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Abstract

We study interior-point methods for optimization problems in the case of infeasibility
or unboundedness. While many such methods are designed to search for optimal solutions
even when they do not exist, we show that they can be viewed as implicitly searching for
well-defined optimal solutions to related problems whose optimal solutions give certificates
of infeasibility for the original problem or its dual. Our main development is in the
context of linear programming, but we also discuss extensions to more general convex
programming problems.

∗School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853,
USA (miketodd@cs.cornell.edu). This author was supported in part by NSF through grant DMS-0209457
and ONR through grant N00014-02-1-0057.

1



1 Introduction

The modern study of optimization began with G. B. Dantzig’s formulation of the linear
programming problem and his development of the simplex method in 1947. Over the
more than five decades since then, the sizes of instances that could be handled grew from
a few tens (in numbers of variables and of constraints) into the hundreds of thousands and
even millions. During the same interval, many extensions were made, both to integer and
combinatorial optimization and to nonlinear programming. Despite a variety of proposed
alternatives, the simplex method remained the workhorse algorithm for linear program-
ming, even after its non-polynomial nature in the worst case was revealed. In 1979, L. G.
Khachiyan showed how the ellipsoid method of D. B. Yudin and A. S. Nemirovskii could
be applied to yield a polynomial-time algorithm for linear programming, but it was not
a practical method for large-scale problems. These developments are well described in
Dantzig’s and Schrijver’s books [4, 25] and the edited collection [18] on optimization.

In 1985, Karmarkar [9] proposed a new polynomial-time method for linear program-
ming which did lead to practically useful algorithms, and this led to a veritable industry of
developing so-called interior-point methods for linear programming problems and certain
extensions. One highlight was the introduction of the concept of self-concordant barrier
functions and the resulting development of polynomial-time interior-point methods for a
large class of convex nonlinear programming problems by Nesterov and Nemirovskii [19].
Efficient codes for linear programming were developed, but at the same time considerable
improvements to the simplex method were made, so that now both approaches are viable
for very large-scale instances arising in practice: see Bixby [3]. These advances are de-
scribed for example in the books of Renegar and S. Wright [24, 33] and the survey articles
of M. Wright, Todd, and Forsgren et al. [32, 26, 27, 5].

Despite their very nice theoretical properties, interior-point methods do not deal very
gracefully with infeasible or unbounded instances. The simplex method (a finite, combi-
natorial algorithm) first determines whether a linear programming instance is feasible: if
not, it produces a so-called certificate of infeasibility (see Section 2.4). Then it determines
whether the instance is unbounded (in which case it generates a certificate of infeasibility
for the dual problem, see Section 2), and if not, produces optimal solutions for the orig-
inal problem (called the primal) and its dual. By contrast, most interior-point methods
(infinite iterative algorithms) assume that the instance has an optimal solution: if not,
they usually give iterates that diverge to infinity, from which certificates of infeasibility
can often be obtained, but without much motivation or theory. Our goal is to have a
interior-point method that, in the case that optimal solutions exist, will converge to such
solutions; but if not, it should produce in the limit a certificate of infeasibility for the pri-
mal or dual problem. Moreover, the algorithm should achieve this goal without knowing
the status of the original problem, and in just one “pass.”

The aim of this paper is to show that infeasible-interior-point methods, while appar-
ently striving only for optimal solutions, can be viewed in the infeasible or unbounded case
as implicitly searching for certificates of infeasibility. Indeed, under suitable conditions,
the “real” iterates produced by such an algorithm correspond to “shadow” iterates that
are generated by another interior-point method applied to a related linear programming
problem whose optimal solution gives the desired certificate of infeasibility. Hence in some
sense these algorithms do achieve our goal. Our main development is in the context of

2



linear programming, but we also discuss extensions to more general convex programming
problems.

Section 2 discusses linear programming problems. We define the dual problem, give
optimality conditions, describe a generic primal-dual feasible-interior-point method, and
discuss certificates of infeasibility. In Section 3, we describe a very attractive theoretical
approach (Ye, Todd, and Mizuno [35]) to handling infeasibility in interior-point methods.
The original problem and its dual are embedded in a larger self-dual problem which always
has a feasible solution. Moreover, suitable optimal solutions of the larger problem can
be processed to yield either optimal solutions to the original problem and its dual or a
certificate of infeasibility to one of these. This approach seems to satisfy all our goals, but
it does have some practical disadvantages, which we discuss.

The heart of the paper is Section 4, where we treat so-called infeasible-interior-point
methods. Our main results are Theorems 4.1–4.4, which relate an interior-point iteration
in the “real” universe to one applied to a corresponding iterate in a “shadow” universe,
where the goal is to obtain a certificate of infeasibility. Thus we see that, in the case of
primal or dual infeasibility, the methods can be viewed not as pursuing a chimera (optimal
solutions to the primal and dual problems, which do not exist), but as implicitly following
a well-defined path to optimal solutions to related problems that yield infeasibility certifi-
cates. This helps to explain the observed practical success of such methods in detecting
infeasibility.

In Section 5 we discuss convergence issues. While Section 4 provides a conceptual
framework for understanding the behavior of infeasible-interior-point methods in case of
infeasibility, we do not have rules for choosing the parameters involved in the algorithm
(in particular, step sizes) in such a way as to guarantee good progress in both the original
problem and its dual and a suitable related problem and its dual as appropriate. We obtain
results on the iterates produced by such algorithms and a convergence result (Theorem
5.1) for the method of Kojima, Megiddo, and Mizuno [10], showing that it does produce
approximate certificates of infeasibility under suitable conditions.

Section 6 studies a number of interior-point methods for more general convex conic
programming problems, showing (Theorem 6.1) that the results of Section 4 remain true
in these settings also. We make some concluding remarks in Section 7.

2 Linear Programming

For most of the paper, we confine ourselves to linear programming. Thus we consider the
standard-form primal problem

(P ) minimize cTx,
Ax = b, x ≥ 0,

of minimizing a linear function of the nonnegative variables x subject to linear equality
constraints (any linear programming problem can be rewritten in this form). Closely
related, and defined from the same data, is the dual problem

(D) maximize bT y,
AT y + s = c, s ≥ 0.
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Here A, an m×nmatrix, b ∈ IRm, and c ∈ IRn form the data; x ∈ IRn and (y, s) ∈ IRm×IRn

are the variables of the problems. For simplicity, and without real loss of generality, we
henceforth assume that A has full row rank.

2.1 Optimality conditions

If x is feasible in (P ) and (y, s) in (D), then we obtain the weak duality inequality

cTx− bT y = (AT y + s)Tx− (Ax)T y = sTx ≥ 0, (2.1)

so that the objective value corresponding to a feasible primal solution is at least as large as
that corresponding to a feasible dual solution. It follows that, if we have feasible solutions
with equal objective values, or equivalently with sTx = 0, then these solutions are optimal
in their respective problems. Since s ≥ 0 and x ≥ 0, sTx = 0 in fact implies the seemingly
stronger conditions that sjxj = 0 for all j = 1, . . . , n, called complementary slackness.
We therefore have the following optimality conditions:

AT y + s = c, s ≥ 0,
(OC) Ax = b, x ≥ 0,

SXe = 0,
(2.2)

where S ( resp., X) denotes the diagonal matrix of order n containing the components of
s ( resp., x) down its diagonal, and e ∈ IRn denotes the vector of ones. These conditions
are in fact necessary as well as sufficient for optimality (strong duality: see [25]).

2.2 The central path

The optimality conditions above consist of m+ 2n mildly nonlinear equations in m+ 2n
variables, along with extra inequalities. Hence Newton’s method seems ideal to approxi-
mate a solution, but since this necessarily has zero components, the nonnegativities cause
problems. Newton’s method is better suited to the following perturbed system, called the
central path equations:

AT y + s = c, (s > 0)
(CPEν) Ax = b, (x > 0)

SXe = νe,
(2.3)

for ν > 0, because if it does have a positive solution, then we can keep the iterates positive
by using line searches, i.e., by employing a damped Newton method. This is the basis of
primal-dual path-following methods: a few (often just one) iterations of a damped Newton
method are applied to (CPEν) for a given ν > 0, and then ν is decreased and the process
continued. See, e.g., Wright [33]. We will give more details of such a method in the next
subsection.

For future reference, we record the changes necessary if (P ) also includes free variables.
Suppose the original problem and its dual are

(P̂ ) minimize cTx + dT z,
Ax + Bz = b, x ≥ 0,
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and
(D̂) maximize bT y,

AT y + s = c, s ≥ 0,
BT y = d.

Here B is an m × p matrix and z ∈ IRp a free primal variable. Assume that B has full
column rank and [A,B] full row rank, again without real loss of generality. The original
problems are retrieved if B is empty.

The optimality conditions are then

AT y + s = c, s ≥ 0,

(ÔC) BT y = d,
Ax + Bz = b, x ≥ 0,

SXe = 0,

(2.4)

and the central path equations

AT y + s = c, (s > 0)

(ĈPEν) BT y = d,
Ax + Bz = b, (x > 0)

SXe = νe.

(2.5)

If (2.5) has a solution, then (P̂ ) and (D̂) must have strictly feasible solutions, where
the variables that are required to be nonnegative (x and s) are in fact positive. Further,
the converse is true (see [33]):

Theorem 2.1 Suppose (P̂ ) and (D̂) have strictly feasible solutions. Then, for every
positive ν, there is a unique solution (x(ν), z(ν), y(ν), s(ν)) to (2.5). These solutions,
for all ν > 0, form a smooth path, and as ν approaches 0, (x(ν), z(ν)) and (y(ν), s(ν))
converge to optimal solutions to (P̂ ) and (D̂) respectively. Moreover, for every ν > 0,
(x(ν), z(ν)) is the unique solution to the primal barrier problem

min cTx+ dT z − ν
∑

j

lnxj, Ax+Bz = b, x > 0,

and (y(ν), s(ν)) the unique solution to the dual barrier problem

max bT y + ν
∑

j

ln sj, AT y + s = c, BTy = d, s > 0.

ut
We call {(x(ν), z(ν)) : ν > 0} the primal central path, {(y(ν), s(ν)) : ν > 0} the dual

central path, and {(x(ν), z(ν), y(ν), s(ν)) : ν > 0} the primal-dual central path.

2.3 A generic primal-dual feasible-interior-point method

Here we describe a simple interior-point method, leaving out the details of initialization
and termination. We suppose we are solving (P̂ ) and (D̂), and that B has full column
and [A,B] full row rank. Let the current strictly feasible iterates be (x, z) for (P̂ ) and
(y, s) for (D̂), and let µ denote sTx/n. The next iterate is obtained by approximating
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the point on the central path corresponding to ν := σµ for some σ ∈ [0, 1] by taking a
damped Newton step. Thus the search direction is found by linearizing the central path
equations at the current point, so that (∆x,∆z,∆y,∆s) satisfies the Newton system

AT ∆y + ∆s = c−AT y − s = 0,
(NS) BT∆y = d−BT y = 0,

A∆x + B∆z = b−Ax−Bz = 0,
S∆x + X∆s = νe− SXe.

(2.6)

Since X and S are positive definite diagonal matrices, our assumptions on A and B imply
that this system has a unique solution. We then update our current iterate to

x+ := x+ αP ∆x, z+ := z + αP ∆z, y+ := y + αD∆y, s+ := s+ αD∆s,

where αP > 0 and αD > 0 are chosen so that x+ and s+ are also positive. This concludes
the iteration.

We wish to give as much flexibility to our algorithm as possible, so we will not describe
rules for choosing the parameter σ and the step sizes αP and αD in detail. However, let us
mention that, if the initial iterate is suitably close to the central path, then we can choose
σ := 1 − 0.1/

√
n and αP = αD = 1 and the next iterate will be strictly feasible and also

suitably close to the central path. Thus these parameters can be chosen at every iteration,
and this leads to a polynomial (but very slow) method; practical methods choose much
smaller values for σ on most iterations. Finally, if αP = αD, then the duality gap sT

+x+ at
the next iterate is smaller than the current one by the factor 1 − αP (1 − σ), so we would
like to choose σ small and the α’s large. The choice of these parameters is discussed in
[33].

2.4 Certificates of infeasibility

In the previous subsection, we assumed that feasible, and even strictly feasible, solutions
existed, and were available to the algorithm. However, it is possible that no such feasible
solutions exist (often because the problem was badly formulated), and we would like to
know that this is the case. Here we revert to the original problems (P ) and (D), or
equivalently we assume that the matrix B is null.

It is clear that, if we have (ȳ, s̄) with AT ȳ + s̄ = 0, s̄ ≥ 0, and bT ȳ > 0, then (P ) can
have no feasible solution x, for if so we would have

0 ≥ −s̄Tx = (AT ȳ)Tx = (Ax)T ȳ = bT ȳ > 0,

a contradiction. The well-known Farkas Lemma [25] asserts that this condition is necessary
as well as sufficient:

Theorem 2.2 The problem (P ) is infeasible iff there exists (ȳ, s̄) with

AT ȳ + s̄ = 0, s̄ ≥ 0, and bT ȳ > 0. (2.7)
ut

We call such a (ȳ, s̄) a certificate of infeasibility for (P ).
There is a similar result for dual infeasibility:
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Theorem 2.3 The problem (D) is infeasible iff there exists x̃ with

Ax̃ = 0, x̃ ≥ 0, and cT x̃ < 0. (2.8)
ut

We call such an x̃ a certificate of infeasibility for (D). It can be shown that, if (P ) is
feasible, the infeasibility of (D) is equivalent to (P ) being unbounded, i.e., having feasible
solutions of arbitrarily low objective function value: indeed, arbitrary positive multiples
of a solution x̃ to (2.8) can be added to any feasible solution to (P ). Similarly, if (D) is
feasible, the infeasibility of (P ) is equivalent to (D) being unbounded, i.e., having feasible
solutions of arbitrarily high objective function value.

Below we are interested in cases where the inequalities of (2.7) or (2.8) hold strictly:
in this case we shall say that (P ) or (D) is strictly infeasible. It is not hard to show, using
linear programming duality, that (P ) is strictly infeasible iff it is infeasible and, for every b̃,
the set {x : Ax = b̃, x ≥ 0} is either empty or bounded, and similarly for (D). Note that,
if (P ) is strictly infeasible, then (D) is strictly feasible (and unbounded), because we can
add any large multiple of a strictly feasible solution to (2.7) to the point (0, c); similarly,
if (D) is strictly infeasible, then (P ) is strictly feasible (and unbounded), because we can
we can add any large multiple of a strictly feasible solution to (2.8) to a point x with
Ax = b. Finally, we remark that, if (P ) is infeasible but not strictly infeasible, then an
arbitrarily small perturbation to A renders (P ) strictly infeasible, and similarly for (D).

3 The Self-Dual Homogeneous Approach

As we mentioned in the introduction, our goal is a practical interior-point method which,
when (P ) and (D) are feasible, gives iterates approaching optimality for both problems;
and when either is infeasible, yields a suitable certificate of infeasibility in the limit. Here
we show how this can be done via a homogenization technique due to Ye, Todd, and
Mizuno [35], based on work of Goldman and Tucker [6].

First consider the Goldman-Tucker system

s = − AT y + cτ ≥ 0,
Ax − bτ = 0,

κ = − cTx + bT y ≥ 0,
x ≥ 0, y free τ ≥ 0.

(3.9)

This system is “self-dual” in that the coefficient matrix is skew-symmetric, and the in-
equality constraints correspond to nonnegative variables while the equality constraints
correspond to unrestricted variables. The system is homogeneous, but we are inter-
ested in nontrivial solutions. Note that any solution (because of the skew-symmetry)
has sTx + κτ = 0, and the nonnegativity then implies that sTx = 0 and κτ = 0. If τ
is positive (and hence κ zero), then scaling (x, y, s) by τ gives feasible solutions to (P )
and (D) satisfying cTx = bT y, and because of weak duality, these solutions are necessarily
optimal. On the other hand, if κ is positive (and hence τ zero), then either bT y is positive,
which with AT y + s = 0, s ≥ 0 implies that (P ) is infeasible, or cTx is negative, which
with Ax = 0, x ≥ 0 implies that (P ) is infeasible (or both). Thus this self-dual system
attacks both the optimality and the infeasibility problem together. However, it is not
clear how to apply an interior-point method directly to this system.
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Hence consider the linear programming problem

(HLP ) min h̄θ
s = − AT y + cτ − c̄θ ≥ 0,

Ax − bτ + b̄θ = 0,
κ = − cTx + bT y + ḡθ ≥ 0,

c̄Tx − b̄T y − ḡτ = −h̄,
x ≥ 0, y free, τ ≥ 0, θ free,

where

b̄ := bτ0 −Ax0, c̄ := cτ 0 −AT y0 − s0, ḡ := cTx0 − bT y0 + κ0, h̄ := (s0)Tx0 + κ0τ0,

for some initial x0 > 0, y0, s0 > 0, τ0 > 0, and κ0 > 0. Here we have added an extra
artificial column to the Goldman-Tucker inequality system so that (x0, y0, s0, τ0, θ0, s0, κ0)
is strictly feasible. To keep the skew symmetry, we also need to add an extra row. Finally,
the objective function is to minimize the artificial variable θ, so as to obtain a feasible
solution to (3.9).

Because of the skew symmetry, (HLP ) is self-dual, i.e., equivalent to its dual, and this
implies that its optimal value is attained and is zero. We can therefore apply a feasible-
interior-point method to (HLP ) to obtain in the limit a solution to (3.9). Further, it can
be shown (see Güler and Ye [7]) that many path-following methods will converge to a
strictly complementary solution, where either τ or κ is positive, and thus we can extract
either optimal solutions to (P ) and (D) or a certificate of infeasibility, as desired.

This technique seems to address all our concerns, since it unequivocally determines
the status of the primal-dual pair of linear programming problems. However, it does have
some disadvantages. First, it appears that (HLP ) is of considerably higher dimension
than (P ), and thus that the linear system that must be solved at every iteration to obtain
the search direction is of twice the dimension as that for (P ). However, as long as we
initialize the algorithm with corresponding solutions for (HLP ) and its (equivalent) dual,
we can use the self-duality to show that in fact the linear system that needs to be solved
has only a few extra rows and columns compared to that for (P ). Second, (HLP ) links
together the original primal and dual problems through the variables θ, τ , and κ, so equal
step sizes must be taken in the primal and dual problems. This is definitely a drawback,
since in many applications, one of the feasible regions is “fat,” so that a step size of one
can be taken without losing feasibility, while the other is “thin” and necessitates quite
small steps. There are methods allowing different step sizes [30, 34], but they are more
complicated. Thirdly, only in the limit is feasibility attained, while the method of the
next section allows early termination with often feasible, but not optimal, solutions.

4 Infeasible-Interior-Point Methods

For the reasons just given, many codes take a simpler and more direct approach to the
unavailability of initial strictly feasible solutions to (P ) and (D). Lustig et al. [12, 13]
proceed almost as in Section 2.3, taking a Newton step towards the (feasible) central
path, but now from a point that may not be feasible for the primal or the dual. We call a
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triple (x, y, s) with x and s positive, but where x and/or (y, s) may not satisfy the linear
equality constraints of (P ) and (D), an infeasible interior point.

We describe this algorithm (the infeasible-interior-point (IIP) method) precisely in the
next subsection. Because its aim is to find a point on the central path, it is far from clear
how this method will behave when applied to a pair of problems where either the primal
or the dual is infeasible. We would like it to produce a certificate of infeasibility, but
there seems little reason why it should. However, in practice, the method is amazingly
successful in producing certificates of infeasibility by just scaling the iterates generated,
and we wish to understand why this is. In the following subsection, we suppose that (P )
is strictly infeasible, and we show that the IIP method is in fact implicitly searching for
a certificate of primal infeasibility by taking damped Newton steps. Then we outline the
analysis for dual strictly infeasible problems, omitting details.

4.1 The primal-dual infeasible-interior-point method

The algorithm described here is almost identical to the generic feasible algorithm outlined
in Section 2.3. The only changes are to account for the fact that the iterates are typically
infeasible interior points. For future reference, we again assume we wish to solve the
more general problems (P̂ ) and (D̂), for which an infeasible interior point is a quadruple
(x, z, y, s) with x and s positive.

We start at such a point (x0, z0, y0, s0). (We use subscripts for both iteration indices
and components, but the latter only rarely: no confusion should arise.) At some iteration,
we have a (possibly) infeasible interior point (x, z, y, s) := (xk, zk, yk, sk) and, as in the
feasible algorithm, we attempt to find the point on the central path corresponding to
ν := σµ, where σ ∈ [0, 1] and µ := sTx/n, by taking a damped Newton step. The search
direction is determined from

AT ∆y + ∆s = c−AT y − s,
(NS − IIP ) BT∆y = d−BTy,

A∆x + B∆z = b−Ax−Bz,
S∆x + X∆s = νe− SXe,

(4.10)

whose only difference from the system (NS) is that the first three right-hand sides may be
nonzero. (However, this does cause a considerable difference in the theoretical analysis,
which is greatly simplified by the orthogonality of ∆s and ∆x in the feasible case.) Again,
this system has a unique solution under our assumptions. We then update our current
iterate to

x+ := x+ αP ∆x, z+ := z + αP ∆z, y+ := y + αD∆y, s+ := s+ αD∆s,

where αP > 0 and αD > 0 are chosen so that x+ and s+ are also positive. This concludes
the iteration. Note that, if it is possible to choose αP equal to one, then (x+, z+) (and all
subsequent primal iterates) will be feasible in (P̂ ), and if αD equals one, (y+, s+) (and all
subsequent dual iterates) will be feasible in (D̂).

As in the feasible case, there are many strategies for choosing the parameter σ and
the step sizes αP and αD. Lustig et al. [12, 13] choose σ close to zero and αP and αD

as a large multiple (say .9995) of the largest step to keep x and s positive respectively,
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except that steps larger than 1 are not chosen. Kojima, Megiddo, and Mizuno [10] choose
a fixed σ ∈ (0, 1) and αP and αD to stay within a certain neighborhood of the central
path, to keep the complementarity sTx bounded below by multiples of the primal and
dual infeasibilities, and to decrease the complementarity by a suitable ratio. (More details
are given in Section 5.2 below.) They are thus able to prove finite convergence, either to
a point that is nearly feasible with small complementarity (and hence feasible and nearly
optimal in nearby problems), or to a large enough iterate that one can deduce that there
are no strictly feasible solutions to (P̂ ) and (D̂) in a large region.

Zhang [36], Mizuno [14], and Potra [23] provide extensions of Kojima et al.’s results,
giving polynomial bounds to generate near-optimal solutions or guarantees that there are
no optimal solutions in a large region.

These results are quite satisfactory when (P̂ ) and (D̂) are strictly feasible, but they are
not as pleasant when one of these is infeasible – we would prefer to generate certificates of
infeasibility, as in the method of the previous section. In the rest of this section, we show
that, in the strictly infeasible case, there are “shadow iterates” that seem to approximately
indicate infeasibility. Thus in the primal infeasible case, instead of thinking of (NS−IIP )
as giving Newton steps towards a nonexistent primal-dual central path, we can think of it
as providing a step in the shadow iterates that is a damped Newton step towards a well-
defined central path for another optimization problem, which yields a primal certificate of
infeasibility. This interpretation explains in some sense the practical success of infeasible-
interior-point methods in detecting infeasibility.

4.2 The primal strictly infeasible case

Let us suppose that (P ) is strictly infeasible, so that there is a solution to

AT ȳ + s̄ = 0, s̄ > 0, bT ȳ = 1. (4.11)

As we showed in Section 2.4, this implies that the dual problem (D) is strictly feasible,
and indeed its feasible region is unbounded. When applied to such a primal-dual pair of
problems, the IIP method usually generates a sequence of iterates where (y, s) becomes
feasible after a certain iteration, and bT y tends to ∞. It is easy to see that, as the
iterations progress, Ax always remains a convex combination of its original value Ax0 and
its “goal” b, but since the problem is infeasible, the weight on the first vector must remain
positive. Let us therefore make the following

Assumption 4.1 The current iterate (x, y, s) has (y, s) strictly feasible in (D) and β :=
bT y > 0. In addition,

Ax = φAx0 + (1 − φ)b, x > 0, φ > 0.

If β = bT y is large, then (y, s)/β will be an approximate solution to the Farkas system
above. This will be part of our “shadow iterate,” but since our IIP method is primal-
dual, we also want a primal and dual for our shadow iterate. We therefore turn the
Farkas system into an optimization problem, using the initial solution (x0, y0, s0). Let us
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therefore consider

(D̄) max (Ax0)
T ȳ

AT ȳ + s̄ = 0,
bT ȳ = 1,

s̄ ≥ 0.

We call this (D̄) since it is a homogeneous form of (D) with a normalizing constraint and
a new objective function, and regard it as a dual problem of the form (D̂). From our
assumption that (P ) is strictly infeasible, (D̄) is strictly feasible. Its dual is

(P̄ ) min ζ̄
Ax̄ + bζ̄ = Ax0,
x̄ ≥ 0.

We will always use bars to indicate the variables of (D̄) and (P̄ ). Note that, from our
assumption on the current iterate, (x/φ,−(1−φ)/φ) is a strictly feasible solution to (P̄ ).
Hence we make the

Definition 4.1 The shadow iterate corresponding to (x, y, s) is given by

(x̄, ζ̄) := (
x

φ
,−1 − φ

φ
), (ȳ, s̄) := (

y

β
,
s

β
).

(We note that the primal iterate x is infeasible, while the dual iterate (y, s) is feasible;
these conditions are reversed in the shadow universe, where (x̄, ζ̄) is feasible and (ȳ, s̄) is
typically infeasible in the first equation, while satisfying the second.)

Since φ and β are linear functions of x and (y, s) respectively, the transformations from
the original iterates to the shadow iterates is a projective one. Projective transformations
were used in Karmarkar’s original interior-point algorithm [9], but have not been used
much since, although they are implicit in the homogeneous approach and are used in
Mizuno and Todd’s analysis [15] of such methods.

We now wish to compare the results of applying one iteration of the IIP method from
(x, y, s) for (P ) and (D), and from (x̄, ζ̄, ȳ, s̄) for (P̄ ) and (D̄).

The idea is shown in the figure below. While the step from (x, y, s) to (x+, y+, s+) is in
some sense “following a nonexistent central path,” the shadow iterates follow the central
path for the strictly feasible pair (P̄ ) and (D̄). Indeed, the figure can be viewed as a
“commutative diagram.” Our main theorem below shows that the point (x̄+, ζ̄+, ȳ+, s̄+)
can be obtained either as the shadow iterate corresponding to the result of a damped
Newton step for (P ) and (D) from (x, y, s), or as the result of a damped Newton step for
(P̄ ) and (D̄) from the shadow iterate corresponding to (x, y, s).

For a chosen value for σ ∈ [0, 1], let (∆x,∆y,∆s) be the search direction of the first
of these, and let αP and αD be the chosen positive step sizes, with (x+, y+, s+) being the
next iterate. Then according to the algorithm in Section 4.1, we have

AT ∆y + ∆s = 0,
A∆x = b−Ax,
S∆x + X∆s = σµe− SXe

(4.12)
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Figure 1. Comparing the real and shadow iterations: a “commutative diagram.”

(note that B is empty and the dual iterate is feasible), where µ := sTx/n, and

x+ := x+ αP ∆x, y+ := y + αD∆y, s+ := s+ αD∆s.

The corresponding iteration for (P̄ ) and (D̄) also comes from Section 4.1, where now B
is the single column b, but we postpone stating it until we have generated trial search
directions from those above. Before doing so, we note the easily derived and well-known
fact that ∆y = (AXS−1AT )−1b− σµ(AXS−1AT )−1AS−1e. Thus

∆β := bT ∆y = bT (AXS−1AT )−1b− σµbT (AXS−1AT )−1AS−1e,

and it follows (since infeasibility implies that b is nonzero) that ∆β is positive for small
enough σ, depending on x and s. Henceforth, we make the

Assumption 4.2 ∆β is positive.

From Assumption 4.1, the definition of x+, and (4.12), we find that

Ax+ = φ(Ax0) + (1 − φ)b+ αP (b− φ(Ax0) − (1 − φ)b) = φ+(Ax0) + (1 − φ+)b,

where φ+ := (1 − αP )φ > 0 (since (P ) is infeasible). Also, β+ := bT y+ = β + αD∆β > 0
from our assumptions. Hence our new shadow iterates are

(x̄+, ζ̄+) := (
x+

φ+

,−1 − φ+

φ+

), (ȳ+, s̄+) := (
y+

β+

,
s+
β+

),

with φ+ and β+ as above. We then find

x̄+ =
x+ αP ∆x

(1 − αP )φ

=
x

φ
+

(
αP

1 − αP
.
∆β

β

)(
β

φ∆β
(∆x+ x)

)

= x̄+ ᾱP ∆x̄,

12



where

ᾱP :=
αP

1 − αP
.
∆β

β
, ∆x̄ :=

β

φ∆β
(∆x+ x), (4.13)

and

ζ̄+ = −1 − (1 − αP )φ

(1 − αP )φ

= −1 − φ

φ
+ ᾱP

(
− β

φ∆β

)

= ζ̄ + ᾱP ∆ζ̄,

where

∆ζ̄ := − β

φ∆β
. (4.14)

Note that the choice of ᾱP and hence the scale of ∆x̄ and ∆ζ̄ is somewhat arbitrary: the
particular choice made will be justified in the following theorem. Similarly the choice of
ᾱD is somewhat arbitrary below.

We also have

ȳ+ =
y + αD∆y

β + αD∆β

=
y

β
+

(
αD∆β

β + αD∆β

)(
∆y

∆β
− y

β

)

= ȳ + ᾱD∆ȳ,

where

ᾱD :=
αD∆β

β + αD∆β
, ∆ȳ :=

∆y

∆β
− ȳ, (4.15)

and similarly
s̄+ = s̄+ ᾱD∆s̄,

where

∆s̄ :=
∆s

∆β
− s̄. (4.16)

Theorem 4.1 The directions (∆x̄,∆ζ̄ ,∆ȳ,∆s̄) defined in (4.13)–(4.16) solve the Newton
system for (P̄ ) and (D̄) given below:

AT ∆ȳ + ∆s̄ = −AT ȳ − s̄,
bT ∆ȳ = 0,

A∆x̄ + b∆ζ̄ = 0,
S̄∆x̄ + X̄∆s̄ = σ̄µ̄e− S̄X̄e,

(4.17)

for the value

σ̄ :=
β

∆β
σ. (4.18)

Here µ̄ := s̄T x̄/n.
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Proof: We establish the equations of (4.17) in order. First,

AT ∆ȳ + ∆s̄ = AT
(

∆y

∆β
− ȳ

)
+

(
∆s

∆β
− s̄

)
= −AT ȳ − s̄,

using the first equation of (4.12). Next,

bT ∆ȳ = bT
(

∆y

∆β
− ȳ

)
= 1 − bT ȳ = 1 − bT y/β = 0

from the definition of ∆β. For the third equation,

A∆x̄+ b∆ζ̄ =

(
β

φ∆β

)
(A(∆x+ x) − b) = 0,

using the second equation of (4.12). Finally, we find

S̄∆x̄+ X̄∆s̄ =
1

β
.
β

φ∆β
. (S∆x+ Sx) +

1

φ

(
1

∆β
X∆s− 1

β
Xs

)

=

(
β

∆β

)
1

βφ
(S∆x+X∆s+ SXe) − 1

βφ
SXe

=

(
β

∆β

)(
1

βφ
σµe

)
− 1

βφ
SXe

=

(
β

∆β
σ

)
µ̄e− S̄X̄e,

using the last equation of (4.12). ut
This theorem substantiates our main claim that, although the IIP method in the

strictly infeasible case may be aiming towards a central path that doesn’t exist, it is in
fact implicitly trying to generate certificates of infeasibility. Indeed, the shadow iterates
are being generated by damped Newton steps for the problems (P̄ ) and (D̄), for which
the central path exists.

Since (P̄ ) and (D̄) are better behaved than (P ) and (D), and therefore the behavior of
the IIP method better understood, it is important to note that this correspondence can be
reversed, to give the iteration for (P ) and (D) from that for (P̄ ) and (D̄). So assume we
are given (x̄, ζ̄, ȳ, s̄) with Ax̄+ bζ̄ = Ax0, x̄ > 0, ζ̄ ≤ 0 and AT ȳ+ s̄ = c/β, bT ȳ = 1, s̄ > 0
for some positive β. Then we can define φ := 1/(1 − ζ̄) ∈ (0, 1] so that ζ̄ = −(1 − φ)/φ,
and make the

Definition 4.2 The “real” iterate corresponding to (x̄, ζ̄, ȳ, s̄) is given by

x := φx̄, (y, s) := β(ȳ, s̄).

Thus Ax = φ(Ax0) + (−φζ̄)b = φ(Ax0) + (1 − φ)b, x > 0 and AT y + s = c, s > 0.
Suppose (∆x̄,∆ζ̄ ,∆ȳ,∆s̄) is the solution to (4.17), and also make the

Assumption 4.3 ∆ζ̄ is negative.

14



This also automatically holds if σ̄ is sufficiently small, and is in a sense more reasonable
than Assumption 4.2 since we are now presumably close (if β is large) to a well-defined
central path, and from the form of (P̄ ), the assumption just amounts to monotonicity of
the objective in the primal shadow problem (see Mizuno et al. [16]).

We now define our new shadow iterate (x̄+, ζ̄+, ȳ+, s̄+) by taking steps in this direction,
ᾱP > 0 for (x̄, ζ̄) and ᾱD > 0 for (ȳ, s̄). (We can assume that ᾱD is less than one, since
otherwise (ȳ+, s̄+) is a certificate of primal infeasibility for (P ) and we stop.) We set φ+ :=
1/(1 − ζ̄+) = 1/(1 − ζ̄ − ᾱP∆ζ̄) (positive by Assumption 4.3) and β+ = β/(1 − ᾱD) > 0
so that AT ȳ+ + s̄+ = c/β+. Then we define

x+ := φ+x̄+ =
x̄+ ᾱP ∆x̄

1 − ζ̄ − ᾱP ∆ζ̄

= x+

(
−ᾱP∆ζ̄

1 − ζ̄ − ᾱP ∆ζ̄

)(
∆x̄

−∆ζ̄
− x

)

=: x+ αP ∆x

(i.e., αP and ∆x are defined by the expressions in parentheses in the penultimate line);

y+ := β+ȳ+ =
βȳ + βᾱD∆ȳ

1 − ᾱD

= y +

(
−ᾱDφ∆ζ̄

1 − ᾱD

)(
β

−φ∆ζ̄
(∆ȳ + ȳ)

)

=: y + αD∆y;

and similarly

s+ := β+s̄+

= s+

(
−ᾱDφ∆ζ̄

1 − ᾱD

)(
β

−φ∆ζ̄
(∆s̄+ s̄)

)

=: s+ αD∆s.

It is straightforward to check

Theorem 4.2 The directions (∆x,∆y,∆s) defined above solve the Newton system (4.12)
for (P ) and (D) for the value σ := σ̄/(−φ∆ζ̄).

ut
We note that bT ∆y = β/(−φ∆ζ̄), which is positive under Assumption 4.3. This and
(4.14) show that Assumptions 4.2 and 4.3 are equivalent.

The relationship between αP and ᾱP , αD and ᾱD, and σ and σ̄ will be discussed
further in the next section. For example, if we suspect that (P ) is infeasible, we may want
to choose αP and αD so that ᾱP and ᾱD are close to 1, so that we are taking near-Newton
steps in terms of the shadow iterates.

4.3 The dual strictly infeasible case

Now we sketch the analysis for the dual strictly infeasible case, omitting details. We
suppose there is a solution to

Ax̃ = 0, x̃ > 0, cT x̃ = −1.
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In this case, the IIP algorithm usually generates a sequence of iterates where x becomes
feasible after a certain iteration, and cTx tends to −∞. AT y+ s always remains a convex
combination of its original value AT y0 + s0 and its goal c. Thus we make the following

Assumption 4.4 The current iterate (x, y, s) has x feasible in (P ) and γ := −cTx > 0.
In addition,

AT y + s = ψ(AT y0 + s0) + (1 − ψ)c, s > 0, ψ > 0.

If cTx is large and negative, then x/γ will be an approximate solution to the Farkas
system above. We formulate the optimization problem

(P̃ ) min (AT y0 + s0)
T x̃
Ax̃ = 0,

−cT x̃ = 1,
x̃ ≥ 0.

((P̃ ) is a modified homogeneous form of (P ).) This is strictly feasible. Its dual is

(D̃) max κ̃
AT ỹ − cκ̃ + s̃ = AT y0 + s0,

s̃ ≥ 0.

We will use tildes to indicate the variables of (P̃ ) and (D̃). Note that, from our assumption
on the current iterate, (y/ψ, (1 − ψ)/ψ, s/ψ) is a strictly feasible solution to (D̃). Hence
we make the

Definition 4.3 The shadow iterate corresponding to (x, y, s) is given by

x̃ := x/γ, where γ := −cTx, (ỹ, κ̃, s̃) := (
y

ψ
,
1 − ψ

ψ
,
s

ψ
).

We now wish to compare the results of applying one iteration of the IIP method from
(x, y, s) for (P ) and (D), and from (x̃, ỹ, κ̃, s̃) for (P̃ ) and (D̃).

Let (∆x,∆y,∆s) be the search direction of the first of these, and let αP and αD be
the chosen positive step sizes, with (x+, y+, s+) being the next iterate. Then according
to the algorithm, we have

AT ∆y + ∆s = c−AT y − s,
A∆x = 0,
S∆x + X∆s = σµe− SXe.

(4.19)

and
x+ := x+ αP ∆x, y+ := y + αD∆y, s+ := s+ αD∆s,

where µ := sTx/n. The corresponding iteration for (P̃ ) and (D̃) also comes from Section
4.1, where now A is augmented by the row −cT , but we postpone stating it until we have
generated trial search directions from those above. Before doing so, we note that

∆x = −(I −XS−1AT (AXS−1AT )−1A)XS−1c+ σµ(I −XS−1AT (AXS−1AT )−1A)S−1e,

16



and so

∆γ := −cT ∆x

= [cTXS−1c− cTXS−1AT (AXS−1AT )−1AXS−1c]

−σµ(cTS−1e− cTXS−1AT (AXS−1AT )−1AS−1e),

and it follows (since dual infeasibility implies that c is not in the range of AT ) that ∆γ is
positive for small enough σ. Henceforth, we make the

Assumption 4.5 ∆γ is positive.

We find that

AT y++s+ = ψ(AT y0+s0)+(1−ψ)c+αD(c−ψ(AT y0+s0)−(1−ψ)c) = ψ+(AT y0+s0)+(1−ψ+)c,

where ψ+ := (1−αD)ψ > 0 (since (D) is infeasible). Also, γ+ := −cTx+ = γ+αP∆γ > 0
from our assumptions. Hence our new shadow iterates are

x̃+ :=
x+

γ+

, (ỹ+, κ̃+, s̃+) := (
y+

ψ+

,
1 − ψ+

ψ+

,
s+
ψ+

).

We then obtain

x̃+ =
x+ αP∆x

γ + αP∆γ

=
x

γ
+

(
αP ∆γ

γ + αP ∆γ

)(
∆x

∆γ
− x

γ

)

= x̃+ α̃P ∆x̃,

where

α̃P :=
αP ∆γ

γ + αP ∆γ
, ∆x̃ :=

∆x

∆γ
− x̃. (4.20)

We also have

ỹ+ =
y + αD∆y

(1 − αD)ψ

=
y

ψ
+

(
αD

1 − αD
.
∆γ

γ

)(
γ

ψ∆γ
(∆y + y)

)

= ỹ + α̃D∆ỹ,

where

α̃D :=
αD

1 − αD
.
∆γ

γ
, ∆ỹ :=

γ

ψ∆γ
(∆y + y). (4.21)

Similarly, s̃+ = s̃+ α̃D∆s̃, where

∆s̃ :=
γ

ψ∆γ
(∆s+ s), (4.22)

and κ̃+ = κ̃+ α̃D∆κ̃, where

∆κ̃ :=
γ

ψ∆γ
. (4.23)
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Theorem 4.3 The directions (∆x̃,∆ỹ,∆κ̃,∆s̃) defined in (4.20) – (4.23) above solve the
Newton system for (P̃ ) and (D̃) given below:

AT ∆ỹ − c∆κ̃ + ∆s̃ = 0,
A∆x̃ = −Ax̃,

−cT ∆x̃ = 0,

S̃∆x̃ + X̃∆s̃ = σ̃µ̃e− X̃S̃e,

(4.24)

for the value

σ̃ :=
γ

∆γ
σ. (4.25)

Here µ̃ := s̃T x̃/n.
ut
This argument can also be reversed. Given (x̃, ỹ, κ̃, s̃), where we assume that Ax̃ =

b/γ,−cT x̃ = 1, x̃ > 0 for some positive γ and AT ỹ−cκ̃+ s̃ = AT y0 +s0, s̃ > 0, and κ̃ ≥ 0,
we define ψ := 1/(1+ κ̃) ∈ (0, 1] so that κ̃ = (1−ψ)/ψ, and hence the “real” iterate given
by x := γx̃, (y, s) := ψ(ỹ, s̃). We compute the search direction from (4.24) and take steps
of size α̃P (assumed less than one, otherwise we have a certificate of dual infeasibility)
and α̃D to obtain new shadow iterates. The appropriate requirement is

Assumption 4.6 ∆κ̃ is positive,

which turns out to be equivalent to our previous assumption that ∆γ > 0. Then the
new real iterates corresponding to the new shadow iterates are obtained from the old real
iterates by using the step sizes and directions given below:

αP :=
α̃Pψ∆κ̃

1 − α̃P
, ∆x :=

γ

ψ∆κ̃
(∆x̃+ x̃),

αD :=
α̃D∆κ̃

1 + κ̃+ α̃D∆κ̃
, ∆y :=

∆ỹ

∆κ̃
− y, ∆s :=

∆s̃

∆κ̃
− s.

Again it is easy to check

Theorem 4.4 The directions (∆x,∆y,∆s) defined above solve the Newton system (4.19)
for (P ) and (D) for the value σ := σ̄/(ψ∆κ̃).

ut

5 Convergence and Implications

Here we give further properties of the iterates in the infeasible case, discuss the conver-
gence of IIP methods in case of strict infeasibility, and consider the implications of our
equivalence between real and shadow iterations for designing an efficient IIP method. In
Section 5.1 we discuss the boundedness of the iterates in the infeasible case, while in
Section 5.2 we consider the Kojima-Megiddo-Mizuno algorithm and convergence issues.
Finally, Section 5.3 addresses the implications of our equivalence results for IIP methods.

18



5.1 Boundedness and unboundedness

Here we will assume that (P ) is strictly infeasible, so that there is a solution to (4.11),
which we repeat here:

AT ȳ + s̄ = 0, s̄ > 0, bT ȳ = 1.

(Similar results can be obtained in the dual strictly infeasible case.)
Note that any primal-dual IIP method has iterates (xk, yk, sk) that satisfy

Axk = bk := φk(Ax0) + (1 − φk)b, 0 ≤ φk ≤ 1, (5.26)

and
AT yk + sk = ck := ψk(A

T y0 + s0) + (1 − ψk)c, 0 ≤ ψk ≤ 1, (5.27)

for all k.

Proposition 5.1 In the primal strictly infeasible case, we have

φk ≥ (1 + s̄Tx0)
−1, s̄Txk ≤ s̄Tx0 (5.28)

for all k ≥ 0. Hence all xk’s lie in a bounded set. Further, for any b̃ with ‖b̃− b‖ < 1/‖ȳ‖,
the system Ax = b̃, x ≥ 0 is infeasible.

Proof: For the first part, premultiply (5.26) by −ȳT to get

s̄Txk = −ȳTAxk = φk(−ȳTAx0) + (1 − φk)(−bT ȳ)
= φks̄

Tx0 − 1 + φk

= φk(1 + s̄Tx0) − 1.

Since s̄Txk > 0, we obtain the lower bound on φk. From φk ≤ 1, the upper bound on
s̄Txk holds. For the second part, note that b̃T ȳ = bT ȳ + (b̃− b)T ȳ ≥ 1 − ‖b̃− b‖‖ȳ‖ > 0,
so that (ȳ, s̄) certifies the infeasibility of Ax = b̃, x ≥ 0. ut

Proposition 5.2 Suppose that in addition the sequence {(xk, yk, sk)} satisfies sT
k xk ≤

sT
0 x0 and ‖sk‖ → ∞. Then bT yk → ∞.

Proof: Indeed, we have

sT
0 x0 ≥ sT

k xk = (ck −AT yk)
Txk

= cTk xk − yT
k [φk(Ax0) + (1 − φk)b]

= cTk xk − φk(A
T yk)

Tx0 − (1 − φk)b
T yk

= cTk xk − φk(ck − sk)
Tx0 − (1 − φk)b

T yk

= [cTk xk − φkc
T
k x0] + φks

T
k x0 − (1 − φk)b

T yk.

(5.29)

Now, by Proposition 5.1, the quantity in brackets remains bounded, while φk ≥ (1 +
s̄Tx0)

−1 > 0 and sT
k x0 → ∞. Thus we must have bT yk → ∞. ut
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5.2 The Kojima-Megiddo-Mizuno algorithm and convergence

Kojima, Megiddo, and Mizuno [10] (henceforth KMM) devised a particular IIP method
that correctly detected infeasibility, but without generating a certificate of infeasibility in
the usual sense. Here we show that their algorithm does indeed generate certificates of
infeasibility in the limit (in the strictly infeasible case). We also see how their method
relates to the assumptions and shadow iterates we studied in Section 4.2.

KMM’s algorithm uses special rules for choosing σ, αP , and αD at each iteration, and
employs a special neighborhood: for (P ) and (D), this is defined to be

N := N (γ0, γP , γD, εP , εD) := N0 ∩NP ∩ND, where
N0 := {(x, y, s) ∈ IRn

++ × IRm × IRn
++ : sjxj ≥ γ0s

Tx/n, for all j},
NP := {(x, y, s) ∈ IRn

++ × IRm × IRn
++ : ‖Ax− b‖ ≤ max(εP , s

Tx/γP )},
ND := {(x, y, s) ∈ IRn

++ × IRm × IRn
++ : ‖AT y + s− c‖ ≤ max(εD, s

Tx/γD)}.
(5.30)

Here εP and εD are small positive constants, and γ0 < 1, γP , and γD are positive constants
chosen so that (x0, y0, s0) ∈ N . KMM maintain all iterates in N .

They choose parameters 0 < σ1 < σ2 < σ3 < 1. At every iteration, σ is chosen to be
σ1 to generate search directions (∆x,∆y,∆s) from the current iterate (x, y, s) ∈ N . (In
fact, it suffices for their arguments to choose σ from the interval [σ ′

1, σ
′′

1 ], possibly with
different choices at each iteration, where 0 < σ ′

1 < σ′′1 < σ2 < σ3 < 1.) Next, a step size
ᾱ is chosen as the largest α̃ ≤ 1 so that

(x+ α∆x, y + α∆y, s+ α∆s) ∈ N and

(s+ α∆s)T (x+ α∆x) ≤ [1 − α(1 − σ2)]s
Tx

for all α ∈ [0, α̃]. Finally, αP ≤ 1 and αD ≤ 1 are chosen so that

(x+ αP ∆x, y + αD∆y, s+ αD∆s) ∈ N and
(s+ αD∆s)T (x+ αP ∆x) ≤ [1 − ᾱ(1 − σ3)]s

Tx
(5.31)

Note that a possible choice is αP = αD = ᾱ. However, the relaxation provided by choosing
σ3 > σ2 allows other options; in particular, it might be possible to choose one of αP and
αD as 1 (thus attaining primal or dual feasibility) while the other is necessarily small
(because the dual or primal problem is infeasible).

The algorithm is terminated whenever an iterate (x, y, s) is generated satisfying

sTx ≤ ε0, ‖Ax− b‖ ≤ εP , and ‖AT y + s− c‖ ≤ εD (5.32)

(an approximately optimal point; more precisely, x and (y, s) are ε0-optimal in the nearby
problems where b is replaced by Ax and c by AT y + s), or

‖(x, s)‖1 > ω∗, (5.33)

for suitable positive (small) ε0, εP , εD and (large) ω∗. KMM argue (Section 4 of [10])
that, in the latter case, there is no feasible solution in a large region of IRn

++× IRm × IRn
++.

A slight modification of their algorithm (Section 5 of [10]) yields stronger conclusions, but
neither version appears to generate a certificate of infeasibility.

KMM prove (Section 4 of [10]) that for given positive ε0, εP , εD and ω∗, their algorithm
terminates finitely. We now show how their method can provide approximate certificates
of infeasibility. Suppose that (P ) is strictly infeasible, and that εP is chosen sufficiently
small that there is no nonnegative solution to ‖Ax− b‖ ≤ εP (see Proposition 5.1).
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Theorem 5.1 Suppose the KMM algorithm is applied to a primal strictly infeasible in-
stance, with εP chosen as above and the large norm termination criterion (5.33) dis-
abled. Then ‖sk‖ → ∞, βk := bT yk → ∞ and there is a subsequence along which
(yk/βk, sk/βk) → (ȳ, s̄), with the latter a certificate of primal infeasibility.

Proof: By our choice of εP , the algorithm cannot terminate due to (5.32), and we have
disabled the other termination criterion, so that the method generates an infinite sequence
of iterates (xk, yk, sk). KMM show that, if ‖(xk, sk)‖1 ≤ ω, for any positive ω, then there
is some α > 0, depending on ω, such that ᾱk ≥ α, and hence, by (5.31), the total com-
plementarity sTx decreases at least by the factor [1−α(1−σ3)] < 1 at this iteration. On
every iteration, the total complementarity does not increase. Hence, if there is an infinite
number of iterations with ‖(xk, sk)‖1 ≤ ω, sT

k xk converges to zero, and since all iterates
lie in N , ‖Axk − b‖ also tends to zero. But this contradicts strict primal infeasibility,
so that there cannot be such an infinite subsequence. This holds for any positive ω, and
thus ‖(xk, sk)‖ → ∞. By Proposition 5.1, {xk} remains bounded, so ‖sk‖ → ∞. By the
rules of the KMM algorithm, sT

k xk ≤ sT
0 x0 for all k. Hence by Proposition 5.2, βk → ∞.

From (5.29) we see that (sk/βk)Tx0 and thus s̄k := sk/βk remain bounded, so that there
is a infinite subsequence K with limK s̄k := limk∈K,k→∞ s̄k = s̄ for some s̄ ≥ 0. Further,
ȳk := yk/βk satisfies AT ȳk = ck/βk − s̄k, which converges to −s̄ along K, since ck remains
bounded. Hence ȳk converges to ȳ := −(AAT )−1As̄ along this subsequence. We therefore
have

AT ȳ + s̄ = lim
K

(AT yk + sk)/βk = lim
K
ck/βk = 0, s̄ ≥ 0, bT ȳ = lim

K
bT yk/βk = 1,

as desired. ut
While an exact certificate of infeasibility is obtained only in the limit (except under the

happy circumstance that AT ȳk ≤ 0 for some k), (ȳk, s̄k) is an approximate such certificate
for large k, and we can conclude that there is no feasible x in a large region, and that a
nearby problem with slightly perturbed A matrix is primal infeasible; see Todd and Ye
[28].

The results above shed light on our assumptions in Section 4.2. Indeed, we showed that
bT yk → ∞, which justifies our supposition that β > 0 in Assumption 4.1. As we noted
in Section 4.2, Assumption 4.2 (or equivalently 4.3) holds if σ (or σ̄) is sufficiently small
(depending on the current iterate), although this may contradict the KMM choice of σ.
In practice, even with empirical rules for choosing the parameters, the assumptions that
β > 0 and ∆β > 0 seem to hold after the first few iterations. The main assumption left
is that (y, s) is feasible, and we have not been able to establish rules for choosing αP and
αD that will assure this (it is necessary to have αD = 1 at some iteration, unless (y0, s0)
is itself feasible). As we noted, this assumption does seem to hold in practice. Moreover,
if AT yk + sk converges to c but never equals it, then eventually ‖AT yk + sk − c‖ ≤ εD,
and then KMM’s modified algorithm (Section 5 of [10]) replaces c by ck = AT yk + sk, so
that the dual iterates are from now on feasible in the perturbed problem.

Finally, let us relate the neighborhood conditions for an iterate in the “real” universe
to those for the corresponding shadow iterate. Let us suppose that the current iterate
(x, y, s) satisfies Assumption 4.1, and let (x̄, ζ̄, ȳ, s̄) be the corresponding shadow iterate.
We define the neighborhood N̄ in the shadow universe using parameters γ̄0, γ̄P , γ̄D,
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ε̄P , and ε̄D in the obvious way, with the centering condition involving only the x̄- and
s̄-variables, since ζ̄ is free.

Proposition 5.3 Suppose εP ≤ sTx/γP and ε̄D ≤ s̄T x̄/γ̄D. Then, if γ̄0 = γ0 and γ̄D =
(‖Ax0 − b‖/‖c‖)γP , (x, y, s) ∈ N if and only if (x̄, ζ̄, ȳ, s̄) ∈ N̄ .

(Note that our requirements on the γ’s are natural; γ0 and γ̄0 are dimension-free, while
we expect γP to be inversely proportional to a typical norm for Ax− b, such as ‖Ax0− b‖,
and γ̄D to be inversely proportional to a typical norm for AT ȳ + s̄ − 0, such as ‖c‖.)
Proof: Since x̄ = x/φ and s̄ = s/β, we have s̄T x̄ = sTx/(βφ) and µ̄ = µ/(βφ) where
µ := sTx/n and µ̄ := s̄T x̄/n. Thus, for each j,

s̄jx̄j ≥ γ̄0µ̄ iff sjxj/(βφ) ≥ γ̄0µ/(βφ) iff sjxj ≥ γ0µ.

Next, ‖AT y+s−c‖ = 0 ≤ max(εD, s
Tx/γD) and ‖Ax̄+ ζ̄−Ax0‖ = 0 ≤ max(ε̄P , s̄

T x̄/γ̄P ).
Finally, Ax− b = φ(Ax0 − b), so

φ‖Ax0 − b‖ = ‖Ax− b‖ ≤ max(εP , s
Tx/γP ) = sTx/γP

if and only if
φ ≤ sTx/(γP ‖Ax0 − b‖);

whereas bT ȳ − 1 = 0 and AT ȳ + s̄− 0 = c/β, so

‖c‖/β = ‖AT ȳ + s̄− 0‖ ≤ max(ε̄D, s̄
T x̄/γ̄D) = s̄T x̄/γ̄D = sTx/(βφγ̄D)

if and only if
φ ≤ sTx/(γ̄D‖c‖).

By our conditions on γP and γ̄D, these conditions are equivalent. ut
Let us summarize what we have shown (and not shown) about the convergence of IIP

methods. (Of course, analogous results for the dual strictly infeasible case can easily be
established.) Theorem 5.1 shows that the original KMM algorithm will provide certificates
of infeasibility in the limit for strictly infeasible instances. However, our development of
Sections 4.2 and 4.3 suggests a more ambitious goal. We would like a strategy for choosing
the centering parameter σ and the step sizes αP and αD at each iteration so that:

(a) In case (P ) and (D) are feasible, the iterates converge to optimal solutions to these
problems;

(b) In case (P ) is strictly infeasible, the iterates become dual feasible, bT y becomes
positive, and thenceforth the shadow iterates converge to optimal solutions of (P̄ )
and (D̄), unless a certificate of primal infeasibility is generated;

(c) In case (D) is strictly infeasible, the iterates become primal feasible, cTx becomes
negative, and thenceforth the shadow iterates converge to optimal solutions of (P̃ )
and (D̃), unless a certificate of dual infeasibility is generated.

Of course, the algorithm should proceed without knowing which case obtains. We would
further like some sort of polynomial bound on the number of iterations required in each
case.
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Unfortunately, we are a long way from achieving this goal. We do not know how to
achieve dual (primal) feasibility in case (b) (case (c)). And we do not know how to choose
the parameter σ and corresponding σ̄ and the step sizes αP and αD and corresponding ᾱP

and ᾱD to achieve simultaneously good progress in (P ) and (D) and (P̄ ) and (D̄) (which
we would like since we do not know which of cases (a) and (b) holds). The next subsection
gives some practical guidance for choosing these parameters, without any guarantees of
convergence.

5.3 Implications for the design of IIP methods

Suppose we are at a particular iteration of an IIP method and we suspect that (P ) is
strictly infeasible. (Similar considerations of course apply in the dual case.) For example,
we might check that φ (the proportion of primal infeasibility remaining at the current
iterate x) is at least .01 whereas the dual iterate (y, s) is (approximately) feasible, and
β := bT y and ∆β := bT ∆y are positive. It then might make practical sense to choose the
parameters to determine the next iterates with some attention to the (presumably better
behaved) shadow iterates. Let us recall the relationship between the parameters in the
real and shadow universes:

σ̄ :=
β

∆β
σ, ᾱP :=

αP

1 − αP
.
∆β

β
, ᾱD :=

αD∆β

β + αD∆β
.

In the case that we expect, ∆β will be considerably larger than β, so that σ̄ will be much
smaller than σ. Practical rules for choosing σ might lead to a value close to 1, since
poor progress is being made in achieving feasibility in (P ); but σ̄ may still be quite small,
indicating good progress toward optimality in (P̄ ) and (D̄). Indeed, it seems reasonable to
choose σ quite large, so that σ̄ is not too small — recall that merely achieving feasibility
in (D̄) yields a certificate of primal infeasibility; an optimal solution is not required. Of
course, ∆β itself depends on σ by the relation above Assumption 4.2, but choosing a
larger σ is likely to increase σ̄.

Having thus chosen σ, we need to choose the step size parameters αP and αD. Because
primal feasibility cannot be achieved, αP < 1, but again, the resulting ᾱP may be much
larger, indeed even bigger than 1. In such a case it seems reasonable to make αP even
smaller, so that the corresponding ᾱP = 1, using the formula above. A reverse situation
occurs for αD and ᾱD. If we limit αD to 1, the corresponding ᾱD may be quite small,
whereas we would like to have ᾱD = 1 to obtain a certificate of infeasibility. Such a value
corresponds to αD = ∞, so that it seems reasonable to take αD as a large fraction of the
distance to the boundary, even if this exceeds 1. If it is possible to choose αD = ∞, then
(∆y,∆s) is itself a certificate of primal infeasibility.

Modifications of this kind in the software package SDPT3 (see [31]) seem quite useful
to detect infeasibility; in particular, allowing αD (αP ) to be very large when primal (dual)
infeasibility is suspected usually gives a very good certificate of primal (dual) infeasibility
at the next iteration.
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6 Extensions to Conic Programming

All of our discussion so far has concentrated on the linear programming case. In this
section we show that the results of Section 4 extend to many IIP methods for more
general conic programming problems of the form

(P̌ ) minimize 〈c, x〉,
Ax = b, x ∈ K.

Here K is a closed, convex, pointed (i.e., containing no line), and solid (with nonempty
interior) cone in a finite-dimensional real vector space E with dual E∗, and c ∈ E∗: 〈s, x〉
denotes the result of s ∈ E∗ acting on x ∈ E. A is a surjective linear transformation fromE
to the dual Y ∗ of another finite-dimensional real vector space Y , and b ∈ Y ∗. In particular,
this includes the case of semidefinite programming (SDP), where E = E∗ is the space of
symmetric matrices of order n with the inner product 〈s, x〉 := Trace(sTx) and K is the
positive semidefinite cone. It also contains the case of second-order cone programming
(SOCP), where E = E∗ = IRn with the usual inner product and K = K1 × . . .×Kq, with
Ki := {xi ∈ IRni : xi = (xi1; x̄i), xi1 ≥ ‖x̄i‖} and

∑
i ni = n. (Here we have used Matlab

notation: (u; v) is the column vector obtained by concatenating the column vectors u and
v. Hence the first component of xi is required to be at least the Euclidean norm of the
vector of the remaining components.)

Both of these classes of optimization problems have nice theory and wide-ranging
applications: see, e.g., Ben-Tal and Nemirovski [2] or Todd [27].

The problem dual to (P̌ ) is

(Ď) maximize 〈b, y〉,
A∗y + s = c, s ∈ K∗,

where A∗ : Y → E∗ is the adjoint transformation to A and K∗ := {s ∈ E∗ : 〈s, x〉 ≥
0 for all x ∈ K} is the cone dual to K. In the two cases above, K is self-dual, so that
K∗ = K (we have identified E and E∗).

Given a possibly infeasible interior point (x, y, s) ∈ intK × Y × intK ∗, a primal-
dual IIP method (see, e.g., [19, 20, 21, 27, 2]) takes steps in the directions (∆x,∆y,∆s)
obtained from a linear system of the form

A∗∆y + ∆s = c−A∗y − s,
A∆x = b−Ax,
E∆x + F∆s = σg − h,

(6.34)

for certain operators E : E → V and F : E∗ → V (V is another real vector space of the
same dimension as E) and certain g, h ∈ V , depending on the current iterates x and s,
and for a certain parameter σ ∈ [0, 1]; compare with (4.10).

We are again interested in the case that (P̌ ) or (Ď) is infeasible, and again we con-
centrate on the primal case, the dual being similar. We note that a sufficient condition
for primal infeasibility is the existence of (ȳ, s̄) ∈ Y ×E∗ with

A∗ȳ + s̄ = 0, s̄ ∈ K∗, 〈b, ȳ〉 = 1, (6.35)
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but in the general nonpolyhedral case this is no longer necessary. We will say that (P̌ )
is strictly infeasible if there is such a certificate with s̄ ∈ intK ∗ (again, this implies that
(Ď) is strictly feasible). Henceforth we suppose that (P̌ ) is strictly infeasible and that a
sequence of iterations from the initial infeasible interior point (x0, y0, s0) has led to the
current iterate (x, y, s) where the analogue of Assumption 4.1 holds (the only change is
that β := 〈b, y〉 is positive). We consider the Farkas-like problem

(D̄) max 〈Ax0, ȳ〉
A∗ȳ + s̄ = 0,
〈b, ȳ〉 = 1,

s̄ ∈ K∗,

with dual

(P̄ ) min ζ̄
Ax̄ + bζ̄ = Ax0,
x̄ ∈ K.

We define the shadow iterate (x̄, ζ̄, ȳ, s̄) of (x, y, s) exactly as in Definition 4.1. We will
show that, assuming E , F , g, and h depend on x and s suitably, once again an iteration
from (x, y, s) corresponds appropriately to a shadow iteration from (x̄, ζ̄, ȳ, s̄). We define
Ē , F̄ , ḡ, and h̄ from the shadow iterate as their unbarred versions were defined from
(x, y, s).

Since we are assuming (y, s) feasible, our directions (∆x,∆y,∆s) solve (6.34) with the
first right-hand side replaced by zero. We again assume that ∆β := 〈b,∆y〉 is positive.
Having chosen positive step sizes αP and αD to obtain the new iterate (x+, y+, s+), we
define ᾱP , ∆x̄, ∆ζ̄, ᾱD, ∆ȳ, and ∆s̄ exactly as in Section 4.2.

Theorem 6.1 Let us suppose that E, F , g, and h and E, F , g, and h are related in one
of the following ways:

(a) Ē = E/β, F̄ = F/φ, ḡ = g/(βφ), and h̄ = h/(βφ);

(b) Ē = E , F̄ = (β/φ)F , ḡ = g/φ, and h̄ = h/φ; or

(c) Ē = (φ/β)E , F̄ = F , ḡ = g/β, and ḡ = g/β.

Suppose also that Ex = Fs = h. Then the directions (∆x̄,∆ζ̄ ,∆ȳ,∆s̄) solve the Newton
system for (P̄ ) and (D̄) given below:

A∗∆ȳ + ∆s̄ = −A∗ȳ − s̄,
〈b,∆ȳ〉 = 0,

A∆x̄ + b∆ζ̄ = 0,
Ē∆x̄ + F̄∆s̄ = σ̄ḡ − h̄,

(6.36)

for the value σ̄ := β
∆βσ.

Proof: The derivation is exactly as in the proof of Theorem 4.1 except for that of the
last equation. In case (a) we obtain

Ē∆x̄+ F̄∆s̄ =
1

β
E
(

β

φ∆β
(∆x+ x)

)
+

1

φ
F
(

∆s

∆β
− s

β

)
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=
1

φ∆β
(E∆x+ F∆s) +

1

φ∆β
Ex− 1

βφ
Fs

=
1

φ∆β
(σg − h) +

1

φ∆β
h− 1

βφ
h

=

(
β

∆β
σ

)(
g

βφ

)
−
(
h

βφ

)
= σ̄ḡ − h̄,

as desired. Cases (b) and (c) are exactly the same after dividing the last equation by β
(case (b)) or φ (case (c)). ut

Note that case (a) covers any situation where E scales with s, F with x, and g and h
with both x and s. (As long as we also have Ex = Fs = h.) This includes our previous
linear programming analysis, where E = S, F = X, γ = µe, and h = SXe. It also
includes the Alizadeh-Haeberly-Overton [1] direction for SDP, where E is the operator
v → (sv + vs)/2, F the operator v → (vx + xv)/2, g 〈s, x〉/n times the identity, and
h = (sx+xs)/2. (We write direction instead of method here and below, to stress that we
are concerned here with the Newton system, which defines the direction; many different
methods can use this direction, depending on their choices of the centering parameter and
the step sizes.)

As a second example, the HRVW/KSH/M direction for SDP (see [8, 11, 17]) has E
the identity, F the operator v → (xvs−1 + s−1vx)/2, g 〈s, x〉/n times s−1, and h = x.
It is easily seen that these choices satisfy the conditions of case (b), as well as the extra
condition. Another instance of case (b) is the Nesterov-Todd (NT) direction for SDP —
see [20, 21]. Here F is the operator v → wvw, where w := x1/2[x1/2sx1/2]−1/2x1/2 is the
unique positive definite matrix with wsw = x, and E , g, and h are as above. Then, if
w̄s̄w̄ = x̄, it is easy to see that w̄ = (β/φ)1/2w, so again the conditions are simple to
check.

The dual HRVW/KSH/M direction for SDP (see [11, 17]) is an instance of case (c).
Here E takes v to (svx−1 + x−1vs)/2, F is the identity, g 〈s, x〉/n times x−1, and h = s.

We presented the NT direction above in the form that is most useful for computing
the directions, and only for SDP. But it is applicable in more general self-scaled conic
programming (including SOCP), using a self-scaled barrier function, and can be given in
a form as above satisfying the conditions of case (b), or another form that conforms to
case (c).

Lastly, the presentations of the HRVW/KSH/M and NT directions for SOCP in
Tsuchiya [29] use different forms of the Newton system: and it is easy to see that these
fit into case (a) of the theorem.

Let us finally note that our results on boundedness and unboundedness in Section
5.1 also hold for general conic programming problems. The key simple fact is that, if
s ∈ intK∗, then {x ∈ K : 〈s, x〉 ≤ δ} is bounded for any positive δ. Hence analogues of
Propositions 5.1 and 5.2 hold.

7 Concluding Remarks

We have shown that there is a surprising connection between the iterates of an IIP method,
applied to a dual pair of problems (P ) and (D) in the case that one of them is strictly
infeasible, and those of another IIP method applied to a related pair of strictly feasible
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problems whose optimal solutions give a certificate of infeasibility for (P ) or (D). This
connection involves a projective transformation from the original setting of the problems
to a “shadow” universe, where the corresponding iterates lie. It holds not only for linear
programming, but also for a range of methods for certain more general conic programming
problems, including semidefinite and second-order cone programming problems. We hope
that an intriguing glimpse of this connection has been provided, but it is clear that much
work remains to be done to understand the convergence of IIP methods.
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