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An early fault detection and identification system (FDI) can be an important part in 

any plant production system. A FDI can be used to avoid costly repairs and long 

disruptions in production. A hydroponic plant production system is a complex 

biological system that contains plants and microorganisms in its processes that are 

hard to model mathematically.  A soft computing method called a neuro-fuzzy system 

is chosen to implement the FDI.  A neuro-fuzzy system is a hybrid combination of a 

neural network and a fuzzy logic system that combines the best from both methods: 

knowledge based structure from fuzzy logic and a proven learning capability from a 

neural network.  An adaptive neuro-fuzzy inference system (ANFIS) is developed to 

detect and identify actuator and sensor faults in the hydroponic plant production 

system.  A separate system for exploring the ANFIS capability in detecting biological 

faults is also investigated.  The novelty of the neuro-fuzzy FDI in this research used a 

single output to simultaneously detect and identify various faults in the system. 
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CHAPTER 1 

INTRODUCTION 

 

Hydroponic plant production systems are known for their high quality 

products.  A reliable and precise environment control system is critical to achieve this 

goal.  The environmental control system monitors and controls the nutrient solution 

variables (pH, electrical conductivity, dissolved oxygen and temperature) and 

greenhouse aerial environment accurately. 

Today’s digital controls and computers are becoming more common in 

automating greenhouse operations, replacing many independent analog sensors and 

controllers that frequently work against each other and inflate the operational cost.  A 

grower can set a detailed plant production schedule in the computer according to 

consumer demand.  The schedule can be executed efficiently and timely.  The result is 

better quality plants with less cost.  

As the plant quality and harvest timing become important issues in maximizing 

profit according to season, any fault in the system can delay scheduled production or 

even destroy valuable crops.  A fast responding fault detection scheme as a part of the 

hydroponics system is crucial to guarantee continuous and optimal production.  Since 

many growers already use computers in their greenhouses, applying the fault detection 

scheme adds minimal cost to the grower’s system.   

There are two ways to detect faults in the system: by redundancy and by 

interaction with other variables. Redundancy fault detection uses redundant 

components to detect malfunctions or faults.  For example, a system with an additional 

sensor can tell whether one or both sensors are malfunctioning when their outputs are 

significantly different from each other. The other fault detection scheme detects faults 

indirectly.  Since most variables interact with each other and influence one another, a 
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malfunction can be detected by unusual interaction with other variables.  Some 

detection schemes combine these two techniques since some faults are better detected 

with redundancy and some can be detected reliably by indirect interaction with other 

variables.  In this thesis, the indirect way of fault detection will be explored.  Since the 

indirect way of detection does not require additional hardware, its application will be 

interesting for growers who want additional insurance for their crops with minimal 

additional cost. 

The environment inside the greenhouse is subjected to many disturbances.  

Outside conditions, such as wind speed and direction, humidity, sunlight, clouds, rain 

and snow vary diurnally, seasonally and sometimes randomly.  In addition to these 

factors, the hydroponic system itself is a complex nonlinear system involving 

biological processes. Interactions between plants, nutrient solution and the 

microorganism population affect the solution variables and add complexity. This is 

hard to quantify.  In fact, most real word applications involve uncertainties which 

might vary randomly and cannot be predicted a priori.  Fuzzy inference systems have 

been developed to deal with this issue. In particular, a neuro-fuzzy system is a good 

candidate for fault detection and identification systems since it combines the best of 

fuzzy and neural network.  It has both a structured knowledge base of fuzzy logic and 

a learning paradigm from the artificial neural network.  Neuro-fuzzy fault detection 

and identification schemes will be explored in this dissertation in the context of a 

hydroponic plant production system. 
 

 

2 



 

CHAPTER 2 

BACKGROUND ON FAULT DETECTION 

 
 

 The majority of fault detection and identification (FDI) schemes consist of 

residual generation and residual analysis (Koppen-Seliger and Frank, 1999) or residual 

generation and decision making (Bocaniala and Palade, 2006).   

 
Unknown 

Inputs 
Faults  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Fault Detection and Identification (FDI) Scheme with Residual Generation 
(Koppen-Seliger and Frank, 1999)  

 

The diagram of this FDI scheme can be seen in Figure 2.1.  Signals called 

residuals are generated in the residual generation stage.  Residuals are the 

inconsistencies between the data from the system measurements and the 

corresponding signals of the model (Mendonca et al., 2006).  These residuals are the 

fault indicators that reflect the faulty condition of the monitored system.  A residual 

Process 

Residual 
Generation 

Residual 
Evaluation 

Inputs Outputs 

Fault Type, 
And Location 
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generation is followed by a residual evaluation.  In this stage a monitored system 

condition is evaluated for a fault detection and identification.  The outputs of this stage 

are time of occurrence, fault type and location.   

The residual generation stage is usually based on analytical or mathematical 

models.  This includes linear and non-linear models.  Sometimes it is difficult to 

obtain accurate mathematical models as in the case of complex systems.  

 
 
 

Residual 
Generation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 The Residual Generation Methods Modified From  
Koppen-Seliger and Frank (1999) 

 

Fuzzy systems, neural networks and other new emerging techniques known as 

soft computing have been developed in recent years to solve this problem (Calado et 
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al, 2001).  A diagram of various methods of a residual generation inspired by the one 

from Koppen-Seliger and Frank (1999) are shown in Figure 2.2.   

A residual evaluation can be as simple as a threshold decision or it can use 

statistical and pattern recognition methods.  Different residual evaluation methods can 

be seen in Figure 2.3.  Classification techniques such as the fuzzy logic and the neural 

network are  natural tools in detecting and identifying faults in residuals.  Recently 

these methods have gained popularity as residual evaluation methods (Calado et al, 

2001). 

 

 

 Classification 

Constant Adaptive 

Thresholds 

Residual 
Evaluation  

 

 

 

 

 

Figure 2.3 Residual
Koppen-
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Statistical
Methods
Fuzzy NN 

 
 Evaluation Methods Modified from  
Seliger and Frank (1999) 

ombine different methods to develop a hybrid fault 

 such a hybrid is the use of a mathematical model 

e neuro-fuzzy for the residual analysis.  Several 

ed below. 

first applied to the fault diagnosis of an automotive 

r, 1997).  The electromechanical actuator is used 

s traction and velocity control.  This fault diagnosis 
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approach has two mathematical models involving seven different parameters of the 

actuator such as armature resistance, magnetic flux linkage, moment of inertias, 

viscous friction coefficient, spring constants etc.  The system’s output was compared 

to the normal values of the fault free case from the models and the deviations 

(residual) of the parameters were considered as the fault symptoms.  These deviations 

were used as inputs for 14 independent neuro-fuzzy systems, each of which was 

sensitive for one kind of fault in the system.  The neuro-fuzzy systems for the fault 

diagnosis had 18 to 28 rules.  These rules were formed from the training data set by a 

rule extraction algorithm.  The fault diagnosis system was able to classify 98.5% of 

the faults.  The misclassification was caused by high disturbances on the related 

symptoms relative to the changes of the mean values and the lack of differences 

between the symptom patterns. 

 A hybrid artificial neural network with fuzzy rule based decision making of 

sensor fault detection, isolation and accommodation in automotive engines was 

proposed (Capriglione et al, 2003).  The fault detection system used two independent 

neural networks, each with a different combination of inputs for generating throttle 

output.  The inputs included the previous 3 to 5 steps of data, which was needed for 

small fault detection.  The throttle outputs of the neural network models were 

compared to the actual data to generate two residuals.  If one or both of the residuals 

were outside of the determined threshold values, a fault was present in the system.  

Heuristic fuzzy rules then were used to identify which sensor was faulty based on the 

pattern of the residual values of throttle sensor, manifold pressure sensor or crankshaft 

speed sensor.  After the identity of the faulty sensor was found by this method, another 

neural network model was used to classify the type of sensor fault.  The sensor faults 

were classified as open circuit, short circuit, hold, short circuit between two sensors 
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and miscalibration.  The scheme was able to detect 100% of the faulty conditions and 

about 90% of correct isolation/identification. 

 Since neuro-fuzzy systems (NFS) and artificial neural networks (ANN) are 

used for both residual generation and residual analysis, it is logical to develop just one 

system for the fault detection and identification directly from input-output data in 

order to reduce modeling errors and computation time of the two different models.  

Some researchers have attempted this method with the ANN (Sorsa, 1991, Ferentinos, 

2002).   

Sorsa (1991) compared three different ANN to develop a fault detection and 

diagnosis on a simulated heat exchanger-continuous stirred tank reactor system: a 

single layer perceptron (SLP), a multilayer perceptron (MLP) and a 

counterpropagation network.  The models had 14 inputs and 10 different faults as the 

outputs.  Simulated noise was added to the measurements that varied from 0% to 10% 

of the measurement region.  The representative faults in the system were: 1) Input pipe 

partially blocked, 2) Recycle pipe partially blocked, 3) Input concentration of A high, 

4) Recycle flow set point high, 5) Fouled Heat Exchanger, 6) Deactivated Catalyst, 7) 

Temperature control valve stuck high, 8) Leak flow in reactor, 9) Recycle flow meter 

stuck high, and 10) Malfunction in pump.   

The SLP has 14 input nodes and 10 output nodes.  Each output is used to 

examine one faulty condition in the monitored system.  The output nodes use a 

sigmoid activation function.  The normal condition should produce all outputs near 

zero.  A particular fault produced an output value of one in the corresponding output 

and zero in the other outputs.  The three different ANNs were trained 5,000 times.   

The MLP has 14 input, 4 hidden and 10 output nodes.  A sigmoid activation 

function was used for both hidden and output nodes.  This configuration gave a better 

fault detection than SLP.  Changing the hidden nodes activation function from 
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sigmoidal to hyperbolic tangents drastically reduced the training time.  The addition of 

a second hidden layer significantly added to the computation time and reduced 

generalization.   

The counterpropagation network in Sorsa (1991) has a Kohonen layer and a 

Grossberg layer.  More components in the Kohonen layer increase successful 

classifications.  The best counterpropagation network still failed to classify fault 2 and 

fault 10.  The MLP gave the best result from all three different NNs.  This paper 

shows that a direct input-output fault detection and identification system can be 

successfully formed for a complex system (14 inputs and 10 outputs). Although the 

method used was a neural network, a comparable neuro-fuzzy fault detection and 

identification system can be developed as well. 

Ferentinos (2002) used MLP to detect and identify faults in a deep-trough 

hydroponics system.  He tried several hidden layers and concluded that a single hidden 

layer performed the best.  A genetic algorithm was used to choose the best NN 

architecture, including the activation function and learning method.  The comparison 

of NN application in fault detection and identification in Ferentinos’ work with neuro-

fuzzy method can be seen in chapter 8. 

 A fuzzy or neuro-fuzzy system as a single system has not been explored as 

well as NN for detecting and identifying faults in a complex system.  A neuro-fuzzy 

system is especially promising since it combines the advantages of both neural 

network and fuzzy logic.  The resulting system has a clear knowledge base in the form 

of IF THEN rules and should perform as well as a neural network.   

 Shukri (2004) developed a simple adaptive neuro-fuzzy inference system 

(ANFIS) model with 2 inputs and one output to detect the condition of an induction 

motor.  The model estimated the friction which was developed in the motor over time 

that was caused by a bearing failure.  The output of the neuro-fuzzy system was three 
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singletons to represent the condition as good, fair and bad.  Although the result was 

very encouraging and was able to correctly identify the condition, the whole 

experiment was done without real world data and  with only a few inputs.  The system 

was based on simulation data which was generated from an asynchronous motor 

model found in MATLAB’s SIMULINK library. 

 It was shown above in Pfeufer (1997) that a quite complex  neuro-fuzzy fault 

detection and identification system with seven inputs can be built based on residuals. 

It is generated from the discrepancy between the process measurements and the 

corresponding signals of the mathematical model that can be considered as ‘filtered 

data’.   

 This dissertation extends this limit by using real world input-output data to 

directly develop the neuro-fuzzy fault detection and identification systems with as 

many as 39 inputs and only a single output to simultaneously detect and identify 

various faults in the system.  This is accomplished by carefully choosing the inputs 

and the neuro-fuzzy system with the most effective pattern recognition.  A Neuro-

fuzzy system based on a radial basis function in constructing Takagi-Sugeno (TS) 

rules (Takagi, 1985) was chosen for this task based on its capability as an efficient 

universal approximator.   
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CHAPTER 3 

OBJECTIVES  

 

This dissertation attempts to develop a fault detection and identification system 

for deep trough hydroponics plant production using a neuro-fuzzy algorithm. 

 The specific objectives of this study are: 

1. To derive a neuro-fuzzy fault detection and identification system that is easy 

to use for hydroponic plant production systems using environmental 

parameters of the hydroponics system. 

 2. To optimize the neuro-fuzzy fault detection and identification system for 

hydroponic plant production systems. 

 3. To compare the results with a multi layer perceptron neural network fault 

detection and identification system developed for the same system. 
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CHAPTER 4 

EXPERIMENTAL SETUP AND METHOD  

 

4.1 Deep-Trough Experimental Setup 

4.1.1 The Greenhouse Section 

 The experiments were conducted in section D of greenhouse #15 in Kenneth 

Post Laboratory, Cornell University, Ithaca, NY.  This greenhouse had 5 identical 

sections (A-E).  Each section had a floor area of 85 m2. A central computer controlled 

the aerial environmental parameter of every greenhouse section via Analog Device’s 

6B microcontroller module (details in Appendix A).  

 The temperature set points were 19C during the night and 24C during the day 

and were mostly achieved within ± 0.5C. The greenhouse also had staged ventilation,  

evaporative cooling, and a movable shading system for cooling control. 

The light intensity was measured using a LI-COR quantum sensor that gave 

the readings of light intensity in 400-700 nm wavelengths needed for plant 

photosynthesis.  The daily photosynthetically active radiation (PAR) integral set point 

was 17 mols/m2.  This was achieved by using supplemental lighting from twenty-one 

high-pressure sodium (HPS) 400 W lamps that gave uniform light intensity of 200 

µmolm-2s-1 at the top of plant canopy. 

Relative humidity and CO2 were also continuously monitored.  The relative 

humidity was maintained between 30% and 70%.  The central computer sent the 

control signal and logged the data every two minutes. 
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4.1.2 The Cultivation System 

The deep trough hydroponic system consisted of 3 small growing ponds 

(stainless steel tanks) with a dimensions of 121cm x 60cm x 28cm.  The tanks were 

filled with nutrient solution to a certain level and the plants were placed in floating 

styrofoam panels.  The nutrient solution surface was completely covered with 

styrofoam panels to reduce evaporation and discourage algae growth.  One of the 

tanks was used as a control and the other two were used for fault treatments. 

Lettuce (Lactuva Sativa cv Vivaldi ) seeds were placed into a hole in the center 

of small rock wool cubes filled with peatlite to facilitate uniform germination.  From 

day one to day eleven the seedlings were grown in a growth chamber.  The 

environmental setting was similar to the greenhouse except for the chamber’s 24-hour 

lighting period.  On day twelve, the seedlings were transplanted to the experimental 

tanks occupying two rows.  Each row consisted of 3 and 4 plants placed in alternating 

fashion. Styrofoam spacers of 2 cm thickness were inserted to give additional spacing 

for the plants so the leaves would not overlap with the neighboring plants, which 

occurred after twenty days. The next older generation had an additional spacer 

between them.  The 27 day old plants were harvested every two days to make room for 

the new generation of plants.  The layout of plant placement in the tank can be seen in 

Figure 4.1.  A continuous plant production system was developed with this 

arrangement so the result would be directly applicable to the commercial hydroponic 

plant production system.  

 The nutrient solution was circulated through a filter and dispersed uniformly 

through small holes in the pipes along the perimeter of the system.  The pipes were 

also used for acid/base injection to maintain pH so that damage to the roots from any 

direct contact with pure acid could be avoided.  Pure oxygen was also injected into the 

circulation system to maintain the optimal oxygen level since the nutrient solution 
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surface was completely covered.  Fresh nutrient concentration and the water level in 

each tank were maintained every two days to assure that the nutrition solution 

remained at the desired level. 

 

Days 26-27 

Days 24-25 

Days 22-23 

Days 20-21 

Days 18-19 

Days 16-17 

Days 14-15 

Days 12-13 

 
Figure 4.1 Plant Spacing in The Hydroponic System 
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 LabView from National Instruments was used to control and monitor variables 

in the nutrient solution such as temperature, electrical conductivity (EC), pH, 

dissolved oxygen (DO), nitrate concentration and transpiration. Sensors were 

connected to their corresponding meters and their outputs were connected to a data 

acquisition system from National Instruments.  The sensor assembly inside the tank 

can be seen in Figure 4.2. This computer dealt with the environmental parameters of 

the root zone of the hydroponic system while the central computer dealt with the aerial 

environmental parameters of the greenhouse section. The program controlled and 

monitored the nutrient solution of the three tanks independently every 10 seconds and 

logged the data every 5 minutes. The pseudo-derivative feedback (PDF) control 

algorithm was used (details in Setiawan, 1998) which is good at dealing with the 

external disturbance.  The detailed connection schematic of the sensors and 

equipments can be found in Appendix A. 

 
Figure 4.2  Sensor Assembly in The Tank 

From top to bottom: pH, DO, EC. 
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The pH was maintained at 5.8 using a metering pump, which injected additional acid 

(1M HNO3) needed for pH control.  The DO was maintained between 6.5mg/l and 7 

mg/l by controlling the flow of oxygen from a tank using a solenoid valve.  The EC 

was maintained manually between 1150 to 1250 µS/cm.  A scale was used to weigh 

the whole tank to calculate the transpiration rate.  Nitrate concentration in the nutrient 

solution was an important variable to be monitored since the nitrate uptake was a good 

indicator of plant growth and thus a good indicator of plant stress.  After considerable 

searching, a reliable and robust nitrate analyzer could not be found and nitrate 

concentration was not used for fault modeling.   
 

4.2 Methods 

 A fault detection in the hydroponic system can be divided into two groups: 

sensor/actuator or mechanical faults and biological faults.  This division is needed 

since they have different time constants and use different inputs.  Transpiration rate, 

which is the main variable for any biological fault detection system, was not used for 

the mechanical fault detection system.   

Mechanical faults can be divided into abrupt faults and incipient faults.  Four 

kinds of mechanical faults were imposed into the hydroponic plant production system.  

Failure of the pH control pump and the circulation pump represented abrupt faults.  

Drifting of the pH sensor and EC sensor represented incipient faults.  The data from 

several repetitions of fault experiments were used to develop the neuro-fuzzy fault 

detection systems. 

Biological faults are imposed directly on the plants. These faults can be 

divided into shoot and root faults. There were four different series of experiments to 

mimic the effect of possible faults in the plants.  The first one was to remove the 

largest plants (of ages of 25 and 27 days) from the tanks and allow the roots to be 
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exposed to air for five minutes.  This treatment caused a slight disturbance to the roots 

of the plants.  The second experiment involved bruising the leaves of the largest plants 

(of ages of 25 and 27 days).  This treatment simulated a fault occurring in the shoot of 

the plants.  The third plant disturbance was to remove most of the leaves from three 

generations of the largest plants (23, 25 and 27 days old). This represented a major 

fault in the shoot zone.  The last experiment was to cover the leaves of the largest 

plants (23, 25 and 27 days old) with plastic bags to simulate a major problem in the 

root zone.  This last treatment drastically reduced the transpiration rate. As in the 

mechanical fault, several neuro-fuzzy fault detection systems were developed and 

compared. 
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CHAPTER 5 

FAULT DETECTION AND IDENTIFICATION MODEL DEVELOPMENT  

 

 Analytical model-based techniques represent the majority of fault detection 

and isolation methods in the literature (Simani et al, 2003).  The statistics show that 

the number of applications using nonlinear mathematical models is growing while the 

trend of using linear mathematical models is diminishing.  However, it is difficult to 

achieve accurate nonlinear mathematical models for complex nonlinear systems. If the 

system structure is not completely known, the fault diagnosis should be based on data 

or heuristic information.  The inherent characteristics of fuzzy logic are suitable for 

fault detection and isolation of complex nonlinear systems.  The nonlinear mapping 

characteristic of a fuzzy model, with fast and robust implementation, and the capacity 

to embed a priori knowledge and the ability of generalization can be beneficial to fault 

detection (Mendonca et al, 2006).  With these advantages, a fuzzy model is a natural 

tool to deal with nonlinear and uncertain conditions in the hydroponic plant production 

system. 
 

5.1 Fuzzy Logic  

 The core of fuzzy logic is the fuzzy set (Zadeh, 1965) and the IF THEN 

knowledge base (Zadeh, 1973).  The fuzzy set is a set without a crisp boundary.  There 

is a gradual transition between something that belongs and something that doesn’t 

belong to a set. This is characterized by a membership function with values between 

zero and one.  Zero means it definitely does not belong to the set and one means it 

definitely does belong to the set.  The number between these two limits represents the 

degree of membership in that set.  A membership function is usually symbolized by µ. 

For example, the normal greenhouse temperature during the day is about 24 C.  In this 
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case the temperature value comes from a sensor reading as a crisp value and this 

number should be transformed (fuzzified) into a fuzzy number. 

 

 
 

Figure 5.1  Membership Function of Fuzzy Sets ‘Cold’, ‘Normal’, and ‘Hot’ 
 

Three fuzzy sets labeled as cold, normal and hot can be defined using three 

membership functions. The membership functions for the three fuzzy sets can be seen 

in Figure 5.1.   

 If the temperature (x) is 24 C, it definitely belongs to the normal fuzzy set 

(µnormal(x) = 1) but if the temperature is 25.5 C, it belongs to the normal fuzzy set with 

the degree of membership of 0.25 (µnormal(x) = 0.25) and it also belongs to the hot 

fuzzy set with the degree of membership of 0.75 (µhot(x) = 0.75).  The membership 

function can be triangular like the example above, trapezoidal, gaussian, bell, sigmoid 

etc.  The correct form of a membership function will give the most efficient 

approximation of the specified system.   

25.5 

0.75 

0.25 

Cold Normal Hot 

1 

µ 

0 22 24 26 Temp 
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 The knowledge base of fuzzy systems is in the form of IF THEN rules.  If 

fuzzy logic is used for greenhouse temperature control, the rule is in the form of:  

 IF the temperature is cold AND the heating control signal is small THEN heating 

control signal change is small positive. 

 The first part of the rule “the temperature is cold AND the heating control signal is 

small” is called the antecedent or the premise while the last part of the rule “heating 

control signal change is small positive” is called the consequent or the conclusion.  

The rule above is activated if the inputs (temperature and heating control signal) 

belong to the fuzzy sets used in the rule. If the temperature belongs to the “cold” fuzzy 

set with the degree of membership function larger than zero and the heating control 

signal belongs to “small” fuzzy set to a degree larger than zero then the rule above is 

activated.    

 The word ‘AND’ in the rule represents the general classes of interception 

operators called triangular norm (t-norm).  The most obvious member of the t-norm is 

the minimum operator.  There are many other t-norm operators that can be used in 

place of the minimum operator such as algebraic product, bonded product, Dombi, 

Lukasiewicz etc.  A complementary general union operator is called t-conorm and 

represented by the word ‘OR’.  The examples of t-conorm are maximum, algebraic 

sum, bounded sum and many others.  A comprehensive discussion about the fuzzy set 

connective OR operator can be found in Pedrycz (Pedrycz and Gominde, 1998) and 

Nguyen (Nguyen and Walker, 2000).  The AND operator combines the degree of 

membership of each fuzzy set in the rule to determine the firing strength. 

 The output of a fuzzy system (formally named fuzzy inference system) 

changes smoothly from one dominant rule to the other depending on the inputs 

combination.  At any one time, one or two or three rules are activated at the same time 
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with different firing strengths.  The fuzzy inference system is a combination of local 

nonlinear functions that gives a combined output that changes smoothly (Jang, 1997).  

The OR operator combines the activated rules with different firing strengths to form 

an output.  The output is still in a  fuzzy form and can be defuzzified to get a crisp 

value.  The process of determining the firing strength and then combining the output 

of activated rules are called fuzzy inference. 
 

IF THEN rules 
Knowledge Base 

Inputs Input 
Fuzzy 

Output 
Crisp Fuzzy Inference 

Process Fuzzifier Defuzzifier 

Output 
Crisp 

Figure 5.2  Block Diagram for a Fuzzy Inference System 

 

 The complete fuzzy inference system is as shown in Figure 5.2.  The process 

of developing a fuzzy inference system involves: 1) Inputs selection, 2) Determining 

the shape of input membership functions, 3) Determining the number of fuzzy sets per 

input, 4) Defining the initial parameter value of membership functions, 5) Selecting 

suitable t-norm and t-conorm, 5) Building a IF THEN rules knowledge base and 6) 

Selecting the form of the output and deciding whether defuzzification is needed. 

Tuning is needed to train the system for its desired purpose. It can be tuned by 

trial and error, by expert’s input or by a learning algorithm.  In a hydroponic plant 

production system, the exact knowledge of fault processes are not exactly known so 

both structure and tuning must be learned from experimental data.  The Neuro-fuzzy 

model is the suitable choice to solve this problem. 
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5.2 Neuro-Fuzzy Model 

Fuzzy systems and neural networks  are complementary to each other.  A fuzzy 

system is easy to comprehend because it uses linguistic terms and structure of IF 

THEN rules but it does not have a learning algorithm.  Trial and error or expert 

knowledge is used in tuning the fuzzy system parameters and it can take a long time to 

finally find an acceptable system.   Neural networks have many learning algorithms 

but it is extremely difficult to use a priori knowledge about the system.  It is also 

almost impossible to explain the behavior of the neural system in a particular situation.  

A hybrid system with the best characteristics from both methods was developed and 

called a neuro-fuzzy system. A particular neuro-fuzzy system named ANFIS 

(Adaptive Network-based Fuzzy Inference System or more popularly named as 

Adaptive Neuro-Fuzzy Inference System) was proposed by Jang (1993). 

 

5.2.1 The ANFIS Architecture 

The ANFIS architecture is presented for a system with two inputs and a single 

output to better understand the performance of the structure. Consider a fuzzy 

inference system that has two inputs x  and  and a singleton y z  as its output. For a 

first-order Sugeno model (Sugeno,1985), a common rule set with two fuzzy IF–THEN 

rules is as follows:  

Rule 1 : IF x is A1 and  y is B1 THEN  ypxppfz 1
2

1
1

1
01 ++==

Rule 2 : IF x is A2 and y is B2 THEN   ypxppfz 2
2

2
1

2
02 ++==

 
The reasoning mechanism for this Takagi-Sugeno model (Sugeno, 1985) is 

shown in Figure 5.3(a); the corresponding equivalent ANFIS architecture is shown in 

Figure 5.3(b). In the discussion below, the term Oj,i represents the output of the ith 
 

node in layer j, where  nodes of the same layer have similar functions.  
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Figure 5.3 (a) Two rule two membership functionTS fuzzy model  

(b) ANFIS equilavent of the TS model 
 

Layer 1: Every node i  in this layer is an adaptive node with a node function,  

Oj,i  =  
iAµ ( x ),      for i = 1,2   or 

Oj,i  = 
2−iBµ ( ),  for i = 3,4  y
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where x (or y) is the input to node i and Ai (or Bi-2) is a linguistic label (such 

as "small" or "large") associated with the node.  The membership function 

for A  and B can be appropriate parameterized membership function such as 

the gaussian function : 
 

( )
( )

22 i

imx

A ex σµ
−

−

=

2

 

where {mi,σi} is the parameter set 

As the values of these parameters change, the function shape varies 

accordingly, thus exhibiting various forms of membership functions for 

fuzzy set A and B. Parameters in this layer are generally referred to as 

premise parameters. 

Layer 2:  Every node in this layer is a fixed node labeled П whose output is the 

product of all the incoming signals 

 O2,i = wi = 
iAµ (

iBx µ) (y),        for i = 1,2 

 Each node output represents the firing strength of a rule. In general, any 

other t-norm operators, which perform fuzzy AND can be used as the node 

function in this layer. 

Layer 3:  Every node in this layer is a fixed node labeled N. The ith
 
node calculates the 

ratio of the ith
 
rule’s firing strength to the sum of all the rules’ firing 

strengths: 

  O3,i = iw = 
21 ww

wi

+
,        for i = 1,2 

 The outputs of this layer are usually referred as normalized firing strengths.  

Layer 4:  Every node i  in this layer is an adaptive node with a node function 
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 O4,i = ii fw  = iw (  +  + ),               for  i = 1,2 ip0 xpi
1 ypi

2

  where iw  is the normalized firing strength from layer 3 and { , , } is 

the parameter set of this node. Parameters in this layer are referred to as 

consequent parameters.  

ip0
ip1

ip2

Layer 5:  This fixed layer, labeled Σ, gives the overall output as the summation of all 

incoming signals as follows:  

 Overall output = i
i

i fw∑ = 
∑
∑

i i

i ii

w
fw

 

 

5.2.2 Hybrid-Learning Algorithm  

It is shown from Figure 5.3 (a) that, when the values of the premise parameters 

are fixed, the overall output can be expressed as a linear combination of the 

consequent parameters. The output  in Figure 5.3 (b) can be written as  f
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where  is linear in the consequent parameters. The consequent 

parameters can be obtained using this equation: 
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where [(x(k)
, y(k)), d(k)]    are the kth

 
training data pair k = 1, 2,..,n and )(

1
kw and )(

2
kw are 

the outputs of layer 3 associated with the inputs ( ). )()( , kk yx
 

Equation  above can be expressed in matrix-vector form as: 

   Ax = r 

Where x = , r =[ ]Tpppppp 2
2

2
1

2
0

1
2

1
1

1
0 ,,,,, [ ]Tnrrr ,...,, 21 and A is a matrix formed by the 

elements )()()(
2

)(
1 ,,, kkkk yxww .  

The above equation can be solved as 

   x*= (AT A)-1 AT r 

where (AT A)-1 AT is the pseudoinverse of A if  (AT A)-1 is non singular.   

  For a large size of training data set, an iterative method is preferable.  x* can be 

calculated recursively using the formula: 

     )( 1
)1(

11)1( ii
iT

iiii xprpQxx +
+

+++ −+=

  T
iii

ii
T
ii

ii pQp
QppQ

QQ
11

11
1 1 ++

++
+ +

−=                           i = 0,1,2,……..n -1  

  x *  = x  n

with the initial conditions of 

  x = 0  and  Q =o o γ I  

where  

 γ is a positive large number and I is the identity matrix.  

  is the 
 

ip thi row vector of matrix A 

 )(ir  is the 
 

thi element of r 
 

 In the forward pass of the hybrid learning algorithm, node outputs go forward 

until layer 4 and the consequent parameter are identified by the least squares method 

outlined above. In the backward pass, the signals that propagate backwards are the 
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error signals and the premise parameters are updated by the gradient descent method. 

Table 5.1 summarizes the various activities during each pass (Jang, 1993). 

 

 

 
Table 5.1  Parameter Update During The Forward and Backward Passes  

in Hybrid-Learning Procedure for ANFIS. 
 

Signal flow direction Forward Pass Backward Pass 
Consequent parameters Least-squares estimator Fixed 

Premise parameters Fixed Gradient descent method 
Signals Node outputs Error Signals 

 

5.3 Input Selection 

 Suitable inputs must be chosen to develop the neuro-fuzzy fault detection 

system.  Using as many related inputs as possible is desired in order to capture every 

possible symptom of the faults.  A high number of symptoms makes the fault 

detection scheme more robust.  On the other hand, a high number of inputs gives a 

complex FDI system, which needs a larger training data set and more training time and 

computational power.  These requirements grow exponentially with every additional 

input variable.  A balance is needed to optimize the system based on these two 

opposing requirements. 

 The neuro-fuzzy fault detection system is designed to detect and identify 

several faults whose symptoms are shown by different inputs so the selected inputs 

should be able to represent each fault sufficiently.  Different faults have different time 

delays and time constants.  These differences affect how many steps of previous 

sampling instants are needed for each fault.  For example, with a five-minute sampling 

period, previous 5-minute, 10-minute and 15-minute sampled outputs are also needed 

in additional to current pH sensor output to detect pH control pump fault.  Additional 

previous 20 and 25-minutes sampled outputs might be needed for pH sensor fault 
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detection.  An abrupt fault such as pH control pump fault can be detected faster than 

an incipient fault such as pH sensor fault.  Abrupt fault also needs less previous 

sampling data.  

 These factors limit the number of faults that can be detected in one fault 

detection system with the finite amount of experiment data.  Separate fault detection 

systems were developed for the biological faults and the actuator/sensor faults since 

both the incipient sensor faults and the biological fault need a high number of previous 

sampling data from different inputs. 

 With knowledge of the system dynamics, the variables involved in the faults 

can be found.  When the circulation pump stopped working, the nutrient solution pH 

went up and the DO went down.  The DO and pH controller tried to regulate the pH 

and the DO values according to the set points by adding increasing amounts of oxygen 

and concentrated acid with no result. Without the circulation, these additions had to 

rely on a slow diffusion process to reach the sensors.  The controllers increased the 

control signal to maximum without any effect at the sensors for a long period.  DO and 

DO control signals, and pH and pH control signal values were needed to detect the 

error.  Their values from previous sampling steps were also needed.  The number of 

previous sampling data needed was not known so several systems with different 

numbers of pH and DO previous sampling inputs were explored.   

 The pH control pump abrupt fault caused the pH value to increase despite the 

increasing pH control signal to keep the pH at the set point.  The control signal 

eventually reached the maximum without any effect at the pH.  The pH and pH control 

signal were needed as inputs for this fault detection.   

 The simulated EC sensor fault caused the EC value to drift slowly, first up and 

then down in a sinusoidal fashion.  The fault definitely needed the EC measurement 

but other needed variables were unknown.  In this experiment, a control signal was not 
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available since EC was adjusted manually.  It is assumed that the combination of input 

requirements from other faults was enough to develop symptoms for this fault.   

 The simulated pH sensor fault caused the pH value to drift down from the set 

point of 5.8 to 3.8 and then back up.  Since the value of the pH never exceeded the set 

point in this experiment, the pH control signal was not directly affected.  This kind of 

drifting was chosen since drifting upward caused the pH control to compensate by 

injecting some acid and by the time the experiment was over, the pH of the solution 

would be low enough to kill the roots.  The pH value plus unknown interactions of 

inputs from other faults were assumed to give a specific pattern for this fault.   

 Inputs needed for the actuator/sensor fault detection systems were: 

1. pH and its history data 

2. pH control signal and its history data 

3. DO and its history data 

4. DO control signal and its history data 

5. EC and its history data 

 The exact number of previous sampling steps that were needed for these five 

variables was not known so fault detection systems with the previous 2, 3, 4, 5, 6 and 

7 sampling steps were developed and compared. 

 The solution temperature affected the metabolism of the plants and 

microorganisms in the solution which in turn determined the transpiration and nutrient 

absorption.  Assuming the value of the temperature was changing slowly, no historical 

data was needed for this variable.  The air temperature, light intensity and RH affected 

the plants and they were also included as input.  Again their values were assumed to 

change slowly so no history data was included as input.  
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5.4 Membership Function 

 Once the inputs for the fault detection are selected, input membership 

functions must be determined.  The gaussian membership function was selected for the 

neuro-fuzzy system since it has continuous derivability.  This characteristic simplifies 

the learning process of the neuro-fuzzy system.  The function is given by 

( )
( )

2

2

2σµ
mx

ex
−

−
= .  The Gaussian membership function is characterized by two 

parameters, namely m and σ.  The desired Gaussian function can be obtained with the 

proper selection of the parameters m and σ.  The parameter m represents the center of 

the Gaussian function and σ represents the width of the function. 

Figure 5.4 Gaussian membership function with  m = 5 and σ = 2 

5.5 Input Space Partitioning 

The input space can be partitioned into grids by specifying the number of 

membership functions per input (figure 5.5 a and b).  For example, a system with 11 

inputs and 2 membership functions for each input will generate 211 or 2048 grids 

where each grid represents one rule.  If each membership function has 2 parameters  in 

a Gaussian membership function, there are 212 or 4096 parameters to be adjusted.  

This is the simplest way to build a fuzzy system and the most popular.  The weakness 

of this approach is the large number of parameters that need to be optimized.  

Additional input increases the number of parameters exponentially. This problem is 

usually referred to as the curse of dimensionality.   
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A neuro-fuzzy system with the above configuration was developed for FDI at 

first for this dissertation.  The number of parameters (4096) represented the maximum 

acceptable limit based on the amount of data available from experiments.  The 

minimum amount of training data should be five times the number of parameters 

(Jang, 1997).  The output from this neuro-fuzzy FDI system could not detect the 

desired faults very well.  An insufficient number of inputs and membership functions 

caused bad performance of the system.  Thus the grid partition method is suitable for 

fuzzy models with few input variables, which is not the case with FDI for hydroponic 

plant production system.   
 

Figure 5.5  Space Partition  
a) Uniform   b) non-uniform grid partition   c) tree partition d) scatter partition 
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Grid partitioning uniformly covers the whole input space.  The monitored 

system usually does not have a uniform distribution of the input space and uses some 

subspace more often than others. A more efficient partitioning can be formed using 

this characteristic.  Ignoring unused grids or lumping the seldom-used grids together 

into one reduces the number of grids and corresponding parameters in the neuro-fuzzy 

system.  

A tree partition (figure 5.5 c) divides the input space into grids with different 

sizes by cutting the input space into different sized fuzzy regions.  Frequently used 

subspaces are cut into small grids while rarely and unused subspaces are formed into a 

large grid.  The tree partition solves the exponential increase in the number of 

parameters.  The setback to this method is difficulty in determining the correct cut.  

More membership functions are needed to accommodate different sizes of subspaces.   

Scatter partition/clustering is the most attractive choice (Figure 5.5 d).  Instead 

of covering the whole space,, scatter partition tries to find subspaces that characterize 

the fuzzy region of the input space.  It tries to cover the whole region of possible input 

vector occurrences.  Scatter partition gives the most efficient partition with a smaller 

amount of computing time compared with other methods.  The drawback of scatter 

partitioning is how the quality of the fuzzy system depends on the completeness of the 

data set in representing the whole operation region of the system.  The scatter 

partition/clustering groups the input-output pairs into clusters and one fuzzy rule 

represents one cluster.  The number of rules in the neuro-fuzzy system is equal to the 

number of clusters.  Systems with different composition and number of clusters can be 

formed by varying parameters in the clustering algorithm.  
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5.6 Data Clustering 

 Data clustering algorithms are used to categorize and organize data. Then, 

these categorized data can be used for applications such as data compression, model 

building, etc.  The clustering in the fuzzy system is useful for reducing the dimension 

of fuzzy system rules while still representing the overall system.  Clustering partitions 

a data set into several clusters where each data points in a cluster has more similarity 

than the one among the clusters.  In neuro-fuzzy systems, clustering is used to 

determine the initial locations and the number of IF-THEN rules.  There are several 

clustering techniques that are used for this purpose and the most common ones are:  K-

means, fuzzy C-means, mountain clustering method and subtractive clustering. 
  

5.6.1 K-Means Clustering 

 The k-means clustering is also known as the hard c-means clustering since a 

point belongs to only a particular cluster and not others.  The opposite of this method 

is the fuzzy clustering which the data point can belong to several different clusters 

with different degree of memberships.   

This clustering algorithm partitions a collection of n datapoints x1, x2, …, xn,  

into c cluster.  The cost function that minimizes the distance between the datapoints 

that belong in a cluster with cluster center vi can be defined by 

 ∑∑
= =

−=
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i

n

j
ij vxJ

1 1

2
    

The clusters are defined by its cluster center and a c x n binary membership 

matrix U, where the element uij is 1 if the jth data point xj belongs to the ith cluster, and 

0 otherwise.  The process of determining the cluster center ci, and the membership 

matrix U is iterative.  The cluster centers are initialized randomly.  The membership 

matrix U is then calculated as follows: 

32 



 

 
⎪⎩

⎪
⎨
⎧ ≠−≤−=

otherwise
ikeachforcxcxifu kjij

ij
0

,1
22

 

The cost function is computed and the iteration can be stop if the value is below some 

tolerance or if the improvement over previous value is below some threshold.  The 

cluster centers are updated using the new membership marix U as: 
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The process is repeated again until satisfactory result is found or the number of 

iterations has been reached. 
 

5.6.2 Fuzzy C-Means Algorithm (FCM) Approach 

Conventional clustering algorithms locate a hard partition of a given data set 

where each entry of the data belongs to one partition or the other.  On the other hand, 

the fuzzy clustering finds a soft partition of a given data set.  Each entry of data can 

belong to a multiple of clusters.  The degree of an entry in data to a cluster is given by 

a degree of membership.  A widely used type of the fuzzy clustering algorithm is the 

fuzzy c-means or ISODATA (Dunn, 1973).  James Bezdek has worked with the fuzzy 

pattern classification since his graduate years at Cornell University. He has developed 

it into one of the most popular clustering algorithm (Bezdek, 1973).  

Dataset X with n data points: x1, x2, …, xn, can be clustered into c fuzzy sets 

using the fuzzy c-mean clustering method.   The criterion in most instances is to 

optimize an objective function that acts as a performance index of clustering. The end 

result of the fuzzy clustering can be expressed as a partition matrix U  : 

U= uij  with i = 1,…, c and j = 1,…,n 
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 where uij is a numerical value between 0 and 1 and expresses the degree to which the 

datapoint xj belongs to the ith
 
cluster.  The objective function of the FCM algorithm 

takes the form of  
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where m is the fuzziness factor, which influences the degree of fuzziness of the cluster 

partition. If m is a large number, a point with less membership in the cluster will have 

less influence on the calculation of the new cluster center.  vi is a cluster center the ith
 

cluster {v1,…vc}.  To solve this minimization problem, the objective function is 

differentiated with respect to vi (for fixed uij, i = 1, 2, …, c; j = 1, 2, …, n) and with 

respect to uij, (for fixed vi, i = 1, 2, …, c).  
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After the number of clusters c (2 ≤ c ≤ n) and fuzziness factor have been 

determined,  the initial partition matrix U is chosen randomly.  Cluster centers and the 

partition matrix can be calculated iteratively from the above equations.  If the 

difference of the previously calculated center and/or partition matrix and the current 

value is less the predetermined threshold, the process can be stopped. 
 

5.6.3 The Mountain Clustering Algorithm 

 The mountain clustering method is a grid-based method for identifying the 

approximate locations of the cluster centers (Yager, 1994).  Unlike fuzzy c-means, this 
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method does not require a predetermination of the number of clusters.  Grid points on 

the data space provide the potential cluster centers. A finer grid increases the number 

of potential cluster centers but it also increases the computation required. The grid is 

generally evenly spaced, but it is not required.  Uneven spaced grids that reflect the 

prior knowledge of the data space can be formed. 

 Grid point selection for a cluster center is based on the mountain function.  The 

height of the mountain function at a grid point g is equal to 
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where xi is the ith data point and σ is an application specific constant.  The closer the 

data point xi to the grid point, the more it contributes to the height of the mountain 

function.  The value of the mountain function reflects the density of data points in the 

vicinity of each grid point.  The higher the mountain function value at a grid point the 

larger it’s potential for being a cluster center. The grid node with the highest score of 

the mountain function is selected and becomes the first cluster center v1.   The next 

cluster center could not be selected yet since the first cluster center is usually 

surrounded by a number of grid points which also have high density values.  The 

effect of the first center must be eliminated by sequentially destructing the mountain 

function.  In order to do so a revised mountain function is formed: 
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After the subtraction, the new mountain function value at v1 is zero and its effect on 

surrounding points is eliminated.  The second cluster center then can be selected from 

the grid point with the highest value of the new mountain function. This process is 

repeated until the new mountain function value is less than a stopping constant.   
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5.6.4  Subtractive Clustering 

 The mountain clustering method is simple and very effective in finding cluster 

centers that can be the base of fuzzy system membership function.  However, the 

number of calculations required grows exponentially with the dimensions of the data 

set.  For data set of 3 variables and 10 grid points for each variable, 1,000 points must 

be evaluated.  Adding another variable to the data set multiplies the grid points by 10 

or 10,000 grids.   

 A variation of the mountain method called subtractive clustering solved this 

problem (Chiu, 1994).  Instead of using grid points, data points are used as candidates 

of the cluster centers.  By doing this, the computation needed for calculation is 

proportional to the number of data points and independent of the dimension of the 

problem (the variables). This rough calculation of the cluster centers is particularly 

suitable if the clustering method is used to find the initial structure of a fuzzy system 

that will be optimized later by the neural network learning algorithm. 

 For a data set of n data points, a density measure at data point xi is defined as 
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where ra is a positive constant. A data point will have a high density value if it has 

many neighboring data points.  

 As in the mountain method, the data point with the highest density measure is 

selected as the first cluster center v1.  The next step is to eliminate the influence of the 

first cluster center to the surrounding data points which also have high density values. 

The density measure of each data point is revised as 
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where rb is a positive constant.  The density measure of data points in the 

neighborhood of the cluster center v1 is reduced and the one at the first cluster center is 

zero. The effect of the first cluster center on surrounding points is eliminated.  The 

constant rb defines a neighborhood that has significant reduction in density measures 

after the revision.  The constant rb is usually larger than ra to prevent closely spaced 

cluster centers.  Generally rb is chosen to be equal to 1.5 ra. 

 The point with the highest density measure is selected again as the next cluster 

center.  This process is iterated until the highest density measure is lower than a 

predetermined stopping constant or sufficient number of cluster centers has been 

determined.  The result can be used for developing the Takagi-Sugeno fuzzy model.  

Cluster centers vi are the fuzzy system rules.  The degree of fulfillment of the fuzzy 

rule i is defined by 
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After completed these procedure, a more accurate system can be constructed using 

optimization scheme like the gradient descent algorithm. 
 

5.7 Multi Level Value Neuro-fuzzy Fault Detection System 

 The neuro-fuzzy fault detection and identification system developed in this 

research tried to find the direct connection between the combination of input variables 

and the faults themselves.  The neuro-fuzzy fault detection system in this research 

utilized one output to detect and identify multiple faults. Different faults are 

represented by different output values.  The output value of 1 is reserved for a normal 

condition, the value of 2 for pH control pump fault, the value of 3 for circulation pump 

fault, the value of 4 for pH sensor fault and the value of 5 for EC sensor fault.  Using a 

single multi level value output simplifies the model and reduces the computational 
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time needed to optimize each model.  The use of only one output to detect several 

faults with widely different dynamics is the ultimate test for a neuro-fuzzy system 

since it combines both the residual generation and the residual analysis stages into 

one.  

 A similar multi level value neuro-fuzzy FDI system was also planned for 

biological faults but the signals of many simulated biological faults symptoms were 

too small compared with the noise of the monitored system.  The exception to this 

problem was a transpiration fault where leaves of each plant were covered by a plastic 

bag.  This treatment simulated a biological fault that drastically affecting transpiration 

in the plants.  The neuro-fuzzy biological FDI system has a dedicated output for the 

transpiration fault. 
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CHAPTER 6 

NEURO-FUZZY BIOLOGICAL FAULT DETECTION AND 

IDENTIFICATION SYSTEM 

 

6.1 Biological Faults in The Hydroponic System. 

Biological faults in the hydroponic system can be categorized into shoot zone 

faults and root zone faults.  Two different types of experiments from each category 

were performed from November 2000 to June 2001.  Bruising and cutting the leaves 

of lettuce plants were performed to simulate shoot zone faults.  Removing the plants 

from the water for 5 minutes and covering the whole leaves by a plastic bag simulated 

root zone faults.   

There were no significant changes in DO, temp, pH, EC and weight changes 

for the shoot zone faults.  Deviations in parameters caused by leaves bruising were too 

small compared with the noise in the system.  Experiments with cutting leaves showed 

unexpected result since the evapotranspiration was not reduced at all.  Water loss from 

the wound gave up water comparable to the normal plant transpiration.  

The first root zone fault experiments also cannot be detected, signaling a much 

bigger disturbance must be ministered.  Covering the whole leaves of the largest plants 

(ages of 23, 25, 27 days) with plastic bags showed a positive deviation in the 

transpiration rate.  With this development, the biological multilevel value FDI system 

becomes the single value transpiration FDI system.  The FDI system output was 

trained to have a value of 0 for normal and 1 for transpiration faults. 

 

6.2 Neuro-Fuzzy FDI Specifications 

Neuro-fuzzy biological FDI systems with 5 and 10 minutes interval data were 

developed.  Systems with five-minute interval data were developed since the data can 
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be used directly from the data file.  Construction of systems with ten-minute interval 

data was intended to explore the noise reduction in the FDI system by data averaging.  

The FDI systems process the current sample of air temperature, light intensity, 

relative humidity (RH), nutrient temperature, pH, DO, EC, pH control signal, DO 

control signal, weight rate and previous weight rate samples.  The biological FDI with 

24 inputs has previous 14 weight rate samples and the biological FDI with 29 inputs 

has the previous 19 weight rate samples.  

 The subtractive clustering was used to extract neuro-fuzzy fault rules from 

input-output data.  Range of influence (roi) coefficients in the clustering method 

determine how many cluster centers formed.  Values between 0.2 and 0.5 are 

recommended (Chu, 1994).  Several roi values were used to form the neuro-fuzzy 

systems.  A small roi means a short range of influence of the cluster center and a large 

number of cluster centers formed.  The number of cluster center determines the 

number of fuzzy rules.   

 

(a) 

 

(b) 

Figure 6.1 The Effect of roi (Range of Influence Constant) to The Number of Formed 
Clusters for a Simple Two Dimensional Dataset 

(a) roi of 0.25          (b) roi of 0.45 
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For example, a subtractive clustering algorithm with a roi value of 0.25 forms 23 

cluster centers (rules) for the FDI system with 29 inputs.  Graphics in Figure 6.1 

illustrate the effect of roi to the number of clusters for a simple two dimensional data 

set. 
 

6.3 Data Sets 

 Data was divided into training and testing data sets. There was an effort to 

choose datasets that covered the whole experiment period.  Training data sets for the 

neuro-fuzzy biological FDI systems are shown in Table 6.1.   
 

Table 6.1 Biological Fault Training Data Sets 
Data File Start Data File End Dataset Type 

12/15/00 12:01 am 12/18/00 12:00 am Normal Train 
02/26/01 12:01 am 03/03/01 12:00 am Normal Train 
03/25/01 12:01 am 04/04/01 11:55 pm Normal Train 
04/11/01 12:02 am 04/12/01 11:58 pm Normal Train 
02/20/01 12:02 am 02/25/01 06:01 am Transpiration Fault 
04/05/01 12:00 am 04/10/01 05:59 am Transpiration Fault 
04/13/01 12:03 am 04/18/01 05:59 am Transpiration Fault 
04/25/01 12:02 am 04/30/01 06:02 am Transpiration Fault 

 

All trained systems were tested with 3 data sets as shown in Table 6.2.  The 

first two data sets are the transpiration fault testing data and the last is for the normal 

condition.  

Table 6.2 Biological Fault Testing Data Sets 
Data File Start Data File End Test Dataset Type Test # 

03/06/01 12:04 am 03/11/01 11:59 pm Transpiration Fault Test 1 
05/23/01 12:03 am 05/28/01 12:00 pm Transpiration Fault Test 2 
04/19/01 12:03 am 04/22/01 12:37 pm Normal test Test 3 
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6.4 Training Results 

FDI systems constructed by the subtractive clustering method were trained 

further using training data from fault experiments.  Each system was trained for 5 

epochs with each epoch consists of 500 iterations (a total of 2500 iterations).  An 

epoch is a batch of training iterations.  The 5-minute interval systems training results 

are shown in Table 6.3.   

Several things can be seen directly from the table 6.3. Neuro-fuzzy FDI systems 

with smaller initial error generally continue to have smaller error at the end of the 

training.  For example, the FDI system with 39 input and 25 rules had the least initial 

error and after 5 epochs of training it still had the least error compared with other 

systems.  

 Systems with more inputs usually have the least training error.  For example, 

the 39-input systems have less error than the 34-input systems.  Systems with more 

inputs have more degrees of freedom in modeling the monitored process, and  less 

error. 

 Systems with more rules can capture the dynamics of faults better than those 

with fewer rules.  Systems with 39 inputs and 25 rules had a training error of 0.4612 

while the one with 7 rules had 0.6371 as the training error.  Again, additional rules 

give more modeling freedom for the system. 

 Additional training reduces training error.  The first epoch of training reduces 

the error the most while the last epoch reduces it the least.  The number of training 

epochs was limited to 5, because further training did not give any significant 

improvement.  All systems were trained to the same number of epochs so they have 

the same state of training for comparison.  Figure 6.2 shows error trend for every 

epoch of training 
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Table 6.3 Training Results of Biological Fault Detection Systems with 5-Minute Interval 

Roi Rules The 1st Epoch The 2nd Epoch The 3rd Epoch The 4th Epoch The 5th Epoch 

  
Start 
Error 

End 
Error 

Start 
Error 

End 
Error 

Start 
Error 

End 
Error 

Start 
Error 

End 
Error 

Start 
Error 

End 
Error 

24 INPUTS 
0.25      

            
            
            

24 0.6848 0.5365 0.5365 0.5285 0.5285 0.5191d 0.5191 0.515d 0.515 0.5124d

0.3 17 0.7098 0.5647 0.5647 0.5561 0.5561 0.5549 0.5549 0.5551 0.5549 0.5546
0.4 10 0.7882 0.6554 0.6554 0.6535 0.6535 0.6525 0.6525 0.6518 0.6518 0.6512
0.5 7 0.8008 0.6781 0.6781 0.6731 0.6731 0.666 0.666 0.6654 0.6654 0.6652

29 INPUTS 
0.25        

            
            
            

23 0.6693d 0.5332d 0.5332 0.5276d 0.5276 0.5239 0.5239 0.522 0.522 0.5213
0.3 18 0.6842 0.5476 0.5476 0.5421 0.5421 0.5412 0.5412 0.5417 0.5412 0.541
0.4 11 0.7553 0.6224 0.6224 0.6158 0.6158 0.6123 0.6123 0.6108 0.6108 0.6094
0.5 7 0.7854 0.6589 0.6589 0.652 0.652 0.6512 0.6512 0.6506 0.6506 0.6502

34 INPUTS 
0.25  

            
            
            

24 0.649b 0.5096b 0.5096 0.4893b 0.4893 0.4818b 0.4818 0.4807b 0.4807 0.4801b

0.3 18 0.6758 0.5426 0.5426 0.5347 0.5347 0.5248 0.5248 0.5243 0.5243 0.524
0.4 11 0.7416 0.6029 0.6029 0.5993 0.5993 0.5965 0.5965 0.5956 0.5956 0.5952
0.5 7 0.7755 0.6477 0.6477 0.6428 0.6428 0.642 0.642 0.6415 0.6415 0.6412

39 INPUTS 
0.25  

  
            
            

25 0.6313a 0.4814a 0.4814 0.4701a 0.4701 0.465a 0.465 0.4628a 0.4628 0.4612a

0.3 19 0.6612c 0.5247c 0.5247 0.5161c 0.5161 0.5131c 0.5131 0.5095c 0.5095 0.5066c

0.4 11 0.732 0.607 0.607 0.6011 0.6011 0.5914 0.5914 0.5883 0.5883 0.5877
0.5 7 0.768 0.6451 0.6451 0.6393 0.6393 0.6385 0.6385 0.6379 0.6379 0.6371

a  the best training result                    b the 2nd best                    c  the 3rd best                 d  the 4th best 
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Training results for 10-minute interval systems are shown in Table 6.4.  

Compared with 5-minute interval systems, 10-minute interval systems have more 

rules.  This means that the subtractive clustering algorithm found more cluster centers 

for the 10-minute training data set.  Averaging data points usually reduces the high 

frequency noise in the data and the clusters are more separated from each other.  The 

resulting systems perform better than those with 5-minute intervals.  The best 10-

minute interval system has nearly half the amount of error compared to the best 5-

minute interval system.  The training error trends for 10-minute interval systems are 

shown in Figure 6.3 

Training Error for 5-minute interval systems
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Figure 6.2  Training Error Trend for 5-Minute Interval Systems 
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The 1st Epoch The 2nd Epoch The 3rd Epoch The 4th Epoch The 5th epoch 

Roi    Rules
Start 
Error End Error

Start 
Error 

End 
Error 

Start 
Error 

End 
Error 

Start 
Error 

End 
Error 

Start 
Error 

End 
Error 

24 INPUTS 
0.32     

            
            

35 0.6155 0.4098 0.4098 0.3846 d 0.3846 0.3716 d 0.3716 0.3631 d 0.3631 0.3562 d

0.35 26 0.6363 0.4451 0.4451 0.4252 0.4252 0.4173 0.4173 0.4122 0.4122 0.4083
0.4 16 0.6698 0.5328 0.5328 0.5158 0.5158 0.5082 0.5082 0.5033 0.5033 0.499

29 INPUTS 
0.33  

          
            

39 0.5842 b 0.3719 b  0.3719 0.351 b 0.351 0.3304 b 0.3304 0.3202 b 0.3202 0.3157 b

0.35 30 0.613 d 0.3979 d 0.3979 0.3849 0.3849 0.3778 0.3778 0.3725 0.3725 0.3682
0.4 22 0.6192 0.4645 0.4645 0.4463 0.4463 0.4358 0.4358 0.4293 0.4293 0.425

34 INPUTS 
0.38  

  
            

39 0.5611 a 0.322 a 0.322 0.3046 a 0.3046 0.2949 a 0.2949 0.2879 a 0.2879 0.2824 a 

0.4 32 0.5861 c 0.3831 c 0.3831 0.3598 c 0.3598 0.3456 c 0.3456 0.3391 c 0.3391 0.3346 c

0.45 22 0.6133 0.4598 0.4598 0.4504 0.4504 0.4455 0.4455 0.4414 0.4414 0.4381
a the best training result                b  the 2nd best           c the 3rd best          d the 4th best 

Table 6.4 Training Results of Biological Fault Detection Systems with 10-Minute Interval 
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Figure 6.3 Training Error Trend for 10-Minute Interval Systems 
 

6.5 FDI System Performance Definitions 

FDI system performance can be evaluated by detection time and correct 

classification of faults.  Detection time is the time needed by the FDI system to detect 

the occurrence of the fault in the monitored system.  The FDI system makes a correct 

classification if the system output shows the correct level for the intended fault after 

the fault detection.  Misclassification does not include discrepancies at the output 

during the detection time.  Fault level categorization is shown in Figure 6.4. 
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Figure 6.4 Fault Level Categorization 

 

The output of the fault detection system gradually goes from a normal 

conditi

 as shown in Figure 

6.4.  T
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on represented by a value of 0 to a faulty condition with a value of 1.  Any 

response above 1 is assumed to be 1 and represents the faulty condition. Any response 

below 0 is assumed to be 0 and represents the normal condition.   

The area between 0 and 1 can be divided into three parts

he value between zero and 0.4 is defined as normal, between 0.4 and 0.6 is 

defined as no change from the previous condition. And between 0.6 and 1 is defined as 

a faulty condition.  For example at time t-1 (one sampling step before the current 

sampling instant), the response y is 0.7, representing faulty condition.  At time t, 

y=0.5, according to this definition, the condition at time t is still faulty.  If, at t+1, y= 

0.35 then the response has changed to a normal condition. 
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6.6. Testing Results 

 The training results confirm the ability of the neuro-fuzzy systems to 

categorize faults according to the training data.  It is still possible for the neuro-fuzzy 

systems to be over trained.  Overtrained is the condition where the neuro-fuzzy system 

can follow the training data very closely but respond very poorly to a new data set.  

Separate data sets are used to test whether the system is over trained.  The over trained 

system will not process the testing data correctly 

 The testing results of the Biological Fault Detection systems with 5-minute 

interval data are shown in Table 6.5 and systems with 10-minute interval data are 

shown in Table 6.6.  Most of the systems can detect the intended faults.  Systems with 

least errors in training are also performed well in testing, proving they are not over 

trained.  The test errors for the best four responses are all below 0.3 for each of the 

tests. 

Systems with the combination of a high number of rules and inputs have the 

smallest errors.  Three of the four systems with smallest error have the highest number 

of rules with 25, 24, and 23 rules.  Systems with 39 inputs and 19 rules rank third 

while system with 29 inputs and 23 rules ranks fourth.   It seems that the number of 

inputs is more important than the number of rules. 

The errors in Table 6.5 and Table 6.6 show that the 10-minute interval is a 

better time step than the 5-minute interval.  Testing errors of the best four 10-minute 

interval systems for the first test are between 0.189 and 0.237.  These are significant 

improvements compared with systems with 5-minute interval where the best error is 

0.273.   The second test results are even better.  The best error is 0.072 compared with 

0.196 for the best error of the 5-minute interval systems.  That means the error is less 

than half of the best 5-minute interval system.  The third test result best error is 0.139, 

nearly half the best error for 5 minute interval systems of 0.269.
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Table 6.5 Testing Results of Biological Fault Detection Systems with 5-Minute Interval 

Testing Error 
Roi Rules Training Error Test 1 Test 2 Test 3 Error Sum 

24 INPUTS 
0.25 24 0.5124 d 0.308460705 0.20248051 c 0.278923034 0.789864249 

0.3 17 0.5546 0.324716565 0.221644479 0.293387448 0.839748492 
0.4 10 0.6512 0.415115559 0.238148404 0.344361686 0.997625649 
0.5 7 0.6652 0.407668653 0.261664896 0.380455159 1.049788708 

29 INPUTS 
0.25 23 0.5213 0.30491074 d 0.206859032 0.274812928 c 0.7865827 d

0.3 18 0.541 0.329627311 0.218513679 0.279370008 0.827510997 
0.4 11 0.6094 0.356333331 0.245778224 0.332142552 0.934254107 
0.5 7 0.6502 0.38912825 0.253844917 0.354930749 0.997903916 

34 INPUTS 
0.25 24 0.4801 b 0.281143788 b 0.19651883 b 0.280049801 0.757712418 b

0.3 18 0.524 0.326984888 0.211080144 0.277461864 d 0.815526896 
0.4 11 0.5952 0.340228987 0.242100911 0.338398463 0.920728362 
0.5 7 0.6412 0.370739567 0.255570979 0.350072279 0.976382824 

39 INPUTS 
0.25 25 0.4612  a 0.272664835 a 0.19639848 a 0.269275274 a 0.738338588 a

0.3 19 0.5066 c 0.290587246 c 0.204278027 d 0.272020062 b 0.766885335 c

0.4 11 0.5877 0.334768592 0.23082643 0.323844354 0.889439377 
0.5 7 0.6371 0.376257849 0.250696988 0.35803487 0.984989707 

a the best training result                   b the 2nd best                c the 3rd best              d  the 4th best 
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Table 6.6 Testing Results of The Biological Fault Detection Systems with 10-Minute Interval  

Testing Error 
Roi Rules Training Error Test 1 Test 2 Test 3 Error Sum 

24 INPUTS 
0. 91418 d

0.35 26 0.4083 0.272624582 0.131572 217903591 0.622100607 
0.4 0.3 3 0. 75 8781 389 

32 35 0.3562 d 0.234897259 c 0.135800372 0.179293787 c 0.5499
433 0.

 16 0.499 4599733 1534572 0.25417 0.753633
29 INPUTS 

0.33 39 0 d  b 31 b

0.35 30     09 
0.4 2    6 94 

34 IN

0.3157 b .207358717 b 0.102819571 0.153521143 0.4636994
0.3682 0.2544858 0.115566548 0.18593746 0.5559898

 2  0.425 0.354050497 0.176326231 0.33077906 0.8611557
PUTS 

0.38 39 0.2824 a 0.189306555 a 23926 b 0.138518606 a 0.415249087 a

0.4 32 0 a  d 13 c

0.45 22 0.   c 7 98 
 

a the ult       2nd best   rd best  th best   

0.0874
0.3346 c .236912814 d 0.071872805 0.179983194 0.4887688

4381 0.29590013 0.093677391 0.23209937 0.6216768

best training res       b the  3            c the              d the 4        
 

Table 6 estin s of Th Fault ystem with Various Stage of Training 

Testing

.7 T g Result e Biological  Detection S

 Error 
roi les 

rainin
Error och #   ru

T g 
Ep test 1 test 2 test 3 Error Sum

0.38 39 0.2824 1 0.21897117 6143163 0.169036908 0.484151241 1 0.09
  2  d  d  d

  3  c c  c

  4  b  b  b

5  a  a a  a

    

 0.206731425 0.091506611 0.155317747 d 0.453555783
 0.199110828 0.089544775 0.148376336 c 0.437031939
 0.193651243 0.088378694 0.14272211 b 0.424752047

   0.189306555 0.087423926 0.138518606 0.415249087
 

a the best training result            b the 2nd best                c the 3rd best               d the 4th best       
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(a)  (b)  

(c)  (d)  

Figure 6.5 Test 1 (Transpiration Fault) Output for The Biological Fault Detection System with 10-Minute Interval
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Table 6.7 shows how the fault detection system evolves with training.  This 

 with 34 inputs and 39 rules.  The 

tional training is applied to the syst p 

ault detection system ot 

overtrained since both the training error and testing error are reduced with add al 

training. 

Although testing errors in ble 6.5 and Table 6.6 are good indicators of the 

FDI systems ability in processing the data set, they do not show the dynamic of the 

response.  For this purpose, the best four 10-minute interval systems response charts 

tion fault test 1. All FDI system ve 

ation fault detection.  The 

inute.  The summary of FDI 

isclassification decreases as the 

of Test 1 (Transpiration Fault) 

FDI Systems Detection Time Misclassification Correct Classification

particular example is the 10-minute interval system

test error is reduced for each test when addi em u

 is n

ition

s ha

to epoch number 5.  This solidifies the conclusion that the f

 Ta

are shown for each test.   

 Figure 6.5 shows the results for transpira

noisy responses.  The noise caused delays in the transpir

detection time for all FDI system is about for 50 m

systems performance can be seen in Table 6.8.  The m

number of inputs increases for the FDI systems.   
 

Table 6.8  FDI Systems Performances 

24 inputs and 35 rules 50 minutes 1.80% 98.20% 
29 inputs and 39 rules 50 minutes 1% 99% 
34 inputs and 32 rules 50 minutes 2% 98% 
34 inputs and 39 rules 50 tes 0.60% 99   minu .40%
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 The second test responses of the four best systems with 10-minute intervals are 

 clean with very little noise compared 

presented well in the 

 in every response caused by maintenance 

rvesting for another 

nce is shown in Table 6.9.  All FDI 

ely.  The process of covering the leaves 

fault starting point was def

when the covering activity finished.  The FDI started recognizing the fault when

of Test 2 (Transpiration Fault) 

Correct classification 

shown in Figure 6.6.  The responses are very

with test 1.  This means the faulty condition pattern was re

training data sets.  There is periodic noise

disturbances about every two days (about 290 points) and ha

overlapping 2 days period. 

 The summary of the FDI systems performa

systems recognized the fault almost immediat

of the lettuce plants took about 30 minutes and the ined 

 the 

covering process happened. 
 

Table 6.9 FDI Systems Performances 

FDI systems Detection time Misclassification 
24 inputs and 35 rules 10 minutes 0.90% 99.10% 
29 inputs and 39 rules 10 minutes 0% 
34 inputs and 32 rules 10 minutes 0% 
34 inputs and 39 rules 10 minutes 0% 

100% 
100% 
100% 

  

Misclassification is 0% for three out of the four FDI systems.  This is an 

excellent result for a slowly happening fault in the monitored system.  Exte

disturbances caused by maintenanc nd harvesting can be overcome by the FDI 

systems. 
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 (a) (b) 

(c)   (d) 

Figure 6.7 Test 3 (N Output for Biological Fault Dete   10-M t eormal Condition) ction Systems  with inu e Int rval
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n in Figure 6.7.  All FDI systems had noisy 

 with 24 inputs and 35 rules,  the FDI systems 

I systems performance of test 3 can be 

ances of Test 3 (Normal Condition)

FDI Systems Detection Time Misclassification Correct Classification 
24 inputs and 35 rules NA 0.60% 99.40% 
29 inputs and 39 rules NA 0% 100% 
34 inputs and 32 rules NA 0% 100% 
34 inputs and 39 rules NA 0% 100% 

 

6.7 Filter and System Performance 

 An algorithm for a simple filter is discussed below.  In addition to the filter, the 

algorithm also gives an output of 0 and 1, giving a non-fuzzy output that determines 

o 

can read the original graphic might not be 

even connected to a loudspeaker to be he

algorithm to filter the output and give

1. Wait until sufficient data sets are av ork.  If 

the FDI system uses the prevous 5 sam  waits for at 

least five time steps before giving a

or no fault. 

2. When the output is larger than

3. If the output is lower than 0 then it is

4. When the state of the output chang

t.  This output is important because a person wh

around and a simple alarm can be read or 

ard by anybody. Below is the step-by-step 

 an alarm: 

ailable in order for the system to w

pling steps, the algorithm

ny output.  While waiting the output is zero 

 1, then it is equal to 1. 

 equal to 0. 

es, observe the next four outputs. 

whether the system has a fault or no

 The normal test responses are show

responses.  Except for the FDI system

had no misclassification.  The summary of FD

seen in Table 6.10. 
 

Table 6.10 FDI Systems Perform  

 



 

5. If three out of five consecutive output states have changed then the state of the 

output has changed, otherwise the change of the state is  noise.  In this case, 

change the output value to the average of before and after output values. 
 

 This filter and fault decision algorithm were tested on test 1 responses of the 

two best FDI systems of 10-minute interval.  The result for the second best system 

with 29 inputs and 39 rules can be seen on Figure 6.8.  

Figure 6.8a is the original test result for this particular system.   

Figure 6.8b has the filter algorithm output decision of whether the fault has 

happened.   

Figure 6.8c is the filtered output so that all the noises detected by the filter are 

removed from the response.   

Figure 6.8d is the noise chart.  It shows the points defined as noise in the 

response by the filter. 

 The filter performed very well for this FDI system.  Figure 6.8b shows that the 

fault decision exactly follows the real faulty condition of the data set for testing.  It can 

identify the changing condition at step 25, one step after the start of the fault.  It also 

can identify the noise in step 26 that drops the response to 0.19 and marks it as a noise 

and changes the value to the average of its neighboring points.  It also can identify five 

more points correctly as noise. 

 The result of the filter and fault decision algorithm tested on the system with 

34 inputs and 39 rules can be seen in Figure 6.9.  The algorithm classifies points 

during the noisy transition period from normal to faulty conditions as noise.  The fault 

was introduced in step 20, but the filter algorithm identifies it at step 24 as shown in 

Figure 6.9b  

 

- 

- 

- 
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  (a) (b)  

(c)  (d)  

Figure 6.  u for BFIS25 (39 Rules) 8  Filtered Test 1 O tput 
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(a)  ) (b  

(c)  
 (d)  

Figu e 6.9 Filt red est r e T 1 Output for BFIS30 (39 rules)
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 The FDI system response has already changed its state to the faulty condition 

after step 24, are there 3 out of 5 consecuti ate is in the faulty 

condition and recognized quickly by the filte e of the 

faulty condition is 30 minutes from th nce is still very 

good for a slowly happening transpiration fa minute 

detection time without the filter.   

 The filter recognizes four noise po is 

the condition at the transition period as described in the paragraph above.  Nois

the responses are averaged with their neighboring points as shown in Figure 6.9c.  The 

summary of the FDI system responses with and without the filter is shown in Table 

6.11. 

Table 6.11  FDI Systems Performances of Test 1 With and Without The Filter 

ss

on step 20 but dropped back to the normal condition for the next three steps.  Only 

ve points where the st

r algorithm.  The detection tim

e start of the fault. This performa

ult and an improvement from 50-

ints shown by Figure 6.9d.  The first noise 

es in 

ificationFDI Systems Detection Time Misclassification Correct Cla
34 inputs and 32 rules 50 minutes 2% 98% 
34 inputs and 32 rules with filter 10 minutes 0% 100% 
34 inputs and 39 rules 50 minutes 0.60% 99.40%
34 inputs and 39 rules with filter 30 minutes 0% 100% 
 

6.8 Result Summary 

Table 6.12 FDI Systems P rmances of Test 1 (Transpiration Fault) 

FDI Systems Detection Time Misclassification Correct Classification 
24 inputs and 35 rules 50 minutes 1.80% 98.20% 
29 inputs and 39 rules 50 minutes 1% 99% 
34 inputs and 32 rules 50 minutes 2% 98% 
34 inputs and 39 rules 50 minutes 0.60% 99.40% 

 

 Table 6.12 shows the NF FDI system performances in the processing test 1 

data set.  The responses are noisy which means this particular pattern is weakly 

erfo

 



 

recognized within the system’s noise.  This condition caused long detection times.  

centage is at or above 99% for the two best responses. 

 Test 1 With and Without Filter 

Misclassification Correct Classification

The correct classification per
 

Table 6.13 FDI Systems Performances of

FDI Systems Detection Time
34 inputs and 32 rules 50 minutes 2% 98% 
34 inputs and 32 rules with filter 10 minutes 
34 inputs and 39 rules 50 minutes 
34 inputs and 39 rules with filter 30 minutes 

0% 100% 
0.60% 99.40% 

0% 100% 

Filtering helps reduces both the detection time and misclassification in the 

isclassification for the noisy 

 zero for the two best syste   

of Test 2 (Transpiration Fault) 

assification Correct Classification 

noisy system responses as shown in Table 6.13.  The m

ms. FDI system responses decreasedfrom 2% and 0.6% to
 

Table 6.14 FDI Systems Performances 

FDI Systems Detection Time Miscl
24 inputs and 35 rules 10 minutes 0.90% 99.10% 
29 inputs and 39 rules 10 minutes 0% 100% 
34 inputs and 32 rules 10 minutes 0% 100% 
34 inputs and 39 rules 10 minutes 0% 100% 

 Test 2 responses have very little noise, signaling this particular pattern is 

strongly recognized by all FDI systems.  The FDI systems performances in the 

processing test 2 data set can be seen in Table 6.14.  All systems recognized the fault 

early and misclassification percenta  0% for three out of four systems.  

Table 6.15 FDI Systems Performances of Test 3 (Normal Condition) 

FDI systems Detection time Misclassification Correct classification 

ge is

24 inputs and 35 rules NA 0.60% 99.40% 
29 inputs and 39 rules NA 0% 100% 
34 inputs and 32 rules NA 0% 100% 
34 inputs and 39 rules NA 0% 100% 

 The normal conditions can successfully be recognized by the FDI systems.  

Three out of four systems have 100% correct classification.  The NF biological FDI 
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sy  successfully identified the transpiration fault in the hydroponic plant 

production system.  The average detection time of 30 minutes is fast enough for early 

fault detection. 

 

 

stem
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CHAPTER 7 

NEURO-FUZZY MECHANICAL FAULT DETECTION AND 

IDENTIFICATION SYSTEM 

 

t in The Hydroponic System. 

ults in the hydroponic system can be categorized upt 

faults and incipient faults.  Two different types of experiments from each category 

were p

 

incipient f

p was deem o be th

yed on w request fr trol signal for eriod 

 drop qu evel that co destroy the plants in less than 

ent could destroy all of the plants very 

tion pump.  

Without e of the 

DO con  sensor low had

d no negativ fect on the plants.  This was a dif atter 

 If the pH ro bove 5.8, the p ump tried to supp

more acid to the circulation system. But, the acid did not get to the sensor for a long 

time and finally acidified the solution excessively. The sensor was slow to recognize 

this condition which caused the plants to die.   

7.1 Mechanical Faul

 Mechanical fa into abr

erformed from November 2000 to June 2001. Malfunctioning episodes of the 

pH control pump and the hydroponic system circulation were performed to simulate 

abrupt faults. Drifting of the pH sensor and EC sensor were performed to simulate

aults. 

The pH control pum ed t e most important fault.  If the pump 

that supplied acid sta ithout any om con a long p

of time, the pH would ickly to a l uld 

an hour.  Since doing this exact experim

quickly, the opposite fault by stopping the pump was performed instead.  If the act of 

stopping the pump could be detected quickly, the fault of continuously on could be 

detected as quickly.   

The second important fault was the sudden stopping of the circula

water circulation, feedback from the sensor could be delayed. In cas

trol, the DO reading stayed  even if the DO  been fully supplied 

for a while.  This ha e ef ferent m

from the pH control. se a H p ly more and 
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The third important fault was a slowly drifting pH sensor. Undetected sensor 

drift caused the pH of the nutrient solution move outside the optimal range.  This 

caused the plant to absorb less nutrient and had slower growth.  This situation reduced 

e amount of plant production and the quality of the product.   

he slowly drifting EC sensor caused a similar problem as the pH sensor 

although it was not significant. The value of the nutrient concentration that was lower 

than the optimal range decreased the amount of nutrient available for absorption and 

the higher value could hinder the nutrient absorption by creating more osmosis barrier. 

This also caused the plant to absorb less nutrient and leading to slower growth. 
  

7.2 Neuro-Fuzzy FDI Specifications 

Neuro-fuzzy systems with 14, 19, 24, 29 and 34 variables were used as FDI 

systems.  Systems with 14 inputs were developed only for 10-minute interval data 

since the number of inputs is too low to give satisfactory results.   

 The inputs used in the FDI systems were: pH, dissolved oxygen (DO), 

electrical conductivity (EC), pH control signal (pHcs), DO control signal (DOcs), air 

temperature, light intensity, relative humidity (RH), solution temperature, and 

previous sample values of pH, DO, EC, pHcs, and DOcs. 

 Subtractive clustering was used to extract the neuro-fuzzy fault rules from the 

input-output data.  Range of influence (roi) coefficients in the clustering method 

determined how many cluster centers formed.  Values between 0.2 and 0.5 are 

recommended [Chu 1994].  Several roi values were used to form the neuro-fuzzy 

systems.  A small roi means a short range of influence of the cluster center and a large 

number of cluster centers formed.  The number of cluster center determines the 

number of fuzzy rules.  For example the subtractive clustering algorithm with a roi 

value of 0.234 formed 17 cluster centers (rules) for the FDI system with 29 inputs. 

th

T
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There was only one output h reduced the complexity of the 

neuro-fuz ndition, 

different values of the sing value of 1 represented the 

ormal condition. The value of 2 represented the pH control pump fault. The value of 

f 4 represented the slowly drifting 

the best in detecting these important faults and performed at least 

average
  

7.3 Data Sets 

 Experiment data sets were categorized into training and testing data sets.  

Training data sets used in forming and training of the neuro-fuzzy systems can be seen 

in Table 7.1.  The testing datasets are shown in Table 7.2.  The number of data entries 

for systems with 5-minute intervals was twice the number of data entries for systems 

with 10-minute intervals because the same number of experiments was used.   

 

 

 

 

 

 

 

 variable, whic

zy detection system.  In place of a different output for each fault co

le output were used.  The output 

n

3 represented the circulation pump fault. The value o

pH sensor fault and the value of 5 represented the slowly drifting EC sensor fault. 

The placement of the faults relative to normal in the multilevel value of the 

FDI system output was based on how important the fault was to the system.  By 

placing the most important fault next to the normal condition, it had more sensitivity 

and less noise.  It was hypothesized that a desirable fault detection system was the one 

that performed 

 in detecting the least important faults in the system. 
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Table 7.1 Training Data Sets 

Experiment 
Type Tank # Start Date Start Time End Date End Time 

Normal 2 02/22/01 6am 02/24/01 6am 
Normal 2 02/24/01 6am 02/26/01 6am 

27/01 6am 
Norm
Nor

pHp 3 02/26/01 12:55pm 02/27/01 5:55pm 
pm 

3 05/25/01 12:28pm 05/26/01 6:20pm 
pHp 3 05/31/01 12:20p m 06/01/01 5:45pm 

30pm 11/20/00 1:45pm 
CP
C

01 5:40pm 
01 4:30pm 

C
CP 3 04/16/01 11:58am 04/16/01 4:45pm 

05/22/01 5:35pm 
05/24/01 6pm 

pH
pHs 1 05/11/01 12pm 05/12/01 4pm 

CP : circulation pump  

Normal 2 02/26/01 6am 02/
al 2 03/06/01 6am 03/08/01 6am 

mal 2 04/20/01 6am 04/22/01 6am 
Normal 2 04/25/01 6am 04/26/01 6am 
Normal 2 05/14/01 6am 05/16/01 6am 

pHpa 2 11/08/00 3:30pm 11/10/00 12:35pm 
pHp 2 11/12/00 2:15pm 11/14/00 1:45pm 
pHp 3 02/22/01 11:55am 02/24/01 12pm 

pHp 3 02/28/01 10:10am 03/02/01 4:45
pHp 

CPb 3 11/18/00 1:
 1 12/07/00 6:01am 12/07/00 1:15pm 

P 1 12/13/00 7:11am 12/13/00 1:41pm 
CP 3 03/03/01 11:53am 03/03/01 4:50pm 
CP 3 03/06/01 12:30pm 03/06/01 5:47pm 
CP 3 03/08/01 1:10pm 03/08/
CP 3 03/09/01 12:06pm 03/09/

P 3 03/15/01 12:05pm 03/15/01 6:20pm 

CP 3 04/18/01 11:59am 04/18/01 5:30pm 
CP 3 05/16/01 12:06pm 05/16/01 5:45pm 
CP 3 05/18/01 12:01pm 05/18/01 5:30pm 
CP 3 05/22/01 1:07pm 
CP 3 05/24/01 12:16pm 

sc 1 05/09/01 12:39pm 05/10/01 4:32pm 

pHs 1 05/17/01 12:05pm 05/18/01 5:30pm 
pHs 1 05/21/01 1:18pm 05/22/01 5:35pm 
pHs 1 05/29/01 12:01pm 05/30/01 6:30pm 
ECsd 1 04/11/01 12:58pm 04/13/01 1:08pm 
ECs 1 05/01/01 12:10pm 05/03/01 1:01pm 
ECs 1 05/03/01 1:28pm 05/07/01 12:12pm 
ECs 1 05/07/01 12:35pm 05/09/01 12pm 

apHp : pH control pump 
b

cpHs : pH sensor   
dECs : electrical conductivity sensor 
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Table 7.2 Testing Data Sets 

Experiment 
Type Tank # Start Date Start Time End Date End Time 

Normal 2 01/14/01 6am 01/15/01 6am 
Normal 2 03/26/01 6am 03/27/01 6am 

pHpa 3 02/20/01 12:25pm 02/21/01 5:45pm 
pHp 3 05/29/01 12:01pm 05/30/01 6:30pm
CPb 1 12/05/00 1:44pm 12/05/00 5:35pm

 
 

C
pHs 1 11/29/00 12:03pm 11/30/01 4pm 

d

P 3 04/20/01 11:54am 04/20/01 5:15pm 
c

pHs 1 05/15/01 12:20pm 05/16/01 5:45pm 
ECs 1 12/10/00 10:54am 12/12/00 7:12am 
ECs 1 04/30/01 12:20pm 05/01/01 12pm 

apHp : pH control pump 
bCP : circulation pump 
cpHs : pH sensor 
dECs : electrical conductivity sensor 
 

7.4 Training Results 

I systems constructed by the subtractive clustering method were trained 

rom the 

btractive clustering method were fairly large but quickly diminished starting with 

e first training.  The first epoch of the training reduced the error the most while the 

st epoch reduced it the least.  The number of training epochs was limited to 5, since 

rther training did not give significant improvement.  All systems were trained to the 

me number of epochs to have the same state of training for comparison.   

 The FD

further using training data from the fault experiments.  Each system was trained for 5 

epochs with each epoch consisting of 500 iterations (a total of 2500 iterations).  The 

training result for Mechanical Fault Detection System with 5-minute interval (FDI5 

systems) is shown in Table 7.3.   

The starting errors of the newly constructed fault detection systems f

su

th

la

fu

sa
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Table 7.3 Training Result of Mechanical Fault Detection Systems with 5-Minute Interval 

ThThe 1st Epoch The 2nd Epoch The 3rd Epoch The 4th Epoch e 5th Epoch 

Roi
tart 
rror 

End 
Error 

Start 
Error 

End 
Error 

Start 
Error 

End 
Error 

Start 
Error 

End 
Error 

Start 
Error 

End 
Error  Rules 

S
E

19 INPUTS 
0. 0.7974 0.5757 0.5757 0.5668 0.5668 0.5639 0.5639 0.5618 0.5618 61 

0. 8 35 
24 INPUTS 

25 
3 

14 0.5
0.600.8573 0.6187 0.6187 0.6106 0.6106 0.6067 0.6067 0.6045 0.6045 

0.22 18 0.7459 0.451a 0.451 0.441a 0.441 0.4371a 0.4371 0.4336a 0.4336 0.4318a

0. 13 0.7793 0.5144 0.5144 0.4855 0.4855 0.4733 0.4733 0.4633d 0.4633 0.4539
0.28 9 01

0.3 8 66

25 c

 
 

0.8
0.8

217
406

 
 

0.5
0.5

567
836

 
 

0.5
0.5

567
836

 
 

0.5
0.5

115
346

 
 
29 

0.5
0.5

PU

11
34

TS 

5
6

 
 

0.5
0.5

048
248

 
 

0.5
0.5

04
24

8
8

 
 

0.5
0.5

02
19

4
2

 
 

0.
0.

502
519

4
2

 
 

0.50
0.51

 
 

IN
0.234 17 0.7198 0.4708b 0.4708 0.4587b 0.4587 0.4551b 0.4551 0.4522b 0.4522 0.4509
0.24 16 0.7216 0.4755c 0.4755 0.4598c 0.4598 0.4576c 0.4576 0.4558c 0.4558 0.4542
0.25 13 715 0.4715 99

b

d

 0.7663 0.4833 0.4833 0.4761 
34 

0.4
PU

76
TS 

1 0.4734 0.4734 0.4 0.46  
IN

0.26 11 31
0.28 8 0.8542 0.4822d 0.4822 0.4746d 0.4746 0.471 0.471 0.4685 0.4685 72

0.3 7 0.8549 0.6155 0.6155 0.565 0.565 0.5379 0.5379 0.5281 0.5281 0.5279
 

a the best training 

 0.793 0.5348 0.5348 0.495 0.495 0.4793 0.4793 0.4749 0.4749 0.47
0.46

 
 
 

d

result            b the 2nd best                c the 3rd best               d the 4th best          
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a g Res a l Faul ecti s with 10-Minute Interval. 

e p T oc The epoc ch 

T ble 7.4 Trainin

Th  1st e och 

ults for Mech nica

he 2nd ep h 

t Det

 3rd 

on 

h 

System

The 4th epoch The 5th epo

roi rules
d a

r
E t E

Er ror Error 
End 
rror  

Start 
Error 

En  
Error 

St
Er

rt 
or 

nd 
Error 

Star
Error 

nd 
ror 

S
Er

tart End Star
Error 

t 
E

14 INPUTS 
0.25 0. 1 9 . 8 0.5 5602 0.5593 0.5593 0.5586 

0.3 0. 8 8 . 1 0.6 6332 0.6304 0.6304 6275 
T

13 827  0.56 3 0.5
7 871  0.63 1 0.6

693 0 5628 0.562
381 0 6408 0.638

19 INPU

 
 
S 

602
332

 
 

0.
0.  0.

0.22 0. 3 2 . 8 0.5  0.5553 0.5522 0.5522 5515 
0.25 0. 3 2 . 1 0.5  0.5467 0.5442 0.5442 0.5423 
0.27 0. 4 2 0. 3 0.  0.5803 0.5793 0.5793 0.  

0.3 9 7 0.6028 0. 0.  
TS 

17 769  0.56 6 0.5
13 808  0.56 5 0.5
11 816  0.59 1 0.5

7 0.864 0.60 6 0.6

626 0 5578 0.557
625 0 5511 0.551
921 583 0.58
096 0.6057 0.605

24 INPU

553
467

5803

 0.

5783
59856028 0.6002 0.6002 

0.23 17 0. 6 327 5 9 0.5235 b 0. 0.5
0.25 13 0. 6 2 526 5 4 0.5418 0.5418 0.5394 0.5394  
0.27 11 4 543 8 0.5458 0.5458 0.5443 0.5443 0.

0.3 0. 6 4 945 4 0.5877 0. 7 5867  
TS 

764  0.5327 b 0.5
709  0.55 6 0.5

 0.81 0.55 3 0.5
8 852  0.59 5 0.5

0. 259 b 0.525
 0. 454 

5235 0.5215 b 195 c

5375
543
5859

0.5215 
d 0.545

 0.548 0.54
 0.5894 0.589

29 INPU

 0.
 

5877 0.586  0.  0.

0.24 16 0. 8 199 5 3 0.5116 a 0. 0.5
0.25 13 0. 3 523 5 5 0.5415 d 0. 5 5406  
0.27 0. 3 632 2 0.5492 0.5492 0.5445 0.5445 0.  

0.3 0. 6 8  0. 781 . 2 0.566 0.566 0.5636 0.5636 0.5611 
TS 

756  0.5199 a 0.5
787  0.5523 

0. 143 a 0.514
0. 435 

511
541

6 
5

0.510
541

3 a 092 a

5399
5373

0.
0.

5103 
d 0.5

11 83113 0.56 2 0.5
8 849  0.57 1 5

c 0.543
 0.5552 0.555
 0 5702 0.570

34 INPU

 0.   0.

 

0.26 0. 5 6 568 7 0.5424 0. 0.5354 d

0.28 10 0. 7 459 9 0.5293 c 0. 0.5191 b

0.3 0. 1 3 734 2 0.5536 0.5536 0.5497 0.5497 0.5474 
 

a the best training re  2         c t  e 4th best          

11 787  0.55 8 0.5
804  0.5459 

 0.5477 0.547
 0.5359 0.535
 0.5592 0.559

he 3

542
529

4
3 

 0.5
0.

38
523

2 d 0.
0.

538
523

2 
6 c 0.5

8 841  0.57 4 0.5

sult           b

6 c

 the nd best        rd best              d th
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Table 7.5 Training Error of 5-Minute Interval ANFIS  

with One Variable Eliminated at a Time for 24 Inputs and 18 Rules 
 

Variable Removed Training Error 
Electrical Conductivity 0.8107 
Relative Humidity 0.7545 
Light Intensity 0.7199 
Nutrient Temperature 0.7159 
Air Temperature 0.7073 
pH control signal 0.6982 
Dissolved Oxygen 0.6854 
pH 0.6583 
Dissolved Oxygen control signal 0.6406 

 

The elimination of the electrical conductivity caused the largest training error 

of 0.8107.  The next ones were the relative humidity, the light intensity, the nutrient 

temperature and the air tem ariables are 

more important than the nutrient solution variables in the neuro-fuzzy fault detection 

stem

as no additional control signal as 

an inpu

7.6 FD

e monitored system.   

perature.  So it can be deduced that the aerial v

sy .  The aerial variables are needed to determine the effect of seasonal changes 

and also they are important for the adaptivity of the FDI system in different weather 

conditions.  The high sensitivity of the neuro-fuzzy system to the EC input is an 

exception.  EC was maintained manually and there w

t variable.  So the EC input is the only variable available for the EC sensor 

fault detection.  The elimination of the input variables used in the neuro-fuzzy FDI 

system caused significant increase in the training error.  The least error increase 

caused by the dissolved oxygen control signal elimination is 0.6406, much larger than 

0.451 when all inputs are available. 
 

I System Performance Definitions 

The FDI system performance is measured from detection time and correct 

classification of faults.  The detection time is the time needed by the FDI system to 

detect the occurrence of fault in th
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Figure 7.3 Fault Level Categorization  

Fault Level Catagorization
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The FDI tput shows the 

ct le ot 

include discrepancies a g the de he fault level 

categorization is shown in Figure 7.3. 

The area between 1 and 2 can be divided into three parts.  The value between 1 

and 1.4 is define ween 1.4 and 1.6 is defined as no change from the 

previous conditi 1.6 and 2 is defined t 1 condition.  For 

ple at time the curren ing instant), assume 

the resp

 the four best FDI5 systems are: 

2. 

 system makes a correct classification if the system ou

corre vel for the intended fault after the fault detection.  Misclassification does n

t the output durin tection time.  T

d as normal, bet

on, and between as faul

t-1 (one sampling step before t samplexam

onse y is 1.7, representing fault 1 condition.  At time t, y=1.5 and  according to 

this definition, the condition at time t is fault 1.  If at time t+1, y= 1.35 then the 

response has changed to normal condition.  The same definition is applicable for the 

area between fault value 2 and 3, fault value 3 and 4 and so on. 
 

7.7 Testing Results 

To make sure that all the systems were not over trained, some data sets were 

used for testing the trained FDI systems.  The results for 5-minute interval (FDI5) and 

10-minute interval (FDI10) systems are shown in Table 7.6 and Table 7.7.  There were 

5 different conditions for the mechanical FDI systems so there were 5 different tests 

for each condition:  test 1 for the normal condition, test 2 for the pH pump faulty 

condition, test 3 for the circulation pump faulty condition, test 4 for the pH sensor 

faulty condition, and test 5 for the EC sensor faulty condition. 

rom the testing results in Table 7.6,F

1. 19 input system with 14 rules. 

29 input system with 17 rules. 

3. 24 input system with 18 rules.   

4. 24 input system with 13 rules.  
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Table 7.6 Testing Result of Mechanical Fault Detection System with 5-Minute Interval 

Testing Error 
Roi Rules 

Training 
Error Test 1 Test 2 Test 3 Test 4 Test 5 Error Sum 

19 INPUTS 
0.25 14 0.561 0.16928524 0.479584081 c 0.488848056b 0.632452719 a 0.769139544 2.53930964 a

0.3 8 0.6035 0.172303441 0.581795916 0.665454077 0.925005074 1.000119722 3.344678231 
24 INPUTS 

0.22 18 0.4318 a 0.172978905 0.524922662 0.539456798 0.74286112 c 0.701994717 b 2.682214202 c

0.25 13 0.4539 c 0.154150573 0.565303998 0.549193708 0.732092524 b 0.716150722 c 2.716891524 d

0.28 9 .50  489377 0.519931468 0.542731378 1.122756089 0.994240583 3.328597229 
0.3 8 .51  488755  0.5280686 0.64655073 1.225181895 0.880655581 3.429332359 

29 INPUTS 

0
0

01
66

0.1
0.1

1 
52

0.234 17 45 98313 0.474498701 b 0.581590867 0.757940106 d 0.726103723 d 2.669964704 b

0.24 16 45 41746 0.463846389 a 0.536137192 d 0.861009851 0.856645327 2.85181339 
0.25 13 46  16707  0.519768732 d 0.345700133 a 1.159686144 0.804532003 3.011357778 

34 INPUTS 

0.
0.
0.

09 b 0.12
0.13
0.18

08 a

42 d 31 b

99 67

0.26 11 0.4731 0.212697216 0.576912647 0.646172883 0.817985037 0.644045139 a 2.897812922 
0.28 8 0.4672 0.148063709 d 0.559363674 0.491292428 c 0.911436059 0.915560502 3.025716371 
0.3 7 0.5279 0.14473702 c 0.531180859 0.849093149 1.176408171 1.17664346 3.878062659 

 

a the best training result            b the 2nd best                c the 3rd best               d the 4th best          
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Table o ical F Dete n w 1 rval 

 

 7.7 Testing result f Mechan ault ctio  System ith 0-Minute Inte

Testing Error 
Roi e

T i
o Tes e

rain
Err

ng 
r Test 1 Test 2 Rul s t 3 T st 4 Test 5 Error Sum 

14 UTS  INP
0.25

0.3
 13
 7

 
 

0.55
0.62

8 7   694 0 3 9 9 488 8
7 7  7 0 9016 4 844 1

9 INPUTS 

45776 .697 5344  c 1.0113110 6 
2597 1.388486755 1.4461801 9 

6 0.1 0825983 0.499935284
5 0.1 0704827 0.4 7407 18 

0.4
0.

2.8 715 9 
4.3 047 9 d

1
0.22
0.25
0.27

0.3

 1
 13
 11
 7

7 1 9 5 8 0.5225 2 473 7
2 7  0.6315 9 023 7
8 8  0.5215 8 635 1
8 4  0.5664 2 959 3

4 INPUTS 

5 0.118790 06 a 0.4 6828 64 b 21235 1.090957667 0.858 16506 c 
 
 

 

0.55
0.54
0.57
0.59

3.0 151 8 
3.0 865 8 
3.1 948 2 
3.8 606 3 

3 0.1 0436178 0.550154877
3 0.1 4652696 0.524974223
5 0.1 5250984 0.580298248

2

41893 0.765149135 0.8851044 6 
85261 0.967780144 0.9646024 7 
14791 1.431709687 1.1722869 3 

0.23 17 8 5 355  0.41661  c 0 2 9 7 31
0.25 13 7 1   0.33206 a 0 8 1 8 2.5755 18
0.27 11 2   0.5190 5 8 2.962 2

0.3 8 5 8  0.5651 7 3.268 7
9 INPUTS 

2.5942228  b 0.519
0.53
0.54

0.58

5 c 0.1 0146431 0. 224 4
5 0.2 3459263 0.500128201
3 0.2 0109543 0.519935463
9 0.140891 92 

4223 .587 9905  a 0.8877275 8 
9123 .643 4974  b 0.8860237 9 
77832 0.835028521 0.868 3976  

301  a
d 6911 7 

3292 6 d 0.568474568
2

32209 1.060458028 0.9333725 8 

0.24 16 8 6 5 0.5226 0 2 2.7137 17
0.25 13 9 2 6 4 2 0.5259 9 9 2.891 7
0.27 11 7 1 954  0.5080 9 3.051 7

0.3 8 1 4  0.6321 8 3.575 2
4 INPUTS 

0.509
0.53
0.53
0.56

2 a 0.1 3878419 0.4 7728 77 c 34642 0.749475577 0.790 7810  a 953  d

9 0. 2214 17 0.4 5758 51 a 04196 0.846688201 0.850 0735  b 4041 7 
8964 9 
2859 9 

3 0. 788 8 0.522971074
1 0.1 3157121 0.510632408

3

16431 0.824622695 1.0173907 9 
10595 1.331521721 0.9578640 4 

0.26 11 4 d 2 0.419449975 d 1 3.121 2
0.28 10 1 b 7  0.373036003 b 0 4 4 7 2.7068 18

0.3 8 74 3 4  0.579274031 5 3.244 0
 

a the best training res lt          e 2  best   c t               d the 4th   

0.138879 51 b 0.555999751 
0.1 6137416 0.531102764
0.1 9874 2  

0.535
0.519
0.54

u

0.831724637 1.1753394 5 3930 8 
502  .724 6026  d 0.9021137 1 

 1.000140976 1.0000538 2 

c

c 0.525451429

  

7947 8 

b th nd               the 3rd bes  best         
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From the testing results in Table 7.7, the four best FDI10 systems are: 

1. 24 inpu te ul

2. 

3. in te ul

4. 29 in te ul

 

Systems w e  er s f e FDI5 and the FDI10 systems 

are: 

1. 

2. he s  b in

3. he t s  in d

4. 

Th st

 the 

ber   st ber 

e ber 5 is 

s so the final errors are 

nced out  r p e lts for the FDI5 systems 

uch better than for FDI10 systems. To see whether the FDI5 is over trained, the 

 for every epoch of training and shown in 

l .8.  As comparison, two best FDI10 systems were also tested and the results 

are shown in Table 7.9. 
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c  Test 2 Test 3 Te

Table 7.8 Two Best-Trained 5-Minute Interval System Testing Result for Each Training Epoch 

Epo h # Test 1 Test 4 st 5 Error Sum 
Five Minute Interval System with roi=0  and 18 rules (Training Error=0.4318) .22, 24 inputs

1 0.14354421 400 .537 0.  7 
 3863 25 .532 0.75 0 d

3 0.172978905 d 0.524922662 0 0.74286112 c 0.701994717 c 2.682214202 c

 9623 80 449 0.71 b

6195 282 .54 0.70 0 a

   
Minu ste 34, 17 r  Er

1 0.135287767 0.463247468 a 0 0.87154058 0.79254761 2.823403857 
1324 586 578 0.7 d

4967 159 .57 0.7 0 c

8992 475 .57 0.76 0 b

 313 498 .58 0.75 0 a

 

a st ing       b     est 

3 a 0.524 917 a 0 98455 b 780729701 0.746990416 2.73364979
2 0.173 71 0.528 1454 d 0

b
19394 a 4967277 d .708019107 d 2.69681815 

.539456798 c

4 0.169 3 c 0.52 0073 c 0.5 57508 d 7618945 b 0.69431375 b 2.654853262 
5 0.1696 5 b 0.5 59882 0 6912877 7092742 a .685374525 a 2.637301982 

    
Five te Interval Sy m with roi=0.2 29 inputs and ules (Training ror=0.4509) 

.560780431 a

2 0.1317 4 d 0.474 913 c 0. 098437 b 81487984 d 0.74645471 d 2.712341288 
3 0.1305 8 c 0.475 238 d 0 905351 d 66294653 c .731671745 c 2.682728823 
4 0.1303 4 b 0. 88489 0 845429 c 2273999 b .724728412 a 2.671731516 
5 0.1298 08 a 0.474 701 b 0 1590867 7940106 a .726103723 b 2.669964704 

 the be train result      the 2nd best            c the 3rd best               d the 4th b          
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System Testing Result for Each Training Epoch 

 
Epoch # s s 4 Tes r

Table 7.9 Two Best-Trained 10-Minute Interval 

Te t 1 Test 2 Te t 3 Test  t 5 E ror Sum 
Ten M nute nterval Sy tem ith r i=0. , 29i I s w o 24  inputs  1 r g Erro 5092) and 6 rules (T ainin r=0.

1 . 6 0 5 0.8703 6 8 6
2 . 1 755 4 . 7  d 5 7 .84287  d 8 9
3 0 7 704 3 . 0  c 4 3 .81707  c 4 1
4 0. 1 693 1 . 8  b 4 1 .80207  b 2 2
5 0. 7 677 7 . 3  a 4 5 .79007  a 1 3

  
i I s w o 28  inputs  1 r g Erro 5191) 

1 2  401 6 0 5 0.9702 1 8
2 0 d 386 2 . 6  d 1 .94853  d 9651342 d

3 0. 5 . 9  c 8 0 .94181  c 2.888522422 c

4 0. 2 337 3 . 0  a 6 .92650  b 2.766623418 b

5 0. 3 311 6 . 3  b 2 2 0.90211  a 2.706850218 a
 

a the best trainin u  h    e           d 4 t  

 0 1838 5569 b 0.483745469 .54685018
 0 1834 9626 a

0.7
0.7
0.7
0.7
0.7

and
0.

0.8
0.7
0.7
0.7

 the 

68141
6841
9742
9892
9475

  
0 rul

85571
8153
2580
0484
4460

th

602
08 

 
0
0
0
0

ainin
 

0
0
0

6408
2643
7319
2993
8102

r=0.
8841
9754
3051
3068
3771

2.
2.7
2.7
2.7
2.7

3.0
2.9

5296
9013
8453
9042
3795

  

9790

91
44 

 

 

0.4 057 6 d 0 5303 4222
.18436495  0.4 591 5 

d d

c 0 5268 9382
1841 7254 d

56 b 49 c

0.4 776 5 b 0 5235 2262
1838 8419 c

53 c 78 b

0.4 285 7 a 0 5226 4642
 

Ten M nute nterval Sy tem ith r i=0. , 34
0.184 4418 0.5 119 1 

77 a 17 a

es (T
79
96 

d .54754584
.18306252 0.5 969 9 

297
c 0 5080 0257

1768 6637 c
d

62 c0.542277791 0 4449 4882
1759 9834 a 0.5 021 1 b 0 3700 3695
1761 7416 b

69 b

0.5 027 4 a 0 3730 6003

g res lt           

64 a

b t e 2nd best              c th  3rd best      bes          

 



 

80 

The testing results for the mechanical multilevel value FDI systems were not 

as clear as the bio lt de .  In the biological fault detection 

system, all test results were better with addi

c ith th u fault d e some have the best test results for 

th rst epoch of training and some have the best results at the last epoch of training. 

Although the FDI5 system  well as the FDI10 systems, the 

testing error r of training.  The 

additional error for tests that reach st result at the first or second epoch of 

training were sm r for tests that reached their 

b esul I10 systems had more uniform test 

r  in ev le rr .  

More training uced the test ors more than the FDI5 systems.   

These test results confirm  F 5 and the FDI10 systems were 

not overtrained.  The F e test files better 

than the FDI5 systems. 

 Altho  i

FD ing th ic of the 

response.  F e  response charts are 

shown in Figure 7.4 and 7.5 . 
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 (a) (b)  

(c)  (d)  

Figure 7.4 Normal Test Output for Mechanical Fault Detection System with 5-Minute Interval
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(a)  (b)  

(c)  
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Figure 7.5 Normal Test o echan ete  I Output f r M ical Fault D ction System with 10-Minute nterval
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 The differences between the charts are slight, signaling all systems performed 

during most of the testing period.  Th

the FDI5 system charts that suddenly dropped the EC µS/cm).  

This was a result of water addition and caused a    

Near the end of the responses, at the point 400-500 for the FDI5 systems and at 

the point 200-250 for the FDI10 systems, there were some points of the response that 

went farther away from the desired value.  Logged data showed that during that time 

period there were other experiments on the other tanks that day that needed additional 

computer subroutine.  Stopping the control and monitor program several times to 

include the needed subroutines caused missing sampling steps and the fault detection 

system recognized these as abnormal conditions. 

The three experimental tanks had identical numbers of lettuce plants and nearly 

identical nutrient solution conditions during the experiments.  Unfortunately, the 

rate of the nutrient changes in the solution is cond

presented additional noise and reduced the overall sensitivity for the FDI system.  The 

problem was pinpointed as the different flow rate and pattern of the airflow above the 

tanks.  The detail information about the evapoptranspiration can be found in Appendix 

B.   The FDI system performances f rmal condition can be seen in Table 7.10 

 

Table 7.10 FDI System Performances for Normal Condition 
FDI System Misclassification Correct Classification 

FDI5 with 24 inputs and 18 rules 1.6% 98.4% 

FDI10 with 29 inputs and 16 rules 0% 100% 

very well in recognizing the normal

evapotranspiration of the three tanks was found 

or no

 condition.  The response stayed very close to 1 

ere was a maintenance routine at the point 109 of 

 value slightly (about 40 

small spike in the systems’ responses.

ition 

to be different and, as the result, the 

 for each tank was different.  Th
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 (b 
(a) a)   (b) ) 

(c)   (d) 

Figure 7.6 pH Pump Fault Test Output for Mechanic l Fault Detection System with 5-Minute Interval 
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  (a) (b) 

©   (d) 

Figure 7.7 pH Pum ault D t S t - n ap Fault Test Output for Mechanical F etec ion ystem wi h 10 Minute I terv l
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It took 795 minutes for the FDI5 systems and for the FDI10 systems to 

after the maintenance period where the pH 

solution was added to the tank and slow

1530 for theFDI5 system and for the FDI10 systems.. The way the plants absorbed the 

nutrients (primarily nitrate) increased the pH of the nutrient solution.  The pH control 

pump controlled the pH value by injecting an acid solution to the circulat sy  

whenever the pH went above 5.8.   This is the reason why the fault detection system 

did not recognize the faulty condition from the minute 735 to 1530 for the FDI5 

systems and for the FDI10 systems where the pH control signal did not asked for any 

acid addition 

The pH control pump fault training data sets were formed to recognize the fault  

when the pH control pump was turned off at the beginning of the fault experim  

The implications are explained below. 

perfectly with 5-minute detection tim  

recognize only the faulty condition.  

tried to find symptoms of the faulty condition that did not become available until the 

minute 1530.  These FDI systems were forced to find some fault pattern during this 

period, which was not actually available.  As the result, the FDI systems f  e 

anomaly or noise in the data and used them as the fault symptoms.  This wrong 

training condition showed in every pH test responses and detected as a slightly faulty 

condition between the minute 735 and 1530 (the FDI5 systems and the FDI10 

systems) in this fault test. 

The pH could stay below the set point for more than a day when a large 

quantity of the concentrated nutrient solution was added to compensate the effects of 

recognize the pH pump fault as shown in 

The FDI5 system with only 19 inputs a

Figure 7.6 and Figure 7.7.  This happened 

was lower than 5.8 when the new nutrient 

ly increased until it crossed 5.8 at the minute 

stem

ent. 

 and

som

nd 8 rules can recognize this condition 

e.  The limited degrees of freedom forced it to 

  The better FDI systems had more freedom

ound

ion 



 

experiments in the different tanks.  The concentrated nutrient solution needed to bring 

e pH to drop only from 5.8 

 of about half a day to around 5.62 

in a 20 hour period.  One of the possible 

solution reacted to the sudden 

sed this change.  This phenomenon is 

all dip cause  l 

 The pH dropped to about 

 If the pH pump fault experiment started 

 would not show up before 32 hours 

noise than the FDI10 systems, where 

 the data sets.  The real fault period 

e 1530) was recognized successfully by all 

 performances for the pH 

 for pH Control Pump Fault 
FDI System Detection Time Misclassification Correct Classification 

the EC value up by more than 250 µs/cm initially caused th

to 5.75.  The pH kept decreasing in the course

before it gradually went up again to 5.8 

explanations is that the microorganisms in the nutrient 

change in the nutrient composition and cau

shown in Figure 7.8.  At the end of the graph there is a very sm d by smal

adjustment of EC that was done regularly every two days. 

5.76 and then gradually went up to 5.8 again. 

at the beginning of this period, the symptom

passed. 

The FDI5 systems responses have more 

data averaging reduced the amount of noise in

(starting from the minute 735 to the minut

detection systems with very little deviation.  The FDI system

pump test is shown in Table 7.11. 

Table 7.11  FDI System Performance

FDI5 (24 inputs and 18 rules) 5 minutes 0.1% 99.9% 

FDI10 (29 inputs and 16 rules) 10 minutes 0% 100% 
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(a)  (b)  

©  (d)  

Figure 7.9 Circ Pump Te utput for M a Fault Detec  te Intervast O echanic l tion System with 5-Minu l 
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(a)  (b)  

(c)  
(d)  

Figure 7.10 Circ Pump Fault Test Output for Mechanical Fault Detection System with 10-Minute Interval

MFIS24 (17 rules) Circ. Pump Fault Test Output
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The circulation pump fault was difficult to detect reliably using feedback from 

The cessation of the nutrient solutio irst one 

was the noisy sensor readings.  Most se lution flow to 

replenish the solution used in the chem rane.  The 

noisy reading will reduce the FD

noisy response from the FDI.  The ulation also caused a long delay for both acid 

injection and oxygen addition since they have to diffuse slowly through the solutio  

instead of being quickly distributed around the tank, including the sensor location.  

The diffusion rates were not constant along the long path between the injection sites 

and sensor location so each circulation pump will have different diffusion rates.  

Depending on the state of the nutrient solution, there were two sets of variab s 

that are important. One was pH and pH control; the other was DO and DO control

would keep decreasing even if the DO cont

well above set point in the system, there

circulation pump fault.   

The pH value can also be as n  

or already 5.8 and the pH control pump gave away small amount of acid to keep it at 

this value, the sudden stop of th irculation pump prevented the acid addition 

reaching to the sensor location.  The pH control increased the acid injection witho t 

any effect on the pH reading at the sensor for a long time.  The pH dropped 

significantly after the slowly diffusing acid in the nutrient solution reached the p  

sensor location.  The pH control would suddenly stop the acid injection although it 

was too late.  The pH would have dropped to around 3-4 which was low enough to do 

some damage to the roots. To reduce roots damage problem, the circulation pump fault 

sensors especially in the beginning of the fau

the DO value was low in the beginning of th

lt as shown results in Figure 7.9 and 7.10.  

n circulation caused two problems.  The f

nsors need a minimum so

ical reaction around the sensor memb

I sensitivity in detecting the fault and can cause a 

 circ

n

le

.  If 

early

u

H

e fault and the DO control was on, the DO 

rol increased.  If the DO concentration was 

 was no DO control signal feedback for the 

 used to detect this fault.  If the pH value w

e c



 

experiments were kept to be as short as possible. In the beginning of the fault, the 

 as  the symptom detected from the 

e the pH suddenly 

e sensor location.   

d the solenoid valve to let s  

pure oxygen dissolve into the circulation pipe at the minute 445.  It took between 5-10 

minutes for the oxygen to reach the sensor location, and more time was needed for the 

oxygen to reach the top limit of 7 mg/l.  The DO control was on for 20 minutes (four 

data sampling points).  During this delay, the DO value kept dropping and the FDI5 

 the way to the circulation pump fault value 

eady increased but since the desired max limit 

ined on.  The circulation p

beginning of the circulation 

is point the DO dropped faster than its usual rate and the 

e behavior.  This condition 

 so much, the noise was 

ng for the DO addition continuo   

At this point the FDI systems finally detected the condition as a circulation fault after 

a few sampling steps following minute  525.   

The FDI can definitely detect a circulation fault if the symptoms fro e  

or both the DO and the pH are positive.  If the only symptom available was from

the symptom was similar to a pH control pump fault and the FDI system needed m  

symptoms to detect it correctly. 

   The normal portion of the test responses was very noisy but for most of the 

time stayed below 1.5 and averaged around 1, which can still be defined as normal.  

The FDI systems responded differently to the chaotic period between the minute 470 

symptom detected from the  pH value was the same

pH control pump.  The difference is after a long period of tim

decreased by the time the diffused acid injection reached th

For this particular test, the DO control opene ome

ump 

usly.

 DO

 pH, 

ore

system output rose to about 2, two thirds of

of 3.  At this time the DO value had alr

value was still not reached, the DO signal was rema

was intentionally turned off at minute 470 signaling the 

pump fault experiment.  At th

DO sensor reading was erratic.  The pH sensor had the sam

changed at minute 525 where the DO value decreased

insignificant and the DO controller started aski

m th
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and the

 zero 

and th

 Time Misclassification in Fault 3 Correct Classification 

 minute 525.  Figure 7.9a (FDI5) shows the response jumped to a value of 4 

during this period while the other responses stayed between 1 and 2.  The FDI system 

response in Figure 7.9b detected the fault successfully as a circulation fault after the 

minute 525 and the response value stayed around 3.  The other charts had response 

values between 2.5 and 3, signaling that some of the rules in the FDI systems 

considered this as the pH control pump fault symptom and the aggregate output was 

down a bit although still considered as circulation pump fault.  The FDI10 systems 

responses are similar to the FDI5 system with a little less noise caused by data 

averaging. 

The FDI system for this fault can be formed better with adding a flow sensor 

somewhere along the pipe.  As soon as the flow stops the flow rate will be around

e FDI can easily recognize this as the circulation pump fault.  Although 

additional costs are involved, it can be justified based on the irreversible effect of the 

destruction to the plants roots caused by the excessive acid addition.  The FDI system 

performances can be seen in Table 7.12. 

Table 7.12 FDI System Performances for Circulation Pump Fault 

FDI System Detection

FDI5 45 minutes 2.2% 97.8% 

FDI10 60 minues 4.3% 95.7% 

 

 

93 



 

 

94

 (a)  
(b)  

(c)  (d)  

Figure 7 p e r Faul s t e n t tec w 5 n nterva.11 H S nso t Te t Ou put for M cha ical Faul De tion System ith -Mi ute I l 

MFIS24 (1  rule  pH ens  Fau

0

1

2

3

4

5

6

7

0 10 0 2000 30 0 4000 50

Time ( inute )

Fa
ul

t (
0-

5)

8 s) S or lt Test u

0 0 0

m s

Outp t

0

MFIS2  outpu4 t
Fault

MFI 24 (1  rule ) pH ens r Fau t Tes

0

1

2

3

4

5

6

7

0 2000 4000 50

Time (minute )

Fa
ul

t(1
-5

)

S 3 s  S o l t

1000 3000 0

s

 Output

0

MFIS 4 outp2 ut
Fault

MFI

0

1

2

3

4

5

6

7

0 1

Fa
ul

t (
0-

5)

S29 (17 s s o l t

000 3000 4000 5000

 ( e

 rule ) pH ens

2000

Time minut s)

r Fau t Tes  Output

MFIS 9 outp t2 u
Fault

MFIS  senso ul st p

0 0 50

 ( te

19 (14 rules) pH

00 2000 3 00

Time minu s)

r Fa t Te  Out ut

4000 00
0

1

2

3

4

5

6

7

0 1

Fa
ul

t(0
-5

)

FIS 9 Outp t1 u
Fault



 

95

(a)  (b)  

(c)  

MFIS24 (17 rules) pH sensor Fault Test tput

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000

Time (minutes)

Fa
ul

t (
0-

5)

(d)  

Figure 7.12 pH Sensor Fault Test tput for Me i F  c  Syste  with 10-Minute Interval  Ou chan cal ault Dete tion m

 Ou

MFIS2 u4 Outp t
Fault

MFI

0

1

2

3

4

5

6

7

0 1 00

Fa
ul

t (
0-

5)

S24 (13 s) t  O

0 2000 0 4 0

Time (m s

 rule  pH sensor Faul Test utput

30 0 000 500

inute )

M  FIS24 Output
Fault

MFIS29 (16 rules) pH sensor Fault Tes t

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 500

Time (minutes)

Fa
ul

t (
0-

5)

t Ou put

0

MFIS29 Output
Fault

MFI 34 (

0

1

2

3

4

5

6

7

0 1 00

Fa
ul

t (
0-

5)

S 10 rules t  O ut

0 2000 0 4 0

Time ( es

) pH sensor Faul Test utp

30 0 000 500

minut )

M  FIS34 Output
Fault

 



 

96 

Sensors in general have a tendency to drift away from their calibrated state.  

linear drifting is harder to detect correc

changing sine noise with amplitude of 1 late the 

drifting.  The sine wave changed from inim

value of 3.8, simulating the pH sensor reading drifting down and drifting up.  The pH

value drifting with sine wave noise is shown in Figure 7.13. The peaks of the sine

wave were clipped in the chart.  The real pH value increased slowly during the test 

time so by the time the simulated pH reached the top of the wave, it was above the set 

point.   The pH control injected some acid to 

behavior added some noise for the detection system to overcom

zero for all other parts of the test. 

 

 

The drifting can be linear or non-linear de

Figure 7.13 pH Values with Sine Wave Noise in pH Sensor Test Data 
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H sensor test data
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Time (5 min int)

pending on the type of sensor.  The non-

tly.  The pH sensor fault test used a slowly 

and period of 525 minute to simu

 the maximum value of 5.8 to the m

correct this condition.  This nonlinear 

e.  The pH control was 

um 

 

 



 

Figure 7.11 and Figure 7.12 shows the pH sensor fault test result for the FDI5 

l parts of the responses did not always follow the 

s of the three tanks were 

 in the normal condition test 

sy responses and had values closer to 

diately and the fault v  w  

up to 4.  The symptoms for this fault was gradually weakened since the pH value 

drifted up again to the normal condition in a sine wave period of 105 sampling steps 

after the error was introduced.  The fault value went down to near 1 before going up to 

is behavior periodically happened in the 

ng up and down again.  The FDI system 

nces for pH Sensor Fault 

and FDI10 systems.  The norma

intended values.  This problem surfaced since the condition

not completely identical with each other, as mentioned

discussion.  The FDI10 systems had less noi

normal. 

The FDI systems identified the drifting imme alue ent

4 again following the sine wave noise.  Th

FDI result as the value of the pH drifti

performances can be seen in Table 7.13. 

 

Table 7.13 FDI System Performa

Missclassification 
FDI system Detection time 

Normal Fault 1 Fault 2 Fault 4 

Corre

classification 

ct 

FDI5 90 minutes 0.8% 1.9% 16.3% 4% 77% 

FDI10 30 minutes 0.3% 0.9% 12% 0.6% 86.2% 
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(a)   (b) 

(c)   (d) 

Figure 7.14 EC Sensor Fault Test Output for Mechanical Fault tec w De tion System ith 5-Minute Interval 
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The simulated EC sensor fault was similar to the pH sensor fault.  The 

 The value of the 

EC slowly increased from 1243 µS/cm

the true value of 1243 µS/cm.  It kept decr

then increased again, following the si

The sine wave noise in EC values wa e 

sine noise started at the minute 305 where 

amplitude was 300 µS/cm, the top value was 1543 µS/c

top at the minute 440. Suddenly at the m

minute 465 dropped to 1464.  The drop was ca

added water and concentrated nutrient soluti l and EC.  In 

this particular maintenance, only wa nt.  The 

sudden drop in EC caused a spike in the s response at the 

minute 470 as shown in Figure 7.14. 

 the test 

compared to the pH sensor test as s

(FDI10).  The faulty condition part of the te  

pH response.  Since the EC value goes up an  with the set point 

value as the zero value for the sine wave, the set point valu  

minutes instead of 525 mi

The FDI systems recognized th is EC 

sensor fault.  It also detected the faulty l 

condition better with less noise.  The fault value dropped to 4 when the sine wave 

noise was around zero and the EC value equaled the set point. 

 

 

 The result of EC sensor fault test wa

difference can be found by comp

s better for the normal part of

hown in Figure 7.14 (FDI5) and Figure 7.15 

st responses was also less noisy than the

d down as a sine wave

e was reached every 270

nutes as in the pH sensor fault.   

e normal condition satisfactorily for th

 condition better since it recognized the norm

aring Figure 7.13 and Figure 7.16. 

 to 1543 µS/cm and slowly decreased back to 

easing to reach the lowest value of 901 and 

ne wave. 

s smooth except for the first wave.  Th

the EC value was 1243 µS/cm.  Since the 

m as shown at the first wave 

inute 470 the EC value that was 1519 at the 

used by a maintenance routine that 

on for maintaining water leve

ter was added without EC adjustme

EC sensor FDI system

a
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Figure 7.16 EC Value with Sine Wave Noise in EC Sensor Test Data 
  

The FDI10 responses were less noisy than

minute data had less noise compared with the 5-mi

 the ones for FDI5 systems.  The 10-

nute data set.  The faulty cond  

cation for fault values of 3 and 2 

 was caused by the sine w  

simulation of the EC sensor drifting where the value drifted up and down around the 

real EC value.  The FDI system performances for the EC sensor fault are show  

Table 7.14. 
 

Table 7.14 FDI System Performances for EC Sensor Fault 
Misclassification 

ition

ave

n in

was identified most of the time with some misclassifi

and many for a fault value of 4.  This noisy condition

FDI system Detection time 
Normal Fault 1 Fault 2 Fault 3 

rr

classification 

Co ect 

FDI5 15 minutes 0% 1% 1.3% 14.9% 82.8% 

FDI10 50 minutes 0% 0% 5.3% 15.3% 79.8% 
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7.8 Result Summary 

 
Table 7.15 Detection Times of NF Mechanical FDI Systems 

 10min 20min 30min 40min 1h 1.5h 6h 8h 13h 

Fault 1 0% 0% 100% 100% 100% 100% 100% 100% 100% 
Fault 2 0% 100% 100% 100% 100% 100% 100% 100% 100% 
Fault 3 0% 0% 100% 100% 10
Fault 4 0% 100% 100% 100% 10

0% 100% 100% 100% 100% 
0% 100% 100% 100% 100% 

 

Detection time for the NF FDI systems for fault 1 to fault 4 are shown in Table 7.15.  

All faults were detected within 30 minutes from the beginning of the faults.  This fast 

detection gives enough time for grower to correct the situation before it affects the 

plant quality.   

 

Table 7.16 Classification Percentages of NF Mechanical FDI System Responses 

Classification in: Tested data set 
Normal Fault 1 Fault 2 Fault 3 Fault 4 

Normal 99% 1% 0% 0% 0% 
Fault 1 0% 100% 0% 0% 0% 
Fault 2 0% 0% 96.7% 3.3% 0% 
Fault 3 0.6% 1.4% 14.2% 81.6% 2.3% 
Fault 4 0% 0.5% 3.3% 15.1% 81.3% 

 

The normal condition can successfully be recognized by the NF Mechanical FDI 

systems with 99% correct classification as can be seen in Figure 7.14.  The Fault 1 

(the pH control pump fault) has 100% classification.  The FDI system can identify the 

fault pa

ig challenge to the FDI 

system rectly detected the faulty condition but they failed to correctly 

classify he faults for 22.5 % and 49.4% of the time.   By repositioning both periodic 

ttern accurately. The fault 3 and the fault 4 are periodic faults.  They drifted to 

one direction slowly and drifted back slowly to another direction.  These faults 

represented incipient and intermittent faults in the system.  The intermittent nature of 

being normal in an instant and faulty at another instant gave a b

s.  They cor

 t
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faults to levels next to the normal condition, the correct classification percentage can 

jump to 99.4% for the “Fault 3” and 98.6% for the “Fault 4”. 
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CHAPTER 8 

NEURO-F ARISON 

 

A Multi Lay erc  (M e etw ith one hidden laye

de faul he sy sed is h tin 2)

neural network (NN) FDI system response charts start from the beginning of the fault 

 

8.1 Biological Fault Responses Comparison 

 Three test files were used to compare the neural network (NN) and the neuro-

I systems.  The first tw ented transpiration fault 

experim presented a norma ion.   

  1 (transp on fault responses from  and th FDI syste an 

be seen at Figure 8.1.and Figure 8.2.  Both responses are noisy with the NN response 

oscillating more between the faulty (value of 1) and the normal conditions (value of 

UZZY AND NEURAL NETWORK FDI SYSTEM COMP

 er P eptron LP) N ural N ork w r was 

used to tect t ts in  same stem u  in th researc (Feren os 200 . The  

experiment so the comparisons are made from this point.  The same time periods are 

observed for each methods. NN system performance definition is the same as the one 

for the neuro-fuzzy biological FDI system described in section 6.5. 

fuzzy (NF) FD o files repres

ents and the last one re l condit

Test irati  the NN e NF ms c

0).  The NF also oscillates with the same pattern but with less amplitude. Periodic 

maintenance activities had a large impact on the NN response and a smaller impact to 

the NF FDI system. The detection time for the NN was about 180 minutes and for the 

NF is only 50 minutes.  The main cause for the long detection time for the NN  was 

the inability for the NN to reduce the effect of noise in the system.  The correct 

classification is about 65% for the NN and 99% for the NF. 
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Figure 8.1 The NN (courtesy of Ferentinos, 2002) ) Output During The First Testing Data Set (Faulty Operatio
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Figure 8.3 The NN (Courtesy of Ferentinos, 2002) Output During The Second Testing Data Set (Faulty Operation)
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Figure 8.4 The NF Output During The Second Testing Data Set (Faulty Operation) 
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Figure 8.5 The NN (courtesy of Ferentinos, 2002) Output During The Third Testing Data Set (Normal Operation) 
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Figure 8.6 The NF Output During The Third Testing Data Set (Normal Operation) 

 

BFIS30 (34 inputs and 39 rules) Test 3 Output

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

1

0 100 200 300 400 500

Time (10 min int)

Fa
ul

t (
0-

1)

 

 



 

111 

 

 Test 2 responses for faulty condition can be seen in Figure 8.3 and Figure 8.4.  

They are better for both the NN and NF compared with test 1. The respon

noise especially for the NF FDI system. The periodic maintenance disturbance is very 

pronounced in the NN while it is significantly reduced for the NF response.  The 

detection time for the NN is about 120 minutes while it is 10 minutes for the NF. 

Covering the leaves took about 30 minutes and the NF FDI system started identifying 

the problem in the end of the covering process. Correct classification is 75% for the 

NN and 100% for the NF. 

 Both FDI systems have good responses for the normal conditions as seen in 

Figure 8.5 and Figure 8.6.  Both responses are a little noisy but most points are below 

the normal condition limit.  Correct classifications are 98% for the NN and 100% for 

the NF.  The summary of the NN and NF FDI systems performances can be seen in 

Table 8.1. 
 

Table 8.1 The ANN and The NF FDI Systems Performances 

Test # and Type FDI system Detection time Misclassification Correct classification 

ses have less 

NN 180 minutes ±35% ±65% Test 1 Transpiration Fault 
NF 50 minutes 0.60% 99.40% 
NN 120 minutes ±25% ±75% Test 2 Transpiration Fault 
NF 0 minutes 0% 100% 
NN NA ±2% ±98% Test 3 Normal condition 
NF NA 0% 100% 

 

8.2 Mechanical Fault Responses Comparison  

The NN and NF FDI responses for the normal condition test can be seen in 

Figure 8.7 and Figure 8.8.  Both the NN and NF FDI systems can identify the normal 

condition very well. Correct classification is 100% for both systems. 
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Figure 8.7. The NN (Courtesy of Ferentinos, 2002) Outputs During a Data Set of 
normal operation 

Figure 8.8. The NF Output During a Data Set of Normal Operation 
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Figure 8.9 The NN (courtesy of Ferentinos, 2002) Outputs During pH Pump Fault. 

0 20 40 60 80 100 120 140 160
0

0.5

1

N
N

 o
pu

t 1
ut

0 20 40 60 80 100 120 140 160

0.5
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Responses for “Fault 1” (the pH control pump fault) are shown in Figure 8.9 

and Figure 8.10.  There is a little up and down movement in the NN and NF FDI 

systems in the beginning of the fault (from point 0 to 50 in the NN response and from 

point 71 to 151 in the NF response). A possible explanation for this condition is that 

the FDI systems were trained to identify the condition as fault 1 where there was no 

symptom available until the pH control pump was asked to add acid and failed to do 

so.  They picked up noise and identified this condition as a faulty condition. The 

responses of the neuro-fuzzy FDI system are mostly below 0.4 during the period 

without pH control except for two spikes which can be regarded as noise.  Detection 

time for the NN is about 500 minutes and for the NF is about 800 minutes.  As 

discussed in chapter 7, the pH control pump was not always working.  If the pH value 

wa m 

the pump. This condition could ex urs. 

Both FDI systems identified the faulty condition immediately and steadily after 

the pump failed in fulfilling the pH control signal request.  The output of the NN FDI 

system stayed at a steady state value of 0.8 during the real pH control pump fault.. The 

NN FDI systems may not fully recognize the symptom pattern as fault 1 and small 

deviations occurred at the fault 3 and 4 output. The NF output remained close to the 

desired fault level 2 after the pH control pump failed to inject the requested acid, 

starting from point 151. The faulty condition was fully recognized as a pH pump fault 

condition and the real detection time was about 30 minutes. 
 

 

s below the set point of 5.8, the pH controller did not request additional acid fro

ist for 8 or more ho
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Figure 8.11. The NN (courtesy of Ferentinos, 2002) outputs during a circulation
pump fault  
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sed by the sinusoidal nature 

of the 

 gives misclassification of 

the fa s discussed in the chapter 7, using a fault value close to normal for the 

fault with oscillating behavior can significantly reduce this problem.  If the pH sensor 

fault were put on level value 2, the fault value 4 in Figure 8.8 would be equal to 2.  

Value of 2 would be equal to 1.5, the half point between normal and the fault.  In this 

configuration, only one point of the response is misclassified. 

Circulation pump fault responses for both systems can be seen in Figure 8.11 

and Figure 8.12.  As can be seen from the response in Figure 8.8, this particular fault 

was problematic for the NN.  This problem was especially pronounced near the end of 

the fault response.  Output 1 for normal condition and output 5 for EC sensor fault 

condition stayed around 0.5 for most of the testing period.  For the last few points, the 

NN FDI system gave a false identification as EC sensor fault. The NF FDI system 

detected the fault correctly for the whole dataset.  The symptoms for the last few 

points were weakened but the response was still above the threshold value of 2.6. 

 pH sensor fault responses for both NN and NF can be seen in Figures 8.13 and 

8.14.  The NN FDI system can recognize the faulty condition very well except for the 

last few points.  There are several misidentifications for circulation pump fault and EC 

sensor fault, all are coincident with the weakening detection for pH sensor fault.  The 

periodic weakening of pH sensor fault detection was cau

drifting simulation.  Whenever the pH value came close to normal, the fault 

symptom weakened.  Similar to the response for circulation pump fault, there were a 

few points at the end of experiment where the response gave false identification of the 

faulty condition as circulation pump fault and EC sensor fault. 

The NF FDI system also had the similar periodic response compared with the 

NN FDI system.  Whenever the sinusoidal drifting went to around normal, the system 

response went back to fault level 2.  This behavior posts a serious problem for any NF 

FDI system since the up and down nature of the output value

ult.  A
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igure 8.13 The NN (courtesy of Ferentinos, 2002) outputs for pH sensor fault 
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Figure 8.15 (courtesy of Ferentinos, 2002) The NN Outputs During EC Sensor Fault 
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 The NN and NF FDI system responses for EC sensor fault can be seen in 

Figures 8.15 and 8.16. The NN FDI system response has a periodic up and down 

pattern for “normal”, “Fault 3” (pH sensor fault) and “Fault 4” (EC sensor fault) 

system outputs.  The FDI system responses correctly identified the “Fault 4” condition 

most of the time. Drifting of the electrical conductivity (EC) sensor is also represented 

with a sinusoidal wave so every time the EC value got closer to the normal value, the 

symptom weakened and was shown as “Normal” and “Fault3” outputs. 

 The response of the NF FDI system also has a periodic pattern.  Similar to the 

NN FDI system, the pattern is repeated in about 100 points, the period of one 

sinusoidal wave.  As in the previous fault comparison, a fault with periodic drifting 

should not be located too far from the normal condition since the oscillation will cause 

false identifications.  If the EC fault were located next to normal, the fault value of 5 

would be 2.  With this arrangement, only two points would cross the halfway point to 

normal and be misclassified.  The NN FDI system response would be identified 

correctly 98.6% of the time.Fault detection and identification system performance (as 

discussed before) is measured by detection time and correct classification.  Table 8.2 

shows detection times of the NN FDI and NF FDI systems. 

The NN FDI system has faster detection time for fault 1 and 2 while the NF 

FDI has faster detection time for fault 3 and 4.  Fault 1 detection times depend 

strongly on the testing data set.  If the pH value stays below the set point for 8 hours, 

the failure of the pH pump can not be detected for at least 8 hours, so the detection 

time in Table 8.2 is a bit misleading for “Fault 1”.  If the detection time definition for 

this particular fault is revised as the time between when the pH control program asks 

the pH pump to inje  output of the FDI 

ystem, the detection time for the NN FDI and NF FDI system responses are about the 

me at 30 minutes. 

ct acid and the faulty condition is detected at the

s

sa
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Table 8.2. Detection time of the NN and the NF FDI systems 

 Type 10min 20min 30min 40min 1h 1.5h 6h 8h 13h 
NN 0% 0% 0% 0% 0% 0% 33% 66% 100% Fault 

1 
NF 0% 0% 0% 0% 0% 0% 0% 50% 100% 

NN 50% 100% 100% 100% 100% 100% 100% 100% 100% Fault 
2 

NF 0% 100% 100% 100% 100% 100% 100% 100% 100% 

NN 0% 0% 0% 0% 0% 50% 100% 100% 100% Fault 
3 

NF 0% 0% 100% 100% 100% 100% 100% 100% 100% 

NN 0% 50% 100% 100% 100% 100% 100% 100% 100% Fault 
4 

NF 0% 100% 100% 100% 100% 100% 100% 100% 100% 

 

 Correct classification of the operating condition is another important measure 

o  

samples for normal and faulty conditions.  The normal condition is correctly classified 

by the NN and NF FDI system about 99% of the time.  By looking at the response 

chart for both NN and NF FDI systems, “Fault 1” responses are the best among fault 

responses but it does not represent the number in Table 8.3.  The pH control pump is 

not always on as it was mentioned above.  If the classification definition starts at the 

time when the pH control pump failed to inject acid, the correct classification jumps to 

99% for both NN and NF FDI system.   

The false classification of 1% is only between the first time the pH control 

system asks the pH pump to inject acid and the time when the fault is detected at the 

FDI system’s output.  The discrepancies during this period can be classified as 

detection time and it is not misclassification as used by Ferentinos.  Ferentinos defined 

correct classifica cies during the 

detection time period.  With this definition, ystems with slower detection time will be 

f the FDI system performance.  Table 8.3 shows the classification percentages of data

tion for every sample points including any discrepan

 s
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penalized twice; they have long detection time in addition to a higher misclassification 

percentage. 

 

Table 8.3. Classification percentages of data samples of normal and faulty conditions 

Classification in: Tested 
data set Type  

Normal 
 
Fault 1 

 
Fault 2 

 
Fault 3 

 
Fault 4 

Unknown 
fault 

NN 99.2 % 0.2 % 0.4 % 0.2 % 0 % NA Normal 
NF 99% 1% 0% 0% 0% 
NN 25.5 % 

NA 
70.1 % 0.2 % 0% 4.2 %Fault 1  0 

NF 43.7% 56.3% 0% 0% 0% NA 
NN 1.9 % 0% 92.4 % 0% 3.8 % 1.9 % ault 2 
NF 0% 17.4% 

F
82.6% 0% 0% NA 

NN 0% 0% 1.5 % 92.1 % 3.9 % 2.5 % Fault 3 
NF 0.3% 3.9% 13.2% 77.5% 5.1% NA 
NN 1.8 % 0 1.7 % 2.4 % 92.9 % 1.2 % Fault 4 
NF 0.6% 1.7% 1.7% 29.4% 50.6% NA 

 

 The NN FDI system has better classification percentage compared with the NF 

FDI system for the “Fault 3” and the “Fault 4” conditions.  Although these responses 

are strong points for the NF FDI system, incorrect fault level arrangement made it look 

like the weakest points.  By adjusting both periodic faults to level next to normal 

condition the correct classification percentage can jump to 99.4% for “Fault 3” and 

98.6% for  “Fault 4”. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE RESEARCH NEEDS 

9.1 Conclusions 

 Using the indirect way to detect faults in this thesis is shown to be satisfactory.  

The NF FDI system  a o tt o  and generalization capability 

as  tes ults he etection system can readily reco d

faults in the t pr ctio ste

 he syst  wi  to p r d o  b fa

in detecting faults in the hydroponic system although some literature does not 

recommend using more than 14 inputs (Jung 1998). The FDI systems with more inputs 

an detect the fault in less than 50 minutes, 

which i

 

 has  very g od pa ern rec gnition

shown in the t res .  T NF d gnize esired 

 plan odu n sy m.   

T NF ems th up  39 in uts we e teste  and sh wn to e satis ctory 

performed better than systems with a lower number of inputs.  The NF biological FDI 

system with 39 inputs (the highest number of inputs) had the least training error and 

the best performance in detecting a severe transpiration fault in the system.  The 

transpiration fault was detected in 50 minutes and the misclassification was less than 

1%.  A simple heuristic filter discussed in Chapter 6 can improve the correct 

classification to 100%.  

The NF biological FDI system with a dedicated output for transpiration fault 

performed satisfactorily.  It can tolerate maintenance and harvesting period 

disturbances better than the ANN.  It c

s half the time needed by the  ANN. 

The multi level value fault detection system is simpler than a multi output 

system.  The widespread method of using a single system to detect one fault and 

combine many systems in parallel needs even more training time.  This characteristic 

can significantly reduce development time for implementing the FDI system for the 

grower’s particular system.  The multi level value NF FDI system tested in this 
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research performed satisfactorily in testing using real experimental data and can be 

applied directly in real time production systems.  The real advantage of this system is 

the sim licity of the multilevel value output.  The grower only has to see one real time 

g

 error e only indicator, the w rs lts are for the sensor 

faults.  real o atin io ot c.  

If the drifting is only one-way, the fault de ect stem s less noise since it does 

not go back and forth from faulty condition to   U  thes  to ent 

incipie interm nt fa  at the  tim y t  ca ty o DI 

system reduc thes ts to -way drifting, the FDI system responses to 

ese faults are com

 uninterrupted production. 

 Manual adjustment and maintenance of the production system should be 

reduced as much as possible.  The random nature of the manual adjustment is difficult 

to be modeled in the FDI systems and caused much of the noise in the FDI system 

responses.  Automatic regulation of water level and nutrient solution concentration 

(EC) can minimize these disturbances.   In addition, these control signals can be used 

as additional inputs to increase FDI system sensitivity.   

 

p

raph with each level on the graph representing different system conditions. 

If the  is th o t FDI test resu  

  In the per g condit n, the drifting is only one-way and n periodi

t ion sy  ha

normal. sing e faults  repres

nt and itte ults  same e reall ests the pabili f the F

s.  By ing e faul  one

th parable to other faults. 

A combination of redundancy type of fault detection with the indirect type of 

fault detection developed in this research produces a very robust fault detection system 

for the plant production system.  Duplicating sensor and mechanical components make 

the down time for maintenance close to zero so the production system is not disturbed.  

Growers must consider the balance of cost and benefit for this setup.  A robust and 

reliable system guarantees
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9.2 Future Research Needs 

 With r  long time to 

have more sensitive and reliable sensors r non-disturbing continuous control and 

monitoring of ion concentrations and plant’s states.  The FDI algorithm developed in 

this thesis is ready to explore more and accurate details for biological faults with these 

sensors. 

The three experimental tanks had identical numbers of lettuce plants and nearly 

identical nutrient solution conditions during the experiments.  Unfortunately, the 

evapotranspiration of the three tanks was found to be different and, as the result, the 

rate of the nutrient change in the solution for each tank was different.  This condition 

presented additional noise and reduced the overall sensitivity for the FDI system.  The 

problem was pinpointed as the airflow above the plants had different flow rates and 

patterns.  This caused the evapotranspiration to be larger in one tank compared with 

the others. The detail information about the difference of the evapotranspiration 

between the tanks can be found in Appendix B.   The result of this research is 

encouraging to make the condition of the experiment tanks as identical as possible so, 

the FDI system would have better results. 

The research was based on the hypothesis that the most important fault had to 

be placed next to the normal condition and the least important error was positioned the 

farthest from the normal condition.  In a real production system, early detection of 

significant faults that could cause complete failure should be prioritized.  It is thereby 

reasonable to position the more dangerous fault close to normal since it would have 

less noise and the best sensitivity.   

Since there were 5 different conditions for the multilevel value mechanical FDI 

system, optimizing the fault positions was important to minimize the errors and choose 

the best FDI system.  Since the output was one dimensional, the arrangement of the 

apid advancement in sensor technology, it should not take a

fo
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fault position influenced the error for that particular fault in the FDI system.  The pH 

control pump fault with a value of 2 had the best position.  It was positioned next to 

normal condition with a value of 1.  In detecting that fault, the FDI system output went 

directly from normal to that particular fault without crossing another fault.  On the 

other h

ntifier for amplified noise for the higher 

value f

H control pump fault and fault 

ol pump fault.  Average error 

is defined as the sum of all errors divided by the population size.  Since this error is 

linear, it can be used directly to compute equalized error and can be seen in Table 9.1.  

The error value of fault level 5 was divided by 4 to equalize the distance error.  Fault 

and, the EC sensor fault had a value of 5, to detect this condition the FDI 

system output in normal condition had to go through the other faults first before 

reaching this particular fault.  If the symptoms for that particular value were weak for 

a while, the fault value would go through another fault before reaching normal.  So its 

sensitivity to noise was multiplied by the distance and as a result had more 

misclassification.  

The distance can be used as a qua

aults.  The pH control pump fault that had a value of 2 was used as a standard 

since the distance from normal condition to this fault was 1.  For the circulation pump 

fault with the fault value of 3, the distance was 2.  If noise and weak symptoms of a 

circulation pump fault caused the fault value to oscillate between 1 and 3, the error 

would be twice as large as the pH control pump fault that oscillated between 1 and 2.  

A fault value of 4 had three times the distance of p

value of 5 had fourth time the distance.   

The error calculated for the test was Root Mean Squared Error (RMSE), which 

gave more penalties to bigger deviations and less for small ones.  RMSE is defined as 

the sum of all squared error divided by population size and then taken to the square 

root.  Since it is not linear (average error is) we can’t just divide the error from fault 

value 5 by 4 to equalize it with the error of the pH contr
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level 4 was divided by 3 and fault level 3 was divided by 2.  Equalized distance errors 

est 5 for EC sensor fault with the best error of 0.113126188 

4. 

articular fault for the FDI systems is small 

but the

can be seen in Table 9.2.   

The order of the test result based on equalized error in Table 7.9 is: 

1. Test 2 for pH control pump fault with the best error of 0.057871024 

2. Test 1 for normal condition with the best error of 0.088077271 

3. T

Test 3 for circulation pump fault with the best error of 0.128570859 

5. Test 4 for pH sensor fault with the best error of 0.131756572 

Fault value of 2 for pH pump fault has the least error of 0.057871024.  This 

number is less than half of 0.131756572 for worst tested fault value of 4.  This is a 

very significant difference in the errors and could mean that the arrangement of faults 

can be improved in the future.  Since the error will be multiplied for the faults farther 

from normal, it is logical to put the faults with least errors farther away from normal to 

minimize the interference with neighboring faults.   

The range of error and the average error of the responses can also be used as 

additional information in determining the best placement of the fault in the multi level 

value FDI system.  If the least error of a p

 average error of all FDI systems for that fault is large then there might be a 

problem in putting the fault farther from normal.  This means the trained FDI systems 

with different compositions will give a wide range of performance for this fault. The 

error range data will more strongly support this observation.  The compromise is that 

if the fault responses for the tested systems are broad in range, a fault level position 

closer to normal is better. 
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 Mechanical Fault D m m nute inTable 9.1 Mean Error Testing Result of etect

Testing Error 

ion Syste  with 5- i terval 

 
roi Ru es Train ng Error test 1l i  3 test 4 5 Stest 2 test  test  Error um 

19 INPUTS 
0.25 14 561 0. 2557

0.3 8 0 6035 0.1269
0. 1 6 95269 . 2  a

. 8 . 2 . 6 0.6282 . 3 2 1
741 0.063033321 b 0.34526135 b 0.3
805 0 1233 1373 0 4915 9831 

24 INPUTS 

715 a 0 5307 2196 1.712296323 
2609 0 7865 1767 .40907011  

0.22 18 0 4318 0. 2416
0.25 13 0 4539 0. 1869
0.28 9 0 5001 0. 1492

0.3 8 0 5166 0. 1462

 . 1 2 . 9 . 5 205432 8 b

 . 1 8 . 9 . 6 055665 c

. 1 5991 . 8 .73971 . 3 2 2

. 1 3148 . 8 . 6 .87825 . 2 2 4

224 0 0955 0199 0 4138 4572 0.5
785 0 1407 4917 0 3671 5126 0.5

 0 0933 1861 0.349393546 

29 d 0.483655953 b 1. 90239176 
81 b 0.51908931 d 1.903747719 

c 0
 0 1189 7069 0 4251 0061 0

29 INPUTS 

3801 0 5822 7733 .13208593  
0279 0 6024 0807 .39187436  

0.234 17 0 4509 0.0 8077
0.24 16 0 4542 0.0 8440
0.25 13 0 4699 0.134

 . 8 271 a . 2  17740 . 9 d

. 8 736 b . 7 .60035 . 2 2 2

. 6544 .86966 . 8 2 5

0.081255945 c 0 4591 0707 0.5
0.057871024 

734 c 0 50738127 c 1. 06008927 
2722 0 6001 3927 .03059635  
0412 0 5343 6353 .13829319  

a 0 4313 4943 0
 0.090017311 d 0.257141718 a 0

34 INPUTS 
0.26 11 0 4731 0. 7340
0.28 8 0 4672 0.1 4269

0.3 7 0 5279 0.1 0788

 the best tra ning result         

. 1 4449 0 9 . 7 .54180 1 8

. 1 849 d . 2  .64850 7 2 5

. 1 147 c . 7 . 9 .92348 . 2 2 1
 

a i     best            c rd     h b  

 .148 9026 0 3682 5121 0
0 1269 9753 0.358752871 

2246 0.452504751 a .93740982  
2741 0.556 6262 .05765083  
7155 0 8488 9811 .82680243  

d 0
0 1217 3645 0 5694 0673 0

 the 3b the 2nd      best            d t e 4th est         
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Table 9.2 E l  ance E s inute interval 

n r

qua ized Dist rror  for system with 5-m

Testi g Er or 
roi u  a

test t     r u r les Tr ining 
Error  1 est 2 test 3 test 4 Er or S m test 5

1 P  9 IN UTS
0.25 . 4 6 5 3 5

0.3 269 5 2 3 4 0 9 9 0 9
2 P  

14 0 561 0.1255767 1 0.0630333
8 0.6035 0.1 880  0.1 3321

21 b 0.172630 75 b 0.131756
73 0.2 5784915 0.2 9408
4 IN UTS

72 a 57 a0.1
 0.1

2680
6632

49 
42

0.62
 0.9

56778
2135697 77 

0.22 2 9 1 0 7 4
0.25 1 8 4 9 8 1
0.28 9 9 9 8 7 7 4  4 4  7 325 

0.3 8 4 1 0 2 800 9 5 2 8 542
2 P  

18 0.4318 0.1241622 4 0.0 5590
3 0.4539 0.1186987 5 0.1 0794

 0.5001 0.1149259 1 0.0 3381
 0.5166 0.1146231 8 0.1 8987

99 0.2 6927286 0.1 3514
17 0.1 3582563 0.168522
61 0.1 4696 73 

1 d 88 b0.12
0.12
0.1

 0.1

09139
97723
5559
0605

0.72
0.74
0.7

 0.8

11081
13707
5135
9545

06 b

94 b 28 d 86 c

 

c 0.2 6571
69 0. 125 3 0.2 2750
9 IN UTS

267
093

33
02

0.234 17 0 1 2 2 3 31 d

0.24 16 0 4 6 1 0  5 9  1 788 
0.25 13 4 2 8 8  3 5  7 963 

3 P  

 0.4509 0.088 7727  a 0.0812559
 0.4542 .088 4073  

45 c 0.2 9560353 0.172580
24 

45 c 18 c0.12
0.1
0.1

6845
0030
3596

0.69
0.7
0.7

83191
2147
6725

b 0.0578710
 0.4699 0.134654  0.0900173

a 0.2 5687472 0.2 0117
11 

574
804

82
88d 0.1 8570 59 a 0.2 9886

4 IN UTS
0.26 11 4  8 8 0 207 
0.28 8 0 2 9 2 7 4 7  3 6  7 274 

0.3 7 7 7 2 645 8 0  1 4  3 633 
 

a the best training t  e   st         t

88 a 0.11
0.1
0.2

31261
9190
2207

 0.4731 0.1734044 9 0.148990
0.4672 .114 6984  

26 0.1 4137561 0.1 0600
53 0.179376 36 

749
58

052

0.8
0.7
1.0

0259
5934
7343

d 0.1 6929
0.5279 0.110 8814  

d 0.21616
0.2 4745336 0.3 7829

      

55
53c 0.1 1773

 resul            b th  2nd best              c the 3rd be d he 4th best           

 

l s A n nge o r s with 5 m e r

 test test s test t

Tab e 9.3 Lea t, Most, verage a d Ra

 1  2 

f Er ors for System

te t 3 

inut

 4 

 inte val 

tes  5 
Least Error 8 24 5 9 0.1317  0  0.088077271 0.057 710  0.128 7085 56572 .113126188
Most Error 9 53 7 6 0.307829052 0.212207453 

Averag Erro 1 23 5 5 0.21580877 0.145930135 
Range 0 29 1 7 0.17607248 0.099081265 

 0.173404449 0.126 297
e r 0.119550816 0.105 622

 0.085327178 0.069 587

 0.284 4533
 0.201 2335
 0.156 7447
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The range and the average error of the FDI5 system responses are shown in 

Table 9.3.  Test 4 had the most error so this fault should be positioned as close as 

possible to normal to avoid m ltiplica  error and reduce the chance of 

misclassification.  The next w ault w

EC sensor fault and the last was the pH control pump fault. 

The order of

• Fault val  f

• F value 2 for pH se r fault 

• F value 3 f ul

• Fault value 4 for EC sensor fault and  

• F value 5 f H co ump fa

 This fault arrangeme re be

modification of f si B g the normal condition in the middle 

of the multi level fault s stem ce  re nse 

fault was minim t 

position from nor l.  The next two can be ns 

and so on.  In this research the pH control pump and EC sensor faults had the least 

errors so these could be position a au  c p and pH 

sensor faults can be positione

 The order can now be arrange as: 

• Fault Value 1: pH control pump fault 

• Fault Va atio ult 

• Fault Va Normal 

• Fault Va 4: ns

• Fault Va 5: EC Sensor fault 

u ti

as 

on of

circulation pump fault.  The third was the orst f

 the fault should be:  

ault 

ault 

ault 

the 

ized. Two of the faults with 

ma

ue 1 or Normal 

nso

or c

or p

irc atio

ntr

n 

ol p

pump fault

ult 

 

nt is good but the 

tio

sult can 

had

 improved with a little 

aul

y

t po n.  y positionin

, the distan  the spo  to go through to reach the 

 be placed at the farthesleast errors can

placed at the next two farthest positio

ed s the outer f lts.  The irculation pum

d as the inside faults.   

lue 2: Circu

lue 3: 

l n pump fa

lue 

lue 

 pH Se or fault 



 

 With this arrangement, the greatest distance the response had to travel to go to 

the oute ult 2. n  circulation pump fault shared 

similar charac s ea io t the same side  

this wa  th pt t e  response did not have to go 

through the oth e i at

 

 

r fa

y, if

s w

teri

e s

as 

stic

ym

  T

so 

om

he 

it w

s f

pH

as

or 

 co

 id

tha

trol

l to

fau

 p

 p

lt w

ump

osit

er

fau

n t

wea

lt a

hem

k,

nd 

 a

 the

 of normal.  In

er sid and caused m sclassific ion. 
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APPENDIX A 

SENSORS AND EQUIPMENTS   

 

A-1 Greenhouse 

Experiment Location was at greenhouse #15 section D, Kenneth Post Laboratory, 

Cornell University, Ithaca, NY 14853, USA with latitude of 42.440N and longitude of 

76.496W and elevation about 1100 feet from sea level.  This particular greenhouse had 

5 identical 2.  The 

greenhouse

The ontrolled by a central computer 

via Analog h of the greenhouse section.   

 

 

 

 

 

Figure A-1. Greenhouse control and monitoring system 

 sections (A-E) which each section had a floor area of 85 m

 #15 stretched from east to west direction. 

 environment of these five sections was c

 Device’s 6B micro controller module in eac

 

 

 

 

 

 

 

 

Host Computer with 
RS-485 I/O controller 

Section C 6BP16-
1 Backplane 

Section E 6BP16-1 
Backplane 

Section D 6BP16-
1 Backplane 

Section A 6BP16-
1 Backplane 

Section B 6BP16-1 
Backplane 

 

Section D 6B50 
Digital I/O Board 

Section D DB-24 
Digital I/O Panel 
with OD6OQ  
modules 

Power Relays

Section D 6B13 
RTD module 

Section D 6B11 
Analog Inputs 

Section D 6B21  
Analog Output 

Air Hot 
RTD water 

RTDs

Fan Light 

Hot water RH 
sensor 

Light 
sensorheating system 

three-way valve 
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Hardware list: 

• 6B16-1 Backplane connected to the PC host using RS-485 connection 

• 6B13 Temperature Input Module for air temperature and hot water 

temperature  reading from RTD sensors 

• Platinum RTD (Resistance Temperature Device) Temperature Sensors 

• 6B11 General Purpose Analog Input Module for LI-Cor Quantum 

Light, relative humidity and CO2 sensor reading 

• 6B21 Analog Output Module for controlling hot water three way valve 

• Johnson Controls three-way valve with 4-20 mA input 

• 6B50 Digital I/O Board with 4-6 VDC output 

• DB24 based OD6OQ with 3-60 VDC outputs for relay driver 

• Omron G3NA-255B power relays for lights, fans, CO2 and shade 

control 

 

A-2 Hydroponic System 
 
Hardware List: 
 

• PCI-MIO-16xe-50 20kS/s, 16 bit,16 Analog Input, 2 Analog Output,, 8 Digital 

I/O 

• SCXI 1001 12 slot SCXI chassis 

• SCXI-1124 6 channel isolated DAC module 

• PHCN-420 pH controllers with 4-20 mA input from Omega Engineering Co. 

• SCXI-1161 8 channel power relay 

• O2 supply Tank 

• ASCO model 8016G Red Hat II ignition proof solenoid valves for O2 supply 

• SCXI-1122 16 channel isolation input amplifier with excitation 

• PR-11 Platinum RTD Temperature probes from Omega Engineering Co. 
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• PHE-900 HF-Resistant Alph from Omega Engineering Co. 

• PHP-75-MA Chem

• CDCN-108 Non contact Conductivity sensor from Omega Engineering Inc. 

• CDCN-672 Conductivity analyzers from Omega Inc. 

ller 1000 ¼ DIN Dissolved Oxygen Controller from Cole- Palmer 

• SP 652-A5-250Kg-1MYY single point Scale and BT84 Digital Scale 

• 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-2.  Hydroponic system control and monitoring 
 

a pH electrodes 

ical Metering Pumps 

• DO contro

Instrument Co. 

• OAKTON 35640-50 Industrial Dissolved Oxygen Probe from Cole-Palmer 

Instrument Co. 

• Hach Corporation APA 6000 Nitrate/ Ammonium Process Analyzer. 

Indicators from B-TEK Inc. 

Grainger Submersible pumps model 1P808 for nutrient solution circulation 

 

Host Computer
Labview 

 with 

SCXI Signal Conditioning 
Backplane 

RS-232 serial board PCI-MIO-16XE-50 
 Board Data Acquisition

SCX
Pow

I 
er 

-1161 
Relays 

SCXI-
og

112
 Input 

2 
Anal

SCXI-1124 
nalog Output A

3 Solenoid Valves 
for oxygen 

addition to three 
ponds 

3 Metering 
pumps for pH 

controls 

Sensors and meters 

2 Scales Nitrate 
Analyzer
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APPENDIX  B 

 

B-1 Evapo n

 

iration for tanks 1 and 2 are shown in Figure 

7.3 4 g of water while tank 2 lost about 

3.7 , k 

later in 03/08/01, tank 1 lost about 1.8 kg of water while tank 2 lost about 3.5 kg.  This 

tim  significant at about twice the water loss in tank1.   

 

 

 

EVAPOTRANSPIRATION  

 

tra spiration Difference Between Tanks 

Cumulative Evapotranspiration for tank 1 and 2 02/28/01
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Figure B-1 Cumulative Evapotranspiration for tank 1 and 2 02/28/01 

 

Charts of cumulative evapotransp

, 7.  and 7.5.  In 02/28/01 tank 1 lost about 3.05 k

 kg  a difference of 0.65 kg or about 20% of tank 1’s water loss.  About a wee

e the different is very
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Figure B-2 Cumulative Evapot r tank 1 and 2 03/08/01 

Figure B-3 Cumulative Evapotranspiration for tank 1 and 2 04/27/01 
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Two months after in 04/27/01, w  kg and 3.05 for tank 1 and 2 

respectively.  Tank 2 gen that tank 1 although the 

difference varies.   

ater loss is 1.8

erally had higher water loss 
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APPENDIX  C 

MATLAB CODES 

 

 

C-1 Data Standardization 

 
clear 
load TF5m220test.csv 
load BFTrain5m.csv 
x = TF5m220test; 
y = BFTrain5m; 
m=size(y,1); 
% m is the number of rows 
n=size(y,2); 
% n is the number of column 
p=size(x,1); 
q=size(x,2); 
y1=mean(y) 
ystd=std(y) 
for a=1
   for b=1:q 
     xnormal(a,b)=(x(a,b)-y1(b))/ystd(b); 
   end 
end 
xnormal(1:142,q)=-0.908277; 
xnormal(143:p,q)=1.100925; 
save TF5m220testn.txt xnormal -ASCII 

 

C-2 ANFIS Training Program 

 
clear 
 
load bf5mwrate39input01trainn.txt 
z=readfis('bf5m39inputsc025trained') 
 
y = bf5mwrate39input01trainn; 
 
[mf5m44444t,trainerror,stepsize] = ... 
    anfis(y,z,[500 0 0.08 0.9 1.1],[]) 
 
writefi

ave bf5m39inputsc025result1 

:p 

s(mf5m44444t,'bf5m39inputsc025trained1') 
 
s
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C-3 ANFIS Test Program 

 
c
 
lear 

fismat= readfis('bf5m39inputsc05trained4.fis'); 
 
load bf5mwrate39inputNtestn.txt 
load bf5mwrate39inputNtest.csv 
load bf5mwrate39input01train.csv 
x = bf5mwrate39inputNtestn; 
y = bf5mwrate39input01train; 
z = bf5mwrate39inputNtest; 
m=size(y,1); 
% m is the number of rows 
n=size(y,2); 
% n is the number of column 
p=size(x,1); 
q=size(x,2); 
y1=mean(y) 
ystd=std(y) 
r=size(z,1); 
s=size(z,2); 
 
testinput=x(:,1:(n-1)); 
output1=evalfis(testinput,fismat); 
 
testoutput=z(:,s); 
 
for b=1:p 
     xorigin1(b)=(output1(b)*ystd(n))+y1(n); 
end 
 
xorigin=xorigin1'; 
save bf5mwrate39inputNtestsc05fisoutput5epochs.txt xorigin -ASCII 
plot(1:p,testoutput,1:p,xorigin); 

 

C-4 Noise and Fault Decision Program 

 
clear 
load DBF10m25wratesc033t1fisoutput5epochs.txt 
x = DBF10m25wratesc033t1fisoutput5epochs; 
m=size(x,1); 
for a=1:2 
    x(a)=0 
    fault(a)=0 
    noise(a)=0 
end 
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for a=3:m 
    if x(a)>1 
       x(a)=1; 
    end 
    if x(a)<0 
        x(a)=0; 
    end 
    switch fault(a-1) 

6 
               x(a)=x(a); 
               fault(a)=0; 

         noise(a)=0; 

er=1; 
-a 

f k<4 
     noise(a)=1; 

)=1; 
0 

(x(a-1)+x(a-2))/2; 

          x(a)= (x(a-1)+x(a+1))/2; 
       end 
   else 
        for b=1:4 
          if x(a+b)>0.6  

+1; 

             end 
r >2 
e(a)=0 

                       noise(a)=1; 
                        fault(a)=0; 

r c=0:4 
  x(a+c)=(x(a+c-1)+x(a+c+1))/2; 

                       end 
              end 
         end 

(a)=1; 
a)=1; 

                        if k==0 

        case 0 
            if x(a)<0.
 
 
       
            else 

t                coun
m                k=

i                
               

                    fault(a
      if k==              

                        x(a)=
      else               

              
             

             
            

              
                            counter=counter

                end         
       

                    if counte
                        nois
                        fault(a)=1 
                    else 
 

                        fo
                          
 
      
       
             end 
        case 1 
               if x(a)>0.4 
                   x(a)=x(a); 
                   fault(a)=1; 
                   noise(a)=0; 
               else 
                    counter= 1; 
                    k=m-a; 
                    if k<4 
                        noise
                        fault(
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                            x(a)=(x(a-1)+x(a-2))/2; 
                        else 
                            x(a)= (x(a-1)+x(a+1))/2; 

  end 

                       for b=1:4 
                      if x(a+b)<0.4  
                         counter=counter+1; 

r>2 
(a)=0; 
a)=0; 

ise(a)=1; 
fault(a)=1; 
 for c=0:4 
     x(a+c)=(x(a+c-1)+x(a+c+1))/2; 
nd 

            
      end 
  end 

 

t.txt x -ASCII 
xt noise1 -ASCII 

c033faultdecision.txt fault1 -ASCII 

ermining the noise and faulty condition 
sed for finite data file 

ied 
 still thinking for modification for this case 
 for on line noise and decision making program,  
% must include delay for 

% gathering the next 4 data point 

                      
                    else 
 
      
       
                            end 
                        end 
 

te                        if coun
                            noise

fault(                            
                        else 
                            no
                            
                           
                           
                            e

           end              
              
              
             
    end 
end 
oise1=noise';n
fault1=fault'; 
save dbf10m25wratesc033filteredoutpu
ave dbf10m25wratesc033noiseoutput.ts
save dbf10m25wrates
 
 
 
% th
 det

is script file can be use for algorithm 
%
%if the script is u
% and there is a possibility for a noise and 

ata file % the noise is at the end of the d
% the script m file should be modif
%
%
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APPENDIX D 

IST OF ABBREVIATIONS AND SYMBOLS 

 

Inference System 

nference System with 30/25 inputs 

0-minute interval data  

odel 

 to m 

lue between 0 to 1 of a fuzzy set 

embership that influence the width of the 

L

D-1 Abbreviations 

ANFIS Adaptive Neuro-Fuzzy 

ANN Artificial Neural Network 

BFIS30/25 Biological Fault Fuzzy I

DO Dissolved Oxygen 

EC Electrical Conductivity 

FDI Fault Detection and Identification 

FIS5 Fuzzy Inference System with 5-minute interval data 

FIS10 Fuzzy Inference System with 1

HPS High Pressure Sodium 

MLP Multi Layer Perceptron 

NFS Neuro-fuzzy System 

NN Neural Network 

PAR Photosynthetically Active Radiation 

PDF Pseudo Derivative Feedback 

SLP Single Layer Perceptron 

TS Takagi Sugeno fuzzy m

 

D-2 Symbols 

m  used as summation limit eg for i = 1

µ  represents the membership function va

σ  is used as the one parameter of Gaussian m

function 
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