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An early fault detection and identification system (FDI) can be an important part in
any plant production system. A FDI can be used to avoid costly repairs and long
disruptions in production. A hydroponic plant production system is a complex
biological system that contains plants and microorganisms in its processes that are
hard to model mathematically. A soft computing method called a neuro-fuzzy system
is chosen to implement the FDI. A neuro-fuzzy system is a hybrid combination of a
neural network and a fuzzy logic system that combines the best from both methods:
knowledge based structure from fuzzy logic and a proven learning capability from a
neural network. An adaptive neuro-fuzzy inference system (ANFIS) is developed to
detect and identify actuator and sensor faults in the hydroponic plant production
system. A separate system for exploring the ANFIS capability in detecting biological
faults is also investigated. The novelty of the neuro-fuzzy FDI in this research used a

single output to simultaneously detect and identify various faults in the system.
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CHAPTER 1
INTRODUCTION

Hydroponic plant production systems are known for their high quality
products. A reliable and precise environment control system is critical to achieve this
goal. The environmental control system monitors and controls the nutrient solution
variables (pH, electrical conductivity, dissolved oxygen and temperature) and
greenhouse aerial environment accurately.

Today’s digital controls and computers are becoming more common in
automating greenhouse operations, replacing many independent analog sensors and
controllers that frequently work against each other and inflate the operational cost. A
grower can set a detailed plant production schedule in the computer according to
consumer demand. The schedule can be executed efficiently and timely. The result is
better quality plants with less cost.

As the plant quality and harvest timing become important issues in maximizing
profit according to season, any fault in the system can delay scheduled production or
even destroy valuable crops. A fast responding fault detection scheme as a part of the
hydroponics system is crucial to guarantee continuous and optimal production. Since
many growers already use computers in their greenhouses, applying the fault detection
scheme adds minimal cost to the grower’s system.

There are two ways to detect faults in the system: by redundancy and by
interaction with other variables. Redundancy fault detection uses redundant
components to detect malfunctions or faults. For example, a system with an additional
sensor can tell whether one or both sensors are malfunctioning when their outputs are
significantly different from each other. The other fault detection scheme detects faults

indirectly. Since most variables interact with each other and influence one another, a



malfunction can be detected by unusual interaction with other variables. Some
detection schemes combine these two techniques since some faults are better detected
with redundancy and some can be detected reliably by indirect interaction with other
variables. In this thesis, the indirect way of fault detection will be explored. Since the
indirect way of detection does not require additional hardware, its application will be
interesting for growers who want additional insurance for their crops with minimal
additional cost.

The environment inside the greenhouse is subjected to many disturbances.
Outside conditions, such as wind speed and direction, humidity, sunlight, clouds, rain
and snow vary diurnally, seasonally and sometimes randomly. In addition to these
factors, the hydroponic system itself is a complex nonlinear system involving
biological processes. Interactions between plants, nutrient solution and the
microorganism population affect the solution variables and add complexity. This is
hard to quantify. In fact, most real word applications involve uncertainties which
might vary randomly and cannot be predicted a priori. Fuzzy inference systems have
been developed to deal with this issue. In particular, a neuro-fuzzy system is a good
candidate for fault detection and identification systems since it combines the best of
fuzzy and neural network. It has both a structured knowledge base of fuzzy logic and
a learning paradigm from the artificial neural network. Neuro-fuzzy fault detection
and identification schemes will be explored in this dissertation in the context of a

hydroponic plant production system.



CHAPTER 2
BACKGROUND ON FAULT DETECTION

The majority of fault detection and identification (FDI) schemes consist of
residual generation and residual analysis (Koppen-Seliger and Frank, 1999) or residual

generation and decision making (Bocaniala and Palade, 2006).

Faults Unknown
Inputs
v
Inputs »  Process > Outputs
Residual
»| Generation |q—

\ 4

Residual
Evaluation

\ 4

Fault Type,
And Location

Figure 2.1 Fault Detection and Identification (FDI) Scheme with Residual Generation
(Koppen-Seliger and Frank, 1999)

The diagram of this FDI scheme can be seen in Figure 2.1. Signals called
residuals are generated in the residual generation stage. Residuals are the
inconsistencies between the data from the system measurements and the
corresponding signals of the model (Mendonca et al., 2006). These residuals are the

fault indicators that reflect the faulty condition of the monitored system. A residual



generation is followed by a residual evaluation. In this stage a monitored system
condition is evaluated for a fault detection and identification. The outputs of this stage
are time of occurrence, fault type and location.

The residual generation stage is usually based on analytical or mathematical
models. This includes linear and non-linear models. Sometimes it is difficult to

obtain accurate mathematical models as in the case of complex systems.

Residual
Generation
Signal-Based Model-Based
Mathematical Knowledge- Soft Computing
Model Based Model Model
) ] Fuzzy Fuzzy NN
Linear Non-linear
Parameter Non-linear Online Statistical
Estimation observer Approximation
Parity Detection Parameter
Checks Filters Estimation

Figure 2.2 The Residual Generation Methods Modified From
Koppen-Seliger and Frank (1999)

Fuzzy systems, neural networks and other new emerging techniques known as

soft computing have been developed in recent years to solve this problem (Calado et



al, 2001). A diagram of various methods of a residual generation inspired by the one
from Koppen-Seliger and Frank (1999) are shown in Figure 2.2.

A residual evaluation can be as simple as a threshold decision or it can use
statistical and pattern recognition methods. Different residual evaluation methods can
be seen in Figure 2.3. Classification techniques such as the fuzzy logic and the neural
network are natural tools in detecting and identifying faults in residuals. Recently

these methods have gained popularity as residual evaluation methods (Calado et al,

2001).
Residual
Evaluation
Thresholds Statistical Classification
Methods
Constant Adaptive Fuzzy NN

Figure 2.3 Residual Evaluation Methods Modified from
Koppen-Seliger and Frank (1999)

The trend these days is to combine different methods to develop a hybrid fault
detection system. An example for such a hybrid is the use of a mathematical model
for the residual generation and the neuro-fuzzy for the residual analysis. Several
examples of this hybrid are described below.

A neuro-fuzzy system was first applied to the fault diagnosis of an automotive
electromechanical actuator (Pfeufer, 1997). The electromechanical actuator is used

for automotive applications such as traction and velocity control. This fault diagnosis



approach has two mathematical models involving seven different parameters of the
actuator such as armature resistance, magnetic flux linkage, moment of inertias,
viscous friction coefficient, spring constants etc. The system’s output was compared
to the normal values of the fault free case from the models and the deviations
(residual) of the parameters were considered as the fault symptoms. These deviations
were used as inputs for 14 independent neuro-fuzzy systems, each of which was
sensitive for one kind of fault in the system. The neuro-fuzzy systems for the fault
diagnosis had 18 to 28 rules. These rules were formed from the training data set by a
rule extraction algorithm. The fault diagnosis system was able to classify 98.5% of
the faults. The misclassification was caused by high disturbances on the related
symptoms relative to the changes of the mean values and the lack of differences
between the symptom patterns.

A hybrid artificial neural network with fuzzy rule based decision making of
sensor fault detection, isolation and accommodation in automotive engines was
proposed (Capriglione et al, 2003). The fault detection system used two independent
neural networks, each with a different combination of inputs for generating throttle
output. The inputs included the previous 3 to 5 steps of data, which was needed for
small fault detection. The throttle outputs of the neural network models were
compared to the actual data to generate two residuals. If one or both of the residuals
were outside of the determined threshold values, a fault was present in the system.
Heuristic fuzzy rules then were used to identify which sensor was faulty based on the
pattern of the residual values of throttle sensor, manifold pressure sensor or crankshaft
speed sensor. After the identity of the faulty sensor was found by this method, another
neural network model was used to classify the type of sensor fault. The sensor faults

were classified as open circuit, short circuit, hold, short circuit between two sensors



and miscalibration. The scheme was able to detect 100% of the faulty conditions and
about 90% of correct isolation/identification.

Since neuro-fuzzy systems (NFS) and artificial neural networks (ANN) are
used for both residual generation and residual analysis, it is logical to develop just one
system for the fault detection and identification directly from input-output data in
order to reduce modeling errors and computation time of the two different models.
Some researchers have attempted this method with the ANN (Sorsa, 1991, Ferentinos,
2002).

Sorsa (1991) compared three different ANN to develop a fault detection and
diagnosis on a simulated heat exchanger-continuous stirred tank reactor system: a
single layer perceptron (SLP), a multilayer perceptron (MLP) and a
counterpropagation network. The models had 14 inputs and 10 different faults as the
outputs. Simulated noise was added to the measurements that varied from 0% to 10%
of the measurement region. The representative faults in the system were: 1) Input pipe
partially blocked, 2) Recycle pipe partially blocked, 3) Input concentration of A high,
4) Recycle flow set point high, 5) Fouled Heat Exchanger, 6) Deactivated Catalyst, 7)
Temperature control valve stuck high, 8) Leak flow in reactor, 9) Recycle flow meter
stuck high, and 10) Malfunction in pump.

The SLP has 14 input nodes and 10 output nodes. Each output is used to
examine one faulty condition in the monitored system. The output nodes use a
sigmoid activation function. The normal condition should produce all outputs near
zero. A particular fault produced an output value of one in the corresponding output
and zero in the other outputs. The three different ANNs were trained 5,000 times.

The MLP has 14 input, 4 hidden and 10 output nodes. A sigmoid activation
function was used for both hidden and output nodes. This configuration gave a better

fault detection than SLP. Changing the hidden nodes activation function from



sigmoidal to hyperbolic tangents drastically reduced the training time. The addition of
a second hidden layer significantly added to the computation time and reduced
generalization.

The counterpropagation network in Sorsa (1991) has a Kohonen layer and a
Grossberg layer. More components in the Kohonen layer increase successful
classifications. The best counterpropagation network still failed to classify fault 2 and
fault 10. The MLP gave the best result from all three different NNs. This paper
shows that a direct input-output fault detection and identification system can be
successfully formed for a complex system (14 inputs and 10 outputs). Although the
method used was a neural network, a comparable neuro-fuzzy fault detection and
identification system can be developed as well.

Ferentinos (2002) used MLP to detect and identify faults in a deep-trough
hydroponics system. He tried several hidden layers and concluded that a single hidden
layer performed the best. A genetic algorithm was used to choose the best NN
architecture, including the activation function and learning method. The comparison
of NN application in fault detection and identification in Ferentinos’ work with neuro-
fuzzy method can be seen in chapter 8.

A fuzzy or neuro-fuzzy system as a single system has not been explored as
well as NN for detecting and identifying faults in a complex system. A neuro-fuzzy
system is especially promising since it combines the advantages of both neural
network and fuzzy logic. The resulting system has a clear knowledge base in the form
of IF THEN rules and should perform as well as a neural network.

Shukri (2004) developed a simple adaptive neuro-fuzzy inference system
(ANFIS) model with 2 inputs and one output to detect the condition of an induction
motor. The model estimated the friction which was developed in the motor over time

that was caused by a bearing failure. The output of the neuro-fuzzy system was three



singletons to represent the condition as good, fair and bad. Although the result was
very encouraging and was able to correctly identify the condition, the whole
experiment was done without real world data and with only a few inputs. The system
was based on simulation data which was generated from an asynchronous motor
model found in MATLAB’s SIMULINK library.

It was shown above in Pfeufer (1997) that a quite complex neuro-fuzzy fault
detection and identification system with seven inputs can be built based on residuals.
It is generated from the discrepancy between the process measurements and the
corresponding signals of the mathematical model that can be considered as ‘filtered
data’.

This dissertation extends this limit by using real world input-output data to
directly develop the neuro-fuzzy fault detection and identification systems with as
many as 39 inputs and only a single output to simultaneously detect and identify
various faults in the system. This is accomplished by carefully choosing the inputs
and the neuro-fuzzy system with the most effective pattern recognition. A Neuro-
fuzzy system based on a radial basis function in constructing Takagi-Sugeno (TS)
rules (Takagi, 1985) was chosen for this task based on its capability as an efficient

universal approximator.



CHAPTER 3
OBJECTIVES

This dissertation attempts to develop a fault detection and identification system

for deep trough hydroponics plant production using a neuro-fuzzy algorithm.

The specific objectives of this study are:

1. To derive a neuro-fuzzy fault detection and identification system that is easy
to use for hydroponic plant production systems using environmental
parameters of the hydroponics system.

2. To optimize the neuro-fuzzy fault detection and identification system for
hydroponic plant production systems.

3. To compare the results with a multi layer perceptron neural network fault

detection and identification system developed for the same system.
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CHAPTER 4
EXPERIMENTAL SETUP AND METHOD

4.1 Deep-Trough Experimental Setup
4.1.1 The Greenhouse Section

The experiments were conducted in section D of greenhouse #15 in Kenneth
Post Laboratory, Cornell University, Ithaca, NY. This greenhouse had 5 identical
sections (A-E). Each section had a floor area of 85 m”. A central computer controlled
the aerial environmental parameter of every greenhouse section via Analog Device’s
6B microcontroller module (details in Appendix A).

The temperature set points were 19C during the night and 24C during the day
and were mostly achieved within + 0.5C. The greenhouse also had staged ventilation,
evaporative cooling, and a movable shading system for cooling control.

The light intensity was measured using a LI-COR quantum sensor that gave
the readings of light intensity in 400-700 nm wavelengths needed for plant
photosynthesis. The daily photosynthetically active radiation (PAR) integral set point
was 17 mols/m®. This was achieved by using supplemental lighting from twenty-one
high-pressure sodium (HPS) 400 W lamps that gave uniform light intensity of 200
pumolm™s™ at the top of plant canopy.

Relative humidity and CO, were also continuously monitored. The relative
humidity was maintained between 30% and 70%. The central computer sent the

control signal and logged the data every two minutes.
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4.1.2 The Cultivation System

The deep trough hydroponic system consisted of 3 small growing ponds
(stainless steel tanks) with a dimensions of 121cm x 60cm x 28cm. The tanks were
filled with nutrient solution to a certain level and the plants were placed in floating
styrofoam panels. The nutrient solution surface was completely covered with
styrofoam panels to reduce evaporation and discourage algae growth. One of the
tanks was used as a control and the other two were used for fault treatments.

Lettuce (Lactuva Sativa cv Vivaldi ') seeds were placed into a hole in the center
of small rock wool cubes filled with peatlite to facilitate uniform germination. From
day one to day eleven the seedlings were grown in a growth chamber. The
environmental setting was similar to the greenhouse except for the chamber’s 24-hour
lighting period. On day twelve, the seedlings were transplanted to the experimental
tanks occupying two rows. Each row consisted of 3 and 4 plants placed in alternating
fashion. Styrofoam spacers of 2 cm thickness were inserted to give additional spacing
for the plants so the leaves would not overlap with the neighboring plants, which
occurred after twenty days. The next older generation had an additional spacer
between them. The 27 day old plants were harvested every two days to make room for
the new generation of plants. The layout of plant placement in the tank can be seen in
Figure 4.1. A continuous plant production system was developed with this
arrangement so the result would be directly applicable to the commercial hydroponic
plant production system.

The nutrient solution was circulated through a filter and dispersed uniformly
through small holes in the pipes along the perimeter of the system. The pipes were
also used for acid/base injection to maintain pH so that damage to the roots from any
direct contact with pure acid could be avoided. Pure oxygen was also injected into the

circulation system to maintain the optimal oxygen level since the nutrient solution
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surface was completely covered. Fresh nutrient concentration and the water level in
each tank were maintained every two days to assure that the nutrition solution

remained at the desired level.

O O O O
Days 26-27
O O O
O O O O
Days 24-25
O O O
O O O O
Days 22-23
O O O
O O O O
Days 20-21
O O O
O O O O
Days 18-19
O O O
O O O O
Days 16-17
O O O
O O O O
Days 14-15
O O O
O O O O
Days 12-13
O O O

Figure 4.1 Plant Spacing in The Hydroponic System
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LabView from National Instruments was used to control and monitor variables
in the nutrient solution such as temperature, electrical conductivity (EC), pH,
dissolved oxygen (DO), nitrate concentration and transpiration. Sensors were
connected to their corresponding meters and their outputs were connected to a data
acquisition system from National Instruments. The sensor assembly inside the tank
can be seen in Figure 4.2. This computer dealt with the environmental parameters of
the root zone of the hydroponic system while the central computer dealt with the aerial
environmental parameters of the greenhouse section. The program controlled and
monitored the nutrient solution of the three tanks independently every 10 seconds and
logged the data every 5 minutes. The pseudo-derivative feedback (PDF) control
algorithm was used (details in Setiawan, 1998) which is good at dealing with the

external disturbance. The detailed connection schematic of the sensors and

equipments can be found in Appendix A.

.| an
Figure 4.2 Sensor Assembly in The Tank
From top to bottom: pH, DO, EC.
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The pH was maintained at 5.8 using a metering pump, which injected additional acid
(1M HNOs) needed for pH control. The DO was maintained between 6.5mg/l and 7
mg/l by controlling the flow of oxygen from a tank using a solenoid valve. The EC
was maintained manually between 1150 to 1250 uS/cm. A scale was used to weigh
the whole tank to calculate the transpiration rate. Nitrate concentration in the nutrient
solution was an important variable to be monitored since the nitrate uptake was a good
indicator of plant growth and thus a good indicator of plant stress. After considerable
searching, a reliable and robust nitrate analyzer could not be found and nitrate

concentration was not used for fault modeling.

4.2 Methods

A fault detection in the hydroponic system can be divided into two groups:
sensor/actuator or mechanical faults and biological faults. This division is needed
since they have different time constants and use different inputs. Transpiration rate,
which is the main variable for any biological fault detection system, was not used for
the mechanical fault detection system.

Mechanical faults can be divided into abrupt faults and incipient faults. Four
kinds of mechanical faults were imposed into the hydroponic plant production system.
Failure of the pH control pump and the circulation pump represented abrupt faults.
Drifting of the pH sensor and EC sensor represented incipient faults. The data from
several repetitions of fault experiments were used to develop the neuro-fuzzy fault
detection systems.

Biological faults are imposed directly on the plants. These faults can be
divided into shoot and root faults. There were four different series of experiments to
mimic the effect of possible faults in the plants. The first one was to remove the

largest plants (of ages of 25 and 27 days) from the tanks and allow the roots to be
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exposed to air for five minutes. This treatment caused a slight disturbance to the roots
of the plants. The second experiment involved bruising the leaves of the largest plants
(of ages of 25 and 27 days). This treatment simulated a fault occurring in the shoot of
the plants. The third plant disturbance was to remove most of the leaves from three
generations of the largest plants (23, 25 and 27 days old). This represented a major
fault in the shoot zone. The last experiment was to cover the leaves of the largest
plants (23, 25 and 27 days old) with plastic bags to simulate a major problem in the
root zone. This last treatment drastically reduced the transpiration rate. As in the
mechanical fault, several neuro-fuzzy fault detection systems were developed and

compared.
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CHAPTER 5
FAULT DETECTION AND IDENTIFICATION MODEL DEVELOPMENT

Analytical model-based techniques represent the majority of fault detection
and isolation methods in the literature (Simani et al, 2003). The statistics show that
the number of applications using nonlinear mathematical models is growing while the
trend of using linear mathematical models is diminishing. However, it is difficult to
achieve accurate nonlinear mathematical models for complex nonlinear systems. If the
system structure is not completely known, the fault diagnosis should be based on data
or heuristic information. The inherent characteristics of fuzzy logic are suitable for
fault detection and isolation of complex nonlinear systems. The nonlinear mapping
characteristic of a fuzzy model, with fast and robust implementation, and the capacity
to embed a priori knowledge and the ability of generalization can be beneficial to fault
detection (Mendonca et al, 2006). With these advantages, a fuzzy model is a natural
tool to deal with nonlinear and uncertain conditions in the hydroponic plant production

system.

5.1 Fuzzy Logic

The core of fuzzy logic is the fuzzy set (Zadeh, 1965) and the IF THEN
knowledge base (Zadeh, 1973). The fuzzy set is a set without a crisp boundary. There
is a gradual transition between something that belongs and something that doesn’t
belong to a set. This is characterized by a membership function with values between
zero and one. Zero means it definitely does not belong to the set and one means it
definitely does belong to the set. The number between these two limits represents the
degree of membership in that set. A membership function is usually symbolized by p.

For example, the normal greenhouse temperature during the day is about 24 C. In this
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case the temperature value comes from a sensor reading as a crisp value and this

number should be transformed (fuzzified) into a fuzzy number.

Cold Normal Hot
1
0.75
u
0.25
0 22 24 25.5 26 Temp

Figure 5.1 Membership Function of Fuzzy Sets ‘Cold’, ‘Normal’, and ‘Hot’

Three fuzzy sets labeled as cold, normal and hot can be defined using three
membership functions. The membership functions for the three fuzzy sets can be seen
in Figure 5.1.

If the temperature (x) is 24 C, it definitely belongs to the normal fuzzy set
(Unormat(x) = 1) but if the temperature is 25.5 C, it belongs to the normal fuzzy set with
the degree of membership of 0.25 (tnormai(x) = 0.25) and it also belongs to the hot
fuzzy set with the degree of membership of 0.75 (unot(x) = 0.75). The membership
function can be triangular like the example above, trapezoidal, gaussian, bell, sigmoid
etc. The correct form of a membership function will give the most efficient

approximation of the specified system.
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The knowledge base of fuzzy systems is in the form of IF THEN rules. If

fuzzy logic is used for greenhouse temperature control, the rule is in the form of:

IF the temperature is cold AND the heating control signal is small THEN heating

control signal change is small positive.

The first part of the rule “the temperature is cold AND the heating control signal is
small” is called the antecedent or the premise while the last part of the rule “heating
control signal change is small positive” is called the consequent or the conclusion.
The rule above is activated if the inputs (temperature and heating control signal)
belong to the fuzzy sets used in the rule. If the temperature belongs to the “cold” fuzzy
set with the degree of membership function larger than zero and the heating control
signal belongs to “small” fuzzy set to a degree larger than zero then the rule above is
activated.

The word ‘AND’ in the rule represents the general classes of interception
operators called triangular norm (t-norm). The most obvious member of the t-norm is
the minimum operator. There are many other t-norm operators that can be used in
place of the minimum operator such as algebraic product, bonded product, Dombi,
Lukasiewicz etc. A complementary general union operator is called t-conorm and
represented by the word ‘OR’. The examples of t-conorm are maximum, algebraic
sum, bounded sum and many others. A comprehensive discussion about the fuzzy set
connective OR operator can be found in Pedrycz (Pedrycz and Gominde, 1998) and
Nguyen (Nguyen and Walker, 2000). The AND operator combines the degree of
membership of each fuzzy set in the rule to determine the firing strength.

The output of a fuzzy system (formally named fuzzy inference system)
changes smoothly from one dominant rule to the other depending on the inputs

combination. At any one time, one or two or three rules are activated at the same time
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with different firing strengths. The fuzzy inference system is a combination of local
nonlinear functions that gives a combined output that changes smoothly (Jang, 1997).
The OR operator combines the activated rules with different firing strengths to form
an output. The output is still in a fuzzy form and can be defuzzified to get a crisp
value. The process of determining the firing strength and then combining the output

of activated rules are called fuzzy inference.

IF THEN rules
Knowledge Base
Inputs Input \ 4 Output Output
Crisp Fuzzy Inference Fuzzy Crisp
p| Fuzzifier > Process | Defuzzifier >

Figure 5.2 Block Diagram for a Fuzzy Inference System

The complete fuzzy inference system is as shown in Figure 5.2. The process
of developing a fuzzy inference system involves: 1) Inputs selection, 2) Determining
the shape of input membership functions, 3) Determining the number of fuzzy sets per
input, 4) Defining the initial parameter value of membership functions, 5) Selecting
suitable t-norm and t-conorm, 5) Building a IF THEN rules knowledge base and 6)
Selecting the form of the output and deciding whether defuzzification is needed.

Tuning is needed to train the system for its desired purpose. It can be tuned by
trial and error, by expert’s input or by a learning algorithm. In a hydroponic plant
production system, the exact knowledge of fault processes are not exactly known so
both structure and tuning must be learned from experimental data. The Neuro-fuzzy

model is the suitable choice to solve this problem.
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5.2 Neuro-Fuzzy Model

Fuzzy systems and neural networks are complementary to each other. A fuzzy
system is easy to comprehend because it uses linguistic terms and structure of IF
THEN rules but it does not have a learning algorithm. Trial and error or expert
knowledge is used in tuning the fuzzy system parameters and it can take a long time to
finally find an acceptable system. Neural networks have many learning algorithms
but it is extremely difficult to use a priori knowledge about the system. It is also
almost impossible to explain the behavior of the neural system in a particular situation.
A hybrid system with the best characteristics from both methods was developed and
called a neuro-fuzzy system. A particular neuro-fuzzy system named ANFIS
(Adaptive Network-based Fuzzy Inference System or more popularly named as

Adaptive Neuro-Fuzzy Inference System) was proposed by Jang (1993).

5.2.1 The ANFIS Architecture

The ANFIS architecture is presented for a system with two inputs and a single
output to better understand the performance of the structure. Consider a fuzzy
inference system that has two inputs x and y and a singleton z as its output. For a
first-order Sugeno model (Sugeno,1985), a common rule set with two fuzzy IFF-THEN
rules is as follows:

Rule 1 : IF x is 41 and y is By THEN z = f; = p, + p;x + psy

Rule 2 : IF x is A2 and y is B, THEN z = f, = p. + pix+ piy

The reasoning mechanism for this Takagi-Sugeno model (Sugeno, 1985) is
shown in Figure 5.3(a); the corresponding equivalent ANFIS architecture is shown in

Figure 5.3(b). In the discussion below, the term O;; represents the output of the i

node in layer j, where nodes of the same layer have similar functions.
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Figure 5.3 (a) Two rule two membership functionTS fuzzy model

(b) ANFIS equilavent of the TS model

Layer 1: Every node i in this layer is an adaptive node with a node function,

Oji = u, (x), fori=1,2 or

Oji = pp  (y), fori=34

22



where X (or Y) is the input to node i and 4; (or B;.,) is a linguistic label (such
as "small" or "large") associated with the node. The membership function
for A4 and B can be appropriate parameterized membership function such as

the gaussian function :

Gem Y

2
20

ﬂA(X): €

where {m;,0;} is the parameter set

As the values of these parameters change, the function shape varies
accordingly, thus exhibiting various forms of membership functions for
fuzzy set A and B. Parameters in this layer are generally referred to as

premise parameters.

Layer 2: Every node in this layer is a fixed node labeled I whose output is the

product of all the incoming signals

Ozi=w; = Hy, (x)ﬂg, 0, fori=1,2

Each node output represents the firing strength of a rule. In general, any
other t-norm operators, which perform fuzzy AND can be used as the node

function in this layer.

Layer 3: Every node in this layer is a fixed node labeled N. The i node calculates the
ratio of the i” rule’s firing strength to the sum of all the rules’ firing

strengths:

_ W, .
Ozi=w,= L fori=1,2
W, + W,

The outputs of this layer are usually referred as normalized firing strengths.

Layer 4: Every node i in this layer is an adaptive node with a node function
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O4i= W[, = W,(p, + pix +p3y), for i=1,2

where W, is the normalized firing strength from layer 3 and { p;, p;, ps} is
the parameter set of this node. Parameters in this layer are referred to as

consequent parameters.

Layer 5: This fixed layer, labeled 2, gives the overall output as the summation of all

incoming signals as follows:

Overall output = z W= %
i ; Wi

5.2.2 Hybrid-Learning Algorithm

It is shown from Figure 5.3 (a) that, when the values of the premise parameters
are fixed, the overall output can be expressed as a linear combination of the

consequent parameters. The output f in Figure 5.3 (b) can be written as

f=—2_fi+—22_f

W +w, W tWw,

=W(py + pix+ pyy) + Wy (py + pix+ pyy)
= (W) py + (Wx) py + (W) py + (W) py + (W,x) pf + (W,») p3

where p,, p\, Py, D> D;>Ps is linear in the consequent parameters. The consequent

parameters can be obtained using this equation:

Wl(l) Wl“)x(” Wl(”y“) Wz(l) Wz“)x(') Wz(l)y(l)“p(l]— [0 7]
Wl(z) Wl(z)x(z) Wl(z)ym Wzm Wz(z)x(z) Wz(z)y(z) Pll o)
: e
P
: p12
_Wl(") Wl(")x(") Wl(")y(”) Wz“” Wz(")x(”) Wz(")y(”)__pzz_ _r(")_
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where [(x(k), y(k)), d™] are the " training data pair k = 1, 2,..,n and w" and w." are

the outputs of layer 3 associated with the inputs (x*, ).

Equation above can be expressed in matrix-vector form as:
AxX=r
Where X = [pé,pf,p;,pg,pf,pzzr, r Z[rl,rz,...,r”]rand A is a matrix formed by the

) DAL RTICON

elements w'*, wi®, x y

The above equation can be solved as
X=(ATA)TATr
where (AT A)? AT is the pseudoinverse of A if (AT A)™ is non singular.

For a large size of training data set, an iterative method is preferable. X can be

calculated recursively using the formula:

Xy =X T 0. piT+1 (’”(M) =P %)
T
0, =0~ LPulinl i=0,12,.on -1
1+ piHQile
X" =X

n

with the initial conditions of
X,=0 and Q =yI
where
vy 1s a positive large number and | is the identity matrix.

p, is the i" row vector of matrix A

' is the i element of r

In the forward pass of the hybrid learning algorithm, node outputs go forward
until layer 4 and the consequent parameter are identified by the least squares method

outlined above. In the backward pass, the signals that propagate backwards are the
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error signals and the premise parameters are updated by the gradient descent method.

Table 5.1 summarizes the various activities during each pass (Jang, 1993).

Table 5.1 Parameter Update During The Forward and Backward Passes
in Hybrid-Learning Procedure for ANFIS.

Signal flow direction Forward Pass Backward Pass
Consequent parameters Least-squares estimator Fixed
Premise parameters Fixed Gradient descent method
Signals Node outputs Error Signals

5.3 Input Selection

Suitable inputs must be chosen to develop the neuro-fuzzy fault detection
system. Using as many related inputs as possible is desired in order to capture every
possible symptom of the faults. A high number of symptoms makes the fault
detection scheme more robust. On the other hand, a high number of inputs gives a
complex FDI system, which needs a larger training data set and more training time and
computational power. These requirements grow exponentially with every additional
input variable. A balance is needed to optimize the system based on these two
opposing requirements.

The neuro-fuzzy fault detection system is designed to detect and identify
several faults whose symptoms are shown by different inputs so the selected inputs
should be able to represent each fault sufficiently. Different faults have different time
delays and time constants. These differences affect how many steps of previous
sampling instants are needed for each fault. For example, with a five-minute sampling
period, previous 5-minute, 10-minute and 15-minute sampled outputs are also needed
in additional to current pH sensor output to detect pH control pump fault. Additional

previous 20 and 25-minutes sampled outputs might be needed for pH sensor fault
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detection. An abrupt fault such as pH control pump fault can be detected faster than
an incipient fault such as pH sensor fault. Abrupt fault also needs less previous
sampling data.

These factors limit the number of faults that can be detected in one fault
detection system with the finite amount of experiment data. Separate fault detection
systems were developed for the biological faults and the actuator/sensor faults since
both the incipient sensor faults and the biological fault need a high number of previous
sampling data from different inputs.

With knowledge of the system dynamics, the variables involved in the faults
can be found. When the circulation pump stopped working, the nutrient solution pH
went up and the DO went down. The DO and pH controller tried to regulate the pH
and the DO values according to the set points by adding increasing amounts of oxygen
and concentrated acid with no result. Without the circulation, these additions had to
rely on a slow diffusion process to reach the sensors. The controllers increased the
control signal to maximum without any effect at the sensors for a long period. DO and
DO control signals, and pH and pH control signal values were needed to detect the
error. Their values from previous sampling steps were also needed. The number of
previous sampling data needed was not known so several systems with different
numbers of pH and DO previous sampling inputs were explored.

The pH control pump abrupt fault caused the pH value to increase despite the
increasing pH control signal to keep the pH at the set point. The control signal
eventually reached the maximum without any effect at the pH. The pH and pH control
signal were needed as inputs for this fault detection.

The simulated EC sensor fault caused the EC value to drift slowly, first up and
then down in a sinusoidal fashion. The fault definitely needed the EC measurement

but other needed variables were unknown. In this experiment, a control signal was not
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available since EC was adjusted manually. It is assumed that the combination of input
requirements from other faults was enough to develop symptoms for this fault.

The simulated pH sensor fault caused the pH value to drift down from the set
point of 5.8 to 3.8 and then back up. Since the value of the pH never exceeded the set
point in this experiment, the pH control signal was not directly affected. This kind of
drifting was chosen since drifting upward caused the pH control to compensate by
injecting some acid and by the time the experiment was over, the pH of the solution
would be low enough to kill the roots. The pH value plus unknown interactions of
inputs from other faults were assumed to give a specific pattern for this fault.

Inputs needed for the actuator/sensor fault detection systems were:

1. pH and its history data
2. pH control signal and its history data
3. DO and its history data
4. DO control signal and its history data
5. EC and its history data

The exact number of previous sampling steps that were needed for these five
variables was not known so fault detection systems with the previous 2, 3, 4, 5, 6 and
7 sampling steps were developed and compared.

The solution temperature affected the metabolism of the plants and
microorganisms in the solution which in turn determined the transpiration and nutrient
absorption. Assuming the value of the temperature was changing slowly, no historical
data was needed for this variable. The air temperature, light intensity and RH affected
the plants and they were also included as input. Again their values were assumed to

change slowly so no history data was included as input.
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5.4 Membership Function

Once the inputs for the fault detection are selected, input membership
functions must be determined. The gaussian membership function was selected for the
neuro-fuzzy system since it has continuous derivability. This characteristic simplifies
the learning process of the neuro-fuzzy system. The function is given by

7(,\'7111)2 . . . . .
u(x)=e 27 . The Gaussian membership function is characterized by two

parameters, namely m and o. The desired Gaussian function can be obtained with the
proper selection of the parameters m and o. The parameter m represents the center of

the Gaussian function and o represents the width of the function.

1

Figure 5.4 Gaussian membership function with m =5 and o= 2

5.5 Input Space Partitioning

The input space can be partitioned into grids by specifying the number of
membership functions per input (figure 5.5 a and b). For example, a system with 11
inputs and 2 membership functions for each input will generate 2'' or 2048 grids
where each grid represents one rule. If each membership function has 2 parameters in
a Gaussian membership function, there are 2'* or 4096 parameters to be adjusted.
This is the simplest way to build a fuzzy system and the most popular. The weakness
of this approach is the large number of parameters that need to be optimized.
Additional input increases the number of parameters exponentially. This problem is

usually referred to as the curse of dimensionality.
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A neuro-fuzzy system with the above configuration was developed for FDI at
first for this dissertation. The number of parameters (4096) represented the maximum
acceptable limit based on the amount of data available from experiments. The
minimum amount of training data should be five times the number of parameters
(Jang, 1997). The output from this neuro-fuzzy FDI system could not detect the
desired faults very well. An insufficient number of inputs and membership functions
caused bad performance of the system. Thus the grid partition method is suitable for
fuzzy models with few input variables, which is not the case with FDI for hydroponic

plant production system.

vvvvvvvvvv
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e) (d)

() (&)

Figure 5.5 Space Partition

a) Uniform b) non-uniform grid partition c) tree partition d) scatter partition
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Grid partitioning uniformly covers the whole input space. The monitored
system usually does not have a uniform distribution of the input space and uses some
subspace more often than others. A more efficient partitioning can be formed using
this characteristic. Ignoring unused grids or lumping the seldom-used grids together
into one reduces the number of grids and corresponding parameters in the neuro-fuzzy
system.

A tree partition (figure 5.5 c) divides the input space into grids with different
sizes by cutting the input space into different sized fuzzy regions. Frequently used
subspaces are cut into small grids while rarely and unused subspaces are formed into a
large grid. The tree partition solves the exponential increase in the number of
parameters. The setback to this method is difficulty in determining the correct cut.
More membership functions are needed to accommodate different sizes of subspaces.

Scatter partition/clustering is the most attractive choice (Figure 5.5 d). Instead
of covering the whole space,, scatter partition tries to find subspaces that characterize
the fuzzy region of the input space. It tries to cover the whole region of possible input
vector occurrences. Scatter partition gives the most efficient partition with a smaller
amount of computing time compared with other methods. The drawback of scatter
partitioning is how the quality of the fuzzy system depends on the completeness of the
data set in representing the whole operation region of the system. The scatter
partition/clustering groups the input-output pairs into clusters and one fuzzy rule
represents one cluster. The number of rules in the neuro-fuzzy system is equal to the
number of clusters. Systems with different composition and number of clusters can be

formed by varying parameters in the clustering algorithm.
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5.6 Data Clustering

Data clustering algorithms are used to categorize and organize data. Then,
these categorized data can be used for applications such as data compression, model
building, etc. The clustering in the fuzzy system is useful for reducing the dimension
of fuzzy system rules while still representing the overall system. Clustering partitions
a data set into several clusters where each data points in a cluster has more similarity
than the one among the clusters. In neuro-fuzzy systems, clustering is used to
determine the initial locations and the number of IF-THEN rules. There are several
clustering techniques that are used for this purpose and the most common ones are: K-

means, fuzzy C-means, mountain clustering method and subtractive clustering.

5.6.1 K-Means Clustering

The k-means clustering is also known as the hard c-means clustering since a
point belongs to only a particular cluster and not others. The opposite of this method
is the fuzzy clustering which the data point can belong to several different clusters
with different degree of memberships.

This clustering algorithm partitions a collection of n datapoints x;, x, ..., Xy,
into ¢ cluster. The cost function that minimizes the distance between the datapoints
that belong in a cluster with cluster center v; can be defined by

J=2 X v

i=1 j=1

The clusters are defined by its cluster center and a ¢ x n binary membership
matrix U, where the element u;; is 1 if the jth data point x; belongs to the i" cluster, and
0 otherwise. The process of determining the cluster center ¢;, and the membership
matrix U is iterative. The cluster centers are initialized randomly. The membership

matrix U is then calculated as follows:
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2 .
, for each k #i

A 2

u, = Lif e, =] <[ -
0 otherwise

The cost function is computed and the iteration can be stop if the value is below some

tolerance or if the improvement over previous value is below some threshold. The

cluster centers are updated using the new membership marix U as:
n
PRI
_ J=l
- n
2
j=1

C.

1

The process is repeated again until satisfactory result is found or the number of

iterations has been reached.

5.6.2 Fuzzy C-Means Algorithm (FCM) Approach

Conventional clustering algorithms locate a hard partition of a given data set
where each entry of the data belongs to one partition or the other. On the other hand,
the fuzzy clustering finds a soft partition of a given data set. Each entry of data can
belong to a multiple of clusters. The degree of an entry in data to a cluster is given by
a degree of membership. A widely used type of the fuzzy clustering algorithm is the
fuzzy c-means or ISODATA (Dunn, 1973). James Bezdek has worked with the fuzzy
pattern classification since his graduate years at Cornell University. He has developed
it into one of the most popular clustering algorithm (Bezdek, 1973).

Dataset X with n data points: x;, x, ..., x,, can be clustered into ¢ fuzzy sets
using the fuzzy c-mean clustering method. The criterion in most instances is to
optimize an objective function that acts as a performance index of clustering. The end

result of the fuzzy clustering can be expressed as a partition matrix U :

U=u; withi=1,...,candj=1,...,n
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where u;; is a numerical value between 0 and 1 and expresses the degree to which the
datapoint X; belongs to the i" cluster. The objective function of the FCM algorithm

takes the form of

C n 2

J(MMFZZ”;HXJ _vi‘

i=1 j=1

,m>1

where m is the fuzziness factor, which influences the degree of fuzziness of the cluster
partition. If m is a large number, a point with less membership in the cluster will have
less influence on the calculation of the new cluster center. v; is a cluster center the i
cluster {v;,...v.}. To solve this minimization problem, the objective function is
differentiated with respect to v; (for fixed u;, i = 1,2, ..., c; j =1, 2, ..., n) and with

respect to uy;, (for fixed v;,i=1, 2, ..., ¢).

After the number of clusters ¢ (2 < ¢ < n) and fuzziness factor have been
determined, the initial partition matrix U is chosen randomly. Cluster centers and the
partition matrix can be calculated iteratively from the above equations. If the
difference of the previously calculated center and/or partition matrix and the current

value is less the predetermined threshold, the process can be stopped.

5.6.3 The Mountain Clustering Algorithm
The mountain clustering method is a grid-based method for identifying the

approximate locations of the cluster centers (Yager, 1994). Unlike fuzzy c-means, this
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method does not require a predetermination of the number of clusters. Grid points on
the data space provide the potential cluster centers. A finer grid increases the number
of potential cluster centers but it also increases the computation required. The grid is
generally evenly spaced, but it is not required. Uneven spaced grids that reflect the
prior knowledge of the data space can be formed.

Grid point selection for a cluster center is based on the mountain function. The

height of the mountain function at a grid point g is equal to

-

where x; is the i data point and ¢ is an application specific constant. The closer the
data point x; to the grid point, the more it contributes to the height of the mountain
function. The value of the mountain function reflects the density of data points in the
vicinity of each grid point. The higher the mountain function value at a grid point the
larger it’s potential for being a cluster center. The grid node with the highest score of
the mountain function is selected and becomes the first cluster center v;. The next
cluster center could not be selected yet since the first cluster center is usually
surrounded by a number of grid points which also have high density values. The
effect of the first center must be eliminated by sequentially destructing the mountain
function. In order to do so a revised mountain function is formed:

2
-V
M, g) = M (g) -G Jexe] - B
2p
After the subtraction, the new mountain function value at v; is zero and its effect on
surrounding points is eliminated. The second cluster center then can be selected from

the grid point with the highest value of the new mountain function. This process is

repeated until the new mountain function value is less than a stopping constant.
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5.6.4 Subtractive Clustering

The mountain clustering method is simple and very effective in finding cluster
centers that can be the base of fuzzy system membership function. However, the
number of calculations required grows exponentially with the dimensions of the data
set. For data set of 3 variables and 10 grid points for each variable, 1,000 points must
be evaluated. Adding another variable to the data set multiplies the grid points by 10
or 10,000 grids.

A variation of the mountain method called subtractive clustering solved this
problem (Chiu, 1994). Instead of using grid points, data points are used as candidates
of the cluster centers. By doing this, the computation needed for calculation is
proportional to the number of data points and independent of the dimension of the
problem (the variables). This rough calculation of the cluster centers is particularly
suitable if the clustering method is used to find the initial structure of a fuzzy system
that will be optimized later by the neural network learning algorithm.

For a data set of n data points, a density measure at data point x; is defined as

b=
D, = Zexp ( /2)
where 7, is a positive constant. A data point will have a high density value if it has
many neighboring data points.

As in the mountain method, the data point with the highest density measure is
selected as the first cluster center v;. The next step is to eliminate the influence of the
first cluster center to the surrounding data points which also have high density values.

The density measure of each data point is revised as
2

H'xi - xv1

D.
( (”b /2)2

i(new)

=D,-D, exp| -

36



where 7, is a positive constant. The density measure of data points in the
neighborhood of the cluster center v; is reduced and the one at the first cluster center is
zero. The effect of the first cluster center on surrounding points is eliminated. The
constant 7, defines a neighborhood that has significant reduction in density measures
after the revision. The constant 7} is usually larger than r, to prevent closely spaced
cluster centers. Generally 7, is chosen to be equal to 1.5 7.

The point with the highest density measure is selected again as the next cluster
center. This process is iterated until the highest density measure is lower than a
predetermined stopping constant or sufficient number of cluster centers has been
determined. The result can be used for developing the Takagi-Sugeno fuzzy model.
Cluster centers v; are the fuzzy system rules. The degree of fulfillment of the fuzzy

rule i is defined by

After completed these procedure, a more accurate system can be constructed using

optimization scheme like the gradient descent algorithm.

5.7 Multi Level Value Neuro-fuzzy Fault Detection System

The neuro-fuzzy fault detection and identification system developed in this
research tried to find the direct connection between the combination of input variables
and the faults themselves. The neuro-fuzzy fault detection system in this research
utilized one output to detect and identify multiple faults. Different faults are
represented by different output values. The output value of 1 is reserved for a normal
condition, the value of 2 for pH control pump fault, the value of 3 for circulation pump
fault, the value of 4 for pH sensor fault and the value of 5 for EC sensor fault. Using a

single multi level value output simplifies the model and reduces the computational
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time needed to optimize each model. The use of only one output to detect several
faults with widely different dynamics is the ultimate test for a neuro-fuzzy system
since it combines both the residual generation and the residual analysis stages into
one.

A similar multi level value neuro-fuzzy FDI system was also planned for
biological faults but the signals of many simulated biological faults symptoms were
too small compared with the noise of the monitored system. The exception to this
problem was a transpiration fault where leaves of each plant were covered by a plastic
bag. This treatment simulated a biological fault that drastically affecting transpiration
in the plants. The neuro-fuzzy biological FDI system has a dedicated output for the

transpiration fault.
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CHAPTER 6
NEURO-FUZZY BIOLOGICAL FAULT DETECTION AND
IDENTIFICATION SYSTEM

6.1 Biological Faults in The Hydroponic System.

Biological faults in the hydroponic system can be categorized into shoot zone
faults and root zone faults. Two different types of experiments from each category
were performed from November 2000 to June 2001. Bruising and cutting the leaves
of lettuce plants were performed to simulate shoot zone faults. Removing the plants
from the water for 5 minutes and covering the whole leaves by a plastic bag simulated
root zone faults.

There were no significant changes in DO, temp, pH, EC and weight changes
for the shoot zone faults. Deviations in parameters caused by leaves bruising were too
small compared with the noise in the system. Experiments with cutting leaves showed
unexpected result since the evapotranspiration was not reduced at all. Water loss from
the wound gave up water comparable to the normal plant transpiration.

The first root zone fault experiments also cannot be detected, signaling a much
bigger disturbance must be ministered. Covering the whole leaves of the largest plants
(ages of 23, 25, 27 days) with plastic bags showed a positive deviation in the
transpiration rate. With this development, the biological multilevel value FDI system
becomes the single value transpiration FDI system. The FDI system output was

trained to have a value of 0 for normal and 1 for transpiration faults.

6.2 Neuro-Fuzzy FDI Specifications
Neuro-fuzzy biological FDI systems with 5 and 10 minutes interval data were

developed. Systems with five-minute interval data were developed since the data can
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be used directly from the data file. Construction of systems with ten-minute interval
data was intended to explore the noise reduction in the FDI system by data averaging.

The FDI systems process the current sample of air temperature, light intensity,
relative humidity (RH), nutrient temperature, pH, DO, EC, pH control signal, DO
control signal, weight rate and previous weight rate samples. The biological FDI with
24 inputs has previous 14 weight rate samples and the biological FDI with 29 inputs
has the previous 19 weight rate samples.

The subtractive clustering was used to extract neuro-fuzzy fault rules from
input-output data. Range of influence (roi) coefficients in the clustering method
determine how many cluster centers formed. Values between 0.2 and 0.5 are
recommended (Chu, 1994). Several roi values were used to form the neuro-fuzzy
systems. A small roi means a short range of influence of the cluster center and a large
number of cluster centers formed. The number of cluster center determines the

number of fuzzy rules.

R

(2) (b)

Figure 6.1 The Effect of roi (Range of Influence Constant) to The Number of Formed
Clusters for a Simple Two Dimensional Dataset

(a) roi 0of 0.25 (b) roi of 0.45
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For example, a subtractive clustering algorithm with a roi value of 0.25 forms 23
cluster centers (rules) for the FDI system with 29 inputs. Graphics in Figure 6.1
illustrate the effect of roi to the number of clusters for a simple two dimensional data

set.

6.3 Data Sets
Data was divided into training and testing data sets. There was an effort to
choose datasets that covered the whole experiment period. Training data sets for the

neuro-fuzzy biological FDI systems are shown in Table 6.1.

Table 6.1 Biological Fault Training Data Sets

Data File Start

Data File End

Dataset Type

12/15/00 12:01 am
02/26/01 12:01 am
03/25/01 12:01 am
04/11/01 12:02 am
02/20/01 12:02 am
04/05/01 12:00 am
04/13/01 12:03 am
04/25/01 12:02 am

12/18/00 12:00 am
03/03/01 12:00 am
04/04/01 11:55 pm
04/12/01 11:58 pm
02/25/01 06:01 am
04/10/01 05:59 am
04/18/01 05:59 am
04/30/01 06:02 am

Normal Train
Normal Train
Normal Train
Normal Train
Transpiration Fault
Transpiration Fault
Transpiration Fault
Transpiration Fault

All trained systems were tested with 3 data sets as shown in Table 6.2. The
first two data sets are the transpiration fault testing data and the last is for the normal

condition.

Table 6.2 Biological Fault Testing Data Sets

Data File Start Data File End Test Dataset Type Test #
03/06/01 12:04 am 03/11/01 11:59 pm Transpiration Fault Test 1
05/23/01 12:03 am 05/28/01 12:00 pm Transpiration Fault Test 2
04/19/01 12:03 am 04/22/01 12:37 pm Normal test Test 3
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6.4 Training Results

FDI systems constructed by the subtractive clustering method were trained
further using training data from fault experiments. Each system was trained for 5
epochs with each epoch consists of 500 iterations (a total of 2500 iterations). An
epoch is a batch of training iterations. The 5-minute interval systems training results
are shown in Table 6.3.

Several things can be seen directly from the table 6.3. Neuro-fuzzy FDI systems
with smaller initial error generally continue to have smaller error at the end of the
training. For example, the FDI system with 39 input and 25 rules had the least initial
error and after 5 epochs of training it still had the least error compared with other
systems.

Systems with more inputs usually have the least training error. For example,
the 39-input systems have less error than the 34-input systems. Systems with more
inputs have more degrees of freedom in modeling the monitored process, and less
error.

Systems with more rules can capture the dynamics of faults better than those
with fewer rules. Systems with 39 inputs and 25 rules had a training error of 0.4612
while the one with 7 rules had 0.6371 as the training error. Again, additional rules
give more modeling freedom for the system.

Additional training reduces training error. The first epoch of training reduces
the error the most while the last epoch reduces it the least. The number of training
epochs was limited to 5, because further training did not give any significant
improvement. All systems were trained to the same number of epochs so they have
the same state of training for comparison. Figure 6.2 shows error trend for every

epoch of training
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Table 6.3 Training Results of Biological Fault Detection Systems with 5-Minute Interval

Roi  Rules The 1% Epoch The 2nd Epoch The 3rd Epoch The 4th Epoch The 5th Epoch
Start End Start End Start End Start End Start End
Error Error Error Error Error Error Error Error Error Error
24 INPUTS
0.25 24 0.6848 0.5365 0.5365 0.5285 0.5285 0.5191¢ 0.5191 0.515¢ 0.515 0.5124¢
0.3 17 0.7098 0.5647 0.5647 0.5561 0.5561 0.5549 0.5549 0.5551 0.5549 0.5546
0.4 10 0.7882 0.6554 0.6554 0.6535 0.6535 0.6525 0.6525 0.6518 0.6518 0.6512
0.5 7 0.8008 0.6781 0.6781 0.6731 0.6731 0.666 0.666 0.6654 0.6654 0.6652
29 INPUTS
0.25 23 0.6693¢ 0.5332¢ 0.5332 0.5276¢ 0.5276 0.5239 0.5239 0.522 0.522 0.5213
0.3 18 0.6842 0.5476 0.5476 0.5421 0.5421 0.5412 0.5412 0.5417 0.5412 0.541
0.4 11 0.7553 0.6224 0.6224 0.6158 0.6158 0.6123 0.6123 0.6108 0.6108 0.6094
0.5 7 0.7854 0.6589 0.6589 0.652 0.652 0.6512 0.6512 0.6506 0.6506 0.6502
34 INPUTS
0.25 24 0.649° 0.5096° 0.5096 0.4893° 0.4893 0.4818° 0.4818 0.4807° 0.4807 0.4801°
0.3 18 0.6758 0.5426 0.5426 0.5347 0.5347 0.5248 0.5248 0.5243 0.5243 0.524
0.4 11 0.7416 0.6029 0.6029 0.5993 0.5993 0.5965 0.5965 0.5956 0.5956 0.5952
0.5 7 0.7755 0.6477 0.6477 0.6428 0.6428 0.642 0.642 0.6415 0.6415 0.6412
39 INPUTS
0.25 25 0.6313° 0.48142 0.4814 0.47012 0.4701 0.465% 0.465 0.4628° 0.4628 0.4612°
0.3 19 0.6612° 0.5247° 0.5247 0.5161° 0.5161 0.5131° 0.5131 0.5095° 0.5095 0.5066°
0.4 11 0.732 0.607 0.607 0.6011 0.6011 0.5914 0.5914 0.5883 0.5883 0.5877
0.5 7 0.768 0.6451 0.6451 0.6393 0.6393 0.6385 0.6385 0.6379 0.6379 0.6371

* the best training result

® the 2™ best

° the 3" best

4 the 4" best




Training Error for 5-minute interval systems
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Figure 6.2 Training Error Trend for 5-Minute Interval Systems

Training results for 10-minute interval systems are shown in Table 6.4.
Compared with 5-minute interval systems, 10-minute interval systems have more
rules. This means that the subtractive clustering algorithm found more cluster centers
for the 10-minute training data set. Averaging data points usually reduces the high
frequency noise in the data and the clusters are more separated from each other. The
resulting systems perform better than those with 5-minute intervals. The best 10-
minute interval system has nearly half the amount of error compared to the best 5-
minute interval system. The training error trends for 10-minute interval systems are

shown in Figure 6.3
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Table 6.4 Training Results of Biological Fault Detection Systems with 10-Minute Interval

9%

The 1st Epoch The 2nd Epoch The 3" Epoch The 4™ Epoch The 5th epoch
Start Start End Start End Start End Start End

Roi Rules Error End Error Error Error Error Error Error Error Error Error
24 INPUTS

0.32 35 0.6155 0.4098 0.4098 0.3846 ¢ 0.3846 0.3716 ¢ 0.3716 0.3631¢ 0.3631 0.3562 ¢

0.35 26 0.6363 0.4451 0.4451 0.4252 0.4252 0.4173 0.4173 0.4122 0.4122 0.4083

0.4 16 0.6698 0.5328 0.5328 0.5158 0.5158 0.5082 0.5082 0.5033 0.5033 0.499
29 INPUTS

0.33 39 0.5842° 0.3719° 0.3719 0.351° 0.351 0.3304° 0.3304 0.3202° 0.3202 0.3157°

0.35 30 0.613¢ 0.3979 ¢ 0.3979 0.3849 0.3849 0.3778 0.3778 0.3725 0.3725 0.3682

0.4 22 0.6192 0.4645 0.4645 0.4463 0.4463 0.4358 0.4358 0.4293 0.4293 0.425
34 INPUTS

0.38 39 0.5611 2 0.322% 0.322 0.3046 2 0.3046 0.2949 2 0.2949 0.2879 2 0.2879 0.2824 2

0.4 32 0.5861 © 0.3831° 0.3831 0.3598 0.3598 0.3456 ¢ 0.3456 0.3391°¢ 0.3391 0.3346 ¢

0.45 22 0.6133 0.4598 0.4598 0.4504 0.4504 0.4455 0.4455 0.4414 0.4414 0.4381

* the best training result ® the 2" best © the 3" best 9 the 4™ best
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Figure 6.3 Training Error Trend for 10-Minute Interval Systems

6.5 FDI System Performance Definitions

FDI system performance can be evaluated by detection time and correct
classification of faults. Detection time is the time needed by the FDI system to detect
the occurrence of the fault in the monitored system. The FDI system makes a correct
classification if the system output shows the correct level for the intended fault after
the fault detection. Misclassification does not include discrepancies at the output

during the detection time. Fault level categorization is shown in Figure 6.4.
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Fault Level Categorization
1
0.8 1 Faulty condition
S
= 0.6
?_, No change condition
=)
3 0.4
L
02 . Normal Condition
0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Time (5 minute interval)

Figure 6.4 Fault Level Categorization

The output of the fault detection system gradually goes from a normal
condition represented by a value of 0 to a faulty condition with a value of 1. Any
response above 1 is assumed to be 1 and represents the faulty condition. Any response
below 0 is assumed to be 0 and represents the normal condition.

The area between 0 and 1 can be divided into three parts as shown in Figure
6.4. The value between zero and 0.4 is defined as normal, between 0.4 and 0.6 is
defined as no change from the previous condition. And between 0.6 and 1 is defined as
a faulty condition. For example at time -/ (one sampling step before the current
sampling instant), the response y is (.7, representing faulty condition. At time ¢,
y=0.5, according to this definition, the condition at time ¢ is still faulty. If, at t+1, y=

0.35 then the response has changed to a normal condition.
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6.6. Testing Results

The training results confirm the ability of the neuro-fuzzy systems to
categorize faults according to the training data. It is still possible for the neuro-fuzzy
systems to be over trained. Overtrained is the condition where the neuro-fuzzy system
can follow the training data very closely but respond very poorly to a new data set.
Separate data sets are used to test whether the system is over trained. The over trained
system will not process the testing data correctly

The testing results of the Biological Fault Detection systems with 5-minute
interval data are shown in Table 6.5 and systems with 10-minute interval data are
shown in Table 6.6. Most of the systems can detect the intended faults. Systems with
least errors in training are also performed well in testing, proving they are not over
trained. The test errors for the best four responses are all below 0.3 for each of the
tests.

Systems with the combination of a high number of rules and inputs have the
smallest errors. Three of the four systems with smallest error have the highest number
of rules with 25, 24, and 23 rules. Systems with 39 inputs and 19 rules rank third
while system with 29 inputs and 23 rules ranks fourth. It seems that the number of
inputs is more important than the number of rules.

The errors in Table 6.5 and Table 6.6 show that the 10-minute interval is a
better time step than the 5-minute interval. Testing errors of the best four 10-minute
interval systems for the first test are between 0.189 and 0.237. These are significant
improvements compared with systems with 5-minute interval where the best error is
0.273. The second test results are even better. The best error is 0.072 compared with
0.196 for the best error of the 5S-minute interval systems. That means the error is less
than half of the best 5-minute interval system. The third test result best error is 0.139,

nearly half the best error for 5 minute interval systems of 0.269.
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Table 6.5 Testing Results of Biological Fault Detection Systems with 5-Minute Interval

Testing Error

Roi Rules Training Error Test 1 Test 2 Test 3 Error Sum
24 INPUTS
0.25 24 0.5124 ¢ 0.308460705 0.20248051 © 0.278923034 0.789864249
0.3 17 0.5546 0.324716565 0.221644479 0.293387448 0.839748492
0.4 10 0.6512 0.415115559 0.238148404 0.344361686 0.997625649
0.5 7 0.6652 0.407668653 0.261664896 0.380455159 1.049788708
29 INPUTS
0.25 23 0.5213 0.30491074 ¢ 0.206859032 0.274812928 © 0.7865827 ¢
0.3 18 0.541 0.329627311 0.218513679 0.279370008 0.827510997
0.4 11 0.6094 0.356333331 0.245778224 0.332142552 0.934254107
0.5 7 0.6502 0.38912825 0.253844917 0.354930749 0.997903916
34 INPUTS
0.25 24 0.4801° 0.281143788° 0.19651883 P 0.280049801 0.757712418°
0.3 18 0.524 0.326984888 0.211080144 0.277461864 ¢ 0.815526896
0.4 11 0.5952 0.340228987 0.242100911 0.338398463 0.920728362
0.5 7 0.6412 0.370739567 0.255570979 0.350072279 0.976382824
39 INPUTS
0.25 25 0.4612 2 0.272664835 2 0.19639848 2 0.269275274 2 0.738338588 ¢
0.3 19 0.5066 © 0.290587246 © 0.204278027 ¢ 0.272020062 ° 0.766885335 ©
0.4 11 0.5877 0.334768592 0.23082643 0.323844354 0.889439377
0.5 7 0.6371 0.376257849 0.250696988 0.35803487 0.984989707
* the best training result " the 2™ best ¢ the 3" best 4 the 4™ best
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Table 6.6 Testing Results of The Biological Fault Detection Systems with 10-Minute Interval

Testing Error

Roi Rules Training Error Test 1 Test 2 Test 3 Error Sum
24 INPUTS

0.32 35 0.3562 ¢ 0.234897259 ¢ 0.135800372 0.179293787 ¢ 0.549991418 ¢

0.35 26 0.4083 0.272624582 0.131572433 0.217903591 0.622100607

0.4 16 0.499 0.345997333 0.153457275 0.254178781 0.753633389
29 INPUTS

0.33 39 0.3157° 0.207358717 ° 0.102819571 ¢ 0.153521143 " 0.463699431 "

0.35 30 0.3682 0.2544858 0.115566548 0.18593746 0.555989809

0.4 22 0.425 0.354050497 0.176326231 0.330779066 0.861155794
34 INPUTS

0.38 39 0.2824 2 0.189306555 2 0.087423926 ° 0.138518606 * 0.415249087 ®

04 32 0.3346 ¢ 0.236912814 ¢ 0.071872805 ? 0.179983194 ¢ 0.488768813 °

0.45 22 0.4381 0.29590013 0.093677391 ¢ 0.232099377 0.621676898

* the best training result ® the 2" best ¢ the 3" best 4 the 4" best

Table 6.7 Testing Results of The Biological Fault Detection System with Various Stage of Training

Training Testing Error

roi rules Error Epoch # test 1 test 2 test 3 Error Sum

0.38 39 0.2824 1 0.218971171 0.096143163 0.169036908 0.484151241
2 0.206731425 ¢ 0.091506611 ¢ 0.155317747 ¢ 0.453555783 ¢
3 0.199110828 © 0.089544775 © 0.148376336 ¢ 0.437031939 ¢
4 0.193651243 ° 0.088378694 P 0.14272211° 0.424752047 °
5 0.189306555 ? 0.087423926 * 0.138518606 ° 0.415249087 2

® the best training result " the 2" best ¢ the 3" best 9 the 4™ best
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Figure 6.5 Test 1 (Transpiration Fault) Output for The Biological Fault Detection System with 10-Minute Interval




Table 6.7 shows how the fault detection system evolves with training. This
particular example is the 10-minute interval system with 34 inputs and 39 rules. The
test error is reduced for each test when additional training is applied to the system up
to epoch number 5. This solidifies the conclusion that the fault detection system is not
overtrained since both the training error and testing error are reduced with additional
training.

Although testing errors in Table 6.5 and Table 6.6 are good indicators of the
FDI systems ability in processing the data set, they do not show the dynamic of the
response. For this purpose, the best four 10-minute interval systems response charts
are shown for each test.

Figure 6.5 shows the results for transpiration fault test 1. All FDI systems have
noisy responses. The noise caused delays in the transpiration fault detection. The
detection time for all FDI system is about for 50 minute. The summary of FDI
systems performance can be seen in Table 6.8. The misclassification decreases as the

number of inputs increases for the FDI systems.

Table 6.8 FDI Systems Performances of Test 1 (Transpiration Fault)

FDI Systems Detection Time  Misclassification  Correct Classification
24 inputs and 35 rules 50 minutes 1.80% 98.20%
29 inputs and 39 rules 50 minutes 1% 99%
34 inputs and 32 rules 50 minutes 2% 98%
34 inputs and 39 rules 50 minutes 0.60% 99.40%
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Figure 6.6 Test 2 (Transpiration Fault) Output for Biological Fault Detection Systems with 10-Minute Interval




The second test responses of the four best systems with 10-minute intervals are
shown in Figure 6.6. The responses are very clean with very little noise compared
with test 1. This means the faulty condition pattern was represented well in the
training data sets. There is periodic noise in every response caused by maintenance
disturbances about every two days (about 290 points) and harvesting for another
overlapping 2 days period.

The summary of the FDI systems performance is shown in Table 6.9. All FDI
systems recognized the fault almost immediately. The process of covering the leaves
of the lettuce plants took about 30 minutes and the fault starting point was defined
when the covering activity finished. The FDI started recognizing the fault when the

covering process happened.

Table 6.9 FDI Systems Performances of Test 2 (Transpiration Fault)

FDI systems Detection time  Misclassification  Correct classification
24 inputs and 35 rules 10 minutes 0.90% 99.10%
29 inputs and 39 rules 10 minutes 0% 100%
34 inputs and 32 rules 10 minutes 0% 100%
34 inputs and 39 rules 10 minutes 0% 100%

Misclassification is 0% for three out of the four FDI systems. This is an
excellent result for a slowly happening fault in the monitored system. External
disturbances caused by maintenance and harvesting can be overcome by the FDI

systems.
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Figure 6.7 Test 3 (Normal Condition) Output for Biological Fault Detection Systems with 10-Minute Interval




The normal test responses are shown in Figure 6.7. All FDI systems had noisy
responses. Except for the FDI system with 24 inputs and 35 rules, the FDI systems
had no misclassification. The summary of FDI systems performance of test 3 can be

seen in Table 6.10.

Table 6.10 FDI Systems Performances of Test 3 (Normal Condition)

FDI Systems Detection Time Misclassification Correct Classification
24 inputs and 35 rules NA 0.60% 99.40%
29 inputs and 39 rules NA 0% 100%
34 inputs and 32 rules NA 0% 100%
34 inputs and 39 rules NA 0% 100%

6.7 Filter and System Performance

An algorithm for a simple filter is discussed below. In addition to the filter, the
algorithm also gives an output of 0 and 1, giving a non-fuzzy output that determines
whether the system has a fault or not. This output is important because a person who
can read the original graphic might not be around and a simple alarm can be read or
even connected to a loudspeaker to be heard by anybody. Below is the step-by-step
algorithm to filter the output and give an alarm:

1. Wait until sufficient data sets are available in order for the system to work. If
the FDI system uses the prevous 5 sampling steps, the algorithm waits for at
least five time steps before giving any output. While waiting the output is zero
or no fault.

2. When the output is larger than 1, then it is equal to 1.

3. If the output is lower than 0 then it is equal to 0.

4. When the state of the output changes, observe the next four outputs.
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5. If three out of five consecutive output states have changed then the state of the
output has changed, otherwise the change of the state is noise. In this case,

change the output value to the average of before and after output values.

This filter and fault decision algorithm were tested on test 1 responses of the
two best FDI systems of 10-minute interval. The result for the second best system

with 29 inputs and 39 rules can be seen on Figure 6.8.

Figure 6.8a is the original test result for this particular system.

- Figure 6.8b has the filter algorithm output decision of whether the fault has
happened.

- Figure 6.8c is the filtered output so that all the noises detected by the filter are
removed from the response.

- Figure 6.8d is the noise chart. It shows the points defined as noise in the

response by the filter.

The filter performed very well for this FDI system. Figure 6.8b shows that the
fault decision exactly follows the real faulty condition of the data set for testing. It can
identify the changing condition at step 25, one step after the start of the fault. It also
can identify the noise in step 26 that drops the response to 0.19 and marks it as a noise
and changes the value to the average of its neighboring points. It also can identify five
more points correctly as noise.

The result of the filter and fault decision algorithm tested on the system with
34 inputs and 39 rules can be seen in Figure 6.9. The algorithm classifies points
during the noisy transition period from normal to faulty conditions as noise. The fault
was introduced in step 20, but the filter algorithm identifies it at step 24 as shown in

Figure 6.9b
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The FDI system response has already changed its state to the faulty condition
on step 20 but dropped back to the normal condition for the next three steps. Only
after step 24, are there 3 out of 5 consecutive points where the state is in the faulty
condition and recognized quickly by the filter algorithm. The detection time of the
faulty condition is 30 minutes from the start of the fault. This performance is still very
good for a slowly happening transpiration fault and an improvement from 50-minute
detection time without the filter.

The filter recognizes four noise points shown by Figure 6.9d. The first noise is
the condition at the transition period as described in the paragraph above. Noises in
the responses are averaged with their neighboring points as shown in Figure 6.9c. The
summary of the FDI system responses with and without the filter is shown in Table

6.11.

Table 6.11 FDI Systems Performances of Test 1 With and Without The Filter

FDI Systems Detection Time  Misclassification Correct Classification
34 inputs and 32 rules 50 minutes 2% 98%
34 inputs and 32 rules with filter 10 minutes 0% 100%
34 inputs and 39 rules 50 minutes 0.60% 99.40%
34 inputs and 39 rules with filter 30 minutes 0% 100%

6.8 Result Summary

Table 6.12 FDI Systems Performances of Test 1 (Transpiration Fault)

FDI Systems Detection Time  Misclassification  Correct Classification
24 inputs and 35 rules 50 minutes 1.80% 98.20%
29 inputs and 39 rules 50 minutes 1% 99%
34 inputs and 32 rules 50 minutes 2% 98%
34 inputs and 39 rules 50 minutes 0.60% 99.40%

Table 6.12 shows the NF FDI system performances in the processing test 1

data set. The responses are noisy which means this particular pattern is weakly
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recognized within the system’s noise. This condition caused long detection times.

The correct classification percentage is at or above 99% for the two best responses.

Table 6.13 FDI Systems Performances of Test 1 With and Without Filter

FDI Systems Detection Time Misclassification Correct Classification
34 inputs and 32 rules 50 minutes 2% 98%
34 inputs and 32 rules with filter 10 minutes 0% 100%
34 inputs and 39 rules 50 minutes 0.60% 99.40%
34 inputs and 39 rules with filter 30 minutes 0% 100%

Filtering helps reduces both the detection time and misclassification in the
noisy system responses as shown in Table 6.13. The misclassification for the noisy

FDI system responses decreasedfrom 2% and 0.6% to zero for the two best systems.

Table 6.14 FDI Systems Performances of Test 2 (Transpiration Fault)

FDI Systems Detection Time  Misclassification Correct Classification
24 inputs and 35 rules 10 minutes 0.90% 99.10%
29 inputs and 39 rules 10 minutes 0% 100%
34 inputs and 32 rules 10 minutes 0% 100%
34 inputs and 39 rules 10 minutes 0% 100%

Test 2 responses have very little noise, signaling this particular pattern is
strongly recognized by all FDI systems. The FDI systems performances in the
processing test 2 data set can be seen in Table 6.14. All systems recognized the fault

early and misclassification percentage is 0% for three out of four systems.

Table 6.15 FDI Systems Performances of Test 3 (Normal Condition)

FDI systems Detection time Misclassification Correct classification
24 inputs and 35 rules NA 0.60% 99.40%
29 inputs and 39 rules NA 0% 100%
34 inputs and 32 rules NA 0% 100%
34 inputs and 39 rules NA 0% 100%

The normal conditions can successfully be recognized by the FDI systems.

Three out of four systems have 100% correct classification. The NF biological FDI
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system successfully identified the transpiration fault in the hydroponic plant
production system. The average detection time of 30 minutes is fast enough for early

fault detection.
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CHAPTER 7
NEURO-FUZZY MECHANICAL FAULT DETECTION AND

IDENTIFICATION SYSTEM

7.1 Mechanical Fault in The Hydroponic System.

Mechanical faults in the hydroponic system can be categorized into abrupt
faults and incipient faults. Two different types of experiments from each category
were performed from November 2000 to June 2001. Malfunctioning episodes of the
pH control pump and the hydroponic system circulation were performed to simulate
abrupt faults. Drifting of the pH sensor and EC sensor were performed to simulate
incipient faults.

The pH control pump was deemed to be the most important fault. If the pump
that supplied acid stayed on without any request from control signal for a long period
of time, the pH would drop quickly to a level that could destroy the plants in less than
an hour. Since doing this exact experiment could destroy all of the plants very
quickly, the opposite fault by stopping the pump was performed instead. If the act of
stopping the pump could be detected quickly, the fault of continuously on could be
detected as quickly.

The second important fault was the sudden stopping of the circulation pump.
Without water circulation, feedback from the sensor could be delayed. In case of the
DO control, the DO sensor reading stayed low even if the DO had been fully supplied
for a while. This had no negative effect on the plants. This was a different matter
from the pH control. If the pH rose above 5.8, the pH pump tried to supply more and
more acid to the circulation system. But, the acid did not get to the sensor for a long
time and finally acidified the solution excessively. The sensor was slow to recognize

this condition which caused the plants to die.
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The third important fault was a slowly drifting pH sensor. Undetected sensor
drift caused the pH of the nutrient solution move outside the optimal range. This
caused the plant to absorb less nutrient and had slower growth. This situation reduced
the amount of plant production and the quality of the product.

The slowly drifting EC sensor caused a similar problem as the pH sensor
although it was not significant. The value of the nutrient concentration that was lower
than the optimal range decreased the amount of nutrient available for absorption and
the higher value could hinder the nutrient absorption by creating more osmosis barrier.

This also caused the plant to absorb less nutrient and leading to slower growth.

7.2 Neuro-Fuzzy FDI Specifications

Neuro-fuzzy systems with 14, 19, 24, 29 and 34 variables were used as FDI
systems. Systems with 14 inputs were developed only for 10-minute interval data
since the number of inputs is too low to give satisfactory results.

The inputs used in the FDI systems were: pH, dissolved oxygen (DO),
electrical conductivity (EC), pH control signal (pHcs), DO control signal (DOcs), air
temperature, light intensity, relative humidity (RH), solution temperature, and
previous sample values of pH, DO, EC, pHcs, and DOcs.

Subtractive clustering was used to extract the neuro-fuzzy fault rules from the
input-output data. Range of influence (roi) coefficients in the clustering method
determined how many cluster centers formed. Values between 0.2 and 0.5 are
recommended [Chu 1994]. Several roi values were used to form the neuro-fuzzy
systems. A small roi means a short range of influence of the cluster center and a large
number of cluster centers formed. The number of cluster center determines the
number of fuzzy rules. For example the subtractive clustering algorithm with a roi

value of 0.234 formed 17 cluster centers (rules) for the FDI system with 29 inputs.
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There was only one output variable, which reduced the complexity of the
neuro-fuzzy detection system. In place of a different output for each fault condition,
different values of the single output were used. The output value of 1 represented the
normal condition. The value of 2 represented the pH control pump fault. The value of
3 represented the circulation pump fault. The value of 4 represented the slowly drifting
pH sensor fault and the value of 5 represented the slowly drifting EC sensor fault.

The placement of the faults relative to normal in the multilevel value of the
FDI system output was based on how important the fault was to the system. By
placing the most important fault next to the normal condition, it had more sensitivity
and less noise. It was hypothesized that a desirable fault detection system was the one
that performed the best in detecting these important faults and performed at least

average in detecting the least important faults in the system.

7.3 Data Sets

Experiment data sets were categorized into training and testing data sets.
Training data sets used in forming and training of the neuro-fuzzy systems can be seen
in Table 7.1. The testing datasets are shown in Table 7.2. The number of data entries
for systems with 5-minute intervals was twice the number of data entries for systems

with 10-minute intervals because the same number of experiments was used.
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Table 7.1 Training Data Sets

Experiment

Type Tank # Start Date Start Time End Date End Time
Normal 2 02/22/01 6am 02/24/01 6am
Normal 2 02/24/01 6am 02/26/01 6am
Normal 2 02/26/01 6am 02/27/01 6am
Normal 2 03/06/01 6am 03/08/01 6am
Normal 2 04/20/01 6am 04/22/01 6am
Normal 2 04/25/01 6am 04/26/01 6am
Normal 2 05/14/01 6am 05/16/01 6am

pHp® 2 11/08/00 3:30pm 11/10/00 12:35pm

pHp 2 11/12/00 2:15pm 11/14/00 1:45pm
pHp 3 02/22/01 11:55am 02/24/01 12pm

pHp 3 02/26/01 12:55pm 02/27/01 5:55pm
pHp 3 02/28/01 10:10am 03/02/01 4:45pm
pHp 3 05/25/01 12:28pm 05/26/01 6:20pm
pHp 3 05/31/01 12:20p m 06/01/01 5:45pm

CP° 3 11/18/00 1:30pm 11/20/00 1:45pm

CP 1 12/07/00 6:0lam 12/07/00 1:15pm
CP 1 12/13/00 7:11am 12/13/00 1:41pm
CP 3 03/03/01 11:53am 03/03/01 4:50pm
CP 3 03/06/01 12:30pm 03/06/01 5:47pm
CP 3 03/08/01 1:10pm 03/08/01 5:40pm
CP 3 03/09/01 12:06pm 03/09/01 4:30pm
CP 3 03/15/01 12:05pm 03/15/01 6:20pm
CP 3 04/16/01 11:58am 04/16/01 4:45pm
CP 3 04/18/01 11:59am 04/18/01 5:30pm
CP 3 05/16/01 12:06pm 05/16/01 5:45pm
CP 3 05/18/01 12:01pm 05/18/01 5:30pm
CP 3 05/22/01 1:07pm 05/22/01 5:35pm
CP 3 05/24/01 12:16pm 05/24/01 6pm
pHs® 1 05/09/01 12:39pm 05/10/01 4:32pm
pHs 1 05/11/01 12pm 05/12/01 4pm
pHs 1 05/17/01 12:05pm 05/18/01 5:30pm
pHs 1 05/21/01 1:18pm 05/22/01 5:35pm
pHs 1 05/29/01 12:01pm 05/30/01 6:30pm

ECs* 1 04/11/01 12:58pm 04/13/01 1:08pm

ECs 1 05/01/01 12:10pm 05/03/01 1:01pm

ECs 1 05/03/01 1:28pm 05/07/01 12:12pm

ECs 1 05/07/01 12:35pm 05/09/01 12pm

*pHp : pH control pump

°CP : circulation pump

°pHs : pH sensor

9ECs : electrical conductivity sensor

66



Table 7.2 Testing Data Sets

Exp;:}rl;rgent Tank # Start Date Start Time End Date End Time
Normal 2 01/14/01 6am 01/15/01 6am
Normal 2 03/26/01 6am 03/27/01 6am

pHp* 3 02/20/01 12:25pm 02/21/01 5:45pm
pHp 3 05/29/01 12:01pm 05/30/01 6:30pm
CP° 1 12/05/00 1:44pm 12/05/00 5:35pm
CP 3 04/20/01 11:54am 04/20/01 5:15pm
pHs® 1 11/29/00 12:03pm 11/30/01 4pm
pHs 1 05/15/01 12:20pm 05/16/01 5:45pm
ECs? 1 12/10/00 10:54am 12/12/00 7:12am
ECs 1 04/30/01 12:20pm 05/01/01 12pm

’pHp : pH control pump

°CP : circulation pump

°pHs : pH sensor

YECs : electrical conductivity sensor

7.4 Training Results

The FDI systems constructed by the subtractive clustering method were trained
further using training data from the fault experiments. Each system was trained for 5
epochs with each epoch consisting of 500 iterations (a total of 2500 iterations). The
training result for Mechanical Fault Detection System with 5-minute interval (FDIS
systems) is shown in Table 7.3.

The starting errors of the newly constructed fault detection systems from the
subtractive clustering method were fairly large but quickly diminished starting with
the first training. The first epoch of the training reduced the error the most while the
last epoch reduced it the least. The number of training epochs was limited to 5, since
further training did not give significant improvement. All systems were trained to the

same number of epochs to have the same state of training for comparison.
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Table 7.3 Training Result of Mechanical Fault Detection Systems with 5-Minute Interval

The 1st Epoch The 2nd Epoch The 3rd Epoch The 4th Epoch The 5th Epoch
Start End Start End Start End Start End Start End
Roi Rules Error Error Error Error Error Error Error Error Error Error
19 INPUTS
0.25 14 0.7974 0.5757 0.5757 0.5668 0.5668 0.5639 0.5639 0.5618 0.5618 0.561
0.3 8 0.8573 0.6187 0.6187 0.6106 0.6106 0.6067 0.6067 0.6045 0.6045 0.6035
24 INPUTS
0.22 18 0.7459 0.451% 0.451 0.4417 0.441 0.4371% 0.4371 0.4336° 0.4336 0.4318°
0.25 13 0.7793 0.5144 0.5144 0.4855 0.4855 0.4733 0.4733 0.4633¢ 0.4633 0.4539°
0.28 9 0.8217 0.5567 0.5567 0.5115 0.5115 0.5048 0.5048 0.5024 0.5024 0.5001
0.3 8 0.8406 0.5836 0.5836 0.5346 0.5346 0.5248 0.5248 0.5192 0.5192 0.5166
29 INPUTS
0.234 17 0.7198  0.4708" 0.4708 0.4587° 0.4587  0.4551° 0.4551 0.4522° 0.4522  0.4509°
0.24 16 0.7216 0.4755° 0.4755 0.4598° 0.4598 0.4576° 0.4576 0.4558° 0.4558 0.4542¢
0.25 13 0.7663 0.4833 0.4833 0.4761 0.4761 0.4734 0.4734 0.4715 0.4715 0.4699
34 INPUTS
0.26 11 0.793 0.5348 0.5348 0.495 0.495 0.4793 0.4793 0.4749 0.4749 0.4731
0.28 8 0.8542 0.4822° 0.4822 0.4746¢ 0.4746 0.471¢ 0471 0.4685 0.4685 0.4672
0.3 7 0.8549 0.6155 0.6155 0.565 0.565 0.5379 0.5379 0.5281 0.5281 0.5279

* the best training result

® the 2™ best

® the 3" best

4 the 4" best
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Table 7.4 Training Results for Mechanical Fault Detection Systems with 10-Minute Interval.

The 1st epoch The 2nd epoch The 3rd epoch The 4th epoch The 5th epoch
Start End Start End Start End Start End Start End
roi  rules Error Error Error Error Error Error Error Error Error Error
14 INPUTS
0.25 13 0.8271 0.5693 0.5693 0.5628 0.5628 0.5602 0.5602 0.5593 0.5593 0.5586
0.3 7 0.8718 0.6381 0.6381 0.6408 0.6381 0.6332 0.6332 0.6304 0.6304 0.6275
19 INPUTS
0.22 17 0.7693 0.5626 0.5626 0.5578 0.5578 0.5553 0.5553 0.5522 0.5522 0.5515
0.25 13 0.8083 0.5625 0.5625 0.5511 0.5511 0.5467 0.5467 0.5442 0.5442 0.5423
0.27 11 0.8164 0.5921 0.5921 0.583 0.583 0.5803 0.5803 0.5793 0.5793 0.5783
0.3 7 0.864 0.6096 0.6096 0.6057 0.6057 0.6028 0.6028 0.6002 0.6002 0.5985
24 INPUTS
0.23 17 0.7646 0.5327° 0.5327 0.5259 ° 0.5259 0.5235° 0.5235 0.5215° 0.5215 0.5195°
0.25 13 0.7096 0.5526 0.5526 0.5454 ¢ 0.5454 0.5418 0.5418 0.5394 0.5394 0.5375
0.27 11 0.81 0.5543 0.5543 0.548 0.548 0.5458 0.5458 0.5443 0.5443 0.543
0.3 8 0.8526 0.5945 0.5945 0.5894 0.5894 0.5877 0.5877 0.5867 0.5867 0.5859
29 INPUTS
0.24 16 0.7568 0.5199° 0.5199 0.5143% 0.5143 0.5116°2 0.5116 0.5103° 0.5103 0.5092 2
0.25 13 0.7873 0.5523 ¢ 0.5523 0.5435° 0.5435 0.5415 ¢ 0.5415 0.5415 0.5406 0.5399
0.27 11 0.83113 0.5632 0.5632 0.5552 0.5552 0.5492 0.5492 0.5445 0.5445 0.5373
0.3 8 0.8496 0.5781 0.5781 0.5702 0.5702 0.566 0.566 0.5636 0.5636 0.5611
34 INPUTS
0.26 11 0.7875 0.5568 0.5568 0.5477 0.5477 0.5424 0.5424 0.5382 ¢ 0.5382 0.5354 ¢
0.28 10 0.8047 0.5459 ¢ 0.5459 0.5359 0.5359 0.5293° 0.5293 0.5236° 0.5236 0.5191°
03 8 0.8411 0.5734 0.5734 0.5592 0.5592 0.5536 0.5536 0.5497 0.5497 0.5474
* the best training result ® the 2™ best ¢ the 3" best ¢ the 4™ best




Training Error for 5-minute interval systems
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Figure 7.1 Five-Minute Interval Systems’ Error Trend

The five-minute interval FDI system error trends for every epoch of the
training can be seen in Figure 7.1. The last epoch training result of the FDI systems
are very close to each other, except for the best system. Systems with more rules had
smaller training errors than those with fewer rules.

The system with 34 inputs had more training error than 24 and 29 input
systems. Generally the more input available the better the system capability for
approximating the monitored system. Systems with more inputs need more training
data sets. In this case, systems with 34 inputs were limited to have a maximum
number of 11 rules. As a comparison, the system with 29 inputs had a maximum
number of 17 rules.

Table 7.4 shows the training result for Mechanical FDI systems with 10-
minute intervals (FDI10 systems). The final training errors for these systems are
generally larger than the 5-minute interval (FDIS) systems. The system with 29 inputs

and 16 rules had the least error.
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Training Error for 10-minute interval systems
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Figure 7.2 Ten-Minute Interval Systems’ Error Trend

The 10-minute interval error trend is shown in Figure 7.2 for every epoch of
training. All errors are uniformly separated at the beginning of the training. At the
end of the training, the system with 34 inputs and 10 rules and the system with 24
inputs and 17 rules had similar error values. In this case more inputs gave more
degrees of freedom in modeling the process than more rules. Systems with 34 inputs
had fewer rules and were limited by the available training data sets but had training

errors comparable to 29 input systems.

7.5 Sensitivity Test
The sensitivity of the neuro-fuzzy system to its inputs was explored. In order
to do this, one of the input variables was removed at a time from the training data set.

The ANFIS was trained with this data set for 500 iterations. The result can be seen in

Table 7.5.
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Table 7.5 Training Error of 5-Minute Interval ANFIS
with One Variable Eliminated at a Time for 24 Inputs and 18 Rules

Variable Removed Training Error
Electrical Conductivity 0.8107
Relative Humidity 0.7545
Light Intensity 0.7199
Nutrient Temperature 0.7159
Air Temperature 0.7073
pH control signal 0.6982
Dissolved Oxygen 0.6854
pH 0.6583
Dissolved Oxygen control signal 0.6406

The elimination of the electrical conductivity caused the largest training error
of 0.8107. The next ones were the relative humidity, the light intensity, the nutrient
temperature and the air temperature. So it can be deduced that the aerial variables are
more important than the nutrient solution variables in the neuro-fuzzy fault detection
system. The aerial variables are needed to determine the effect of seasonal changes
and also they are important for the adaptivity of the FDI system in different weather
conditions. The high sensitivity of the neuro-fuzzy system to the EC input is an
exception. EC was maintained manually and there was no additional control signal as
an input variable. So the EC input is the only variable available for the EC sensor
fault detection. The elimination of the input variables used in the neuro-fuzzy FDI
system caused significant increase in the training error. The least error increase
caused by the dissolved oxygen control signal elimination is 0.6406, much larger than

0.451 when all inputs are available.

7.6 FDI System Performance Definitions
The FDI system performance is measured from detection time and correct
classification of faults. The detection time is the time needed by the FDI system to

detect the occurrence of fault in the monitored system.
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The FDI system makes a correct classification if the system output shows the
correct level for the intended fault after the fault detection. Misclassification does not
include discrepancies at the output during the detection time. The fault level
categorization is shown in Figure 7.3.

The area between 1 and 2 can be divided into three parts. The value between 1
and 1.4 is defined as normal, between 1.4 and 1.6 is defined as no change from the
previous condition, and between 1.6 and 2 is defined as fault 1 condition. For
example at time #-/ (one sampling step before the current sampling instant), assume
the response y is /.7, representing fault 1 condition. At time ¢, y=1.5 and according to
this definition, the condition at time ¢ is fault 1. If at time ¢+/, y= .35 then the
response has changed to normal condition. The same definition is applicable for the

area between fault value 2 and 3, fault value 3 and 4 and so on.

7.7 Testing Results
To make sure that all the systems were not over trained, some data sets were
used for testing the trained FDI systems. The results for 5-minute interval (FDIS) and
10-minute interval (FDI10) systems are shown in Table 7.6 and Table 7.7. There were
5 different conditions for the mechanical FDI systems so there were 5 different tests
for each condition: test 1 for the normal condition, test 2 for the pH pump faulty
condition, test 3 for the circulation pump faulty condition, test 4 for the pH sensor
faulty condition, and test 5 for the EC sensor faulty condition.
From the testing results in Table 7.6, the four best FDIS systems are:
1. 19 input system with 14 rules.
2. 29 input system with 17 rules.
3. 24 input system with 18 rules.

4. 24 input system with 13 rules.
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Table 7.6 Testing Result of Mechanical Fault Detection System with 5-Minute Interval

Training Testing Error
Roi Rules Error Test 1 Test 2 Test 3 Test 4 Test5 Error Sum
19 INPUTS
0.25 14 0.561 0.16928524  0.479584081° 0.488848056° 0.632452719%  0.769139544  2.53930964 °
0.3 8 0.6035 0.172303441  0.581795916  0.665454077  0.925005074  1.000119722  3.344678231
24 INPUTS
0.22 18 0.4318% 0.172978905  0.524922662  0.539456798  0.74286112°  0.701994717° 2.682214202°
0.25 13 0.4539 ¢ 0.154150573  0.565303998  0.549193708  0.732092524° 0.716150722° 2.716891524 ¢
0.28 9 0.5001 0.14893771 0.519931468  0.542731378  1.122756089  0.994240583  3.328597229
0.3 8 0.5166 0.148875552 0.5280686 0.64655073 1.225181895  0.880655581  3.429332359
29 INPUTS
0234 17 0.4509 ° 0.129831308 0.474498701°  0.581590867  0.757940106 ¢ 0.726103723¢ 2.669964704 P
0.24 16 0.4542 ¢ 0.134174631° 0.463846389°% 0.536137192%  0.861009851  0.856645327 2.85181339
0.25 13 0.4699 0.181670767  0.519768732¢ 0.345700133%  1.159686144  0.804532003  3.011357778
34 INPUTS
0.26 11 0.4731 0212697216  0.576912647  0.646172883  0.817985037  0.644045139%  2.897812922
0.28 8 0.4672 0.148063709 ¢ 0.559363674  0.491292428°  0.911436059  0.915560502  3.025716371
0.3 7 0.5279 0.14473702°  0.531180859  0.849093149  1.176408171 1.17664346 3.878062659

“ the best training result ® the 2™ best

® the 3" best 4 the 4™ best
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Table 7.7 Testing result of Mechanical Fault Detection System with 10-Minute Interval

Training Testing Error
Roi  Rules Error Test 1 Test 2 Test 3 Test 4 Testb5 Error Sum
14 INPUTS
0.25 13 0.5586 0.170825983 0.499935284 0.469445776 0.697353449 ¢ 1.011311096 2.848871589
0.3 7 0.6275 0.170704827  0.477407018 ¢ 0.90162597 1.388486755 1.446180149 4.384404719
19 INPUTS
0.22 17 0.5515 0.118790906 ¢  0.456828864 ° 0.522521235 1.090957667 0.858216506 ¢  3.047315178
0.25 13 0.5423 0.170436178 0.550154877 0.631541893 0.765149135 0.885104496 3.002386578
0.27 11 0.5783 0.184652696 0.524974223 0.521585261 0.967780144 0.964602487 3.163594812
0.3 7 0.5985 0.145250984 0.580298248 0.566414791 1.431709687 1.172286923 3.895960633
24 INPUTS
0.23 17 0.5195° 0.180146431 0.52243554 0.416614223 ¢ 0.587299059%  0.887727578 2594222831 "
0.25 13 0.5375 0.213459263 0.500128201 0.332069123 * 0.643849741°  0.886023789 2.575530118 2
0.27 11 0.543 0.220109543 0.519935463 0.519077832 0.835028521 0.868539768 ¢  2.962691127
0.3 8 0.5859 0.140891892 ¢ 0.568474568 0.565132209 1.060458028 0.933372578 3.268329276
29 INPUTS
0.24 16 0.5092 2 0.183878419 0.467728577 ¢ 0.522634642 0.749475577  0.790078102%  2.713795317 ¢
0.25 13 0.5399 0.22214617 0.445758251% 0.525904196 0.846688201 0.850907359°  2.891404177
0.27 11 0.5373 0.17889548 0.522971074 0.508016431 0.824622695 1.017390799 3.051896479
0.3 8 0.5611 0.143157121 0.510632408 0.632110595 1.331521721 0.957864084 3.575285929
34 INPUTS
0.26 11 0.5354 ¢ 0.138879251°  0.555999751 0.419449975 ¢ 0.831724637 1.175339415 3.121393028
0.28 10 0.5191° 0.176137416 0.531102764 0.373036003 P 0.724460264 ¢ 0.902113771 2.706850218 ©
0.3 8 0.5474 0.13987442 ° 0.525451429 0.579274031 1.000140976 1.000053852 3.244794708

? the best training result

® the 2™ best

© the 3" best

4 the 4™ best




From the testing results in Table 7.7, the four best FDI10 systems are:

1. 24 input system with 13 rules
2. 24 input system with 17 rules
3. 34 input system with 10 rules.

4. 29 input system with 16 rules.

Systems with the least testing error sums for both the FDIS and the FDI10 systems
are:

1. The best is from the 5-minute interval.

2. The second best from the 10-minute interval.

3. The third best is from the 10-minute interval and

4. The fourth best is from the 5-minute interval.

The best individual test results were also expected to alternate between the
FDIS5 and the FDI10 systems, but the FDI10 systems had the best test result from the
test number 1 to 4. The FDIS5 systems had the best response for only the test number
five. The overall test results are similar because the error for the test number 5 is
much larger for the FDI10 systems than for the FDIS systems so the final errors are
balanced out. This result is unexpected since the training results for the FDIS systems
are much better than for FDI10 systems. To see whether the FDIS is over trained, the
two best-trained FDIS systems were tested for every epoch of training and shown in
Table 7.8. As comparison, two best FDI10 systems were also tested and the results

are shown in Table 7.9.
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Table 7.8 Two Best-Trained 5-Minute Interval System Testing Result for Each Training Epoch

Epoch # Testl Test 2 Test 3 Test4 Test5 Error Sum
Five Minute Interval System with roi=0.22, 24 inputs and 18 rules (Training Error=0.4318)
1 0.143544213 2 0.524400917 # 0.53798455 ° 0.780729701 0.746990416 2.733649797
2 0.173386371 0.528251454 ¢ 0.53219394 2 0.754967277 ¢ 0.708019107 ¢ 2.69681815 ¢
3 0.172978905 ¢ 0.524922662 ° 0.539456798 © 0.74286112 ¢ 0.701994717 © 2.682214202 ©
4 0.16996233 © 0.52800073 0.544957508 ¢ 0.717618945 ° 0.69431375° 2.654853262 °
5 0.169661955 ° 0.528259882 0.546912877 0.707092742 2 0.685374525 2 2.637301982 2
Five Minute Interval System with roi=0.234, 29 inputs and 17 rules (Training Error=0.4509)
1 0.135287767 0.463247468 ° 0.560780431 2 0.87154058 0.79254761 2.823403857
2 0.131713244 ¢ 0.474586913 © 0.578098437 ° 0.781487984 ¢ 0.74645471 ¢ 2.712341288 ¢
3 0.130549678 © 0.475159238 ¢ 0.57905351 ¢ 0.766294653 © 0.731671745 ¢ 2.682728823 ¢
4 0.130389924 ° 0.47588489 0.57845429 © 0.762273999 ° 0.724728412 2 2.671731516°
5 0.129831308 ? 0.474498701 ° 0.581590867 0.757940106 2 0.726103723° 2.669964704 2
® the best training result ® the 2™ best ¢ the 3" best 4 the 4™ best
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Table 7.9 Two Best-Trained 10-Minute Interval System Testing Result for Each Training Epoch

Epoch # Test 1 Test 2 Test 3 Test4 Test5 Error Sum
Ten Minute Interval System with roi=0.24, 29 inputs and 16 rules (Training Error=0.5092)
1 0.183865569 P 0.483745469 0.546850185 0.768141602 0.870364086 2.85296691
2 0.183419626 ° 0.475505746 ¢ 0.530374222 ¢ 0.756841708 ¢ 0.842872643 ¢ 2.789013944 ¢
3 0.184364957 0.470459135 © 0.526809382 © 0.749742356 ° 0.817077319 © 2.748453149
4 0.184117254 ¢ 0.469377615 ° 0.523582262 ° 0.749892153 © 0.802072993 ° 2.729042278 °
5 0.183878419 ¢ 0.467728577 2 0.522634642 2 0.749475577 2 0.790078102 ? 2.713795317 2
Ten Minute Interval System with roi=0.28, 34 inputs and 10 rules (Training Error=0.5191)
1 0.18424418 0.540111961 ¢ 0.547545845 0.8557179 0.970288411 3.097908297
2 0.18306252 ¢ 0.538696929 © 0.508060257 ¢ 0.81815396 ¢ 0.948539754 ¢ 2.99651342 ¢
3 0.176856637 © 0.542277791 0.444994882 © 0.782580062 © 0.941813051 © 2.888522422 ¢
4 0.175929834 ? 0.533702131° 0.370003695 ? 0.76048469 ° 0.926503068 ° 2.766623418 °
5 0.176137416 ° 0.531102764 2 0.373036003 ° 0.724460264 2 0.902113771 2 2.706850218 ?
? the best training result ® the 2™ best ¢ the 3" best 4 the 4™ best




The testing results for the mechanical multilevel value FDI systems were not
as clear as the biological fault detection system. In the biological fault detection
system, all test results were better with additional epochs of training. This was not the
case with the multilevel value fault detection where some have the best test results for
the first epoch of training and some have the best results at the last epoch of training.

Although the FDIS5 systems did not do as well as the FDI10 systems, the
testing error sum was still decreasing with each additional epoch of training. The
additional error for tests that reached their best result at the first or second epoch of
training were small compared with the reduction in error for tests that reached their
best result at the last epoch of training. The FDI10 systems had more uniform test
result in every epoch with the least errors reached mostly at the last epoch of training.
More training reduced the testing errors more than the FDIS systems.

These test results confirmed that both the FDIS and the FDI10 systems were
not overtrained. The FDI10 systems processed the input patterns of the test files better
than the FDIS systems.

Although testing errors in Table 7.8 and Table 7.9 are good indicators of the
FDI systems ability in processing the data sets, they do not show the dynamic of the
response. For this purpose, the best four FDI5 and FDI10 system response charts are

shown in Figure 7.4 and 7.5 .
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MFIS19 (14 rules) Normal Test Output

MFIS24 (18 rules) Normal Test Output
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Figure 7.4 Normal Test Output for Mechanical Fault Detection System with 5-Minute Interval
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MFI1S24 (17 rules) Normal Test Output
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MFIS24 (13 rules) Normal Test Output
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Figure 7.5 Normal Test Output for Mechanical Fault Detection System with 10-Minute Interval




The differences between the charts are slight, signaling all systems performed
very well in recognizing the normal condition. The response stayed very close to 1
during most of the testing period. There was a maintenance routine at the point 109 of
the FDIS5 system charts that suddenly dropped the EC value slightly (about 40 puS/cm).
This was a result of water addition and caused a small spike in the systems’ responses.

Near the end of the responses, at the point 400-500 for the FDI5 systems and at
the point 200-250 for the FDI10 systems, there were some points of the response that
went farther away from the desired value. Logged data showed that during that time
period there were other experiments on the other tanks that day that needed additional
computer subroutine. Stopping the control and monitor program several times to
include the needed subroutines caused missing sampling steps and the fault detection
system recognized these as abnormal conditions.

The three experimental tanks had identical numbers of lettuce plants and nearly
identical nutrient solution conditions during the experiments. Unfortunately, the
evapotranspiration of the three tanks was found to be different and, as the result, the
rate of the nutrient changes in the solution for each tank was different. This condition
presented additional noise and reduced the overall sensitivity for the FDI system. The
problem was pinpointed as the different flow rate and pattern of the airflow above the
tanks. The detail information about the evapoptranspiration can be found in Appendix

B. The FDI system performances for normal condition can be seen in Table 7.10

Table 7.10 FDI System Performances for Normal Condition

FDI System Misclassification Correct Classification
FDIS with 24 inputs and 18 rules 1.6% 98.4%
FDI10 with 29 inputs and 16 rules 0% 100%
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MFIS19 (14 rules) pH pump Fault Test Output

MFIS24 (18 rules) pH pump Fault Test Output
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Figure 7.6 pH Pump Fault Test Output for Mechanical Fault Detection System with 5-Minute Interval
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MFIS24 (17 rules) pH pump Fault Test Output

MFIS24 (13 rules) pH pump Fault Test Output
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Figure 7.7 pH Pump Fault Test Output for Mechanical Fault Detection System with 10-Minute Interval




It took 795 minutes for the FDIS systems and for the FDI10 systems to
recognize the pH pump fault as shown in Figure 7.6 and Figure 7.7. This happened
after the maintenance period where the pH was lower than 5.8 when the new nutrient
solution was added to the tank and slowly increased until it crossed 5.8 at the minute
1530 for theFDIS5 system and for the FDI10 systems.. The way the plants absorbed the
nutrients (primarily nitrate) increased the pH of the nutrient solution. The pH control
pump controlled the pH value by injecting an acid solution to the circulation system
whenever the pH went above 5.8. This is the reason why the fault detection system
did not recognize the faulty condition from the minute 735 to 1530 for the FDIS5
systems and for the FDI10 systems where the pH control signal did not asked for any
acid addition

The pH control pump fault training data sets were formed to recognize the fault
when the pH control pump was turned off at the beginning of the fault experiment.
The implications are explained below.

The FDIS system with only 19 inputs and 8 rules can recognize this condition
perfectly with 5-minute detection time. The limited degrees of freedom forced it to
recognize only the faulty condition. The better FDI systems had more freedom and
tried to find symptoms of the faulty condition that did not become available until the
minute 1530. These FDI systems were forced to find some fault pattern during this
period, which was not actually available. As the result, the FDI systems found some
anomaly or noise in the data and used them as the fault symptoms. This wrong
training condition showed in every pH test responses and detected as a slightly faulty
condition between the minute 735 and 1530 (the FDIS systems and the FDI10
systems) in this fault test.

The pH could stay below the set point for more than a day when a large

quantity of the concentrated nutrient solution was added to compensate the effects of
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experiments in the different tanks. The concentrated nutrient solution needed to bring
the EC value up by more than 250 pus/cm initially caused the pH to drop only from 5.8
to 5.75. The pH kept decreasing in the course of about half a day to around 5.62
before it gradually went up again to 5.8 in a 20 hour period. One of the possible
explanations is that the microorganisms in the nutrient solution reacted to the sudden
change in the nutrient composition and caused this change. This phenomenon is
shown in Figure 7.8. At the end of the graph there is a very small dip caused by small
adjustment of EC that was done regularly every two days. The pH dropped to about
5.76 and then gradually went up to 5.8 again. If the pH pump fault experiment started
at the beginning of this period, the symptom would not show up before 32 hours
passed.

The FDI5 systems responses have more noise than the FDI10 systems, where
data averaging reduced the amount of noise in the data sets. The real fault period
(starting from the minute 735 to the minute 1530) was recognized successfully by all
detection systems with very little deviation. The FDI system performances for the pH

pump test is shown in Table 7.11.

Table 7.11 FDI System Performance for pH Control Pump Fault

FDI System Detection Time ~ Misclassification  Correct Classification
FDIS (24 inputs and 18 rules) 5 minutes 0.1% 99.9%
FDI10 (29 inputs and 16 rules) 10 minutes 0% 100%
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Effect of significant nutrient addition
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MFIS19 (14 rules) Circ Pump Fault Test Output

MFIS24 (18 rules) Circ. Pump Fault Test Output
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Figure 7.9 Circ Pump Test Output for Mechanical Fault Detection System with 5-Minute Interval
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MFIS24 (17 rules) Circ. Pump Fault Test Output

MFIS24 (13 rules) Circ. Pump Fault Test Output
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Figure 7.10 Circ Pump Fault Test Output for Mechanical Fault Detection System with 10-Minute Interval




The circulation pump fault was difficult to detect reliably using feedback from
sensors especially in the beginning of the fault as shown results in Figure 7.9 and 7.10.
The cessation of the nutrient solution circulation caused two problems. The first one
was the noisy sensor readings. Most sensors need a minimum solution flow to
replenish the solution used in the chemical reaction around the sensor membrane. The
noisy reading will reduce the FDI sensitivity in detecting the fault and can cause a
noisy response from the FDI. The circulation also caused a long delay for both acid
injection and oxygen addition since they have to diffuse slowly through the solution
instead of being quickly distributed around the tank, including the sensor location.
The diffusion rates were not constant along the long path between the injection sites
and sensor location so each circulation pump will have different diffusion rates.

Depending on the state of the nutrient solution, there were two sets of variables
that are important. One was pH and pH control; the other was DO and DO control. If
the DO value was low in the beginning of the fault and the DO control was on, the DO
would keep decreasing even if the DO control increased. If the DO concentration was
well above set point in the system, there was no DO control signal feedback for the
circulation pump fault.

The pH value can also be used to detect this fault. If the pH value was nearly
or already 5.8 and the pH control pump gave away small amount of acid to keep it at
this value, the sudden stop of the circulation pump prevented the acid addition
reaching to the sensor location. The pH control increased the acid injection without
any effect on the pH reading at the sensor for a long time. The pH dropped
significantly after the slowly diffusing acid in the nutrient solution reached the pH
sensor location. The pH control would suddenly stop the acid injection although it
was too late. The pH would have dropped to around 3-4 which was low enough to do

some damage to the roots. To reduce roots damage problem, the circulation pump fault
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experiments were kept to be as short as possible. In the beginning of the fault, the
symptom detected from the pH value was the same as the symptom detected from the
pH control pump. The difference is after a long period of time the pH suddenly
decreased by the time the diffused acid injection reached the sensor location.

For this particular test, the DO control opened the solenoid valve to let some
pure oxygen dissolve into the circulation pipe at the minute 445. It took between 5-10
minutes for the oxygen to reach the sensor location, and more time was needed for the
oxygen to reach the top limit of 7 mg/l. The DO control was on for 20 minutes (four
data sampling points). During this delay, the DO value kept dropping and the FDI5
system output rose to about 2, two thirds of the way to the circulation pump fault value
of 3. At this time the DO value had already increased but since the desired max limit
value was still not reached, the DO signal was remained on. The circulation pump
was intentionally turned off at minute 470 signaling the beginning of the circulation
pump fault experiment. At this point the DO dropped faster than its usual rate and the
DO sensor reading was erratic. The pH sensor had the same behavior. This condition
changed at minute 525 where the DO value decreased so much, the noise was
insignificant and the DO controller started asking for the DO addition continuously.
At this point the FDI systems finally detected the condition as a circulation fault after
a few sampling steps following minute 525.

The FDI can definitely detect a circulation fault if the symptoms from the DO
or both the DO and the pH are positive. If the only symptom available was from pH,
the symptom was similar to a pH control pump fault and the FDI system needed more
symptoms to detect it correctly.

The normal portion of the test responses was very noisy but for most of the
time stayed below 1.5 and averaged around 1, which can still be defined as normal.

The FDI systems responded differently to the chaotic period between the minute 470
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and the minute 525. Figure 7.9a (FDIS) shows the response jumped to a value of 4
during this period while the other responses stayed between 1 and 2. The FDI system
response in Figure 7.9b detected the fault successfully as a circulation fault after the
minute 525 and the response value stayed around 3. The other charts had response
values between 2.5 and 3, signaling that some of the rules in the FDI systems
considered this as the pH control pump fault symptom and the aggregate output was
down a bit although still considered as circulation pump fault. The FDI10 systems
responses are similar to the FDI5 system with a little less noise caused by data
averaging.

The FDI system for this fault can be formed better with adding a flow sensor
somewhere along the pipe. As soon as the flow stops the flow rate will be around zero
and the FDI can easily recognize this as the circulation pump fault. Although
additional costs are involved, it can be justified based on the irreversible effect of the
destruction to the plants roots caused by the excessive acid addition. The FDI system

performances can be seen in Table 7.12.

Table 7.12 FDI System Performances for Circulation Pump Fault

FDI System Detection Time Misclassification in Fault 3 Correct Classification
FDIS 45 minutes 2.2% 97.8%
FDI10 60 minues 4.3% 95.7%
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Sensors in general have a tendency to drift away from their calibrated state.
The drifting can be linear or non-linear depending on the type of sensor. The non-
linear drifting is harder to detect correctly. The pH sensor fault test used a slowly
changing sine noise with amplitude of 1 and period of 525 minute to simulate the
drifting. The sine wave changed from the maximum value of 5.8 to the minimum
value of 3.8, simulating the pH sensor reading drifting down and drifting up. The pH
value drifting with sine wave noise is shown in Figure 7.13. The peaks of the sine
wave were clipped in the chart. The real pH value increased slowly during the test
time so by the time the simulated pH reached the top of the wave, it was above the set
point. The pH control injected some acid to correct this condition. This nonlinear
behavior added some noise for the detection system to overcome. The pH control was

zero for all other parts of the test.

pH value in pH sensor test data
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Figure 7.13 pH Values with Sine Wave Noise in pH Sensor Test Data
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Figure 7.11 and Figure 7.12 shows the pH sensor fault test result for the FDIS
and FDI10 systems. The normal parts of the responses did not always follow the
intended values. This problem surfaced since the conditions of the three tanks were
not completely identical with each other, as mentioned in the normal condition test
discussion. The FDI10 systems had less noisy responses and had values closer to
normal.

The FDI systems identified the drifting immediately and the fault value went
up to 4. The symptoms for this fault was gradually weakened since the pH value
drifted up again to the normal condition in a sine wave period of 105 sampling steps
after the error was introduced. The fault value went down to near 1 before going up to
4 again following the sine wave noise. This behavior periodically happened in the
FDI result as the value of the pH drifting up and down again. The FDI system

performances can be seen in Table 7.13.

Table 7.13 FDI System Performances for pH Sensor Fault

Missclassification Correct
FDI system Detection time ) )
Normal Fault 1 Fault 2 Fault 4 classification
FDI5 90 minutes 0.8% 1.9% 16.3% 4% 77%
FDI10 30 minutes 0.3% 0.9% 12% 0.6% 86.2%
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The simulated EC sensor fault was similar to the pH sensor fault. The
difference can be found by comparing Figure 7.13 and Figure 7.16. The value of the
EC slowly increased from 1243 puS/cm to 1543 uS/cm and slowly decreased back to
the true value of 1243 puS/cm. It kept decreasing to reach the lowest value of 901 and
then increased again, following the sine wave.

The sine wave noise in EC values was smooth except for the first wave. The
sine noise started at the minute 305 where the EC value was 1243 uS/cm. Since the
amplitude was 300 puS/cm, the top value was 1543 uS/cm as shown at the first wave
top at the minute 440. Suddenly at the minute 470 the EC value that was 1519 at the
minute 465 dropped to 1464. The drop was caused by a maintenance routine that
added water and concentrated nutrient solution for maintaining water level and EC. In
this particular maintenance, only water was added without EC adjustment. The
sudden drop in EC caused a spike in the EC sensor FDI systems response at the
minute 470 as shown in Figure 7.14.

The result of EC sensor fault test was better for the normal part of the test
compared to the pH sensor test as shown in Figure 7.14 (FDI5) and Figure 7.15
(FDI10). The faulty condition part of the test responses was also less noisy than the
pH response. Since the EC value goes up and down as a sine wave with the set point
value as the zero value for the sine wave, the set point value was reached every 270
minutes instead of 525 minutes as in the pH sensor fault.

The FDI systems recognized the normal condition satisfactorily for this EC
sensor fault. It also detected the faulty condition better since it recognized the normal
condition better with less noise. The fault value dropped to 4 when the sine wave

noise was around zero and the EC value equaled the set point.
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Figure 7.16 EC Value with Sine Wave Noise in EC Sensor Test Data

The FDI10 responses were less noisy than the ones for FDIS5 systems. The 10-
minute data had less noise compared with the 5-minute data set. The faulty condition
was identified most of the time with some misclassification for fault values of 3 and 2
and many for a fault value of 4. This noisy condition was caused by the sine wave
simulation of the EC sensor drifting where the value drifted up and down around the

real EC value. The FDI system performances for the EC sensor fault are shown in

Table 7.14.
Table 7.14 FDI System Performances for EC Sensor Fault
Misclassification Correct
FDI system Detection time ) )
Normal Fault 1 Fault 2 Fault 3 classification
FDIS 15 minutes 0% 1% 1.3% 14.9% 82.8%
FDIL10 50 minutes 0% 0% 5.3% 15.3% 79.8%
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7.8 Result Summary

Table 7.15 Detection Times of NF Mechanical FDI Systems

10min 20min 30min 40min 1h 1.5h 6h 8h 13h
Fault 1 0% 0% 100% 100% 100% 100% 100% 100% 100%
Fault 2 0% 100% 100% 100% 100% 100% 100% 100% 100%
Fault 3 0% 0% 100% 100% 100% 100% 100% 100% 100%

Fault 4 0% 100% 100% 100% 100% 100% 100% 100% 100%

Detection time for the NF FDI systems for fault 1 to fault 4 are shown in Table 7.15.
All faults were detected within 30 minutes from the beginning of the faults. This fast
detection gives enough time for grower to correct the situation before it affects the

plant quality.

Table 7.16 Classification Percentages of NF Mechanical FDI System Responses

Tested data set Classification in:
Normal Fault 1 Fault 2 Fault 3 Fault 4
Normal 99% 1% 0% 0% 0%
Fault 1 0% 100% 0% 0% 0%
Fault 2 0% 0% 96.7% 3.3% 0%
Fault 3 0.6% 1.4% 14.2% 81.6% 2.3%
Fault 4 0% 0.5% 3.3% 15.1% 81.3%

The normal condition can successfully be recognized by the NF Mechanical FDI
systems with 99% correct classification as can be seen in Figure 7.14. The Fault 1
(the pH control pump fault) has 100% classification. The FDI system can identify the
fault pattern accurately. The fault 3 and the fault 4 are periodic faults. They drifted to
one direction slowly and drifted back slowly to another direction. These faults
represented incipient and intermittent faults in the system. The intermittent nature of
being normal in an instant and faulty at another instant gave a big challenge to the FDI
systems. They correctly detected the faulty condition but they failed to correctly

classify the faults for 22.5 % and 49.4% of the time. By repositioning both periodic
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faults to levels next to the normal condition, the correct classification percentage can

jump to 99.4% for the “Fault 3” and 98.6% for the “Fault 4”.
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CHAPTER 8
NEURO-FUZZY AND NEURAL NETWORK FDI SYSTEM COMPARISON

A Multi Layer Perceptron (MLP) Neural Network with one hidden layer was
used to detect faults in the same system used in this research (Ferentinos 2002). The
neural network (NN) FDI system response charts start from the beginning of the fault
experiment so the comparisons are made from this point. The same time periods are
observed for each methods. NN system performance definition is the same as the one

for the neuro-fuzzy biological FDI system described in section 6.5.

8.1 Biological Fault Responses Comparison

Three test files were used to compare the neural network (NN) and the neuro-
fuzzy (NF) FDI systems. The first two files represented transpiration fault
experiments and the last one represented a normal condition.

Test 1 (transpiration fault responses from the NN and the NF FDI systems can
be seen at Figure 8.1.and Figure 8.2. Both responses are noisy with the NN response
oscillating more between the faulty (value of 1) and the normal conditions (value of
0). The NF also oscillates with the same pattern but with less amplitude. Periodic
maintenance activities had a large impact on the NN response and a smaller impact to
the NF FDI system. The detection time for the NN was about 180 minutes and for the
NF is only 50 minutes. The main cause for the long detection time for the NN was
the inability for the NN to reduce the effect of noise in the system. The correct

classification is about 65% for the NN and 99% for the NF.
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Test 2 responses for faulty condition can be seen in Figure 8.3 and Figure 8.4.
They are better for both the NN and NF compared with test 1. The responses have less
noise especially for the NF FDI system. The periodic maintenance disturbance is very
pronounced in the NN while it is significantly reduced for the NF response. The
detection time for the NN is about 120 minutes while it is 10 minutes for the NF.
Covering the leaves took about 30 minutes and the NF FDI system started identifying
the problem in the end of the covering process. Correct classification is 75% for the
NN and 100% for the NF.

Both FDI systems have good responses for the normal conditions as seen in
Figure 8.5 and Figure 8.6. Both responses are a little noisy but most points are below
the normal condition limit. Correct classifications are 98% for the NN and 100% for

the NF. The summary of the NN and NF FDI systems performances can be seen in

Table 8.1.
Table 8.1 The ANN and The NF FDI Systems Performances
Test # and Type FDIsystem  Detection time  Misclassification  Correct classification

1 o 0,

Test 1 Transpiration Fault NN 180 nynutes +£35% £65%
NF 50 minutes 0.60% 99.40%

1 o V)
Test 2 Transpiration Fault NN 120 rTnnutes £25% £75%
NF 0 minutes 0% 100%

—+70, —+ 0,
Test 3 Normal condition NN NA £2% £98%
NF NA 0% 100%

8.2 Mechanical Fault Responses Comparison

The NN and NF FDI responses for the normal condition test can be seen in
Figure 8.7 and Figure 8.8. Both the NN and NF FDI systems can identify the normal

condition very well. Correct classification is 100% for both systems.
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Responses for “Fault 1” (the pH control pump fault) are shown in Figure 8.9
and Figure 8.10. There is a little up and down movement in the NN and NF FDI
systems in the beginning of the fault (from point 0 to 50 in the NN response and from
point 71 to 151 in the NF response). A possible explanation for this condition is that
the FDI systems were trained to identify the condition as fault 1 where there was no
symptom available until the pH control pump was asked to add acid and failed to do
so. They picked up noise and identified this condition as a faulty condition. The
responses of the neuro-fuzzy FDI system are mostly below 0.4 during the period
without pH control except for two spikes which can be regarded as noise. Detection
time for the NN is about 500 minutes and for the NF is about 800 minutes. As
discussed in chapter 7, the pH control pump was not always working. If the pH value
was below the set point of 5.8, the pH controller did not request additional acid from
the pump. This condition could exist for 8 or more hours.

Both FDI systems identified the faulty condition immediately and steadily after
the pump failed in fulfilling the pH control signal request. The output of the NN FDI
system stayed at a steady state value of 0.8 during the real pH control pump fault.. The
NN FDI systems may not fully recognize the symptom pattern as fault 1 and small
deviations occurred at the fault 3 and 4 output. The NF output remained close to the
desired fault level 2 after the pH control pump failed to inject the requested acid,
starting from point 151. The faulty condition was fully recognized as a pH pump fault

condition and the real detection time was about 30 minutes.
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Circulation pump fault responses for both systems can be seen in Figure 8.11
and Figure 8.12. As can be seen from the response in Figure 8.8, this particular fault
was problematic for the NN. This problem was especially pronounced near the end of
the fault response. Output 1 for normal condition and output 5 for EC sensor fault
condition stayed around 0.5 for most of the testing period. For the last few points, the
NN FDI system gave a false identification as EC sensor fault. The NF FDI system
detected the fault correctly for the whole dataset. The symptoms for the last few
points were weakened but the response was still above the threshold value of 2.6.

pH sensor fault responses for both NN and NF can be seen in Figures 8.13 and
8.14. The NN FDI system can recognize the faulty condition very well except for the
last few points. There are several misidentifications for circulation pump fault and EC
sensor fault, all are coincident with the weakening detection for pH sensor fault. The
periodic weakening of pH sensor fault detection was caused by the sinusoidal nature
of the drifting simulation. Whenever the pH value came close to normal, the fault
symptom weakened. Similar to the response for circulation pump fault, there were a
few points at the end of experiment where the response gave false identification of the
faulty condition as circulation pump fault and EC sensor fault.

The NF FDI system also had the similar periodic response compared with the
NN FDI system. Whenever the sinusoidal drifting went to around normal, the system
response went back to fault level 2. This behavior posts a serious problem for any NF
FDI system since the up and down nature of the output value gives misclassification of
the fault. As discussed in the chapter 7, using a fault value close to normal for the
fault with oscillating behavior can significantly reduce this problem. If the pH sensor
fault were put on level value 2, the fault value 4 in Figure 8.8 would be equal to 2.
Value of 2 would be equal to 1.5, the half point between normal and the fault. In this

configuration, only one point of the response is misclassified.
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The NN and NF FDI system responses for EC sensor fault can be seen in
Figures 8.15 and 8.16. The NN FDI system response has a periodic up and down
pattern for “normal”, “Fault 3” (pH sensor fault) and “Fault 4” (EC sensor fault)
system outputs. The FDI system responses correctly identified the “Fault 4” condition
most of the time. Drifting of the electrical conductivity (EC) sensor is also represented
with a sinusoidal wave so every time the EC value got closer to the normal value, the
symptom weakened and was shown as “Normal” and “Fault3” outputs.

The response of the NF FDI system also has a periodic pattern. Similar to the
NN FDI system, the pattern is repeated in about 100 points, the period of one
sinusoidal wave. As in the previous fault comparison, a fault with periodic drifting
should not be located too far from the normal condition since the oscillation will cause
false identifications. If the EC fault were located next to normal, the fault value of 5
would be 2. With this arrangement, only two points would cross the halfway point to
normal and be misclassified. The NN FDI system response would be identified
correctly 98.6% of the time.Fault detection and identification system performance (as
discussed before) is measured by detection time and correct classification. Table 8.2
shows detection times of the NN FDI and NF FDI systems.

The NN FDI system has faster detection time for fault 1 and 2 while the NF
FDI has faster detection time for fault 3 and 4. Fault 1 detection times depend
strongly on the testing data set. If the pH value stays below the set point for 8 hours,
the failure of the pH pump can not be detected for at least 8 hours, so the detection
time in Table 8.2 is a bit misleading for “Fault 1”. If the detection time definition for
this particular fault is revised as the time between when the pH control program asks
the pH pump to inject acid and the faulty condition is detected at the output of the FDI
system, the detection time for the NN FDI and NF FDI system responses are about the

same at 30 minutes.
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Table 8.2. Detection time of the NN and the NF FDI systems

Type 10min 20min 30min 40min lh 1.5h 6h 8h 13h

Fault NN 0% 0% 0% 0% 0% 0% 33% 66%  100%
NF 0% 0% 0% 0% 0% 0% 0% 50%  100%
Fault NN 50%  100% 100%  100% 100% 100% 100% 100%  100%
NF 0% 100%  100%  100%  100%  100% 100% 100%  100%
Fault NN 0% 0% 0% 0% 0% 50%  100% 100%  100%
NF 0% 0% 100% 100% 100% 100% 100%  100%  100%
Fault NN 0% 50%  100% 100% 100% 100% 100%  100%  100%
NF 0% 100% 100% 100% 100% 100% 100% 100%  100%

Correct classification of the operating condition is another important measure
of the FDI system performance. Table 8.3 shows the classification percentages of data
samples for normal and faulty conditions. The normal condition is correctly classified
by the NN and NF FDI system about 99% of the time. By looking at the response
chart for both NN and NF FDI systems, “Fault 1” responses are the best among fault
responses but it does not represent the number in Table 8.3. The pH control pump is
not always on as it was mentioned above. If the classification definition starts at the
time when the pH control pump failed to inject acid, the correct classification jumps to
99% for both NN and NF FDI system.

The false classification of 1% is only between the first time the pH control
system asks the pH pump to inject acid and the time when the fault is detected at the
FDI system’s output. The discrepancies during this period can be classified as
detection time and it is not misclassification as used by Ferentinos. Ferentinos defined
correct classification for every sample points including any discrepancies during the

detection time period. With this definition, systems with slower detection time will be
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penalized twice; they have long detection time in addition to a higher misclassification

percentage.

Table 8.3. Classification percentages of data samples of normal and faulty conditions

Classification in:
Tested

data st Type Unknown
Normal Fault 1 Fault 2 Fault 3 Fault 4 fault

Normal NN 99.2 % 0.2% 0.4 % 0.2% 0 % NA

NF 99% 1% 0% 0% 0% NA
Fault 1 NN 25.5% 70.1 % 0.2 % 0% 4.2 % 0

NF 43.7% 56.3% 0% 0% 0% NA
Fault 2 NN 1.9 % 0% 92.4 % 0% 3.8% 1.9%

NF 0% 17.4% 82.6% 0% 0% NA
Fault 3 NN 0% 0% 1.5% 92.1 % 3.9% 2.5%

NF 0.3% 3.9% 13.2% 77.5% 5.1% NA
Fault 4 NN 1.8 % 0 1.7 % 2.4 % 92.9 % 1.2 %

NF 0.6% 1.7% 1.7% 29.4% 50.6% NA

The NN FDI system has better classification percentage compared with the NF
FDI system for the “Fault 3” and the “Fault 4” conditions. Although these responses
are strong points for the NF FDI system, incorrect fault level arrangement made it look
like the weakest points. By adjusting both periodic faults to level next to normal
condition the correct classification percentage can jump to 99.4% for “Fault 3” and

98.6% for “Fault4”.
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CHAPTER 9
CONCLUSIONS AND FUTURE RESEARCH NEEDS

9.1 Conclusions

Using the indirect way to detect faults in this thesis is shown to be satisfactory.
The NF FDI system has a very good pattern recognition and generalization capability
as shown in the test results. The NF detection system can readily recognize desired
faults in the plant production system.

The NF systems with up to 39 inputs were tested and shown to be satisfactory
in detecting faults in the hydroponic system although some literature does not
recommend using more than 14 inputs (Jung 1998). The FDI systems with more inputs
performed better than systems with a lower number of inputs. The NF biological FDI
system with 39 inputs (the highest number of inputs) had the least training error and
the best performance in detecting a severe transpiration fault in the system. The
transpiration fault was detected in 50 minutes and the misclassification was less than
1%. A simple heuristic filter discussed in Chapter 6 can improve the correct
classification to 100%.

The NF biological FDI system with a dedicated output for transpiration fault
performed satisfactorily. It can tolerate maintenance and harvesting period
disturbances better than the ANN. It can detect the fault in less than 50 minutes,
which is half the time needed by the ANN.

The multi level value fault detection system is simpler than a multi output
system. The widespread method of using a single system to detect one fault and
combine many systems in parallel needs even more training time. This characteristic
can significantly reduce development time for implementing the FDI system for the

grower’s particular system. The multi level value NF FDI system tested in this
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research performed satisfactorily in testing using real experimental data and can be
applied directly in real time production systems. The real advantage of this system is
the simplicity of the multilevel value output. The grower only has to see one real time
graph with each level on the graph representing different system conditions.

If the error is the only indicator, the worst FDI test results are for the sensor
faults. In the real operating condition, the drifting is only one-way and not periodic.
If the drifting is only one-way, the fault detection system has less noise since it does
not go back and forth from faulty condition to normal. Using these faults to represent
incipient and intermittent faults at the same time really tests the capability of the FDI
systems. By reducing these faults to one-way drifting, the FDI system responses to
these faults are comparable to other faults.

A combination of redundancy type of fault detection with the indirect type of
fault detection developed in this research produces a very robust fault detection system
for the plant production system. Duplicating sensor and mechanical components make
the down time for maintenance close to zero so the production system is not disturbed.
Growers must consider the balance of cost and benefit for this setup. A robust and
reliable system guarantees uninterrupted production.

Manual adjustment and maintenance of the production system should be
reduced as much as possible. The random nature of the manual adjustment is difficult
to be modeled in the FDI systems and caused much of the noise in the FDI system
responses. Automatic regulation of water level and nutrient solution concentration
(EC) can minimize these disturbances. In addition, these control signals can be used

as additional inputs to increase FDI system sensitivity.
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9.2 Future Research Needs

With rapid advancement in sensor technology, it should not take a long time to
have more sensitive and reliable sensors for non-disturbing continuous control and
monitoring of ion concentrations and plant’s states. The FDI algorithm developed in
this thesis is ready to explore more and accurate details for biological faults with these
Sensors.

The three experimental tanks had identical numbers of lettuce plants and nearly
identical nutrient solution conditions during the experiments. Unfortunately, the
evapotranspiration of the three tanks was found to be different and, as the result, the
rate of the nutrient change in the solution for each tank was different. This condition
presented additional noise and reduced the overall sensitivity for the FDI system. The
problem was pinpointed as the airflow above the plants had different flow rates and
patterns. This caused the evapotranspiration to be larger in one tank compared with
the others. The detail information about the difference of the evapotranspiration
between the tanks can be found in Appendix B. The result of this research is
encouraging to make the condition of the experiment tanks as identical as possible so,
the FDI system would have better results.

The research was based on the hypothesis that the most important fault had to
be placed next to the normal condition and the least important error was positioned the
farthest from the normal condition. In a real production system, early detection of
significant faults that could cause complete failure should be prioritized. It is thereby
reasonable to position the more dangerous fault close to normal since it would have
less noise and the best sensitivity.

Since there were 5 different conditions for the multilevel value mechanical FDI
system, optimizing the fault positions was important to minimize the errors and choose

the best FDI system. Since the output was one dimensional, the arrangement of the
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fault position influenced the error for that particular fault in the FDI system. The pH
control pump fault with a value of 2 had the best position. It was positioned next to
normal condition with a value of 1. In detecting that fault, the FDI system output went
directly from normal to that particular fault without crossing another fault. On the
other hand, the EC sensor fault had a value of 5, to detect this condition the FDI
system output in normal condition had to go through the other faults first before
reaching this particular fault. If the symptoms for that particular value were weak for
a while, the fault value would go through another fault before reaching normal. So its
sensitivity to noise was multiplied by the distance and as a result had more
misclassification.

The distance can be used as a quantifier for amplified noise for the higher
value faults. The pH control pump fault that had a value of 2 was used as a standard
since the distance from normal condition to this fault was 1. For the circulation pump
fault with the fault value of 3, the distance was 2. If noise and weak symptoms of a
circulation pump fault caused the fault value to oscillate between 1 and 3, the error
would be twice as large as the pH control pump fault that oscillated between 1 and 2.
A fault value of 4 had three times the distance of pH control pump fault and fault
value of 5 had fourth time the distance.

The error calculated for the test was Root Mean Squared Error (RMSE), which
gave more penalties to bigger deviations and less for small ones. RMSE is defined as
the sum of all squared error divided by population size and then taken to the square
root. Since it is not linear (average error is) we can’t just divide the error from fault
value 5 by 4 to equalize it with the error of the pH control pump fault. Average error
is defined as the sum of all errors divided by the population size. Since this error is
linear, it can be used directly to compute equalized error and can be seen in Table 9.1.

The error value of fault level 5 was divided by 4 to equalize the distance error. Fault
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level 4 was divided by 3 and fault level 3 was divided by 2. Equalized distance errors
can be seen in Table 9.2.
The order of the test result based on equalized error in Table 7.9 is:

1. Test 2 for pH control pump fault with the best error of 0.057871024

2. Test 1 for normal condition with the best error of 0.088077271

3. Test 5 for EC sensor fault with the best error 0of 0.113126188

4. Test 3 for circulation pump fault with the best error of 0.128570859

5. Test 4 for pH sensor fault with the best error of 0.131756572

Fault value of 2 for pH pump fault has the least error of 0.057871024. This
number is less than half of 0.131756572 for worst tested fault value of 4. This is a
very significant difference in the errors and could mean that the arrangement of faults
can be improved in the future. Since the error will be multiplied for the faults farther
from normal, it is logical to put the faults with least errors farther away from normal to
minimize the interference with neighboring faults.

The range of error and the average error of the responses can also be used as
additional information in determining the best placement of the fault in the multi level
value FDI system. If the least error of a particular fault for the FDI systems is small
but the average error of all FDI systems for that fault is large then there might be a
problem in putting the fault farther from normal. This means the trained FDI systems
with different compositions will give a wide range of performance for this fault. The
error range data will more strongly support this observation. The compromise is that
if the fault responses for the tested systems are broad in range, a fault level position

closer to normal is better.
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Table 9.1 Mean Error Testing Result of Mechanical Fault Detection System with 5-minute interval

Testing Error

LTI

roi Rules Training Error test 1 test 2 test 3 test 4 test 5 Error Sum

19 INPUTS

0.25 14 0.561 0.125576741  0.063033321°  0.34526135° 0.395269715° 0.530722196  1.712296323 ®

0.3 8 0.6035 0.12698805 0.123321373 0.491569831 0.62822609 0.786531767 2.409070111
24 INPUTS

0.22 18 0.4318 0.124162224 0.095590199 0.413854572  0.520543229 ¢  0.483655953°  1.890239176 °

0.25 13 0.4539 0.118698785 0.140794917 0367165126  0.505566581°  0.51908931 ° 1.903747719 ¢

0.28 9 0.5001 0.114925991 0.093381861  0.349393546 ° 0.739713801 0.582237733 2.132085932

0.3 8 0.5166 0.114623148 0.118987069 0.425160061 0.878250279 0.602420807 2.391874364
29 INPUTS

0.234 17 0.4509 0.088077271%  0.081255945 ° 0.459120707  0.517740734 ¢ 0.50738127°  1.906008927 °

0.24 16 0.4542 0.088440736°  0.057871024 ° 0.431374943 0.600352722 0.600123927 2.030596352

0.25 13 0.4699 0.1346544  0.090017311¢ 0.257141718° 0.869660412 0.534386353 2.138293195
34 INPUTS

0.26 11 0.4731 0.173404449 0.14899026 0.368275121 0.541802246  0.452504751 ° 1.937409828

0.28 8 0.4672 0.114269849 ¢ 0.126929753  0.358752871 ¢ 0.648502741 0.55676262 2.057650835

0.3 7 0.5279 0.110788147 ¢ 0.121773645 0.569490673 0.923487155 0.848829811 2.826802431

? the best training result ® the 2™ best ¢ the 3" best 4 the 4" best
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Table 9.2 Equalized Distance Errors for system with 5-minute interval

Training

Testing Error

roi rules Epror test 1 test 2 test 3 test 4 test 5 Error Sum
19 INPUTS
0.25 14 0.561 0.125576741 0.063033321°  0.172630675° 0.131756572%  0.132680549  0.625677857 *
0.3 8 0.6035 0.12698805 0.123321373 0.245784915 0.209408697 0.196632942 0.902135977
24 INPUTS
0.22 18 0.4318 0.124162224 0.095590199 0.206927286 0.17351441%  0.120913988° 0.721108106 "
0.25 13 0.4539 0.118698785 0.140794917 0.183582563  0.168522194° 0.129772328 ¢  0.741370786 ©
0.28 9 0.5001 0.114925991 0.093381861 0.174696773 ¢  0.246571267 0.145559433 0.775135325
0.3 8 0.5166 0.114623148 0.118987069 0.21258003 0.292750093 0.150605202 0.889545542
29 INPUTS
0.234 17 0.4509 0.088077271 2 0.081255945 ° 0229560353  0.172580245° 0.126845318° 0.698319131 ¢
0.24 16 0.4542 0.088440736 " 0.057871024 ® 0.215687472 0.200117574 0.150030982 0.712147788
0.25 13 0.4699 0.1346544 0.090017311¢  0.128570859%  0.289886804 0.133596588 0.776725963
34 INPUTS
0.26 11 0.4731 0.173404449 0.14899026 0.184137561 0.180600749  0.113126188°%  0.800259207
0.28 8 0.4672 0.114269849 ¢ 0.126929753 0.179376436 ¢ 0.21616758 0.139190655 0.775934274
0.3 7 0.5279 0.110788147 ¢ 0.121773645 0.284745336 0.307829052 0.212207453 1.037343633
® the best training result ® the 2™ best ¢ the 3" best 4 the 4™ best

Table 9.3 Least, Most, Average and Range of Errors for Systems with 5 minute interval

test 1 test 2 test 3 test 4 test 5
Least Error 0.088077271 0.057871024 0.128570859 0.131756572 0.113126188
Most Error 0.173404449 0.126929753 0.284745336 0.307829052 0.212207453
Average Error 0.119550816 0.105162223 0.201523355 0.21580877 0.145930135
Range 0.085327178 0.069058729 0.156174477 0.17607248 0.099081265




The range and the average error of the FDIS system responses are shown in
Table 9.3. Test 4 had the most error so this fault should be positioned as close as
possible to normal to avoid multiplication of error and reduce the chance of
misclassification. The next worst fault was circulation pump fault. The third was the
EC sensor fault and the last was the pH control pump fault.
The order of the fault should be:
e Fault value 1 for Normal
e Fault value 2 for pH sensor fault
e Fault value 3 for circulation pump fault
e Fault value 4 for EC sensor fault and
e Fault value 5 for pH control pump fault
This fault arrangement is good but the result can be improved with a little
modification of the fault position. By positioning the normal condition in the middle
of the multi level fault system, the distance the response had to go through to reach the
fault was minimized. Two of the faults with least errors can be placed at the farthest
position from normal. The next two can be placed at the next two farthest positions
and so on. In this research the pH control pump and EC sensor faults had the least
errors so these could be positioned as the outer faults. The circulation pump and pH
sensor faults can be positioned as the inside faults.
The order can now be arrange as:
e Fault Value 1: pH control pump fault
e Fault Value 2: Circulation pump fault
e Fault Value 3: Normal
e Fault Value 4: pH Sensor fault

e Fault Value 5: EC Sensor fault
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With this arrangement, the greatest distance the response had to travel to go to
the outer faults was 2. The pH control pump fault and circulation pump fault shared
similar characteristics so it was ideal to position them at the same side of normal. In
this way, if the symptoms for that fault were weak, the response did not have to go

through the other side and caused misclassification.
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APPENDIX A
SENSORS AND EQUIPMENTS

A-1 Greenhouse

Experiment Location was at greenhouse #15 section D, Kenneth Post Laboratory,
Cornell University, Ithaca, NY 14853, USA with latitude of 42.440N and longitude of
76.496W and elevation about 1100 feet from sea level. This particular greenhouse had
5 identical sections (A-E) which each section had a floor area of 85 m’.  The
greenhouse #15 stretched from east to west direction.

The environment of these five sections was controlled by a central computer

via Analog Device’s 6B micro controller module in each of the greenhouse section.

Host Computer with
RS-485 1/0O controller

A4 \4 A A A 4

Section A 6BP16-
1 Backplane

Section B 6BP16-1

Section C 6BP16-
1 Backplane

Section D 6BP16-
1 Backplane

Section E 6BP16-1
Backplane

Backplane

l

A 4

|

Section D 6B21

Section D 6B13

Section D 6B50

Section D 6B11

Analog Output RTD module Digital I/O Board Analog Inputs
Hot water Air Hot Section D DB-24 RH | Light
heating system RTD | water Digital 1/0O Panel sensor | sensor
three-way valve RTD< with OD60Q
modules
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Figure A-1. Greenhouse control and monitoring system




Hardware list:

6B16-1 Backplane connected to the PC host using RS-485 connection
6B13 Temperature Input Module for air temperature and hot water
temperature reading from RTD sensors

Platinum RTD (Resistance Temperature Device) Temperature Sensors
6B11 General Purpose Analog Input Module for LI-Cor Quantum
Light, relative humidity and CO; sensor reading

6B21 Analog Output Module for controlling hot water three way valve
Johnson Controls three-way valve with 4-20 mA input

6B50 Digital I/0 Board with 4-6 VDC output

DB24 based OD60Q with 3-60 VDC outputs for relay driver

Omron G3NA-255B power relays for lights, fans, CO, and shade

control

A-2 Hydroponic System

Hardware List:

e PCI-MIO-16xe-50 20kS/s, 16 bit,16 Analog Input, 2 Analog Output,, 8 Digital

/O

e SCXI 1001 12 slot SCXI chassis
e SCXI-1124 6 channel isolated DAC module

e PHCN-420 pH controllers with 4-20 mA input from Omega Engineering Co.

e SCXI-1161 8 channel power relay

e 2 supply Tank

e ASCO model 8016G Red Hat II ignition proof solenoid valves for O, supply

e SCXI-1122 16 channel isolation input amplifier with excitation

e PR-11 Platinum RTD Temperature probes from Omega Engineering Co.
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PHE-900 HF-Resistant Alpha pH electrodes from Omega Engineering Co.
PHP-75-MA Chemical Metering Pumps

CDCN-108 Non contact Conductivity sensor from Omega Engineering Inc.
CDCN-672 Conductivity analyzers from Omega Inc.

DO controller 1000 2 DIN Dissolved Oxygen Controller from Cole- Palmer

Instrument Co.

OAKTON 35640-50 Industrial Dissolved Oxygen Probe from Cole-Palmer
Instrument Co.

Hach Corporation APA 6000 Nitrate/ Ammonium Process Analyzer.

SP 652-A5-250Kg-1IMYY single point Scale and BT84 Digital Scale
Indicators from B-TEK Inc.

Grainger Submersible pumps model 1P808 for nutrient solution circulation

Host Computer with
Labview

| |

RS-232 serial board PCI-MIO-16XE-50
Data Acquisition Board

| |

2 Scales Nitrate SCXI Signal Conditioning
Analyzer Backplane
l v

SCXI-1124 SCXI-1161 SCXI-1122
Analog Output Power Relays Analog Input

3 Metering 3 Solenoid Valves Sensors and meters
pumps for pH for oxygen

controls addition to three
ponds

Figure A-2. Hydroponic system control and monitoring
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APPENDIX B
EVAPOTRANSPIRATION

B-1 Evapotranspiration Difference Between Tanks

Cumulative Evapotranspiration for tank 1 and 2 02/28/01

N 7
s el
: Nl —Gmems

Cumulative Evapotranspiration (kg)

——Cum ETR 2
1.5 4
l -
0.5
O T T T T T
12:00:00  4:48:00 9:36:00 2:24:00 7:12:00 12:00:00 4:48:00
AM AM AM PM PM AM AM

Time

Figure B-1 Cumulative Evapotranspiration for tank 1 and 2 02/28/01

Charts of cumulative evapotranspiration for tanks 1 and 2 are shown in Figure
7.3,7.4 and 7.5. In 02/28/01 tank 1 lost about 3.05 kg of water while tank 2 lost about
3.7 kg, a difference of 0.65 kg or about 20% of tank 1’s water loss. About a week
later in 03/08/01, tank 1 lost about 1.8 kg of water while tank 2 lost about 3.5 kg. This

time the different is very significant at about twice the water loss in tank1.
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Cumulative Evapotranspiration (kg)

Evapotranspiration for tank 1 and 2 04/27/01
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Figure B-2 Cumulative Evapotranspiration for tank 1 and 2 03/08/01
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Figure B-3 Cumulative Evapotranspiration for tank 1 and 2 04/27/01

135



Two months after in 04/27/01, water loss is 1.8 kg and 3.05 for tank 1 and 2
respectively. Tank 2 generally had higher water loss that tank 1 although the

difference varies.

136



APPENDIX C
MATLAB CODES

C-1 Data Standardization

clear
load TF5m220test.csv
load BFTrain5m.csv
= TF5m220test;

y = BFTrain5m;
m=size(y,1);
% m is the number of rows
n=size(y,2);
% n is the number of column
p=size(x,1);
g=size(x,2);
yl=mean(y)
ystd=std(y)
for a=1:p

for b=1:q

xnormal (a,b)=(x(a,b)-y1(b))/ystd(b);

end
end
xnormal (1:142,q)=-0.908277;
xnormal (143:p,q)=1.100925;
save TF5m220testn.txt xnormal -ASCII

C-2 ANFIS Training Program

clear

load bfSmwrate39inputOltrainn._txt
z=readFis("bf5m39inputsc025trained”)

y = bfbmwrate39inputOltrainn;

[mF5m44444t,trainerror,stepsize] =
anfis(y,z,[500 0 0.08 0.9 1.1], [])

writefis(mfom44444t, "bfom39inputsc025trainedl™)

save bf5m39inputsc025resultl
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C-3 ANFIS Test Program

clear
Ffismat= readfis("bf5m39inputscO5trained4.fis®);
load bfSmwrate39inputNtestn.txt

load bfSmwrate39inputNtest.csv
load bfSmwrate39inputOltrain.csv

X = bfSmwrate39inputNtestn;
y = bfSmwrate39inputOltrain;
z = bfbmwrate39inputNtest;

m=size(y,1);

% m is the number of rows
n=size(y,2);

% n is the number of column
p=size(x,1);

g=size(x,2);

yl=mean(y)

ystd=std(y)

r=size(z,1);

s=size(z,2);

testinput=x(:,1:(n-1));
outputl=evalfis(testinput,fismat);

testoutput=z(:,s);

for b=1:p
xoriginl(b)=(outputl(b)*ystd(n))+yl(n);
end

xorigin=xoriginl-®;
save bfSmwrate39inputNtestscO5Ffisoutputbepochs.txt xorigin -ASCII
plot(1l:p,testoutput,l:p,xorigin);

C-4 Noise and Fault Decision Program

clear
load DBF10m25wratesc033tlfisoutput5epochs. txt
X = DBF10m25wratesc033tlfisoutput5epochs;
m=size(x,1);
for a=1:2

x(a)=0

fault(a)=0

noise(a)=0
end
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for a=3:m
it x(a)>1
x(a)=1;
end
if x(a)<0
x(a)=0;
end
switch fault(a-1)
case O
if x(a)<0.6
x(a)=x(a);
fault(a)=0;
noise(a)=0;
else
counter=1;
k=m-a
ifT k<4
noise(a)=1;
fault(a)=1;
if k==0
x(a)=(x(a-1)+x(a-2))/2;
else
x(a)= (x(a-1)+x(a+1))/2;
end
else
for b=1:4
if x(a+tb)>0.6
counter=counter+1;
end
end
if counter >2
noise(a)=0
fault(a)=1
else
noise(a)=1;
fault(a)=0;
for c=0:4
x(at+c)=(x(atc-1)+x(a+c+1))/2;
end
end
end
end
case 1
if x(a)>0.4
x(a)=x(a);
fault(a)=1;
noise(a)=0;
else
counter= 1;
k=m-a;
if k<4
noise(a)=1;
fault(a)=1;
if k==0
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x(@)=(x(a-1)+x(a-2))/2;
else
x(a)= (x(a-1)+x(a+1))/2;
end
else
for b=1:4
if x(a+tb)<0.4
counter=counter+1;
end
end

if counter>2
noise(a)=0;
fault(a)=0;
else
noise(a)=1;
fault(a)=1;
for c=0:4
x(a+c)=(x(a+c-1)+x(a+c+1))/2;
end
end

end
end
end

end

noisel=noise";

faultl=fault";

save dbfl10m25wratesc033filteredoutput.txt x -ASCII
save dbflOm25wratesc033noiseoutput.txt noisel -ASCII
save dbflOm25wratescO033faultdecision.txt faultl -ASCII

%
%

this script file can be use for algorithm
determining the noise and faulty condition

%if the script is used for finite data file

%
%
%
%
%
%

%

and there is a possibility for a noise and
the noise is at the end of the data file

the script m File should be modified

still thinking for modification for this case
for on line noise and decision making program,
must include delay for

gathering the next 4 data point
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APPENDIX D
LIST OF ABBREVIATIONS AND SYMBOLS

D-1 Abbreviations

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

BFIS30/25 Biological Fault Fuzzy Inference System with 30/25 inputs
DO Dissolved Oxygen

EC Electrical Conductivity

FDI Fault Detection and Identification

FISS Fuzzy Inference System with 5-minute interval data
FIS10 Fuzzy Inference System with 10-minute interval data
HPS High Pressure Sodium

MLP Multi Layer Perceptron

NFS Neuro-fuzzy System

NN Neural Network

PAR Photosynthetically Active Radiation

PDF Pseudo Derivative Feedback

SLP Single Layer Perceptron

TS Takagi Sugeno fuzzy model

D-2 Symbols

m used as summation limit eg fori =1 to m

n represents the membership function value between 0 to 1 of a fuzzy set

o is used as the one parameter of Gaussian membership that influence the width of the

function
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