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 Virus emergence continues to pose a threat to the health of humans, 

companion animals, domestic agriculture and wildlife species.  The processes 

of emergence by host switching and the subsequent adaptation of viruses to 

their new hosts remain poorly understood.  Canine parvovirus (CPV) 

represents an excellent model for studying these processes.  CPV emerged in 

the late 1970s as a host range variant of feline panleukopenia virus (FPV).  

The original variant, CPV-2, was rapidly replaced by a newer, presumably 

better-adapted variant, CPV-2a, that differs from CPV-2 in several genomic 

mutations, including four that alter capsid residue sequences.  

 These studies examine the evolution and adaptation of CPV in dogs by 

studying the differences among CPV variants.  Viruses containing intermediate 

capsid sequences between the original and newer CPV variants were 

constructed and their relative fitness was assessed by various in vitro 

measures.  These studies suggest that CPV adaptation in dogs required 

intermediate viruses that had lower fitness than either wildtype virus.   

 CPV capsid sequences have continued to mutate and multiple strains 

are in circulation today, including an antigenic variant, CPV-2c.  These studies 

also examine this more recent CPV capsid variation and show that, although 

newer CPV variants are being selected in nature, there are currently no 



 

significant differences in disease severity or clinical outcomes among these 

variants.  While surveillance for novel CPV variants remains important, 

prevention, diagnosis and treatment of parvoviral enteritis has not changed.   

 Finally, a preliminary characterization of an in vitro model for CPV 

infection is presented and shows promise for use in defining additional cellular 

requirements for infection, in addition to the previously identified canine 

transferrin receptor.  The model may be useful for identifying how the original 

CPV-2 and newer CPV variants differ in their requirements for productive 

infection, and may one day help us better understand the molecular 

mechanisms involved in host adaptation by viruses.   
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PREFACE 

 

The year is 1979, and the manager of a prestigious colony of beagle 

hunting dogs in the southeastern United States is awakened by an early 

morning call from one of his kennel staff who is quite shaken by what she has 

just found in the nursery.  Two newborn pups are dead and three more appear 

very sick with profuse bloody diarrhea.  He tells her heʼll be right there, and as 

he dresses, he wonders what could be happening.  His kennels are known for 

their healthy dogs and pristine facilities.  He recalls a recent report about a 

devastating new disease of dogs that has a high morbidity and mortality rate 

among puppies, and as he tries to remember the details, he hurries to his 

truck.  Could this be what is killing his pups? 

Meanwhile, similar emerging infectious disease events are occurring 

around the world.  For example, just as the manager arrives at his nursery to 

witness the life-threatening illness caused by the newly identified canine 

parvovirus, a southern gastric-brooding frog over 9000 miles away in eastern 

Australia takes its last gulp of air and collapses, dead.  While no human is 

present to witness her death, it is particularly tragic, as she was the last of her 

species.  It will be some time before humans recognize that this unique 

species has been lost forever.  The likely culprit is the highly invasive chytrid 

fungus, which will cause dramatic losses in amphibian numbers and 

biodiversity worldwide in years to come. 

That same morning, eight hours earlier in a remote west African village, 

a woman attempts to give her two-year-old son some water.  They have both 

been feeling poorly for several weeks, and her son has been slow to develop 

his motor skills.  Now, they both have fevers and the son is having difficulty 
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breathing.  A gastrointestinal illness has made the mother weak, and she 

struggles to care for her son.  A more insidious disease has invaded their 

village and they have been unsuccessful in stopping its spread.  Although this 

agent will soon be identified as human immunodeficiency virus, millions of 

people around the world will continue to suffer from this terrible disease for 

decades to come.  

Meanwhile, as the sun begins to set in Northern India, a farmer stares 

helplessly at his rice paddy, from which he begrudgingly anticipates his lowest 

yield ever.  Yellowish stripes with wavy margins have appeared on many of 

the leaves and opaque bacterial ooze hangs like evening dew off some of the 

blades.  In this case, the causative agent – bacterial leaf blight – is known, 

although it is the first time this region has witnessed its deadly effects.  Greater 

than 50% losses will be reported from this epidemic, the impact of which will 

weigh heavily on those who rely on rice for their livelihood.   

Emerging infectious diseases represent real and constant threats to all 

taxa of life.  They have helped shape the history of life on earth, and they will 

continue to influence life on our planet for the foreseeable future and beyond.  

Some suggest that given our present day circumstances, which include a 

burgeoning human population, global commerce, and international travel, we 

are accelerating the rate of infectious disease emergence.  While this is an 

upsetting prospect, hope remains in our ever-improving ability to identify and 

combat these emerging pathogens.  Through the union of scientific research, 

public policy, and international cooperation, we can improve the state of our 

planet, curtail the negative effects of global warming, reduce risks for disease 

emergence, and alleviate human and animal suffering.  While some forecasts 

for our planetʼs future are grave, we should not accept these projections as 
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inevitable truths, and instead we can all work toward reshaping the Earthʼs 

future for the benefit of all living organisms. 

This thesis represents almost eight years of research, my small sliver of 

a contribution to the complex challenges that face our planet.  While I cannot 

offer any real answers to these looming global threats, I hope these studies 

will contribute to an ongoing scientific dialogue that may one day lead to 

solutions that benefit our world.  These studies were designed to answer both 

basic scientific questions about how pathogens – specifically viruses – adapt 

to novel hosts, as well as to address the clinically relevant concern of how new 

virus variants may affect disease pathogenesis and the management of 

patients.  These studies demonstrate one small way in which basic and clinical 

research can be unified for the benefit of both.  Hereʼs to making the world a 

better place, one small step at a time!   

 

 
Karla M. Stucker 

August 2010 
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CHAPTER 1 

 

INTRODUCTION 
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1.1  EMERGING INFECTIOUS DISEASES 

 Emerging infectious diseases (EIDs) occur when the incidence of a 

known disease rapidly increases or expands its geographic range, when a 

more virulent or drug-resistant pathogen becomes established in a host 

population, when a pathogen is newly recognized as a disease-causing agent, 

or when a pathogen acquires a new host range (53).  A wide range of 

pathogens can cause EIDs, from prions to helminths, although bacteria and 

viruses make up more than three-quarters of recognized EIDs (77).  EIDs may 

occur as local epidemics or spread to global pandemics.  Through direct and 

indirect effects, EIDs threaten the health of humans and companion animals, 

agricultural plants and animals, and diverse wildlife species.  They also hinder 

international development efforts, threaten global biodiversity, and disrupt 

global commerce and travel (17, 53).   

 Many causes for EIDs have been described, and some argue that EIDs 

are increasing as human influences on our planet increase (53).  Drivers for 

EIDs include agricultural intensification, urbanization, global travel, regional 

and international translocation of species, and human-induced land use 

changes (18, 53).  These activities, among others, increase contact among 

humans, domestic animals and wildlife, thus increasing chances for pathogen 

sharing.  These drivers may act at many levels, including pathogen exposure, 

the infection of individual hosts, the transmission potential among a new host 

population, or the likelihood of pathogen adaptation (51).  

 Of particular concern are EIDs resulting from host range switching, and 

global surveillance and research efforts are being promoted to attempt to 

determine when and how new pathogen host jumps might occur (30).  For a 

host switch to occur, a pathogen must overcome an interspecies transmission 
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barrier between the donor and recipient hosts (33), and the pathogen must 

either be sufficiently competent for infection in the new (recipient) host or be 

able to adapt sufficiently to the recipient host to maintain transmission.  It is 

generally assumed that more closely related hosts have an increased chance 

of sharing pathogens, although there are exceptions to this, as in the case of 

influenza A viruses which infect both avian and mammalian species.   

 The processes of host switching have been divided into three potential 

steps:  infection of a recipient host with no onward transmission (spillover), 

spillover followed by local chains of transmission before fade-out (outbreak), 

and sustained recipient host-to-host transmission (epidemic) (51).  These 

steps can also be defined in relation to R0, the reproductive number of a 

transmissible pathogen that describes the number of new cases generated 

from each infected individual (4).  When R0 = 0, as in the first example of host 

switching, a spillover infection results in a dead-end recipient host with no 

further transmission.  In the second type of transfer leading to a limited 

outbreak, R0 is on average < 1 and transmission will end.  True emergence 

only occurs where R0 ≥ 1 over a given period of time, resulting in sustained 

transmission.   

 

1.2  CANINE PARVOVIRUS EMERGENCE 

In the late 1970s, a new canine virus emerged and spread around the 

world in less than one year, often causing the loss of entire litters of puppies, 

as well as affecting some older dogs (reviewed in (44)).  Infected dogs 

developed an acute disease with signs of general malaise, bloody diarrhea 

and vomiting.  Blood cell counts showed a severe drop in circulating white 

blood cells, ranging from a relative lymphopenia to a generalized leukopenia 
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(11).  Morbidity and mortality rates were high, especially among younger 

animals, and aggressive therapy was often needed.  Treatment relied on 

supportive care to maintain proper hydration and antibiotics to treat the sepsis 

that can develop when bacteria translocated across the damaged gut 

epithelium into the bloodstream.  These remain the mainstay of therapy for 

parvoviral enteritis today. 

The causative agent was identified during late 1978 and named canine 

parvovirus type-2 (CPV-2) to distinguish it from a previously discovered but 

distinct parvovirus, the minute virus of canine (50).  CPV-2 is believed to have 

arisen as a host-range variant of feline panleukopenia virus (FPV) (70), which 

causes a similar disease in cats.  Within a year of its identification, a second 

antigenically variant strain, CPV type-2a (CPV-2a), emerged and achieved 

rapid global dissemination, displacing CPV-2 worldwide (46, 52).  In 1984, an 

additional antigenic variant was identified (named CPV type-2b (CPV-2b)) that 

also achieved a widespread distribution (45, 52).  Interestingly, CPV-2a and 

CPV-2b have both been abundant in canine populations until recently, 

indicating that the newer variants have a selective advantage over CPV-2 and 

are likely better adapted to their canine hosts. 

 

1.3  PARVOVIRUSES AND THEIR PATHOGENESIS 

The Parvoviridae family of viruses consists of two subfamilies:  

Parvovirinae, whose members infect mammalian and other vertebrate hosts, 

and Densovirinae, whose members infect insects and other invertebrates.  

Parvovirinae includes the autonomously replicating parvoviruses, as well as 

the dependoviruses, such as adeno-associated viruses (AAVs), which require 

coinfection by a helper virus to complete their replication cycle.   
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Parvoviruses have small, non-enveloped, 26-nm diameter capsids, 

containing an approximately 5-kb linear single-stranded DNA genome. These 

viruses generally resist desiccation, pHs ranging from 3 to 10, and 

temperatures up to 60ºC for 1 hour, making them highly stable in the 

environment and contributing to their transmission and widespread 

distribution.  However, upon entry of these viruses into host cells, their DNA 

must be released from the highly stable capsid and delivered to the nucleus to 

allow replication and the production of new virions, suggesting that these 

viruses depend on specific cellular interactions to mediate capsid 

conformational changes and genome release.   

The parvovirus genome encodes two major open reading frames 

(ORFs):  one encoding the nonstructural proteins NS1 and NS2, and the other 

encoding the capsid proteins VP1 and VP2.  Since these viruses do not carry 

their own polymerases and are unable to promote cell division in their host 

cells, parvovirus replication is restricted to host cells with active DNA 

replication machinery that are undergoing mitosis.  This helps explain why 

parvoviruses tend to cause more severe disease in fetuses and newborns, 

where rapid cell division is occurring in most tissues, and why in adults, 

parvovirus replication is generally restricted to tissues containing actively 

dividing cells, such as hematopoietic cells and the crypt cells of the small 

intestine.  

The autonomous parvoviruses are ubiquitous in nature, and most 

mammals appear to serve as hosts for a number of different parvoviruses that 

may cause subclinical to severe disease, depending on the virus and the age 

of the host.  The feline subgroup of parvoviruses includes feline panleukopenia 

virus (FPV), mink enteritis virus (MEV), raccoon parvovirus (RPV), and canine 
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parvovirus (CPV) (59), and these can cause severe, often lethal, 

developmental abnormalities, such as cerebellar hypoplasia or myocarditis, in 

fetuses and newborns, as well as enteritis and leukopenia in adults (11).  The 

human parvovirus, B19, replicates only in erythrocyte precursor cell 

populations and can cause severe anemia and hydrops fetalis in fetuses, 

erythema infectiosum (fifth disease) in children, and arthralgia and arthritis in 

adults (reviewed in (24)). 

 

1.4  CPV EVOLUTION AND HOST ADAPTATION 

CPV variants were initially identified by differences in binding properties 

against panels of monoclonal antibodies (mAbs) (48, 50, 52), although these 

antigenically distinguishable viruses differ in other biologically significant 

properties as well.  For example, the in vivo and in vitro host ranges and tissue 

tropisms of these viruses differ in complex ways, and elucidating the molecular 

mechanisms behind these complexities will shed light on how the virus gained 

access and adapted to its canine hosts.  FPV infects and can cause clinical 

disease in cats, but not dogs, although FPV replication in cells within the 

thymus of dogs has been detected (46, 69).  CPV-2 infects dogs, but not cats, 

while the newer variants, CPV-2a and CPV-2b, regained the ability to infect 

cats in addition to dogs (69).  Furthermore, FPV causes cerebellar hypoplasia 

in kittens, while CPV causes myocarditis in puppies (11).  In vitro, FPV will 

infect only feline cells, while all CPV variants will infect and replicate in both 

feline and canine cells (71).   

In addition, these viruses also differ in their hemagglutination (HA) 

properties.  FPV requires a lower pH for HA than CPV (12, 60).  CPV-2, but 

not CPV-2a, requires a lower temperature for optimal HA (57).  This suggests 
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that CPV can bind sialic acid under the physiological conditions of the animal 

body, while FPV cannot (42).  Other receptor binding characteristics also differ 

among these viruses, as discussed below.  These differences in virus 

properties, taken together with the global replacement of the original CPV-2 

with newer variants, indicate a biologically and clinically significant role for 

virus evolution and host adaptation, as initially defined by studies of viral 

antigenicity.  

Sequencing and recombinant DNA technology have allowed the 

identification of specific nucleotide differences (and their predicted amino acid 

changes in coding regions) among the FPV and CPV genomes and the 

mapping of specific functions to those sequence differences.  As summarized 

above and in subsequent sections, the various viral strains differ in their 

antigenic epitopes, in vitro and in vivo host ranges, HA and receptor binding 

properties, distribution in nature, and pathogenesis.  As the virus capsid is the 

first site of contact between the virus and its host, the capsid structure plays a 

significant role in establishing these characteristics of each virus.  The 

structural proteins VP1 and VP2 overlap so that all of the sequence of VP2 

(which make up about 90% of the CPV capsid) is contained within that of VP1 

(40).  Studies with virus mutants mapped many of these properties to the VP2 

gene (45, 46, 55).  In addition, more recent phylogenetic analyses have shown 

that most of the genome sites that are under positive selection are found in the 

capsid ORF (25). 

Important VP2 amino acid differences between FPV, CPV-2, CPV-2a, 

and CPV-2b are shown in Figure 1.1.  In vivo and in vitro canine host range is 

controlled by amino acids difference at residues 93, 103, and 323 between 

FPV and CPV-2 (13, 45, 46, 68), while in experimental studies, residues 299, 
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300, 301, and 387 also influenced canine host range (42, 49).  Important 

determinants of feline host range include residues 80, 564, and 568 (68).  HA 

and sialic acid binding properties of the viruses are determined by VP2 amino 

acids 323 and 375, which control the pH dependence of HA, and by residues 

377, 396 and 397 that can prevent HA (6, 45-47, 60, 67).  Two major 

neutralizing antigenic epitopes, sites A and B, have been mapped to specific 

capsid sequences (62), and are discussed in more detail below.  

 

 

 

 

 

 

 

 

 
Figure 1.1.  Model of CPV evolution showing VP2 amino acid differences 
between each virus and indicating the virus host ranges. 

 

 In many cases, virus strains differ in multiple sequences, including 

groups of residues that are exposed on the capsid surface.  It is therefore 

likely that during CPV evolution, some of the critical residue changes were 

selected simultaneously or acted together to introduce altered phenotypes.  

These include differences between CPV and FPV, and the changes around 

amino acid 300 that differ between CPV-2 and CPV-2a, since virus 

recombinants in this area are non-viable and intermediate viruses with fewer 

than the full complement of changes have not been isolated from nature (13, 
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47, 62).  This may reflect the complex selection pressures imposed on the 

virus and is an important consideration when studying CPV evolution.   

 CPV continues to evolve today and acquire changes in its capsid 

sequence, although we do not yet fully understand the significance of these 

changes for the pathogenesis and management of clinical cases.  Some 

changes in the viruses are appearing more commonly and becoming 

widespread, suggesting they may confer an advantage to the virus, and 

indicating that CPV is continuing to evolve and adapt ((29, 37), and Parrish, 

unpublished data).  In all cases, the currently circulating variants derive from a 

single common CPV-2a ancestor (58), so that all circulating strains of CPV are 

related to each other but distinct from the original CPV-2 variant.  In some 

cases, a given capsid codon has changed more than once to express different 

residues.  For example, FPV, CPV-2 and CPV-2a contain an Asn at VP2 

position 426, while CPV-2b contains an Asp at the same position.  Around 

2000, a new variant containing a Glu at VP2 residue 426 was identified and 

named CPV-2c (10).  VP2 residues 297, 300 and 305 also encode varying 

residues depending on the virus isolate.   

 As newer variants are capable of replicating in feline and canine hosts 

(69), the viruses may be influenced by both canine and feline selection 

pressures, as well as antigenic selection by antibodies.  For example, 

changing VP2 residue 300 to an Asp results in antigenic changes in the virus, 

as well as the loss of ability to infect canine cells (49).  It also appears to be 

associated with the ability to infect cats and raccoons (29).  For example, 

multiple parvovirus isolates from sick raccoons have been shown to be CPV-

2a-like with the VP2 300 Asp mutation ((32) and Allison and Parrish, 
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unpublished data), providing further evidence for the crucial role VP2 residue 

300 plays in the host range properties of CPV. 

 

1.5  CPV CAPSID STRUCTURE AND FUNCTIONS 

Solution of the atomic structure of CPV-2 (72, 78) and FPV (2) has 

allowed differences in amino acid sequences to be understood in terms of the 

three-dimensional virus structure.  The capsid protein folds into an eight-strand 

β-barrel typical of many other icosahedral viruses, with loops between β-

strands largely determining capsid surface topology.  The capsid has 

icosahedral symmetry with five-fold cylinders surrounded by a canyon, three-

fold spikes, and two-fold depressions, or dimples (Figure 1.2).  It remains 

largely intact even under physiological changes such as receptor binding, 

lower pH or removal of Ca2+, with only subtle structural changes occurring that 

presumably alter capsid permeability sufficiently to release the viral DNA (38).   

 

 

 

 

 

  

    

   
 
 
Figure 1.2.  Surface rendered model of the CPV capsid, indicating the five-fold 
cylinder and surrounding canyon, three-fold spike, and two-fold depression.  
Modified from Hueffer and Parrish, 2003. 
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The N-termini of a proportion of VP2 molecules are found on the capsid 

exterior of full, DNA-containing capsids and those appear to pass through the 

five-fold cylinder, possibly aided by the flexible, relatively narrow polyglycine-

rich sequence shared by VP1 and VP2 (72).  Since the NS1-bound, 5ʼ-end of 

the viral genome is also detected outside the capsid (15), the five-fold cylinder 

may also serve as a passageway for single-stranded DNA.   

Locations of the key surface-exposed VP2 residues are mapped onto 

the capsid asymmetric unit in Figure 1.3.  Residues 93, 300, and 323 mark the 

capsid regions on the three-fold spike and its shoulder that help determine 

canine host range and virus neutralization, indicating that the raised, exposed 

regions of the capsid are at least partially responsible for antibody binding and 

host cell interaction.  The CPV-2b-specific epitope defined by VP2 residue 426 

is also exposed on the three-fold spike.  Residues 80, 564 and 568, which 

influence feline host range, are not exposed on the capsid surface, but lie just 

beneath the edge of the two-fold dimple, while resdues 101 and 103 are also 

found beneath the capsid surface but also influence important virus functions.  

Amino acids determining HA and sialic acid binding are found adjacent to the 

two-fold dimple, and are either on or just below the capsid surface (6, 67, 72). 

Additional atomic structures of host range mutations in the CPV-2 

capsid have also been solved.  For example, changing the host-range-

determining VP2 residue 300 from Ala to Asp introduced a salt bridge between 

300 Asp and 81 Arg (36).  In addition, structures of wildtype and mutant CPV-

2, as well as FPV, have been solved at varying pH values and in the presence 

or absence of calcium ions (60).  These structures indicate that a flexible loop 

between VP2 residues 359 and 375 differs in structure between CPV and FPV 

and changes conformation upon acidification via a mechanism regulated by 
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calcium binding.  This flexible loop is adjacent to or contains important HA 

residues and its conformation is believed to influence the sialic acid binding 

properties of the viruses, as well as the involvement of residue 375 (Asn to 

Asp) in binding a calcium ion in the structure of FPV (2).  

 

 

 
Figure 1.3.  An asymmetric unit of the CPV-2 capsid showing surface-
exposed VP2 residues.  Shading indicates distance from the capsid center, 
with white showing raised regions on the capsid  surface and dark grey 
showing recessed areas.  This roadmap was made using a previously 
published method (56).  Residues that differ between FPV and CPV are 
outlined in blue, while those that differ between CPV-2 and CPV-2a are 
outlined in red, and the residue that differs between CPV-2a and CPV-2b is 
outlined in green. 
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1.6  ANTIBODY INTERACTIONS WITH CPV 

 Two major neutralizing antigenic epitopes have been mapped to the 

capsid surface, and show that antibody binding is affected by amino acids 93, 

426, 222, 224 (antigenic site A) and 299, 300 and 302 (antigenic site B) (13, 

48, 49, 62).  A Lys at amino acid 80 likely helps define an FPV-specific 

epitope, while an Asn residue at amino acid 93 results in a CPV-specific 

epitope, and an Asp or Glu at amino acid 426 gives the CPV-2b- and CPV-2c-

specific epitopes (10, 13, 45, 68). 

 More recently, cryoelectron microscopy studies of capsids complexed 

with the antibody binding fragments (Fab) of CPV-specific mAbs have allowed 

mapping of specific Fab footprints to the surface of the capsid (21).  These 

studies have confirmed and more precisely defined the site A and B epitopes, 

with site A lying over the three-fold spike and site B lying along the spikeʼs 

shoulder.  The two sites each have an overlapping region shared by several 

different mAbs (21).   

 

1.7  CELLULAR RECEPTOR FOR CPV 

FPV and CPV both use the cellular transferrin receptor (TfR) to bind 

and enter cells (41).  The TfR is a membrane glycoprotein responsible for 

cellular uptake of iron-loaded transferrin and is expressed at highest levels in 

rapidly dividing cells (reviewed in (54)), which presumably helps the virus 

target the S-phase cells it requires for replication.  The structure of the human 

TfR ectodomain has been solved (1, 8, 34), and canine and feline TfRs likely 

have similar structures since those three TfRs share ~80% sequence identity 

(28).  The TfR functions as a dimer, with monomers associating primarily 

through their helical domains (Figure 1.4) (8, 14, 34).   
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Figure 1.4.  Ribbon diagram of the homodimeric human transferrin receptor 
ectodomain showing the helical domains in yellow, the protease-like domains 
in red, and the apical domains in green.  To provide orientation in relation to 
the plasma membrane, the cytosolic N-termini of the TfR are depicted 
schematically. 

 

Mutational analysis of the TfR shows that virus binding to the TfR 

involves the TfR apical domain, and recombinants and single amino acid 

substitutions between feline and canine TfRs in this region have identified a 

unique single-residue insertion and a potential glycosylation site in the canine 

TfR apical domain which allow CPV-specific binding (19, 39).  Regions of the 

virus capsid have similarly been identified that allow binding of CPV, but not 

FPV, to the canine TfR.  These include VP2 residues Asn93 and Asn323 (20, 

26), as well as Gly299 (28), suggesting there is a broad contact interface 

between the virus and TfR (39).  More recent cryoelectron microscopy studies 

have defined a binding footprint on the virus capsid that includes these 

residues and extends from the three-fold shoulder to the five-fold canyon, 

Apical domain 
(CPV binding) Helical domain 

(dimerization)

Protease-like domain 
(transferrin binding)

Plasma Membrane

N
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primarily overlapping with epitope site B (22).  These studies have also shown 

that receptor binds asymmetrically to the capsid, with only one to several 

receptors binding each capsid (22).    

In vitro and in vivo properties of the virus indicate that the TfR may not 

be the only factor important in the cell infection and evolution of CPV.  As 

mentioned previously, CPV-2 only infects dogs, while CPV-2b regained the 

ability to infect cats, in addition to dogs (69).  Similar to what has been 

observed in the distribution of these viruses in nature, CPV-2b outcompeted 

CPV-2 in a limited tissue culture model where the canine TfR was expressed 

as the sole cellular receptor (28).  In addition, CPV-2 showed 5-20 times more 

binding to canine and feline cells when compared to CPV-2b in a flow 

cytometry assay of cell binding and uptake (28).   

 Other parvoviruses have been shown to use a variety of glycans or 

oligosaccharides as receptors.  For example, B19 uses the glycolipid 

globoside, as well as a not completely identified co-receptor, to enter and 

infect cells (9, 76).  AAV2 binds proteoglycans (65), while AAV4 and AAV5 

bind different sialic acids (31), and the minute virus of mice (MVM) binds sialic 

acid as well (16).  Therefore, in addition to erythrocyte binding, sialic acid 

binding contributes to virus attachment to host cells for those cells.  However, 

a CPV-2 mutant defective for sialic acid binding still bound host cells, and 

treatment of cells with neuraminidase to remove sialic acid did not reduce virus 

binding (28).  Thus, the role of sialic acid binding during CPV infection of host 

cells remains uncertain, but does not appear to control primary infection of 

cells. 
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Figure 1.5.  Alignment of the human, canine and feline TfR sequences.  The 
helical, protease-like and apical domains are underlined in yellow, red and 
green, respectively.  Known or potential glycosylation sites are shaded purple.  
Amino acids unique for the canine TfR are shown in red.  Taken from (28). 

 

Other potential interactions between cellular molecules and the virus 

have been identified.  Virus overlay blots of membrane fractions from 

erythrocytes or feline or canine host cells, showed a number of erythrocyte 

proteins bands that bound virus in a sialic-acid dependent manner, as well as 

potential non-sialic-acid-specific, virus-binding proteins in host cells (6).  Virus 
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overlay blots and immunoprecipitation of virus from infected A72 canine 

fibroma cells identified a 40- to 42-kD CPV attachment polypeptide (7).   

 

1.8  CPV REPLICATION CYCLE 

Although many events in the CPV replication cycle, as well as for 

nonenveloped viruses in general, are not fully understood at the molecular 

level, the basic steps involved in productive cellular infection by CPV have 

been described.  Understanding the virus replication cycle is needed for a 

complete appreciation of how a virus interacts with its host, as this relationship 

determines the tissue tropism and host range of the virus.  Blocks to infection 

in non-permissive cells and virus restriction by the host may occur at any point 

in the virus replication cycle.  Restriction at the cell surface, due to viral 

requirements for specific attachment proteins and virus receptors, plays a 

particularly important role in determining tissue tropism and host range.  Often, 

studies that propose intracellular blocks to infection in non-permissive cells do 

not rule out the possibility of an additional receptor-binding role.  For example, 

two strains of MVM differing in their tissue tropism appear restricted at 

transcriptional initiation (61, 66).  However, a key amino acid difference 

between the MVM strains aligns with amino acid 323 in CPV (3, 5), suggesting 

receptor binding may be playing a role in MVM strain differences as well, and 

effects on sialic acid binding have also been seen for this residue (60).  The 

block to replication in cells non-permissive for B19 infection appears to involve 

aberrant transcription that produces an excess of NS1, which is toxic to cells 

and may induce apoptosis (35), although involvement of receptor binding has 

not been excluded.   
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Cell infection by CPV begins when the virus binds to the TfR on the 

host cell surface and is predominantly taken into the cell by relatively rapid, 

dynamin-regulated, clathrin-mediated endocytosis (43).  Immunofluorescence 

colocalization studies with markers specific for a variety of vesicular 

compartments have suggested that CPV travels from early endosomes at the 

cellʼs periphery to perinuclear recycling endosomes and finally to late 

endosomes and lysosomes, the likely site of capsid release into the cytoplasm 

(23, 43, 64).  Virus trafficking through these later endocytic compartments 

occurs relatively slowly, as the virus remains in vesicles at 90 minutes post 

infection and infection can be inhibited by cytoplasmically microinjected 

antibodies against the virus for 2-4 hours post infection (43, 74).  However, 

recent live cell microscopy studies in cells expressing fluorescently tagged 

Rab proteins show that capsids reach late endosomes and lysosomes within 

15 minutes of binding, suggesting a more rapid and potentially complex 

trafficking pattern (23).  These studies also demonstrated different binding and 

uptake patterns for CPV-2 on feline and canine cells, with virus binding 

relatively uniformly over the feline cell surface, while it preferentially binds 

canine cell filopodia (23).   

Staining with antibodies that recognize only intact virus capsids suggest 

that some CPV can be delivered relatively intact into the nucleus, possibly by 

transport through the nuclear pore complex (74, 75).  In this case, extensive 

conformational changes and capsid disassembly are not required for nuclear 

entry, as supported by only subtle changes in capsid conformation being 

observed by cleavage studies under lower pH and receptor binding conditions 

(38).  Presumably, however, some capsid modifications are occurring before 

nuclear entry, since the virus must escape into the cytoplasm.  Capsid 
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changes may include the exposure of the N-terminal VP1 nuclear localization 

signal (NLS) and phospholipase A2 (PLA2)-like domain, cleavage of VP2 to 

VP3 and exposure of its glycine-rich sequence, and removal of capsid-bound 

calcium ions (40, 60, 73, 74).  The identification of PLA2 sequence homology 

in the VP1 N-terminus of parvoviruses (80) and in vitro demonstration of CPV 

PLA2 activity after exposure of virions to acidic buffers or heating (63) has 

lead to the hypothesis that viral PLA2 activity aids in membrane penetration 

and escape of CPV from the endocytic pathway.  Indeed, PLA2 appears 

necessary, but not sufficient, for membrane penetration and productive 

infection, while other factors required for successful membrane penetration 

may include specific receptor interactions or the exposed glycine-rich domain 

of VP3 (63).  TfR binding also appears to play a role in capsid structural 

changes, as some mutant and chimeric TfRs allowed weak virus binding, but 

very little infection (27, 39).   

Once in the nucleus, the virus uses the DNA replication and 

transcription machinery of its host to produce its copies of its genome and viral 

mRNA.  Regulation of DNA replication and transcription is coordinated by viral 

NS1 and its interactions with host cell machinery.  Capsid proteins are 

synthesized in the cytoplasm and imported into the nucleus, which is the 

primary site of virus assembly and DNA packaging (79).  The virus replication 

cycle is complete following the death its host cell and release of progeny 

virions into the environment. 

 

1.9  DISSERTATION OUTLINE 

 The research for this dissertation is divided into three sections, with the 

first two describing unique, but related, aspects of CPV evolution, and the third 
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discussing the preliminary development of an in vitro model for future studies 

of CPV host adaptation. 

 The first section focuses on the early evolution of CPV, the stage where 

the original CPV-2 virus was replaced globally by the newer CPV-2a-derived 

viruses, such as CPV-2b.  It uses molecular biological techniques to create a 

panel of potential capsid intermediate viruses with different combinations of 

four VP2 differences between those viruses.  These intermediates are tested 

using various in vitro measures of fitness to elucidate the evolutionary 

constraints and pressures on CPV-2 during its initial adaptation to dogs.  

These intermediate viruses will also help evaluate the requirements for co-

selection of specific capsid residues in CPV. 

 Section two approaches the question of CPV evolution from a clinical 

perspective and analyzes whether or not current strains circulating in the 

southwestern United States differ in their clinical presentations and outcomes.  

Strain variation has the potential to alter CPV detection by antibody-based 

diagnostic tests, reduce the effectiveness of vaccination at preventing disease, 

or change the severity of disease and prognosis for patients.   

 The final section describes studies that characterize cell line 

susceptibilities to CPV infection, with the aim of finding ways to dissect 

differences in biological functions between original and newer CPV variants.  

These preliminary data suggest potential uses of various cell lines for future in 

vitro studies of CPV replication and evolution.   
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2.1  ABSTRACT 

 The emergence of viral host range variants frequently requires a 

number of mutations that often alter multiple virus properties simultaneously.  

The process by which these mutations arise and are selected remains poorly 

understood.  Canine parvovirus (CPV) serves as an excellent model for 

studying viral emergence and adaptation to a novel host.  Here, we 

characterize the individual and combinatorial effects of four clade-defining 

capsid (VP2) residues that differ between the original variant, CPV-2, and a 

newer strain, CPV-2b.  We show that all four residues, including the buried 

VP2 residue 101, alter binding to several anti-capsid monoclonal antibodies, 

as well as binding of virus to feline and canine cells, likely by influencing 

transferrin receptor binding.  We also demonstrate that adaptation to dogs 

likely required transient evolutionary intermediates that had reduced viral 

fitness, at least for cells in tissue culture.  

 

2.2  INTRODUCTION 

 As viruses evolve, they may acquire new properties that alter their host 

range, transmission, tissue tropism, antigenicity, and/or virulence.  Acquisition 

of novel biological functions often requires multiple mutations working together 

in complex ways to give the final viral phenotype.  How these mutations arise 

and are selected is not well understood.  This is particularly true for mutations 

that alter the ability of a virus to replicate in different hosts (i.e., those that 

change host range), where mutations that give higher fitness in the new host 

may reduce fitness in the original host, resulting in different selection 

pressures in each host.  Mutations may also be under complex selection in the 

same host, for example, when receptor binding and antibody recognition sites 
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on the viral capsid overlap.  In such cases, selection pressures will 

presumably differ between immunologically naïve and immune individuals and 

populations.  Understanding the processes by which viruses acquire new 

phenotypes in the face of such complex selection environments is critical for 

improving the prediction, prevention and control strategies for emerging viral 

diseases.  

 One way to conceptualize these processes is to represent viral 

sequence space on a fitness landscape, an extension of Wrightʼs adaptive 

landscape that describes the relative fitness of all possible genotypes of a 

given replicon in a given environment (28, 29).  For example, Figure 2.1 shows 

a simplified, two-dimensional fitness landscape for a hypothetical virus in a 

novel host environment.  A recently emerged virus would likely have a 

relatively low fitness in its new host and would subsequently gain fitness 

through the acquisition of adaptive mutations.  This process may occur at the 

intra- or interhost level, and may or may not involve the generation of 

intermediate viral variants with lower fitness.  Viral fitness refers to the 

contribution of a given variantʼs genotype to the next generation of viruses (4), 

and various experimental measures can be used to estimate the relative 

fitness of virus variants under different conditions, including in vitro 

measurements of antibody binding and neutralization, replication efficiency, 

receptor binding and uptake, and infectivity.  

 Canine parvovirus (CPV) provides an excellent system for studying 

these evolutionary processes because its evolution and biological properties 

have been characterized in detail since its emergence as a new pathogen of 

dogs in the late 1970s.  The original virus was named CPV type-2 (CPV-2) 

and is a host-range variant of feline panleukopenia virus (FPV), or one of its  
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Figure 2.1.  Two-dimensional representation of a fitness landscape for a virus 
in a novel recipient host species, where multiple mutations are required for 
adaptation.  A virus transferred to a recipient host is relatively poorly adapted 
(peak on the left).  Adaptation to the recipient host requires multiple mutations 
in the viral genome to increase its fitness (peak on the right).  Multiple potential 
pathways exist for traversing the genotypic distance between these two peaks.  
There could be a steady increase in fitness (dotted line), or combinations of 
mutations may have varying degrees of reduced fitness (dashed lines).  
Knowing which of these evolutionary pathways is followed during an 
emergence event would aid in risk assessment and development of prevention 
strategies. 

 

close relatives (26).  CPV-2 gained the canine host range through the 

acquisition of several mutations found primarily in the capsid gene.  Some of 

those changes caused it to simultaneously lose the ability to replicate in cats, 

although it is still able to infect feline cells in vitro (26).  Within two to three 

years, the original CPV-2 was replaced globally with a genetically and 

antigenically distinct variant, CPV type-2a (CPV-2a), which had several 

additional nonsynonymous mutations in the capsid gene (16, 20).  

Phylogenetic analyses show that currently circulating strains of CPV form a 
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monophyletic clade that is derived from the original CPV-2 lineage (22).  

Interestingly, CPV-2a, and more recent variants derived from that virus, 

regained the feline host range, although with little reversion to the original FPV 

sequences (25).  They also show reduced binding to their cellular receptor, the 

transferrin receptor (TfR) (9), compared with either FPV or CPV-2, and they 

have varying antigenicity as defined by monoclonal antibody (mAb) or 

sensitive polyclonal antibody analyses (20).  

 Viruses in the CPV-2a clade contain four unique coding changes in the 

major capsid gene, VP2, compared with CPV-2 viruses, at residues 87, 101, 

300, and 305 (Table 2.1).  Since it emerged around 1979, CPV-2a clade 

viruses have acquired a number of additional mutations in the capsid protein, 

and in some cases, the same VP2 residue has changed multiple times.  For 

example, VP2 residue 426 is Asn in CPV-2a, but an Asp in CPV-2b (15) and 

Glu in CPV-2c (2).  Substitutions at residue 300 (from Ala to Gly, Val or Asp in 

different viruses) alter host range and antigenicity of CPV (12, 18), whereas 

substitutions at residue 426 alter the antigenicity of the capsid but do not 

appear to directly effect host range (15).  Residues 87, 300 and 305 lie within 

the binding footprint of the TfR (7).  Previous escape mutant analyses and 

cryoEM studies of mAb-derived antibody binding fragments (Fab) complexed 

with the capsids define two epitopes on the capsid surface:  site A, which 

overlaps with much of the 3-fold spike, and site B, which lies further down on 

the shoulder of the 3-fold spike (6, 24).  Residue 300 lies within site B, while 

residue 426 in within site A, and residues 87 and 305 lie within an overlapping 

region of the site A and B mAb binding footprints (6). 
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Table 2.1.  Wildtype differences in the four VP2 residues examined in this 
study. 

 
 VP2 Residue 
 87 101 300 305 

CPV-2 Met Ile Ala Asp 
CPV-2b Leu Thr Gly Tyr 

 

 The atomic structures of CPV-2 and FPV, as well as some mutants 

(including VP2 300Asp), have been solved by X-ray crystallography (1, 12, 27, 

30) and those show that VP2 residues 87, 101, 300, and 305 are found in a 

region of the shoulder of the three-fold spike (Figure 2.2 A).  Residues 87, 300 

and 305 are surface-exposed, while residue 101 is buried directly below 

residue 87.  Within one asymmetric capsid unit, residues 87 and 101 are part 

of a flexible loop of one VP2 molecule, and that loop interacts closely with a 

flexible loop from a second VP2 molecule that contains residues 300 and 305 

(Figure 2.2 B).  Changes in the three surface exposed residues could therefore 

directly alter interactions with various ligands, including the TfR and a number 

of antibodies.  Mutating residue 101 may also alter local structures enough to 

modify the capsid surface, and thus also contribute to changes in binding 

properties (Figure 2.2 C).   

 Here, we investigate the evolution of CPV-2 in dogs by examining the 

functions of viruses containing intermediate combinations of VP2 residues 87, 

101, 300, and 305, the signature mutations of the CPV-2a variant that globally 

replaced the CPV-2 strain.  Viruses containing these intermediate capsid 

sequence combinations have not been isolated from nature, suggesting they 

existed transiently and had lower fitness.  By examining the properties of these  
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Figure 2.2.  A)  Asymmetric unit of the CPV-2 capsid showing surface-
exposed VP2 residues and created using a previously published method (21).  
Surface-exposed residues that differ among wildtype FPV, CPV-2 and CPV-2b 
viruses are outlined in black.  B, C)  Crystal structure of the shoulder of the 3-
fold spike of CPV-2 (Protein Data Bank accession no. 4DPV).  Flexible surface 
loops from two distinct VP2 peptides are colored (cyan and green), and show 
that residues 87, 300 and 305 are surface-exposed, while residue 101 is 
buried directly below residue 87.  CPV-2b VP2 residues 87 and 101 (B) or 300 
and 305 (C) were introduced into the crystal structure using WinCOOT (5). 
The mutated structures were overlaid onto a capsid fragment generated with 
VIPERdb (3) and visualized using PyMOL.  Hydrogen atoms are not 
displayed, but hydrogen bonds are indicated by dashed lines and show that 
the CPV-2b point mutations introduce new hydrogen bonds that may alter the 
surface structure of the capsid. 
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22 intermediate viruses, we could assess the phenotypes and relative fitness 

of intermediates that may have occurred during the evolution of CPV.  

 

2.3  MATERIALS AND METHODS 

 Cells and viruses.  Norden Laboratory feline kidney (NLFK) cells and 

A72 canine fibroblasts were grown in a 1:1 mixture of McCoyʼs 5A and 

Liebovitz L15 media with 5% fetal calf serum (FCS) (growth medium).  

 Parvoviruses were derived from infectious plasmid clones of CPV-2 

(CPV-d) and CPV-2b (CPV-39) strains, as previously described (15).  

Intermediate viruses were created from infectious plasmid clones using either 

the GeneEditor in vitro Site-Directed Mutagenesis System (Promega, Madison, 

WI) or the Phusion Site-Directed Mutagenesis Kit (Finnzymes, Woburn, MA).  

In all cases, the mutated region of the VP2 gene was sequenced to confirm 

that only the desired mutations were present, and in some cases, the mutated 

region was recloned into the appropriate infectious clone background to 

ensure no additional mutations were present in the genome.  To prepare 

capsids for binding studies, viruses were concentrated by polyethylene glycol 

precipitation, followed by sucrose gradient centrifugation and dialysis against 

phosphate buffered saline (PBS) (1, 13).   

Virus infectivity assays.  For viability and infection assays, NLFK cells 

seeded at 2 × 104 cells/cm2 in 25 or 75 cm2 dishes were incubated overnight at 

37°C.  To assess viability, cells were incubated with Lipofectamine reagent 

(Invitrogen, Carlsbad, CA) and 5 µg plasmid DNA for 4 hours, and then with 

growth medium for 7 days, with one passage to maximize cell division and 

viral replication.  To assess virus infectivity, cells were inoculated with first 

passage virus supernatant and then incubated for 7 days.  Coverslips were 
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fixed with 4% paraformaldehyde two days post-transfection or post-infection, 

and analyzed for viral proteins by immunofluorescence microscopy (IFA).  

Transfected and infected cultures were frozen, thawed and spun at 10,000 x g 

for 10 minutes.  Virus titers were tested in hemagglutination (HA) assays using 

feline erythrocytes in Bis-Tris buffered saline (pH6.2 at 4°C) (19, 23). 

Virus detection by IFA.  Fixed cells were stained for virus with 

Alexa488-labeled anti-nonstructural (NS) protein mAb (CE10) (31) and/or 

Alexa594-labeled anti-capsid mAb (A3B10) (19).  Anti-viral antibodies were 

diluted in 1X PBS containing 1% bovine serum albumin, 0.1% Triton X100 and 

0.05% sodium azide (permeabilization solution) and incubated with cells for 1 

hour at room temperature.  Stained coverslips were mounted on slides and 

analyzed with a Nikon Eclipse TE300 inverted epifluorescent microscope.   

 Antigenic analysis of viruses.  Antigenic testing of wildtype and 

intermediate viruses was performed using a hemagglutination inhibition (HI) 

assay with a panel of mouse or rat mAbs prepared against FPV, CPV-2 or 

CPV-2b capsids (17, 19, 20) (Table 2.2).  HI assays were performed with 

conditions described above. 

 Virus binding and uptake by feline and canine cells.  Feline or 

canine cells were seeded at 2 × 104 cell/cm2 in 12-well tissue culture plates.  

Following overnight incubation at 37°C, cells were washed twice with warm 

DMEM with 0.1% BSA (binding medium).  Wildtype and intermediate virus 

binding and uptake was performed by incubating cells with 15 µg/ml 

appropriate purified virus for 1 hour at 37°C.  Virus was then removed and 

cells were washed twice with binding medium before being dissociated with 

brief exposure to trypsin and transferred to a 96-well, V-bottom plate. 
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Table 2.2.  Wildtype virus specificity of monoclonal antibodies used to test 
intermediate virus antigenicity in the hemagglutination inhibition assay.  The 
capsid binding site it indicated, if known (24). 
 

mAb Species Immunizing 
Antigen 

Binding Site 
on Capsid 

CPV 
Specificity 

G rat FPV-c  FPV only 
J rat FPV-c B CPV-2 
I rat FPV-c A CPV-2 
D rat FPV-c B CPV-2 
E rat FPV-c B CPV-2 

1D1 mouse CPV-39 (2b)  CPV-2b 
7D6 mouse CPV-39 (2b)  CPV-2b 
7E2 mouse CPV-39 (2b)  CPV-2b 
14 mouse CPV-a (2) A All CPV 
8 mouse CPV-a (2) B All CPV 

 

 Cells were pelleted at 1000 x g for 5 minutes at 4°C and washed once 

with 1X PBS containing 1% ovalbumin, 1mM EDTA and 0.01% sodium azide 

(wash solution) before being fixed for 20 minutes in IC fixation buffer 

(eBioscience, San Diego, CA).  Cells were then washed three times with 1X 

permeabilization buffer (eBioscience) and stained with Alexa488-labeled anti-

capsid mAb 8 (19) for 30 minutes at room temperature.  Following three final 

washes with permeabilization buffer, cells were resuspended in wash solution 

and analyzed using a GuavaCyte flow cytometer (Millipore, Billerica, MA).  

Flow cytometry data was analyzed using FlowJo v9 software (Treestar, 

Ashland, OR).     

In vitro competition assays for relative viral fitness.  Pair-wise 

mixtures of wildtype and intermediate viral stocks were prepared at 10:1, 1:1 

and 1:10 volume-to-volume ratios.  For each replicate, feline or canine cells 

were seeded at 2 × 104 cell/cm2 in two 96-well tissue culture plates.  The next 

day, cells were washed twice with DMEM with 0.1% BSA (infection medium) at 
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37°C.  Inoculations were performed in each plate for 1 hour at 37°C with 15-25 

µl/well appropriate virus stock mixture plus 15-25 µl/well infection medium.  

Following inoculation, the virus was removed and the cells were washed twice 

with infection medium, then incubated at 37°C for either 2 days or 7.5 days in 

growth medium before being frozen at -80°C and thawed rapidly at 37°C to 

release cell-associated virus.  Supernatants were transferred to a 96-well, V-

bottom plate and centrifuged at 1000 × g for 5 minutes to pellet cellular debris.  

This clarified supernatant used for standard virus PCR and sequencing.   

 PCR, sequencing and analysis.  Phusion hot start, high fidelity DNA 

polymerase (Finnzymes) and a standard set of CPV primers (forward  

5ʼ-GAAAACGGATGGGTGGAAATCACAGC-3ʼ and reverse  

5ʼ-TATTTTGAATCCAATCTCCTTCTGG-3ʼ) and thermocycler settings (30 

cycles of 0:10 at 98°C, 0:30 at 54°C, 2:15 at 72°C) were used to PCR amplify 

the mid-portion of the major capsid gene, VP2, that includes codons 87, 101, 

300 and 305.  DNA products were purified using QIAquick 96 PCR purification 

kits (Qiagen, Valencia, CA), and Sanger sequencing reactions were performed 

by Cornell Universityʼs Core Laboratories Center using the primers described 

above.   

 Peak heights were measured from sequence traces using 4Peaks 

software (Mekentosj, Amsterdam, The Netherlands), and peak height ratios 

(PHR) were calculated for nucleotides that differed in sequence between each 

set of input viruses.  Changes in PHR over time were examined graphically, 

and fold increases or decreases in PHR after 7.5 days post infection were 

calculated.  Where more than one nucleotide varied between the two input 

viruses, fold changes in PHR were averaged for all sites.   
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2.4  RESULTS 

 A series of 22 intermediate viruses was prepared between the wildtype 

viruses CPV-2 and CPV-2b, which represent prototype viruses for the original 

and newer CPV clades, respectively (Figure 2.3).  CPV-2 codons for the VP2 

residues 87, 101, 300, and 305 were mutated individually and in pairs to the 

CPV-2b sequences.  An additional CPV-2-derived virus was also created with 

all 4 residues changed to the CPV-2b sequences.  Equivalent intermediate 

viruses were made from the CPV-2b background by changing combinations of 

these same residues back to the CPV-2 sequence.  Viruses were named by 

the virus from which they were derived, followed by a 4-digit subscript that 

indicates the amino acid present at VP2 positions 87, 101, 300, and 305, 

respectively.  A subscript of 0 indicates the CPV-2 residue is present, while a 

subscript of 1 indicates the CPV-2b residue is present.  Thus, wildtype CPV-2 

is represented as CPV-20000 and wildtype CPV-2b is CPV-2b1111.   

 Viability and infectivity.  All but 3 intermediate viruses (indicated by 

asterisks in Figure 2.3) were viable and infectious by IFA and HA testing after 

transfection and passaging in tissue culture (data not shown).  The 3 

intermediates that did not grow were each derived from CPV-2b and contained 

individual mutations at residues 101 or 300, or a double mutation at residues 

101 and 305.   

 Antigenic variation.  Each virus was tested in an HI assay for 

reactivity against a panel of mAbs that have various specificities for CPV or 

FPV strains (Table 2.2) (20).  The FPV-specific mAb G did not bind any of the 

wildtype or intermediate viruses, while the broad-specificity mAbs 8 and 14 

bound all the viruses (Figure 2.4 A).  In CPV-2, changing VP2 residue 300 to 

the CPV-2b sequence alone, or in combination with residues 87, 101 and/or 
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Figure 2.3.  VP2 schematic for wild type viruses, CPV-2 (white) and CPV-2b 
(grey), as well as for the 22 intermediate viruses created for this study, 
indicating their changes at VP2 residues 87, 101, 300, and 305.  Naming 
conventions are described in the main text.  All viruses were prepared as 
infectious plasmid clones and tested in at least two independent experiments 
for viability and infectivity after transfection and passage in tissue culture, 
respectively.  Asterisks indicate intermediate viruses that were noninfectious. 
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305, allowed binding by CPV-2b-specific mAbs (1D1, 7D6 and 7E2).  Similarly, 

changing VP2 residue 300 in CPV-2b to the CPV-2 sequence, in combination 

with residues 87, 101 and/or 305, prevented binding by these CPV-2b-specific 

mAbs.  These results demonstrate that the epitope recognized by all three 

CPV-2b-specific mAbs is largely controlled by the presence of VP2 residue 

300 Gly.   

 Of the CPV-2-specific mAbs, mAb I binds site A, while the others bind 

site B (24).  mAb I recognized all intermediate viruses as their corresponding 

wildtype virus, and thus bound only to CPV-2-derived intermediates.  mAbs D 

and J showed similar capsid binding properties, with reciprocal results for 

CPV-2 and CPV-2b intermediates that have the same residues changed.  

Binding of mAbs D and J to CPV-2 was reduced when residues 87 and 101 

were individually changed to the CPV-2b sequence, and completely lost when 

residues 87 and 101 were changed together.  Changing CPV-2 residues 300 

and 87 together reduced or eliminated mAb D and J binding, respectively, 

while changing residue 300 alone did not alter CPV-2-specific mAb binding.  

Changing CPV-2 residues 101 and 300 simultaneously also eliminated mAb J 

binding.  Similar reciprocal results were seen when residue 87 in CPV-2b was 

changed to the CPV-2 sequence alone, or in combination with changes at 

residues 101 or 300, as these changes partially or fully restored virus binding 

by mAbs D and J.  Changing CPV-2b residues 101 and 300 in concert also 

restored mAb D and J binding.  These results clearly show that the epitopes 

recognized by mAbs D and J are similar and primarily controlled by residue 

87, with varying degrees of modulation by residues 101 and 300 that 

depended on the mAb.   
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Figure 2.4.  Ligand binding properties and relative fitness of wildtype and 
intermediate viruses.  A) Virus binding profiles for 10 mAbs as determined by 
HI assay.  Strong (black), intermediate (grey) and weak (white) binding for 
each mAb was defined by its wildtype CPV-2 and CPV-2b binding titers, as 
wildtype virus specificity for these mAbs is well characterized (20).  B) Virus 
binding and uptake in feline and canine cells as measured by flow cytometry.  
For feline cells, the mean fluorescent intensity (MFI) from three independent 
experiments was averaged and the standard error of the mean is shown.  For 
canine cells, an average of two replicate wells from a single experiment is 
shown.  C) Relative fitness of wildtype and intermediate viruses following one 
week of replication in feline cells.  Average fold changes in 
wildtype:intermediate peak height ratios (PHR) from one to three independent 
competition assays is shown for 1:1 ratios of input virus.  For WT CPV-2, the 
bar indicates WT CPV-2:CPV-2b PHR.  Error bars represent standard 
deviation.  Results for the 10:1 and 1:10 input virus ratios showed similar 
trends (data not shown). 
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 mAb E demonstrated a unique binding pattern, as results were not 

directly reciprocal between intermediate viruses where the same residues 

were changed in each wildtype virus, as generally observed with the other 

mAbs.   mAb E showed reduced binding to CPV-2 intermediate viruses when 

residues 101 and 300 were simultaneously changed, but otherwise bound 

strongly to all CPV-2-derived intermediates.  Conversely, more than one 

combination of changes in CPV-2b resulted in a partial to full return of mAb E 

binding.  These included concerted changes of residue 300 together with 

residues 87, 101 and/or 305, as well as simultaneous changes in residues 87 

and 101.  These results suggest that there are additional structural differences 

between CPV-2 and CPV-2b that involve residues other than 87, 101, 300, 

and 305.     

 Receptor binding.  The binding and uptake of each virus in feline 

NLFK and canine A72 cells were assessed using flow cytometry (Figure 2.4 

B).  Wildtype CPV-2 bound at 5- to 20-fold higher levels than wildtype CPV-2b 

in feline and canine cells, respectively, as reported previously (9).  Changing 

VP2 residues 87 and 101 to the CPV-2b sequence, alone and in concert, 

reduced the binding of CPV-2 to feline and canine cells.  Conversely, changing 

the CPV-2b residues 87 and 101 simultaneously to the CPV-2 sequence 

increased binding to feline and canine cells, although changing residue 87 

alone did not.   

 CPV-2 binding to feline and canine cells was also reduced when VP2 

residues 101 and 300 were changed together.  However, changing those two 

residues in CPV-2b resulted in only a modest increase in cell binding, and 

CPV-2b cell binding only reached CPV-2 levels when all 4 VP2 residues were 

changed simultaneously.    
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 Relative fitness.  To measure the relative fitness of viruses in tissue 

culture, we developed a PCR-based assay that detects the proportions of 

wildtype and intermediate viruses produced during a 1-week incubation 

following inoculation with various ratios of input virus.  In preliminary studies, 

we found that this method accurately detected the relative ratios of wildtype 

CPV-2 and CPV-2b viruses in mixtures containing known amounts of each 

virus (results not shown).  For example, when similar quantities of each virus 

were amplified by PCR in the same reaction, two nucleotide peaks of 

comparable amplitude were detected by sequencing for each single nucleotide 

polymorphism (SNP).  Figure 2.5 gives an example of the sequence trace data 

obtained from this assay and gives a graphical representation of changes in 

peak height ratios (PHR) over time.  In feline cells, CPV-2 clearly replicated 

better than CPV-2b, resulting in an increase in CPV-2:CPV-2b PHR over time, 

regardless of whether cells were initially infected with more CPV-2 or more 

CPV-2b virus.  In the case of competitions between wildtype viruses, all 4 

codons (87, 101, 300, and 305) can be used for PHR calculations, and 

analysis of each of those sequence positions gave similar results (data not 

shown).   

 In general, most CPV-2-derived intermediate viruses had lower 

replication fitness than wildtype CPV-2 in feline cells, as demonstrated by a 

greater than 5-fold increase in CPV-2 compared to intermediate virus PHR 

after 7.5 days post infection.  Changing VP2 residues 87 and 300 

simultaneously in CPV-2 resulted in the most dramatic reduction in relative 

fitness of all CPV-2-derived intermediates, as that resulted in a 48-fold 

increase in CPV-2:intermediate PHR after 7.5 days incubation.  Changing 

residue 305 alone resulted in minimal loss of fitness, and this intermediate  
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Figure 2.5.  In vitro competition assay between wildtype CPV-2 and CPV-2b in 
NLFK cells.  A) Sequence trace data for VP2 codon 87 (gray lines) showing an 
increase in CPV-2 (green peak for adenine) and a decrease in CPV-2b (red 
peak for thymine) over time at each of the three input ratios of virus.   
B) Graphical representation of the CPV-2:CPV-2b PHR over time at each of 
the input ratios.  (pi – post-infection) 
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replicated to similar levels as wildtype CPV-2, as indicated by a fold increase 

in CPV-2:intermediate PHR of only 1.4 after 7.5 days incubation.   

 These results are in contrast to the replication of CPV-2b-derived 

intermediates, which generally showed similar replication fitness to wildtype 

CPV-2b viruses, as indicated by small fold increases or decreases in CPV-

2b:intermediate PHR after 7.5 days post infection. 

 

2.5  DISCUSSION 

 Emergence of the CPV strains currently circulating in dogs today 

involved two steps that each required the acquisition of multiple capsid 

mutations, one step being the change from FPV to CPV-2 and the other from 

CPV-2 to CPV-2a.  In both cases, the group of mutations effected virus 

antigenicity, TfR binding and host range properties.  We have previously 

shown that combinations of amino acid differences between the FPV and 

CPV-2 capsid proteins acted together to introduce the ability of CPV-2 to infect 

dogs and canine cells (25).  However, we still know little about how groups of 

mutations that control host range or other complex biological properties arise 

and are selected, or how they interact to confer their novel phenotypes on the 

viruses.  Here, we examined various properties of 4 conserved differences 

between the original and newer CPV strains and found that all four work in 

concert to convey various viral phenotypes.   

 Of the three surface-exposed VP2 residues (87, 300 and 305), residue 

300 had previously been shown to influence TfR and antibody binding (12, 

18), but here we have demonstrated that residues 87 and 305, as well as the 

buried residue 101, also play important roles in defining ligand-binding 

properties.  Changing residue 101 in the CPV-2 structure from Ile to Thr 
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appears to introduce a new hydrogen bond with residue 84, which likely 

influences the structure of the flexible loop that contains residues 84, 87 and 

101, including modification of its surface-exposed portion.  More advanced 

modeling is needed to explore the structural alterations created by this residue 

change, as well as that of the surface residues 87, 300 and 305.  Solving the 

atomic structure of CPV-2b would be particularly informative. 

 Our mAb-virus binding data confirmed previous findings of mAb 

specifities and mapped the contributing residues in more detail.  The data 

shows that the CPV-2-specific epitopes, particularly within site B, interact with 

mAbs in a number of different conformations, since the same combinations of 

residue changes are recognized differently by mAb E compared with mAbs D 

and J.  This is in line with variation in mAb binding footprints on the capsid 

surface that have been defined by cryoEM (6).  Conversely, the CPV-2b-

specific mAbs generally appear to bind in similar conformations, at least within 

the site B region of the capsid, since minimal variation was seen in the virus 

binding profiles between mAbs 1D1, 7D6 and 7E2.  

 CPV-2 is known to bind feline and canine cells to a higher level in flow 

cytometry assays than does CPV-2b (9), and our data confirmed these 

findings.  The aspartic acid at residue 305 has previously been shown to 

contribute to the increased binding of CPV-2 to host cells (9), but our results 

showed that residues 87 and 101 were the primary contributors to increased 

CPV-2 binding, with minimal contribution from residue 305.  There may be 

differences in binding to the feline and canine cells used in previous studies.  

We know that in canine Cf2Th cells, CPV-2 binds preferentially to filopodia, 

whereas in NLFKs, virus binds more uniformly over the cell surface (8).  The 

binding data presented here suggest that there are subtle differences in how 
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viruses bind to feline and canine cells, with changes at residues 87 and 101 

possibly having a greater effect on virus binding to canine cells, although 

additional studies with various canine cells are needed to confirm this. 

 Other mutations in the surface loop containing residues 300 and 305 

have been shown to affect TfR and mAb binding.  Specifically, a change in 

VP2 residue 300 from Ala to Asp was selected when CPV-2 was grown in 

feline cells, and this mutant had lost the ability to infect canine cells (12, 18).  

In addition, CPV-2a-dervied viruses carrying the 300Asp mutation have been 

isolated from naturally infected cats (10) and raccoons ((11), Allison and 

Parrish, unpublished data).  An antibody-selected escape mutant carrying a 

Gly to Glu change at VP2 residue 299 also lost the ability to infect canine cells 

(14, 24).  The crystallographic structure of CPV-2 with Asp at residue 300 has 

been determined, and shows that 300Asp forms a salt bridge with Arg81 in an 

adjacent VP2 subunit (12).  The Gly found at VP2 position 300 in the newer 

CPV-2a variants likely introduces even more flexibility into its surface loop, 

which may aid virus binding to the canine TfR.  

 The four capsid residues examined in this study lie within the binding 

footprints of the TfR and several mAbs (6, 7), so it was not surprising that 

changes in these residues altered both cell binding and antigenicity in these 

studies.  Since CPV-2 could not infect cats, selection for the newer CPV-2a 

viruses would have occurred in infected dogs and may have been influenced 

in part by vaccine-induced immunity.  Since these newer CPV-2a viruses have 

completely replaced CPV-2 in nature, they presumably are better adapted for 

replication in dogs, although the specific advantage(s) these newer viruses 

have during natural infection remains unknown. 
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  In addition to finely mapping specific cell and mAb interactions, we 

examined the relative fitness of each intermediate virus against its wildtype to 

begin addressing the question of how evolutionary intermediates arise and are 

selected.  All 11 CPV-2-derived intermediate viruses were viable and 

infectious, suggesting that there were no strict structural or infectious barriers 

to the order in which this set of four amino acid mutations was acquired.  

Competition assays demonstrated that all but one of these 11 intermediates 

had lower replicative fitness in feline cells than wildtype CPV-2, suggesting 

that evolutionary intermediates may have been required to pass through a 

fitness trough during the process of CPV adaptation in dogs.  Changing 

residue 305 alone to the CPV-2b sequence did not reduce virus fitness when 

compared with wildtype CPV-2, and in general, changing residue 305 alone 

had the smallest effects in these studies.  Testing these 11 intermediates in 

competition assays against wildtype CPV-2b would offer additional insights 

into the evolution of CPV in dogs, and these studies are underway. 

 Three of the 11 CPV-2b-derived viruses were nonviable, suggesting 

that single mutations at residues 101 or 300 back to the CPV-2 sequence, or 

the double back mutation of residues 101 and 305, create viruses that fail to 

replicate.  This suggests these residue changes interact epistatically with other 

regions of the virus genome to give the nonviable phenotype, since the 

equivalent forward mutations in CPV-2 are viable.  Furthermore, relative 

fitness of the CPV-2b-derived intermediate virus that has all four residues 

changed back to the CPV-2 sequence remains similar to CPV-2b and fails to 

return to the higher CPV-2 levels, again suggesting the other difference 

between the wildtype CPV-2 and CPV-2b genomes play a role in determining 

replication phenotypes.  In addition their differences at VP2 codons 87, 101, 
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300, and 305, the wildtype CPV-2 and CPV-2b viruses used in these studies 

also differ at 5 noncoding nucleotides, three nucleotides in the nonstructural 

ORF (including a nonsynonymous change at NS1 codon 544) and two 

nucleotides in the capsid ORF that result in nonsynonymous changes at VP2 

codons 375 and 426.   Additional mutagenesis mapping studies may allow us 

to determine which of these specific differences is responsible for the reduced 

replication of CPV-2b in feline cells. 

 Preliminary studies in various canine cells lines have shown that at 2 

days post infection, virus titers are too low to be reliably detected by the PCR-

based in vitro competition assay.  This draws a parallel with previous findings 

from immunofluorescence microscopy that showed fewer CPV-infected cells in 

various canine cultures compared with feline cultures that were similarly 

inoculated (results not shown).  Studies are on-going to determine if this assay 

can be used successfully at later time points in various canine cells lines.  In 

addition, competition assays in primary feline and canine lymphoctyes would 

allow relative fitness of wildtype and intermediate viruses to be characterized 

in a more clinically relevant tissue type, as lymphocytes are the primary target 

of CPV in infected animals.  Such cells may more closely mirror the CPV host 

range properties seen in nature. 
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CHAPTER 3 

 

PARVOVIRAL ENTERITIS:  EFFECTS OF VIRUS STRAIN VARIATION ON 

DIAGNOSTIC TESTING AND CLINICAL MANAGEMENT* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Modified from manuscripts being prepared with co-authors Jessica E. 

Markovich, Alaina Carr, Carole E. Harbison, Janet M. Scarlett, and Colin R. 

Parrish.  
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3.1  ABSTRACT 

Objective – To estimate the prevalence of canine parvovirus (CPV) strains 

among dogs presenting to a referral hospital in the southwestern United States 

over a one-year period, and to determine if specific variation in capsid gene 

sequences is associated with different diagnostic test results, disease severity, 

or patient outcome.   

Design – Prospective pilot study.  

Sample Population – 72 dogs presenting to a single referral hospital in Mesa, 

Arizona, with clinical signs and history indicative of parvoviral enteritis, 

regardless of in-clinic parvovirus test results. 

Procedures – Fecal samples or rectal swabs were tested for parvovirus with 

both commercial CPV in-clinic ELISA tests and CPV-specific PCR.  

Additionally, a subset of patients had their pharynx swabbed and similarly 

tested for parvovirus. 

Results – Of the 42 fecal samples tested, 27 were positive for CPV by ELISA 

and PCR, while 6 were positive by PCR only.  Of these 33 CPV-positive 

samples, 72.7% were CPV-type-2c-like and 27.2% were CPV-type-2b-like.  

Pharyngeal swabs were collected in 16 of the CPV-positive dogs, and 10 were 

CPV positive by PCR.  No association was found between CPV strain and 

disease severity or clinical outcome, although the sample sizes were small. 

Conclusions and Clinical Relevance – These findings suggest that CPV-2b 

and CPV-2c pose similar risks for dogs, making extensive diagnostic testing to 

identify CPV strain unnecessary at this time.  Current diagnostic tests can 

detect the CPV-2c variant.  Following national vaccination guidelines, proper 

disinfection protocols and standard clinical treatment procedures remain the 

mainstay for parvovirus prevention and disease management. 
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3.2  INTRODUCTION 

 Canine parvovirus (CPV) causes an acute disease in dogs, with signs 

ranging from subclinical infection to severe hemorrhagic enteritis, leukopenia, 

and possible death.  The virus most commonly spreads via fecal-oral 

transmission.  Following ingestion, CPV undergoes primary replication in 

oropharyngeal lymphoid tissues, such as the tonsils and retropharyngeal 

lymph nodes (15).  From there, virus spreads hematogenously to the thymus 

and other lymphoid tissues, and eventually to the rapidly proliferating cells in 

the crypts of the gastrointestinal epithelium.  This leads to sloughing of the 

intestinal epithelium and shedding of virus in the feces within 4 days of 

exposure (15).  In most cases, virus shedding in the feces ceases within two 

weeks after the start of infection (15).   

 While severity of disease varies among individuals, the primary clinical 

sign is hemorrhagic diarrhea and complete blood cell counts reveal a severe 

leukopenia.  Therefore, clinical management of sick individuals relies on 

supportive care to replenish fluid losses and antimicrobial therapy to prevent 

(or treat) septicemia.  Vaccination with modified live vaccines is highly 

effective at preventing virus infection and disease in immunocompetent 

individuals and provides long-lasting immunity (reviewed in (23)).  However, 

puppies may become ill if exposed to CPV during a window of susceptibility 

created as maternal antibodies wane to low levels, but before vaccine viruses 

can infect and generate protective immunity.  This window of susceptibility 

varies among individuals, but in most cases occurs during the first 4 months of 

age, which reflects the current recommendations for the timing of puppy 

vaccine series (19, 20).  Puppies housed with other dogs (e.g., in shelters, 

kennels) or exposed to areas with high canine traffic (e.g., community runs, 
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dog parks, shows, veterinary practices) during this window of susceptibility are 

particularly at risk for infection and development of parvoviral enteritis. 

 CPV first emerged in the canine population in the late 1970s, and was 

named CPV type-2 (CPV-2) to distinguish it from a different parvovirus of 

dogs, the minute virus of canines.  CPV-2 quickly achieved a worldwide 

distribution, but was replaced globally in the early 1980s by an antigenically 

and genetically distinct strain, CPV type-2a (CPV-2a) (16).  Since then, novel 

antigenic and genetic variants have continued to arise, often carrying 

mutations in the overlapping capsid genes, VP1 and VP2.  Two such variants 

are defined by amino acid changes of VP2 residue 426, and those have been 

named CPV-2b and CPV-2c (1, 17).  CPV-2 and CPV-2a, as well as feline 

panleukopenia virus (FPV), have an asparagine (Asn) at position 426, 

whereas CPV-2b has an aspartic acid (Asp) and CPV-2c has a glutamic acid 

(Glu) at this position.  While these amino acid changes alter capsid antigenicity 

as defined by monoclonal antibody binding, they have only minor effects on 

recognition by polyclonal antibodies (15).  Additional changes in other capsid 

amino acids have also arisen, creating multiple variants similar to CPV-2a, 

CPV-2b, and CPV-2c (6).  Most of these remain unnamed and their functional 

consequences, if any, are not well characterized.   

 The significance of CPV genetic and antigenic variation for clinical 

disease and management remains uncertain.  For example, there has been 

concern that alteration of capsid epitopes could reduce the effectiveness of 

vaccine-induced immunity or result in failures of rapid in-clinic CPV tests that 

rely on antibody binding.  While CPV-2b (VP2 residue 426 Asp) has not been 

associated with vaccine failures or ineffective diagnostics since its recognition 

in 1984, some reports have suggested that CPV-2c (VP2 residue 426 Glu) 
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causes more severe disease, can infect properly vaccinated individuals, is not 

detected by in-clinic diagnostic tests, and results in worse patient outcomes (4, 

9, 21).  However, experimental studies have shown that dogs vaccinated with 

standard CPV-2-based vaccines are protected when challenged with CPV-2c 

(25), and earlier reports of natural infection suggested CPV-2c caused less 

severe signs (3).  

 Traditionally, diagnostic laboratory studies of CPV variants rely on 

sample submissions from a broad geographical area with limited clinical data 

for each patient.  Conversely, hospital-based CPV studies often have 

extensive clinical data but rarely include sequence information.  This work 

represents the first prospective study to combine CPV sequence analysis with 

an assessment of clinical presentation and outcome in a sample of dogs seen 

by an emergency and referral hospital.  No CPV-2a variants were detected in 

this study, so we compared the effects on disease severity and outcome of 

CPV-2b-like and CPV-2c-like variants, as defined by the presence of Asp or 

Glu at VP2 amino acid 426, respectively.  A separate phylogenetic analysis 

will be performed elsewhere to assess the clinical effects of all capsid protein 

variation observed among these samples (Stucker et al., in preparation).  This 

study also assessed the sensitivity of a commercial in-clinic CPV diagnostic 

test for detecting CPV-2b and CPV-2c, and compared outcomes based on at-

home care versus hospitalization.  

 

3.3  MATERIALS AND METHODS 

 Study design and data collection.  The study population included 

patients presenting to VCA Animal Referral and Emergency Center of Arizona 

(ARECA) in Mesa, Arizona, with clinical signs (anorexia, vomiting, diarrhea) 
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and history (signalment, improper or unknown immunization schedule, known 

or high-risk exposure) indicative of CPV infection.  Between August 2008 and 

June 2009, subjects were enrolled in this study as time and schedule 

constraints of the hospital allowed, creating a convenience sample 

representing a subset of the total potential parvovirus cases presented to 

ARECA during this time period.  Complete histories were collected for all 

subjects and recorded in a standardized history form.  Owners signed an 

informed consent form for inclusion of their pet in the study, and all subjects 

received a full physical examination.  An in-clinic CPV antigen test kit (CPV 

SNAP, IDEXX Laboratories, Inc., Westbrook, ME) using ELISA technology 

was performed on a fecal swab for all suspect cases following standard 

hospital protocol.  When possible, a fecal sample was collected within 24 

hours of presentation and saved for subsequent CPV ELISA and PCR testing 

and sequencing.  For a subset of subjects, a pharyngeal swab was also 

collected and stored in 1-2 ml sterile saline for CPV testing by ELISA and 

PCR.  All fecal and pharyngeal samples were stored at 4°C prior to analysis. 

 Treatment options (at-home care versus hospitalization) were 

presented to owners and carried out according to client preference and 

financial situations.  Depending on the care options chosen by the owner, 

various diagnostics and treatments were performed and recorded for this 

study, including blood glucose and albumin monitoring, complete blood cell 

counts, fecal parasite testing and administration of fresh frozen plasma.  

Patient outcomes were recorded when known, but some subjects receiving at-

home care were lost to follow-up.  This study complied with Cornell 

Universityʼs Institutional Animal Care and Use Committee and Institutional 

Review Board research guidelines.   



65 

 Clinical severity scoring.  Retrospective clinical severity scores were 

independently assigned by the studyʼs two lead investigators based on history 

and clinical exam findings at initial presentation, as recorded by the admitting 

clinician in the medical record.  A five-point scale was used, with one being 

least severe and five being most critical.  Prior to CPV type determination, 

scores were assigned based on number of days sick, mentation, ambulatory 

ability, temperature, hydration status, and glycemic index. 

 PCR and sequencing.  Fecal samples were diluted approximately 

1:500 in sterile water before being added to a conventional PCR reaction using 

Phusion high fidelity, hot start DNA polymerase and standard Phusion 

polymerase HF buffer (Finnzymes, Woburn, MA).  For pharyngeal swab 

samples, their saline diluent was added directly to conventional PCR 

reactions.  To test for the presence or absence of CPV, forward primer 1F and 

reverse primer 1R were used (Table 3.1).  To examine the 3ʼ-proximal region 

of the VP2 gene that includes codon 426, CPV-positive samples were also 

amplified with forward primer 1F and reverse primer 2R (Table 3.1).   

 PCR reactions underwent 30 amplification cycles (10 seconds at 98°C, 

30 seconds at 54°C, 2 minutes and 15 seconds at 72°C) with a final 10-minute 

extension (72°C), and products were analyzed by gel electrophoresis to  

 

Table 3.1.  CPV-specific PCR and sequencing primers. 
 

Name Sequence 
Primer 1F 5ʼ-GAAAACGGATGGGTGGAAATCACAGC-3ʼ 
Primer 1R 5ʼ-TATTTTGAATCCAATCTCCTTCTGG-3ʼ 
Primer 2R 5ʼ-CTAAGGGCAAACCAACCAACCAC-3ʼ 
Primer 2F 5ʼ-AGATAGTAATAATACTATGCCATTT-3ʼ 
Primer 3F 5ʼ-ACAGGAGAAACACCTGAGAGATTTA-3ʼ 
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identify CPV-positive samples.  Negative samples were retested by PCR, 

using a range of sample dilutions from 1:10 to 1:1600 before being deemed 

truly negative.  For positive samples, the PCR product was purified using a 

QIAquick PCR purification kit (Qiagen, Valencia, CA).   

 Purified products were sequenced at Cornell Universityʼs Core 

Laboratories Center using big dye terminator chemistry and AmpliTaq-FS DNA 

polymerase on an automated 3730 Sanger sequence analyzer (Applied 

Biosystems, Foster City, CA).  The above three primers were used in 

conjunction with forward primers 2F and 3F to obtain 2X sequence coverage 

(Table 3.1).  Sequence contigs were aligned with prototype CPV-2 and CPV-

2b genome sequences to generate a consensus sequence for each virus 

isolate.  Identification of the sequence of VP2 codon 426 allowed typing of 

each isolate as CPV-2b-like or CPV-2c-like. 

 Since initial CPV SNAP tests may have been performed from a rectal 

swab or a separate fecal sample from that saved for PCR testing, all PCR-

tested fecal samples were retested by CPV SNAP to ensure identical samples 

were tested for sensitivity and specificity calculations.    

 Statistical analysis.  Most comparisons were made between the two 

CPV variant groups (CPV-2b and CPV-2c) for categorical variables (e.g., 

hydration status, prognosis, disease signs) using the Fisherʼsʼs exact test 

because of the small sample sizes.  Otherwise, if the samples were large 

enough, the chi-square test of independence was used.  For comparisons of 

continuous variables (e.g., clinical severity score, hospitalization time) 

between the two CPV variant groups, the Wilcoxon rank sum test was used.  

Nonparametric descriptive analyses and association testing were performed 

using Statistix v8.0 software (Analytical Software, Tallaassee, FL). 
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3.4  RESULTS 

 Case summaries.  Seventy-two patients were enrolled in this study 

between August 2008 and June 2009 based on history and clinical signs, and 

fifty-six of these cases were positive for CPV by IDEXX SNAP and/or PCR 

testing.  Of the 56 confirmed CPV cases, half were females (28, 50.0%) and 

half were males (28, 50.0%).  Only 5 animals (3 females and 2 males, 10.0%) 

were neutered.  Twenty-five patients (44.6%) were 4 months of age or younger 

on the day of presentation, and thus still within the window of susceptibility 

when they are potentially vulnerable to CPV even if they have been inoculated 

with a modified live vaccine (22).  Twenty-three patients (41.1%) were at least 

5 months old but less than 12 months, and eight (14.3%) were 12 months of 

age or older.  The most commonly seen breeds were Chihuahuas (11, 19.6%) 

and pitbull-like breeds (8, 14.3%), with the remaining individuals representing 

various purebreds and mixed breeds.   

 Thirty-six owners (64.3%) of confirmed CPV-positive patients reported 

their pet had received at least one parvovirus vaccination, although vaccine 

histories from veterinary medical records were not available to confirm the 

number and date of vaccinations, or the vaccine manufacturer.  In addition, 

owners in this area commonly administer their own vaccines, so it cannot be 

assumed that vaccines were stored and given appropriately.  Of the 53 CPV-

positive cases for which there were data, only 15 patients (28.3%) had 

previously been seen by a referring veterinarian for the presenting complaint in 

this study.  Fifty-one owners of CPV-positive patients provided travel histories 

for their pets, and only one of these had been outside Arizona in the 2 months 

preceding their presentation for parvoviral enteritis.   
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 Presenting complaints of CPV-positive cases included diarrhea (43, 

76.8%), vomiting (51, 91.1%), lethargy (53, 94.6%), and inappetence (48, 

88.9%).  Physical exam findings also included ptyalism (22, 39.3%), 

abdominal pain (31, 55.4%), and dehydration (43, 78.2%).  Blood glucose 

levels were tested for 22 patients, and 2 (9.1%) were severely hypoglycemic 

(< 50 mg/dL) on presentation.  Albumin was tested for 21 patients, and 5 

(23.8%) had marked hypoalbuminemia (<2.0 g/dL) on presentation.  Fecal 

parasites were found in 2 of the 12 patients tested (16.7%), and included 

hookworms and Giardia.  Complete blood cell counts were performed for 19 of 

the patients on presentation, and 10 (52.6%) had leukopenia.   

 Two owners each brought in two sick patients, and one brought in 

three; all 7 of these subjects were enrolled in this study and were CPV-

positive.  Twenty-three CPV-positive patients (41.1%) were hospitalized with a 

median hospital time of 4 days.  Six hospitalized patients received fresh frozen 

plasma.  Owners elected at-home care for 29 of the CPV-positive patients 

(51.8%), and four patients were either euthanized on presentation or were 

dead on arrival.   

 The outcome for 42 (75.0%) of the 56 CPV-positive cases was 

recorded, while the remaining 14 subjects were lost to follow-up.  Thirty 

patients recovered (53.6%), eight were euthanized (14.3%), and four (7.1%) 

were reported by their owners to have died at home.  Of those euthanized, half 

were due to deteriorating condition in the face of maximum supportive 

treatment, and half were due to financial constraints of the owner.   

 CPV variants detected.  Forty-two fecal samples were collected for 

PCR testing and sequencing.  Of these, 33 (78.6%) were positive for CPV by 

PCR.  Sequencing showed that 9 samples (27.3%) encoded for Asp at VP2 
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codon 426, making them CPV-2b-like, while 24 samples (72.7%) had Glu at 

that codon, making them CPV-2c-like.  Additional single nucleotide 

polymorphisms (SNPs) were found in the capsid genes of these samples and 

will be reported elsewhere (Stucker et al., in preparation). 

 Sensitivity and specificity of diagnostic testing.  To calculate the 

sensitivity and specificity of the IDEXX CPV SNAP test, SNAP results were 

compared with CPV-specific PCR amplification for all 42 fecal samples (Table 

3.2).  The overall sensitivity and specificity of the IDEXX CPV SNAP test in this 

study were 81.8% (95% CI:  36%-94%) and 100% (95% CI:  35%-100%), 

respectively.  The sensitivity of the SNAP test was 100% (95% CI:  35%-

100%) for the CPV-2b-like samples (n=9), and 75% (95% CI:  47%-90%) for 

the CPV-2c-like samples (n=24).  A Fisherʼsʼs exact test showed no significant 

difference in the SNAP testʼs sensitivity for CPV-2b and CPV-2c (p = 0.16).  
 
 
Table 3.2.  CPV testing results on 42 fecal samples using IDEXX SNAP tests 
and PCR amplification. 
 

 PCR Positive PCR Negative Total 
SNAP Positive 27 0 27 
SNAP Negative 6 9 15 

Total 33 9 42 

 

 Pharyngeal swab testing for CPV.  To determine whether CPV can 

be detected from the oropharynx of infected dogs at presentation, pharyngeal 

swabs were collected from 16 study subjects, each of which had a CPV-

positive fecal sample.  Of these 16 samples, 10 (62.5%) were positive for CPV 

by PCR and matched the CPV type obtained from the fecal sample by 

sequencing.  None of the pharyngeal swabs were CPV-positive by IDEXX 
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SNAP.  One patient had only a pharyngeal swab collected for CPV 

sequencing, with no fecal sample.  This sample was identified as CPV-2c-like, 

bringing the total CPV-2c cases to 25, and the total typed cases to 34.  

 CPV variants and age.  It has been suggested that CPV-2c causes 

disease in adult animals more frequently than do CPV-2a and CPV-2b (4).  

These data do not support this hypothesis, although the majority of our study 

population consisted of younger animals, as is conventional for CPV 

infections.  The median patient age was 5 months (range 2 to 12 months) for 

CPV-2b and 4 months (range 2 to 36 months) for CPV-2c.  A two-tailed 

Fisherʼs exact test showed there was no significant difference in CPV-2b and 

CPV-2c infections in patients older than 4 months compared with those 4 

months or younger (p-value = 0.70). 

 CPV variants and vaccination history.  Because patient vaccine 

histories varied and could not be confirmed, and since many subjects were 

unlikely to be vaccinated, this study did not address the question of whether 

CPV-2c infections are seen more frequently than CPV-2b infections in 

previously vaccinated individuals.  However, it is worth noting that a two-tailed 

Fisherʼs exact test showed no significant difference in the proportion of CPV-

2b cases (6/9, 66.7%) compared with the proportion of CPV-2c cases (13/24, 

54.2%) that had received at least one parvovirus vaccination (p = 0.70).   

 CPV variants and disease severity.  To address the concern that 

CPV-2c may cause more severe disease than CPV-2b, several parameters 

were examined:  hydration status on presentation, clinical severity score, 

leukocyte count on presentation, and time in the hospital.  Overall, our results 

suggest that CPV-2c does not cause more severe disease than CPV-2b. 



71 

  All 9 CPV-2b cases were dehydrated, while 16 of 24 CPV-2c cases 

were dehydrated.  Twenty-one patients had an estimated percentage 

dehydration recorded in their medical record on presentation.  A two-tailed 

Fisherʼs exact test revealed no significant difference between CPV-2b (3/7, 

42.9%) and CPV-2c (3/14, 21.4%) cases that were 8% or more dehydrated 

versus those that were less than 8% dehydrated (p = 0.30).   

 Clinical severity scores retrospectively assigned independently by both 

lead authors gave a high Spearman rank correlation coefficient of 0.78, 

suggesting that cases were scored similarly.  One set of scores had a median 

severity score of 3 (range 2 to 5) for CPV-2b cases and a median score of 2 

(range 2 to 5) for CPV-2c cases, while the second set of scores had medians 

of 3 (range 2 to 4) and 3 (range 1 to 5), respectively.  Wilcoxon rank sum tests 

comparing the median clinical severity scores between CPV-2b and CPV-2c 

cases showed no significant difference with either of the two sets of scores  

(p > 0.41).   

 The median leukocyte count on admission was 5.0 K/µl and 5.2 K/µl for 

CPV-2b and CPV-2c patients, respectively, and a Wilcoxon rank sum test 

showed no significant difference between these medians (p = 0.88).  For 

hospitalized patients, the median hospital time was 4 days (range 3 to 9 days) 

for CPV-2b and 5 days (range 3 to 8) for CPV-2c.  An exact permutation test 

similarly showed no significant difference in medians (p = 0.74).   

 CPV variants and clinical outcome.  A similar analysis was 

performed to determine if patients infected with CPV-2c had a different 

prognosis than those infected with CPV-2b.  Prognosis was defined by clinical 

outcome (recovery versus death or euthanasia).  Of the 30 PCR-typed cases 

with known outcomes, 4 of 8 CPV-2b patients (50.0%) recovered, and 17 of 22 
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CPV-2c patients (77.2%) recovered.  A two-tailed Fisherʼs exact test indicated 

there was no significant difference in the number of recovered CPV-2b versus 

CPV-2c patients (p = 0.20).  

  Prognostic indicators for clinical outcome.  Previous reports have 

suggested various prognostic indicators for parvoviral enteritis patients, 

including leukopenia, fecal parasites and early enteral nutrition (5, 13).  We 

evaluated multiple parameters in our study for their use as prognostic 

indicators by comparing them to patient outcome (recovery versus death or 

euthanasia).  Patients euthanized due to financial constraints of the owner 

were excluded from these analyses.   

 Wilcoxon rank sum tests showed no difference in outcome based on 

patient age in months (p = 0.53), leukocyte levels on presentation (p = 0.43), 

albumin on admission (p = 0.53), or glucose on admission (p = 0.36).  A chi-

square test of independence showed no difference in outcome based on breed 

(p = 0.46), while two-tailed Fisherʼs exact tests showed no difference in 

outcome based on patient sex (p = 0.72), owner-reported exposure to 

parvovirus (p = 0.70), administration of fresh frozen plasma (p = 0.58), or the 

presence on presentation of abdominal pain (p = 0.47), diarrhea (p = 0.33), 

vomiting (p = 1.00), lethargy (p = 0.57), inappetence (p = 1.00), or ptyalism  

(p = 1.00).   

 Patient dehydration on presentation was a negative prognostic indicator 

in this study.  Of the 46 cases with known outcomes, all 16 patients that were 

fully hydrated on presentation survived, whereas only 21 of 30 of the 

dehydrated patients survived.  A two-tailed Fisherʼs exact test demonstrated a 

statistically significant difference in outcome based on hydration status at 

presentation (p = 0.02).   
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 Hospitalization versus at-home care.  To determine if at-home 

management of CPV cases resulted in a poorer prognosis than did 

hospitalization, all 46 cases with known outcomes were compared.  Nineteen 

of 24 hospitalized patients (79.2%) recovered, while 18 of 22 patients (81.1%) 

receiving at-home care recovered.  A two-tailed Fisherʼs exact test showed no 

significant difference between the outcomes of the two treatment options  

(p = 1.00).  This remained true when clinical severity scores were used to 

control for differences in disease severity at presentation between hospitalized 

and at-home care patients. 

 

3.5  DISCUSSION 

 The acquisition of mutations by viruses can result in the emergence of 

viral variants with novel phenotypes, such as antigenic variation leading to 

immune escape, or alteration of host ranges, virulence, or efficiency of 

transmission.  Since its emergence over 30 years ago, CPV has acquired a 

number of mutations throughout its genome and some of these changes alter 

specific viral properties.  Phylogenetic and functional analyses have shown 

that the most dramatic change occurred in the late 1970s and early 1980s, 

when the original variant, CPV-2, was globally replaced by newer variants – 

the CPV-2a-like viruses – that differed from CPV-2 in 4 to 5 capsid residues 

(24).  This change was associated with altered virus phenotypes for the CPV-

2a viruses, including an expanded host range that allowed replication in cats, 

reduced affinity for host-cell receptor binding, and altered antigenicity (8, 18, 

26).  Although CPV-2a- and CPV-2b-based vaccines have been developed 

and are effective (10), CPV-2-derived vaccines have continued to provide 

adequate protection against these newer CPV variants (25).   
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 Sequences of the newer (post-1980) CPV variants show that they are 

all derived from a single CPV-2a-like common ancestor, forming a 

monophyletic clade (24).  Originally, new variants were identified by altered 

viral phenotypes, specifically changes in monoclonal antibody binding profiles, 

although today, variants are also readily defined at the genotypic level through 

DNA sequencing.  Many of the CPV-2a-derived variants circulating today that 

have one to several additional changes in the capsid protein, including the 

named CPV-2b and CPV-2c variants which have unique substitutions at VP2 

position 426.  Some of these amino acid changes, including that of CPV-2c, 

have arisen independently in at least two different virus lineages (Pagan, 

unpublished data), so that not all 426-Glu-encoding CPV-2c viruses are 

identical and many isolates differ in other VP2 residues.  Furthermore, while 

the capsid gene has been most closely studied due to its importance in 

receptor and antibody binding, mutations in the nonstructural genes also exist 

and could contribute to altered viral phenotypes.  How various mutations within 

and between genes interact to alter virus properties, particularly in terms of 

clinical presentation and outcome, remains poorly understood. 

 Recognition of the CPV-2c variant in 2001 prompted concern that it may 

have had gained new properties that increased the severity of disease in 

patients, enabled it to infect properly vaccinated animals, and also allowed it to 

evade detection by standard in-clinic diagnostic tests that relied on antibody 

binding of viral antigens (4, 9, 21).  CPV-2c-like viruses have achieved rapid 

global dissemination (2, 14, 21), similar to other variants in the past, such as 

CPV-2a, CPV-2b, and an unnamed variant with a serine to alanine change at 

VP2 amino acid 297 (11).  This rapid dissemination suggests that genomes 

containing the 426 Glu mutation are under positive selection and that 426 Glu 
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provides an advantage for the virus.  However, such selection does not 

necessarily equate with a more severe disease phenotype or the ability to 

infect properly vaccinated dogs, and other properties that could also result in 

selection include faster replication, greater shedding, more efficient 

transmission, or even less severe disease.   

 This pilot study is the first time that both clinical information and 

sequence data were collected from multiple parvoviral enteritis cases from an 

emergency and referral hospital over an extended period of time.  The Arizona 

location was chosen, in part, because CPV-2c isolates had been previously 

identified in that region of the country (7).  Comparing CPV-2b and CPV-2c 

cases from the same geographical region that were treated by the same 

hospital likely reduces bias from confounding factors such as population 

demographics and variation in hospital protocols and record keeping.  

However, biases may have been introduced because of several study design 

features including enrollment of only emergency and referral patients, 

enrollment of subjects by different clinicians, financial constraints of owners, 

and loss to follow-up for some at-home care patients.  However, since the 

variant status of dogs was unknown during presentation and treatment, most 

of these potential sources of bias should affect CPV-2b and CPV-2c patients 

similarly.  If parvovirus cases seen by general practitioners are generally less 

severe, it is possible that the proportion of CPV variants would differ from that 

seen by an emergency and referral hospital, such as the one in this study.  

Relatively small sample sizes limited our analyses and inferences, although 

none of these analyses suggested that CPV-2c cases were more severe or 

had worse outcomes than CPV-2b cases.   
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 The overall sensitivity and specificity of a commonly used commercial 

CPV-detection kit (IDEXX CPV SNAP) was determined using CPV-specific 

PCR amplification as the gold standard.  The SNAP test had an overall high 

specificity, as well as a high sensitivity for CPV-2b, as reported by the 

company (IDEXX Laboratories, Inc.).  In addition, the SNAP test successfully 

detected CPV-2c variants, although possibly at a lower sensitivity.  No 

significant difference in the sensitivity of the SNAP test by CPV variant was 

detected, but the samples sizes in each variant group were small and the 

confidence intervals were very broad.  Clearly, any patient suspected as 

having parvoviral enteritis based on history and clinical signs should be treated 

as CPV-positive regardless of in-clinic test results.  Because CPV is 

environmentally stable and highly contagious for naïve individuals, suspected 

CPV cases should be treated in isolation facilities, and any receiving areas or 

equipment having contact with these patients must be thoroughly disinfected.    

 The initial site for CPV replication is in the lymphoid tissue of the 

oropharynx, and virus has been detected in the tongues and tonsils of infected 

dogs (12).  Detection of CPV infection in oropharyngeal tissue swabs may 

represent an alternative method for CPV diagnosis that can be used before 

overt clinical signs develop and virus is shed in the feces.  This may be useful 

during intake exams for kennel populations by identifying CPV-positive 

animals before they show overt signs of illness, allowing for immediate 

isolation and reducing the risk of CPV spread.  We assessed whether virus 

could be detected from the oropharynx of CPV-positive patients and found that 

CPV was detected by PCR in 10 of 16 pharyngeal swabs, but was not 

detected by the IDEXX SNAP test on the same samples.  Storing the swabs in 

saline likely diluted the virus sample below the threshold of detection for the 
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SNAP test.  Whether direct, undiluted pharyngeal swabs would reveal virus by 

the SNAP test at an earlier or more consistent time point than fecal swabs is 

unknown, but is worthy of further investigation.  

 In conclusion, the currently circulating CPV strains examined in this 

study do not appear to differ in their clinical presentation, disease severity, or 

outcome, suggesting that more extensive testing to identify CPV strain is 

unnecessary for the treatment and management of parvoviral enteritis cases.  

However, it is important for diagnostic laboratories and researchers to 

continue monitoring CPV variants and characterizing any that might cause 

alterations in clinical outcomes, diagnostic testing, or vaccine protection, using 

larger sample sizes.  In this study, full compliance with recommended 

protocols was infrequently seen, emphasizing the importance of prevention 

through the timely administration of appropriate modified live parvovirus 

vaccines (reviewed in (20)).  However, even when puppies are receiving the 

recommended vaccination schedule, there may still be a period when they are 

susceptible to CPV and this window of susceptibility varies among individuals.  

Therefore, it is important for puppies (generally 16 weeks of age or younger) 

and their owners to avoid high-risk areas where the virus is likely to be 

present.  When animals do get parvoviral enteritis, prompt supportive care 

remains the mainstay for treatment, while thorough cleaning and disinfection 

of the patientʼs environment are crucial for preventing spread of the disease.   
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CHAPTER 4 

 

IN VITRO MODEL FOR CANINE PARVOVIRUS INFECTION 
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4.1  ABSTRACT 

 Canine parvovirus (CPV) provides an excellent model for studying the 

process of viral emergence and adaptation to a novel host.  The original virus, 

CPV-2, is a host-range variant of feline panleukopenia virus (FPV), and has 

been globally replaced by newer variants, including CPV-2a and CPV-2b.  The 

binding of CPV, but not FPV, to the canine transferrin receptor (TfR) was 

required for CPV emergence, but canine TfR binding alone likely does not 

explain all of the subsequent adaptation that CPV underwent in dogs.  The 

sequence differences between the original CPV-2 and newer, better-adapted 

variants, such as CPV-2a and CPV-2b, are known, but how these differences 

alter interactions in host cells and ultimately provide better fitness for the 

newer variants in dogs, remains poorly understood.  Here, I characterize the 

differing susceptibilities of two lines of Madin-Darby canine kidney (MDCK) 

cells – Strain I and Strain II – to infection by CPV-2 and CPV-2b, establishing 

them as a model for future investigations of cellular requirements for CPV 

infection beyond receptor binding. 

 

4.2  INTRODUCTION 

 The emergence of viral diseases in new host populations remains a 

threat to human and animal health, and a better understanding of the 

molecular mechanisms involved in virus host range switching is required.  

When a virus first jumps to a new host species, it presumably has a relatively 

low fitness for that new host, and over time the virus likely adapts to the new 

host by acquiring specific mutations that increase its fitness.  Understanding 

how such mutations might result in improved fitness is necessary for improving 

our ability to predict, control and prevent viral emergence events.   
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 CPV serves as an excellent model for such studies.  The original virus, 

CPV type-2 (CPV-2), emerged in the late 1970s as a novel canine pathogen 

and host-range variant of FPV.  Within a year, a new variant was identified and 

named CPV type-2a (CPV-2a) (22, 26).  A fairly small set of mutations define 

the difference between CPV-2 and CPV-2a, including four amino acid changes 

in the capsid protein, VP2, at positions 87, 101, 300 and 305.  Importantly, 

CPV-2a-derived viruses completely replaced the original variant (CPV-2) in 

nature within 1-2 years, suggesting they have an improved fitness for their 

canine hosts.  CPV-2a-derived viruses in circulation today contain one to 

several additional capsid mutations, some of which contain changes at the 

same site.  For example, CPV-2b and CPV-2c contain an Asp and Glu, 

respectively, at VP2 residue 426, whereas CPV-2a contains an Asn at that 

position (4, 23, 26).    

 The original variant, CPV-2, differs in several important biological 

properties from newer CPV variants.  For example, CPV-2 is only able to infect 

dogs, but not cats, while CPV-2a and CPV-2b can infect both dogs and cats 

(30).  CPV-2 binds more strongly to both canine and feline cells than does 

CPV-2b (14), and this seems to be primarily controlled by their differing 

affinities for the feline and canine TfRs (18).  Older and newer CPV variants 

can also be distinguished by their monoclonal antibody binding profiles (24-

26).  CPV-2b has been shown to outcompete CPV-2 in a tissue culture model 

of canine TfR expression (14), and appears to have approximately 2-fold 

higher infection rates in cells expressing only the canine TfR (8).  Not all of 

these differences between CPV-2 and CPV-2b are explained by differences in 

their TfR binding, suggesting there are additional host cell interactions that 

have played a role in CPV adaptation to dogs.    
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 Capsid interactions with host cells and the immune system play a 

significant role in determining the host range and tissue tropism of CPV 

variants during infection.  It is therefore not surprising that many of the sites 

under positive selection in the CPV genome fall within the VP2 coding region 

(12).  However, additional sites for positive selection in the nonstructural (NS) 

ORF, particularly in the frame-shifted, overlapping regions of the NS1 and NS2 

genes, have also been identified (12), suggesting that NS1, NS2 or both are 

also important in CPV host adaptation, although mutagenesis studies have 

shown the NS2 is not required for efficient in vitro and in vivo replication in 

canine cells (33).  In addition, changes in the NS ORF have been shown to 

play a partial role in the restriction of FPV replication in canine cells (13), 

suggesting that NS1/NS2 may also be involved in determining host range.   

 Here, I develop an in vitro model of CPV infection that may allow further 

dissection of the CPV infectious pathway and help identify how it differs 

between CPV-2 and CPV-2b.  This will help shed light on the selection 

pressures, in addition to receptor binding, that shaped CPV adaptation in 

dogs.  To this end, I have characterized infection in two canine epithelial cells 

lines that are derived from the same genetic background:  Strain I and Strain II 

MDCK cells.  Previous work has shown increased susceptibility to CPV-2 

infection in Strain I MDCK cells compared with Strain II cells (21, 33), 

suggesting that differences between these two cell lines could be used to 

identify additional cellular requirements for infection by CPV.   

 The MDCK cell line was established in the late 1950s from the kidney of 

a female cocker spaniel, and has since been used extensively as an in vitro 

epithelial cell model to study, among other topics, cell polarity, intracellular 

trafficking, and virus infection.  Early work suggested that this cell line was 
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heterogeneous, and either underwent differentiation in culture or contained two 

clonal variants that consisted of epithelial cell types with distinct properties, 

likely originating from different segments of the kidney tubules (27).  In the 

1980s, two MDCK cell clones were derived which share properties similar to 

those earlier descriptions of differing MDCK cell types (16), and these are the 

Strain I and Strain II clones used in this study.  The exact origins of Strain I 

and II cells from specific regions of the nephron remain unclear.  Most 

evidence suggests that Strain I and Strain II cells are both derived from distal 

tubule or collecting duct epithelium (11, 31), although some properties of 

Strain II cells have lead to the alternative hypothesis that Strain II cells 

originate from proximal tubule epithelium (27).   

 Characterization of these MDCK clones showed that Strain I and Strain 

II cells differ in many properties, including morphology, rate of cell division, 

transepithelial resistance (27), glycosphingolipid composition and metabolism, 

hormonal responses (27), and glycoprotein (17) and prostaglandin distribution 

(9, 15-17, 27).  At low densities, strain I cells are spindle-shaped, extending 

along their substrate, while Strain II cells are cuboidal and form cell clusters 

more readily (Figure 4.1).  Similar to the varying apical morphologies observed 

for kidney tubule epithelium in vivo, the strains likely differ in the extent of their 

apical microvilli and the presence or absence of cilia, which may have 

important implications for virus entry.  Indeed, scanning electron microscopy 

has shown that Strain II cells contain a single apical cilium, while Strain I cells 

lack cilia (16).  Furthermore, strain II cells divide more slowly, having a 

doubling time during logarithmic growth of approximately 1.5 times that of 

Strain I cells (16), and Strain II confluent monolayers have a lower 

transepithelial resistance compared with Strain I monolayers.   
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Figure 4.1.  Comparison of Strain I (A) and Strain II (B) MDCK cell 
morphologies.  Bright field images of cells fixed with 4% PFA were taken with 
a 40x objective.   

 

 Both MDCK strains can become polarized in tissue culture, forming 

confluent monolayers with apical and basolateral surfaces separated by tight 

junctions, and they contain unique protein and lipid compositions.  The apical 

surface faces the lumen of the nephron in vivo and the growth media in vitro, 

while the basolateral surface faces the serosal side of the nephron in vivo and 

the substrate in vitro.  MDCK cells are permissive for infection by many 

viruses, which may or may not cause natural infections in dogs, and in some 

cases virus entry and release is specific for either the apical or basolateral 

surface of polarized MDCK cells.  For example, influenza can infect from either 

surface, but is preferentially released from the apical surface, while vesicular 

stomatitis virus primarily infects and is released from the basolateral surface 

(6, 28).  In addition, TfR is predominantly expressed on the basolateral surface 

of polarized MDCK cell monolayers (7), and CPV binding and uptake occurs 

preferentially at the basolateral surface of polarized MDCK cells (2). 

 Here, I show that, in addition to showing strain differences in 

susceptibility to CPV-2 infection, CPV-2b infects MDCK cells to a higher level 

than does CPV-2.  I show that both strains express functional TfR to similar 
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levels, suggesting differences in infection rates between the two strains might 

be caused by a cellular requirement for infection other than TfR. 

 

4.3  MATERIALS AND METHODS 

 Cells, viruses and transferrin.  Norden Laboratory feline kidney 

(NLFK) and Crandell-Reis feline kidney (CRFK) cells were grown in a 1:1 

mixture of McCoyʼs 5A and Liebovitz L15 media with 5% fetal calf serum 

(FCS).  MDCK Strain I and II cells were obtained from Dr. William Young (16) 

and cultured in Dulbeccoʼs minimal essential media supplemented with 10% 

FCS and additional amino acids.   

 FPV, CPV-2 and CPV-2b viruses were derived from infectious plasmid 

clones as previously described (1, 20).  For binding studies, viruses were 

concentrated by polyethylene glycol precipitation and purified on a sucrose 

gradient before being labeled with Alexa-488 fluorochrome (Molecular Probes, 

Eugene, OR) (10).   

 Canine transferrin (Tf) (Sigma, St. Louis, MO) was iron-loaded as 

previously described (3, 14) and labeled with Texas Red sulfonyl choloride 

(Molecular Probes) (14).   

 Virus infection assays.  Cells were thinly seeded onto coverslips and 

inoculated the next day with equivalent amounts of either CPV-2 or CPV-2b.  

Two days post-inoculation, the cells were fixed and stained with a monoclonal 

antibody against the viral nonstructural protein, NS1, which is localized to the 

nucleus of infected cells (35).  The percentage of infected cells was calculated 

by dividing the number of NS1-positive cells by the total number of cells 

present.  Fields were counted until 100 positive cells were obtained, or until all 

cells on the coverslip were counted if there were fewer than 100 positive cells.   
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 Antibody staining for TfR.  Cells were thinly seeded onto coverslips 

and fixed the following day with 4% paraformaldehyde (PFA) and 

permeabilized with 0.5% Triton X-100.  TfR was detected with a monoclonal 

primary antibody against the cytoplasmic tail of TfR (Zymed, San Francisco, 

CA), followed by an anti-mouse-IgG secondary antibody conjugated to the 

Alexa-488 fluorochrome (Molecular Probes).  Cells were observed using a 

Nikon Eclipse TE300 inverted fluorescence microscope and images were 

taken using Simple PCI software and a Hammamatsu OrcaER digital camera 

using identical exposure and gain settings. 

 Western blotting for TfR.  Protein content was normalized before 

loading using a BCA protein assay, and TfR was identified using the same 

anti-TfR primary antibody described above, followed by an anti-mouse-IgG 

secondary antibody conjugated to horse radish peroxidase and developed with 

SuperSignal chemiluminescent substrate solution (Pierce, Rockford, IL). 

 Tf binding and uptake.  Cells were thinly seeded onto coverslips and 

incubated the next day in the presence of TexasRed-labeled transferrin for one 

hour before fixation in 4% PFA.  Images were taken as described above. 

  

4.4  RESULTS  

 Cell susceptibility to infection.  To determine MDCK susceptibility to 

infection, cells were inoculated with FPV, CPV-2 and CPV-2b and the 

percentage of infected cells was assessed using immunofluorescence 

microscopy.  Feline cell lines showed the highest levels of infection for all 

three viruses, with FPV infecting the greatest percentage of cells (Figure 4.2).  

Strain I cells had an almost 10-fold higher level of infection by CPV-2b than did  
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Figure 4.2.  Infectivity of FPV, CPV-2 and CPV-2b in four cell lines showing 
that FPV results in higher infection rates in feline cells than CPV, but FPV 
cannot infect canine cells.  MDCK cells are infected by CPV-2b better than 
CPV-2, particularly Strain I cells.  Bars indicate the standard deviation for five 
to seven replicates. 

 

Strain II cells.  Also, Strain I cells were considerably more susceptible to 

infection by both CPV-2b than CPV-2 that were Strain II cells. 

 TfR expression.  To determine if the differences seen in infection 

levels between Strain I and II MDCK cells is due to differential expression of 

TfR, I assessed total cellular TfR expression by Western blotting and 

immunofluroescence microscopy.  Both strains expressed similar levels of TfR 

that were comparable to TfR expression in feline cells (Figure 4.3). 

 To ensure that the expressed TfR is functional, binding and uptake 

assays were also performed using fluorescently labeled transferrin (Figure 

4.4).  Both MDCK strains showed similar fluorescent intensities and 

localization patterns, indicating that Strain I and Strain II MDCK cells express 

similar levels of functional surface TfR, within the limits of detection afforded 

by fluorescence microscopy. 
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Figure 4.3.  A) Antibody staining of fixed cells for total cellular TfR shows that 
all four cell lines express TfR with expected perinuclear localization patterns.  
B) Western blotting for TfR in cellular extracts confirms the findings in A.  
TRVb cells lack expression of endogenous TfR, and are used here as a 
negative control. 

 

 

 Taken together, these data suggest that functional surface TfR levels 

are similar between Strain I and Strain II MDCK cells and are therefore unlikely 

to be playing a role in the observed differences in CPV infection properties of 

MDCK cells.   

 

 

 

 

 

 

 

 

 
Figure 4.4.  Comparison of fluorescently labeled transferrin binding and 
uptake in feline and canine cells, showing that both MDCK cell strains express 
functional TfR that is capable of binding and internalizing transferrin. 
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4.5  DISCUSSION 

 Despite strong selection for the newer CPV strains in nature, little is 

known about how differences between CPV-2 and CPV-2b affect virus-host 

interactions.  Two clonal variants of MDCK cells – Strain I and Strain II – 

provide the first in vitro canine model that clearly displays differences in 

susceptibility to infection by CPV-2 and CPV-2b.  There are also differences in 

susceptibility between strains, even though both are derived from the same 

genetic background.  This establishes an in vitro system that can be used for 

testing differences in the infectious pathways of CPV-2 and CPV-2b.  

 Since binding to the TfR is a known requirement for CPV infection, I 

began characterization of the MDCK strains by examining their TfR 

expression.  Strain I and II cells have previously been shown to express 

similar levels of TfR (7).  Here, I have confirmed that expression of functional 

TfR is similar between Strain I and II cells.  This suggests that the reduced 

CPV infection levels in Strain II cells are not caused by reduced expression of 

its cellular receptor.  However, Strain II cells may contain a mutation in their 

TfR gene that alters important sequences in the TfR apical domain, necessary 

for virus binding, uptake and infection, but not required for Tf binding.  For 

example, residue changes which alter the unique glycosylation site in the 

canine TfR would be expected to reduce CPV binding (19).  Therefore, to 

determine if Strain I and Strain II cells are expressing wildtype TfR, TfR mRNA 

should be amplified, sequenced and compared with the known canine TfR 

sequence.     

 Since CPV does not encode or package its own polymerase, it is 

dependent on host cell machinery for its replication and requires actively 

dividing cells to complete its own replication.  Therefore, since Strain I MDCK 
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cells divide almost two times more rapidly than Strain II MDCK cells (16), 

Strain I cells may support increased virus replication and production compared 

to Strain II cells at the same time point post infection.  When Strain II cells are 

infected with either virus and assessed for viral antigen at various time points 

post infection up to 72 hours, the number of cells expressing viral antigen 

remains at a low, background level and does not increase (data not shown).  

By 72 hours post infection, the cells have reached confluency and are no 

longer rapidly dividing, so they are no longer expected to support additional 

virus replication.  Since the percentage of infected cells in Strain II cells never 

reaches the level seen in Strain I cells at any time post infection, the slower 

rate of cell division in the MDCK Strain II cells likely does not account for their 

reduced susceptibility to CPV.  In addition, early studies of parvoviruses 

showed that when they enter nondividing cells (e.g., cells arrested at the G1/S 

stage of the cell cycle by isoleucine deprivation and aphidicolin treatment), 

they could undergo replication if the cell subsequently begins to divide (e.g., 

when the cell cycle blockade is removed) (5).  This suggests that if cell division 

is occurring, even if at a relatively slower rate, the virus has the ability to 

replicate in permissive cell lines, again making it unlikely that the slower rate of 

cell division in Strain II cells fully accounts for their relative resistance to CPV 

infection.  

 The infection assays described here suggest that restriction of infection 

in Strain II cells occurs before translation of viral proteins, since minimal to no 

anti-NS1 staining was observed in those cases.  One possibility is that 

restriction occurs at the level of cell binding and entry, or during cytoplasmic 

trafficking to the nucleus.  This hypothesis could be tested by transfection of 

MDCK cells with the infectious plasmid clones of CPV-2 and CPV-2b, which 
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would allow assessment of CPV infection in MDCK cells when normal viral 

entry and trafficking is bypassed.  In addition, microinjection of capsids into the 

cytoplasm, with subsequent immunofluorescence staining for NS1, can be 

used to determine if the restriction of CPV infection occurs prior to or after 

capsid entry into the cytosol.  It is known that microinjection will lead to 

infection (29, 32, 34), although the efficiency of infection may be low and 

dependent on the amount of virus microinjected.  

 Following the above characterizations of Strain I and Strain II MDCK 

cells, larger-scale analyses of differences between MDCK strains may help 

identify factors that restrict CPV infection in Strain II cells, as well as discover 

differences in cellular requirements for infection between CPV-2 and CPV-2b.  

For example, crude membrane preparations or whole-cell lysates from MDCK 

cells could be electrophoretically separated and analyzed using virus overlay 

blots to identify potential cellular binding partners for CPV-2 and CPV-2b.  

Differences in virus binding to proteins from Strain I and Strain II samples 

represent cellular molecules that may be influencing CPV susceptibility 

differences in MDCK strains.  Similarly, differences between CPV-2 and CPV-

2b binding to Strain I extracts represent potential cellular proteins that interact 

differently with each variant and may contribute the increased ability of CPV-

2b to infect those cells.  Proteins of interest can be cut out of the gel and 

analyzed by mass spectrometry to obtain amino acid sequence data, which 

can then be used to search for homologous proteins. Virus binding to any 

proteins identified by this method must be confirmed, and the functional 

significance, in the context of in vitro and in vivo virus infection, would need to 

be evaluated.  In addition, co-immunoprecipitation experiments could be used 
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to identify cellular binding partners for NS1 and NS2 and differences between 

CPV-2 and CPV-2b variants could similarly be assessed. 

 Ultimately, this in vitro MDCK model of CPV infection may help us 

identify cellular factors, in addition to the TfR, that are important in the host 

range switch and subsequent evolution of CPV.  
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 The emergence of new viruses by host switching remains a constant 

threat, possibly more-so today than in years past due to increased global 

movement of people and animals, and increased population overlap among 

humans, domestic animals and wildlife.  The last couple decades have 

witnessed the emergence of many viruses, including SARS-CoV, novel 

Influenza A viruses, and the Henipah viruses.  While emerging viruses are 

most widely publicized for their involvement in human illness, they also cause 

diseases in companion and domestic animals and wildlife, with direct effects 

on those populations and indirect effects on humans.   

 Global surveillance is increasing and international outbreak response is 

continually improving, thus aiding in the recognition and response to novel 

emerging pathogens.  However, prediction algorithms and prevention 

strategies require more development to achieve widespread usefulness.  In 

general, the prediction, prevention and control of emerging viruses will be 

aided by a better understanding of the factors contributing to emergence by 

host switching, from the ecological barriers to host switching to the molecular 

mechanisms involved in host adaptation.   

 Canine parvovirus (CPV) serves as an excellent model for studying viral 

emergence because its biological properties and evolution have been closely 

studied since it emerged worldwide as a novel canine pathogen in the late 

1970s.  The studies presented in this thesis were designed to specifically 

characterize the process of host adaptation that occurred in dogs after the 

primary host-switching event from cats took place.   

 For the first set of studies, I created a panel of intermediate viruses with 

various combinations of four capsid residues that help define the newer clade 

of currently circulating CPV strains (e.g., CPV-2b) from the original CPV-2 
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virus, which was replaced globally in a selective sweep during the early 1980s.  

These intermediate viruses represent potential evolutionary pathways for CPV 

adaptation, and I showed that all four residues work in concert to help define 

the receptor and antibody binding properties of the wildtype viruses.  

Furthermore, in vitro competition assays suggested that adaptation of CPV in 

dogs likely involved passage through a fitness valley, since the potential 

intermediates had lower fitness than CPV-2.  Changing the four residues from 

the CPV-2b sequence back to the CPV-2 sequence did not restore its fitness 

compared to CPV-2, demonstrating that additional changes in the CPV-2b 

background also modulate CPV replication and viral fitness.  These data 

represent one of the first fitness landscapes to be explored experimentally for 

a virus, and future testing of the same sequence space in additional 

environments (e.g., feline versus canine cells) will help reveal how selection 

pressures on the virus differ under varying conditions. 

 For this purpose, it would be helpful to have a canine cell line that 

differs in its susceptibility to CPV-2 and CPV-2b viruses.  To this end, I 

developed an in vitro model using two strains of Madin-Darby canine kidney 

(MDCK) cells that display differential CPV infection between the two strains, 

as well as differential infection by CPV-2 and CPV-2b viruses.  I showed that 

Strain II cells are largely resistant to infection by both viruses, whereas Strain I 

cells are infected to a higher level by CPV-2b than CPV-2.  I also 

demonstrated that functional transferrin receptor expression levels do not 

control these differences in infection.  These cell lines thus serve as a model 

for defining the cellular factors required during CPV infection, in addition to the 

TfR, and for exploring how these requirements for infection differ between 
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virus strains.  Defining these differences would advance our understanding of 

how CPV adapted to dogs following its initial emergence.   

 This thesis also evaluates more recent changes among CPV variants 

from a clinical perspective.  A year-long study of canine parvoviral enteritis 

cases in Arizona, where both clinical data and CPV capsid sequences were 

collected, showed that over two-thirds of the cases were caused by CPV-2c, 

while the remaining cases were caused by CPV-2b.  These two viruses are 

defined by a difference in the VP2 capsid gene at codon 426, resulting in an 

Asp (CPV-2b) or Glu (CPV-2c) in the VP2 protein, although additional variation 

was also observed in the capsid sequences of the study isolates.  Contrary to 

widely circulated suspicions among pet owners and clinicians, CPV-2c was not 

shown to cause more severe disease or result in a worse outcome than CPV-

2b.  Furthermore, a commonly used in-clinic diagnostic test for CPV was able 

to detect both variants, although false negative results were possible.  The 

high number of CPV-2c cases found during this study, and reported 

elsewhere, indicate that CPV-2c is being positively selected and therefore 

likely confers some advantage to the virus, allowing it to contribute a 

proportionally higher number of progeny to the next generation of viruses 

compared with other variants.  The specific advantage conveyed by the CPV-

2c mutation remains unknown, but may be involved in maternal antibody 

escape, increased viral shedding or earlier shedding. 

 CPV is continuing to evolve today and multiple strains are co-circulating 

worldwide.  While this study shows no indication that changes in case 

diagnostics or management are currently needed, CPV surveillance should 

continue to screen for new variants.  This should include full VP2 sequencing, 

and full genome sequencing when possible, as these studies and others have 
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shown that multiple mutations, in various regions of the genome, are 

responsible for defining the biological phenotypes of the virus.  How these 

sequence variants may be impacting in vivo replication and transmission 

remains largely undefined.  Therefore, future studies should continue to 

combine phylogenetics, molecular biology and clinical studies to aid our 

understanding of how CPV variation influences CPV pathogenesis.     

  


