of s. A linear hybrid automaton with triangular differential
inclusions is a linear hybrid automaton with rectangular differential inclusions equipped with an
invariant mapping inv of a special form. The invariant inv must be a constant map whose value
is a conjunction of inequalities of the form & < ¢, where z and y are variables. That is, a linear
hybrid automaton with triangular differential inclusions is a linear hybrid automaton such that the
constraint on the derivative of each variable never changes, and the invariant is a global restriction
on the derivatives of the variables.

Computations of hybrid automata

Let A = (S, So,V, dif, E,I) be a hybrid automaton. A state is a pair (s, ), where s € S and p is a
valuation of V. We define two successor relations on the set of all states of A, an edge successor,
corresponding to traversal of an edge, and a time successor, corresponding to the passage of time.

Edge successor. (s,u) > (s',v) if there is an edge e = (s,s',¢,A) € E such that u = ¢ and
v = A(p). If A has an invariant mapping inv, we also require v = inv(s').

Time successor. (s,pu) — (s,v) if there exists a § > 0, and for each z € V, a function f; : [0,6] —
R such that

1. f2(0) = p(z) and fo(8) = v(z),
2. f, satisfies dif (z, s).



If dif (z, s) is a differential equation, then the latter restriction is clear. If dif(x,s) is of the form
i € [a,b] for some a and b, then the latter restriction means f,(n) € [a,b] for each 5 € (0,6),
and similarly for the right and left derivatives of f; at 0 and 6 respectively. If A has an invariant
mapping nv, we require that for each n < 4, the valuation §,, assigning to each variable z the
value f,(n), satisfies inv(s).

A computation of A is a sequence of states (sp, fin)necw such that sg € Sp, po = I, and for each
n € N, either (s;, it;) > (Si+1, thi+1), or (8i, pi) — (8it1, i+1). The reachability problem for hybrid
automata is given a vertex s, is there a computation (s, in)ncw of A and an n € N for which
s =s,7

3 Undecidability Results

Reachability is decidable for linear hybrid automata with rectangular differential inclusions [PV94].1
This is the strongest known decidability result for hybrid systems. We show that this, indeed, is
the boundary of decidability. If we push farther by (1) admitting a single variable with nonconstant
activities, such as a stopwatch or a two-slope variable, (2) admitting stronger enabling conditions,
such as comparison of variables, (3) admitting stronger invariants, such as triangular differential
inclusions, or (4) admitting variable-to-variable assignments, we obtain undecidability.

The proofs of all of these results are essentially the same. Each is based on doubling the value of
one clock, while keeping the value of another clock constant. If this can be done, then a two-counter
machine can be simulated by two clocks, where counter value % is represented by clock value 27%.
In fact we use clock value 2' % so that we can distinguish between counter values 0 and 1 with the
weak predicates > 2 and < 1.

We will use the following conventions in our figures. Vertices are represented by circles, and edges
are represented by directed arcs between circles. The enabling condition of every edge leaving any
vertex s will be of the form ¢ A A ey (2 < 4g(z,s)), where g(z,s) is the maximum slope allowed
to variable z in vertex s by the activity constraint dif(z,s). We then display only ¢, and the
reset condition A, above the edge, in guarded command style ¢ — A. Passes are omitted from the
display. If the slope of a variable is left unspecified, then the variable is a clock. When a variable ¢
can take on more than one slope, we have placed the constraint dif(s,t) inside the circle denoting
vertex s. We omit the constraint if it is irrelevant.

Wrapping Lemma. Consider the hybrid automaton fragment of Figure 1. Suppose that when
edge e1 is traversed into vi, c =y and d = §, where 0 < v < 29 and 0 < § < 2h. Then the next
time ey s traversed out of v1, ¢ has value v and d has value 6.

Proof. For each variable z and edge e, define x(e) to be the value of = as the edge is e traversed,
before any assignment is made to z. Exactly four units of time pass between traversal of e; and
e4. Since the enabling condition of e4 (and every other edge) implies ¢ < 4g, edge e must be
traversed exactly once in the interim. The enabling condition of ey implies that it is traversed
exactly %(49 — c(e1)) time units after traversal of e;. Therefore c(eq) = g(4 — %(49 —c(e1)) =
49 — 4g + c(e1) = c(e1). Similarly d(e;) = d(eq). W

The following device allows one to test if two variables with the same slope have the same value.

!Decidability is retained even when arbitrary boolean combinations of weak predicates are used for enabling
conditions and invariants, and nondeterministic assignments to any value within an interval [a, b] are allowed in reset
conditions.
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Figure 1: Wrapping lemma: both ¢ and d retain their entry values upon exit

c=4gANd =49 — ¢c,d:=0

Figure 2: Equality lemma: testing c=d

Equality Lemma. Consider the hybrid automaton fragment of Figure 2. Suppose that when edge
e1 1s traversed into vy, c =+ and d = 6, where 0 < v,6 < 2g. Then edge es may be traversed in the
future iff v = 6. The next time es s traversed, ¢ and d both have the common value .

Similarly, given two skewed clocks ¢ and d, it is possible to assign to d the value of ¢ multiplied by
the ratio of their slopes.

Assignment Lemma. Consider the hybrid automaton fragment of Figure 3. Suppose that when
edge ey is traversed into vy, ¢ = 7, where 0 < vy < 2g. Then the next time e3 is traversed out of vy,

¢ has value v, and d has value %fy.

Theorem 3.1 For every g > 0 with g # 1, the reachability problem for hybrid systems with
o one skewed clock of slope g, and any number of clocks,
o weak predicates with variable equality tests,
e reset assignments,

1s undecidable.

Proof. We reduce the halting problem for two-counter machines to this problem. Let M be a
two-counter machine with counters m and n. We build a hybrid automaton with clocks ¢ and d
corresponding to m and n. For now we will assume g = 2. The counter value m = k is represented
by ¢ = 217*_ and similarly for n and d. Figure 4 contains the implementation of the instruction /;:
if m = 0 goto ¢; else goto /.

Decrementing m corresponds to doubling c¢. We first check if m = 0 (¢ = 2) as in the implementation
of the ¢f instruction. If so, no decrement can take place, and so nothing remains to be done. If
not, we proceed to the implementation contained in Figure 5. A skewed clock ¢ of slope 2 and
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Figure 4: Implementation of /; : if m = 0 goto /; else goto £

the assignment lemma construction are used to perform ¢ := 2¢. Then ¢ := t is performed by
nondeterministically guessing a value for ¢, and checking the guess with a variable-variable equality
test.

One of the nodes in the figure has an arc labeled witht =8 — ¢t :=0andd =4 — d =0
underneath. This is a shorthand for two edges, one with enabling condition ¢ = 8, resetting ¢, and
one with enabling condition d = 4, resetting d. For each variable z and edge e, define z(e) to be the
value of z as the edge e is traversed, before any assignment is made to 2. Then by two applications
of wrapping, d(e1) = d(e3), so the value of d is the same on exit as on entry to the fragment. Now
let ¥ = ¢(e1). Then by the assignment lemma, t(e2) = 29, and by wrapping, t(e3) = t(e2) = 27.
Finally by the guard on es3, c(e3) = 2 as well.

To increment m, we need to halve ¢. To do this, we guess the half value with a clock z, assign twice
this value to a clock y, using the above procedure for doubling, and then check ¢ = y using the
equality lemma construction. Finally perform the assignment ¢ := 2 using the assignment lemma.

Notice that we can use any clock skew g > 1 and carry out a similar construction. First find an
integer N large enough so that N/g < N — 1. Then use Ng~* to encode counter value k. Then
the weak predicates ¢ > N and ¢ < N — 1 distinguish between m =0 and m > 1. If g < 1, reverse
the roles of multiplying and dividing by ¢g. B

Corollary 3.2 For every g > 0 with g # 1, the reachability problem for hybrid systems with
e one skewed clock of slope g, and any number of clocks,
e weak predicates,
e variable-to-variable assignments,

1s undecidable.
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Figure 5: Doubling ¢ using skewed clock ¢

Proof. After performing the assignment ¢ := gc using the assignment lemma as in Figure 5, the
assignment ¢ := ¢ can be done with a variable-to-variable assignment, rather than by guessing the
value and using the equality lemma. ®

Corollary 3.3 [Alu91] The reachability problem for hybrid systems with
o clocks,
o weak doubling predicates with variable equality tests,
o reset assignments,
1s undectdable. The reachability problem for hybrid systems with
o clocks,
o weak addition predicates with varitable equality tests,
e reset assignments,

1s undecidable.

Proof. For doubling predicates, in Figure 5 replace skewed clock ¢ by clock ¢, replace occurrences
of ¢ in enabling conditions by 2t', and replace resets of ¢ by resets of . Since doubling predicates
are a special case of addition predicates, reachability is also undecidable for the latter. m

Theorem 3.4 The reachability problem for hybrid systems with
e one stopwatch, and any number of clocks,
e weak predicates,
o reset assignments,

1s undecidable.

Proof. The encoding of the two-counter machine is the same as before. In Figure 6, we give
a hybrid automaton fragment that doubles the value of clock ¢ while maintaining the value of
clock d, using two synchronization clocks a and b, and stopwatch ¢. To avoid clutter, we have
omitted the “reset edges” for clock d from the figure. That is, each node has an edge to itself with
label d =4 — d := 0, which we have not shown in the figure. For each variable 2 and edge e, let
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Figure 6: Doubling ¢ using the stopwatch ¢

z(e) be the value of z as the edge e is traversed, before any assignment is made to . Let v = ¢(eq)
be the initial value of ¢. All further arithmetic will be done modulo 4. Vertex v is an instance
of the assignment lemma—it performs ¢ := ¢. Hence t(e2) = c(e2) = c(e1) = . Let § = a(e3) be
the amount of time spent in vertex vy. Then c(e3) = c(ez) + 6 = v+ 6, and t(e3) = t(e2) = 7,
because ¢ = 0 in vy. Vertex w3 is an instance of the equality lemma—it performs the test a = t.
Therefore edge e4 may be taken iff § = a(e3) = t(e3) = . Hence c¢(e3) = v+ 6 = 2v. By wrapping,
c(eq) = c(e3) = 2y. We would be done, except that the value of d has changed. Vertex v4 is an
instance of the assignment lemma—it performs ¢ := ¢. Hence t(e5) = c(e5) = c(eq) = 27. Since
t = 0 in vertex vs, t(eg) = 27 as well. Vertex vg is another instance of the assignment lemma—it
performs ¢ := t. Hence c(e7) = t(eg) = 2. But also, since a(e7) = 4, the whole procedure has
taken an amount of time equivalent to 0 modulo 4. Therefore by wrapping, d(e7) = d(e1); the value
of d has been maintained. B

Theorem 3.5 For every g > 0 with g # 1, the reachability problem for hybrid systems with
e one two-slope variable of slopes 1 and g, and any number of clocks,
e weak predicates,
e reset assignments,

1s undecidable.

Proof. Without loss of generality, we assume g = 2. Now doubling is provided by the automaton
of Figure 7, where t is a two-slope variable, taking slopes 1 and 2. The first node is an instance of
the assignment lemma, performing ¢ := 2¢. The second node is also an instance of the assignment
lemma, performing ¢ :=¢. R

Corollary 3.6 The reachability problem for linear hybrid automata with triangular differential
inclusions s undecidable.

Proof. We can redo the previous construction using linear variables s, ¢, and u of slope [1,2],
with invariant § < ¢ < %. We use ¢ to model the two-slope variable ¢ from the previous proof. To
force ¢ to have slope 2 for the first four time units, we reset s on the incoming edge, and add the



Figure 7: Doubling ¢ using the two-slope clock ¢
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Figure 8: Doubling clock ¢ with memory cell u

conjunct s = 8 to the edge leading into the node labeled £ = 1. To force ¢ to have slope 1 for the
second four time units, we reset u on the leading into the node labeled ¢ = 1, and add the conjunct
u = 4 to the final edge. ®

Finally, Cerans, in his thesis [Cer92], proves a result quite similar to the following, involving clocks
that move backwards, using the doubling technique.

Theorem 3.7 The reachability problem for hybrid systems with
e one memory cell, and any number of clocks,
e weak predicates,
o variable-to-variable assignments,

1s undecidable.

Proof. We use the same encoding as before. Figure 8 gives the doubling construction using
memory cell v and one auxiliary clock ¢. The idea is to store the initial value c(e;) of ¢ in u, and
then wait nondeterministically for some number a(¢2) of time units. For variable z and edge e, let
z(e) be the value of z as e is traversed before any assignment to z, and let e(z) be the value of =
as e is traversed after any assignment to z is made. Then e3(c) = ea(u) = c(e2) = c(e1) + a(ez), so
it suffices to show a(e2) = ¢(e1) in order to conclude c(e3z) = 2¢(e1). The enabling condition of e3
implies ez(a) = e2(t), and therefore a(e2) = ea(a) = ex(t) = e1(u) = c(ey). M

Summary

Figure 9 summarizes our results. The left column gives the type and number of variables used in
addition to clocks. The middle column gives the allowable enabling conditions, and the last column
gives the allowable reset conditions. In each case, the reachability problem is undecidable.
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Figure 9: Undecidable reachability problems
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