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Density-functional theories are developed to address the equilibrium structure,

solvent behavior, disordered-fluid–fcc-solid transitions, and the transport prop-

erties of solventless nanoparticle–organic hybrid materials (NOHMs) consisting

of nanoparticles with tethered oligomers with no solvents. The coarse-grained

model of hard spheres and attached bead chains combined with the assump-

tions of incompressible oligomers, faster relaxation of oligomers than core par-

ticles, and large ratio of the oligomer radius of gyration to the core radius that

is useful to make a weak oligomeric-field approximation allows quasi-analytic

determination of the equilibrium distribution function of the cores and the con-

centration field of oligomers, which then determine the system free energy. The

static structure factor for monodisperse NOHMs shows zero value at zero wave

number, indicating that each core carries the same amount of the fluid. Includ-

ing bidispersity in the system leads to non-zero structure factor at zero wave

number with stronger effects resulted from bidispersity in the oligomer graft-

ing density than bidispersity in the core size. When the oligomers are short

compared with the interparticle spacing, the entropic frustrations due to lim-

ited oligomer configurations yield stronger oligomer-mediated particle–particle

correlations characterizing the entropic attraction among the cores. Meanwhile,

higher solvent capacity is predicted as the solute releases the entropic penalty of

oligomers. This thermodynamic driving force for solute uptake yields good CO2



selectivity over N2 and CH4 in NOHMs compared with unattached PEG melts

or ionic liquids because the lower affinity of CO2 for oligomers make the chains

retract and reduce more of the free energy. Since many neighboring particles co-

operate in filling the space, solventless NOHMs can remain disordered even if

the core volume fraction is above the freezing transition point of hard-sphere

suspensions. Transport properties such as the long-time self-diffusivity and

linear viscoelastic behavior are determined by solving for the non-equilibrium

probability density function for pairs of particles subjected to a weak applied

flow and many-body intercore potential of mean force without hydrodynamic

interactions. Again, the theory predicts hindered particle dynamics as the stiffer

oligomers feel more entropic penalty to fill the space.
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CHAPTER 1

INTRODUCTION

Solvent-free nanoparticle–organic hybrid materials (NOHMs) are a new type

of nanoparticle fluid composed of hard, inorganic nanocores with oligomeric

chains covalently grafted to the surface of the core in the absence of any inter-

vening solvent. The cores are self-suspended by the attached oligomers, which

in turn mediate the interparticle forces and affect the equilibrium properties and

dynamic behavior of the bulk system. Experimentally, it is shown that NOHMs

show liquid-like behavior and provide a homogeneous nanoscale mixture of

organic oligomers and inorganic cores [1–4], which reveals that these surface-

functionalized nanostructures can relax to an equilibrium state. Noting that

there are many (O(500)) oligomers per nanoparticle, the free energy associated

with the oligomer configuration is much larger than the van der Waals attrac-

tion among the cores and prevents aggregation. If we define a dimensionless

number, X = (χT nb)−1/kBT , to be the ratio between the energy to compress the

oligomers and the thermal energy associated with the translation of the cores,

where χT is the isothermal compressibility of oligomers, nb is the particle num-

ber density, kB is the Boltzmann constant, and T is the temperature, then for

a test suspension of 5 nm radius cores with tethered polyethylene chains with

χT ≈ 5 × 10−10Pa−1 calculated from a Padé equation of state [5] and a core vol-

ume fraction of 0.3, we obtain X ≈ 106 at 301 K. This indicates that the inter-

vening oligomeric fluid is incompressible. Therefore, the absence of a solvent,

the small size of the nanocores and oligomers (with the radius of gyration also

of O(5 nm)), and the incompressibility of the tethered oligomeric fluid make

Adapted in part with permission from (H.-Y. Yu and D. L. Koch, Langmuir 2010 26(22),
16801–16811). Copyright (2010) American Chemical Society.
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the oligomer-mediated interactions non-pairwise-additive since oligomers from

many neighboring cores compete to uniformly fill the interstitial space.

The goal of this study is to develop a theoretical description of the equi-

librium properties (structure, solvent capacity, and disorder–order phase tran-

sition) and the transport properties of solventless, pure NOHMs. The non-

pairwise-additive interparticle forces in such a homogeneous nanoscale sus-

pension need a new type of theoretical treatment. Therefore, previous self-

consistent field theories (SCFT) [6–9] and scaling analyses [10–12] for particles

with tethered molecules are not feasible for solvent-free NOHMs since these the-

ories have emphasized attached polymers whose molecular weight was large

under conditions where the particle interactions are pairwise additive. The

condition of incompressibility for the space-filling oligomers adds other dif-

ficulties to the application of these approaches. Another type of theoretical

study for nanoparticles with tethered chains is the polymer reference interaction

site model (PRISM) [13, 14], in which one solves a multi-component Ornstein–

Zernike-like equation [15] for different site–site interactions with a chosen clo-

sure. However, so far the studies have been focused on a situation where the

tethered oligomers are in a phantom solvent that merely fills the rest of the

fluid space and have not addressed the space-filling effects due to the tethered

chains. While molecular dynamics (MD) simulations provide a powerful tool

for investigating nanoparticles with tethered branches at various solvent condi-

tions [16–18], the present study will seek a more analytical treatment that can

directly incorporate the space-filling requirement in pure NOHMs.

In this thesis, a classical density-functional approach is formulated for model

hard spheres with tethered bead-spring oligomers. The simple model allows
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one to have a direct description of the system free energy as a functional of the

probability densities of cores and oligomers. Since the number of oligomers per

particle is large, a continuum description of the oligomer concentration can be

adopted such that the concentration field is at an equilibrium based on the min-

imization of the free energy subject to a constraint of uniform concentration of

monomers in the interstitial space. While the compression of oligomer brushes

when two particles approach one another yield steric repulsion as is typically

found in hairy particles, this constraint of incompressibility leads to unusual

“entropic attraction” forces that prevent the formation of large regions of free

volume between the core particles and result in deviations of the equilibrium

structure and transport properties from those of hard sphere suspensions.

To visualize the oligomer-mediated interparticle potential, in Chapter 2, the

problem is first simplified to a conventional, pair level, in which two mod-

els of parallel hard walls with tethered bead-spring oligomers are presented.

The oligomer free energy is calculated as a function of interwall separation.

In Chapter 3, two models of the solvent-free, monodisperse NOHMs suspen-

sion are proposed: one in which the cores are points and a second in which

the finite hard-sphere radius of the core is taken into account. The radial distri-

bution function and the static structure factor of the particles are solved semi-

analytically based on a regular perturbation analysis valid for large ratio of the

oligomer radius gyration (Rg) to the core radius (a). The qualitative predictions

of the theory are confirmed by the MD simulations in Ref. [18], a paper I coau-

thored with Dr. Alexandros Chremos, a postdoc of Professor Athanassios Z.

Panagiotopoulos, which is not included in this thesis. In Ref. [18] a Lennard-

Jones potential among the monomers is considered and the incompressibility

condition is achieved when kBT/εLJ = 1 with εLJ being the attraction well depth.
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Although the theory is formulated for Rg/a � 1, the qualitative agreement be-

tween the theory and simulations in the radial distribution function, static struc-

ture factor, and root-mean-square chain stretching at Rg/a as small as 0.54 pro-

vides one with confidence in the applicability of the theory. The zero structure

factor at zero wave number predicted for a monodisperse NOHMs may devi-

ate in real polydisperse systems. In Chapter 4, the theory presented in Chapter

3 is generalized to consider a solvent-free, bidisperse NOHMs mixture to ad-

dress possible polydispersity effects in experiments. The deviations in the static

structure factor from a monodisperse system due to different bidispersities are

predicted.

In the absence of an unattached fluid, the oligomers are frustrated as their

conformational space is limited. This “entropic frustration” may lead to a ther-

modynamic driving force for solute uptake if the solute can reduce the system

free energy. In Chapter 5, the monodisperse pure NOHMs system is considered

as a solvent capturing a target gas solute. A theory for a mixture of NOHMs and

added solute is formulated with the affinity of the solute for the oligomers being

modeled using a Flory–Huggins parameter. The equilibrium configurations of

the cores, oligomers, and solute molecules are again obtained semi-analytically.

The solvent capacity of NOHMs is governed not only by the enthalpic interac-

tions between the oligomers and a solute, but also by the changes in the config-

urational entropy of the oligomers upon uptake of the solute. The application of

CO2 capture using NOHMs is addressed. In Chapter 6, the transition from dis-

ordered fluid to face-centered-cubic solid of solvent-free NOHMs is predicted

based on the liquid state theory in Chapter 3 and the proposed solid state the-

ory. The phase boundary is determined by comparing the free energies of the

two phases. Finally, in Chapter 7, the non-equilibrium pair probability is formu-
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lated. Theoretical predictions for pure NOHMs transport properties including

the long-time diffusivity of the cores, the low shear rate viscosity, and the linear

elastic properties are developed by analyzing the interactions of pairs of cores

subjected to a weak applied force and a potential of mean force derived from

the radial distribution function shown in Chapter 3.
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CHAPTER 2

OLIGOMER-MEDIATED INTERPARTICLE POTENTIAL

The thermodynamics and the transport properties of solvent-free NOHMs are

governed by the requirement that the tethered incompressible oligomeric fluid

must fill the interstitial space. In solventless condition, the tethered oligomers

conform to the local interparticle spacing and their conformational space is lim-

ited. As the interparticle spacing changes, variation of the oligomer configura-

tion results in changes in the oligomer free energy, which in turn influences

the distribution of the cores and the macroscopic properties of the material.

While the space-filling constraint leads to many-body interactions as mentioned

in Introduction, to visualize the oligomer-mediated interparticle potential in a

straightforward way and help future development of Brownian Dynamics (BD)

simulations, we first simplify the problem down to a conventional, pair level.

In section 2.1, a model of surface-tethered bead-spring oligomers between

two semi-infinite parallel plates is presented. In section 2.2, we modify the flat-

wall model to the one with two semi-infinite sinusoidal walls to capture the

effect of non-uniform interparticle spacing. In both models, we formulate the

oligomer free energy as a functional of the probability density of the oligomer

at r in space between the walls given that the tethered point is rt on the wall. At

equilibrium, for a given wall-to-wall separation, the probability density min-

imizes the free energy subject to the constraints of normalization and incom-

pressibility of oligomers. The interwall potential corresponds to the free en-

ergy determined from the equilibrium probability density and provides us with

some insight into the bulk properties of pure NOHMs.
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2.1 Interactions between Parallel Plane Walls

We consider a tethered oligomeric fluid confined between two semi-infinite par-

allel plane walls separated with a distance H. As depicted in Fig. 2.1(a), the

oligomers with radius of gyration Rg are modeled as bead-springs grafted to

the surfaces. Each oligomer has one monomer bead and the springs are lin-

ear, massless, and have a rest length of zero. For unattached, ideal chains, the

spring constant ξ is related to Rg via ξ = kBT/2R2
g with kB being the Boltzmann

constant, T being the temperature, and the mean-square end-to-end distance of

oligomers is 6R2
g [1]. The oligomers are assumed to be uniformly grafted to the

surface with the number of oligomers per unit area being na. Since the system is

axisymmetric about the z axis and infinite in the x-y plane, we define the proba-

bility density of finding a monomer at (ρ, z) given that the spring is tethered to

the origin as P(ρ, z) with ρ =
√

x2 + y2. The probability density is normalized,

2π
∫ ∞

0

∫ H

0
P(ρ, z)dzρdρ = 1, (2.1)

and the monomer number density is a constant across the gap,

n(z) = 2πna

∫ ∞

0

∫ H

0
P(ρ, z̄) [δ(z̄ − z) + δ(z̄ − H + z)] dz̄ρdρ = n0 (2.2)

with n0 being the monomer number density and δ(z̄) being the Dirac delta func-

tion. n0 = 2na/H because oligomers from both surfaces contribute to the number

density at (ρ, z).

To obtain the interwall potential we need to calculate the change in oligomer

free energy as a function of H. If we neglect the constant thermal de Broglie

wavelength, the free energy of one oligomer is

F
kBT

= 2π
∫ ∞

0

∫ H

0
P(ρ, z)

[
ln 2πP(ρ, z)R3

g − 1
]

+
1

4R2
g
(ρ2 + z2)P(ρ, z)dzρdρ. (2.3)
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Figure 2.1: (a) Schematic of bead-spring oligomers tethered to two semi-
infinite parallel plates separated by a distance H. (b) Schematic
of bead-spring oligomers tethered two semi-infinite sinusoidal
walls with a mean separation of H0. The gap thickness is a
function of y written as H(y) = H0

[
1 + ε sin(ky)

]
. The dashed

curves represent the deformed gap thickness that mimics the
effect of particle displacement. In our model, the oligomers
are densely and uniformly grafted to the two surfaces but for
simplicity we only plot one oligomer from each surface. (c) A
particle array showing that the oligomers fill the interparticle
space. The arrow and the dotted circle show that as one particle
moves in a given direction it deforms the nearby fluid volume.

Making use of Lagrange undetermined multipliers [2] allows us to find the min-

imum of a function subject to constraints. Therefore at equilibrium F is deter-

mined by the minimization of the following Lagrange function,

L0[P(ρ, z)] =
F

kBT
− λ

{
2π

∫ ∞

0

∫ H

0
P(ρ, z)dzρdρ − 1

}
−

1
na

∫ H

0
β(z) {n(z) − n0 [U(z) − U(z − H)]} dz, (2.4)

where the constant multiplier λ enforces the normalization, the functional mul-

tiplier β(z) accounts for the constraint that n(z) must be a constant for all z, and

U(z) is the unit step function used to constrain the monomers to be within the

gap. The minimization δL0/δP(ρ, z) yields

P(ρ, z) =
1

2πR3
g

exp
{
β(z) + β(H − z) + λ −

ρ2 + z2

4Rg

}
, (2.5)
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where β(z) = β(H − z) from the symmetry of the two plates. Substituting this

expression into Eqs. 2.1 and 2.2 leads to the probability density

P(ρ, z) =
1

2πR2
gH

e
−
ρ2+z2

4R2
g

e
− z2

4R2
g + e

−
(H−z)2

4R2
g

(2.6)

and the equilibrium free energy per chain is

F
kBT

=
2
H

∫ H

0

 e
− z2

4R2
g

e
− z2

4R2
g + e

−
(H−z)2

4R2
g

 ln

 Rg

H

e
− z2

4R2
g + e

−
(H−z)2

4R2
g

 dz − 1. (2.7)

We may also consider a test problem in which the tethered oligomers are im-

mersed in a theta solvent such that the volume not occupied by the oligomers

is easily filled with the unattached solvent molecules. In this case the oligomer

configuration satisfies the normalization of probability density but the incom-

pressibility constraint disappears. Therefore from Eqs. 2.1, 2.3, and 2.5 with

β(z) = 0 we arrive at the following probability density and free energy per chain

for tethered oligomers in a theta solvent:

Pθ(ρ, z) =
1

4π
3
2 R3

gerf
(

H
2Rg

)e
−
ρ2+z2

4R2
g (2.8)

and
Fθ

kBT
= − ln

[
2
√
πerf

(
H

2Rg

)]
(2.9)

with erf(x) being the error function.

In Fig. 2.2, we calculate the free energy per oligomer at different interwall

separations by numerical integration of Eq. 2.7 using an extended trapezoidal

method [3]. At small separations, restricted oligomer-conformational space

leads to a divergence of the free energy at H = 0, which characterizes a steric re-

pulsion similar to interactions between polymer brushes in a solvent. Roughly

as H > 2
√

6Rg, two times the unperturbed end-to-end distance of oligomers, the
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Figure 2.2: Change in the free energy of one bead-spring oligomer non-
dimensionalized by the thermal energy, ∆F/kBT , as a function
of the interwall separation non-dimensionalized by the radius
of gyration, H/Rg, for the plane-wall model in the absence of
an unattached solvent. The corresponding free energy in the
presence of a theta solvent is shown for comparison. At small
H/Rg the two free energies are indistinguishable at the scale of
the graph.

free energy increases with H because the chains have to stretch out to uniformly

fill the interwall space. This “entropic attraction” is purely induced by the teth-

ered oligomers in the absence of solvent, and is a unique feature of solvent-

free oligomer-stabilized particles. For comparison, the corresponding free en-

ergy curve for tethered oligomers in a theta solvent shows a monotonic decay

with H. The entropic attraction obtained for large separations is consistent with

the enhanced peaks in core–core correlations [1, 4] and hindered particle diffu-

sion [5] in pure NOHMs when the oligomer radius of gyration is smaller than

the average interparticle spacing; meanwhile, the potential minimum around
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H = 2
√

6Rg also explains the predicted smaller viscosity of NOHMs compared

with hard spheres when the average interparticle separation is about 2Rg and

the tethered hairs yield less resistivity [5].

2.2 Interactions between Wavy Walls

In a particle array, the interparticle spacing is non-uniform. To mimic the vari-

ations in the interparticle spacing, we consider the model of tethered oligomers

within two semi-infinite wavy walls, as shown in Fig. 2.1(b). The walls are si-

nusoidal in the y direction with wave number k and wavelength l0 = 2π/k. As

in section 2.1, the oligomers have a radius of gyration Rg and a constant sur-

face grafting density na. Since the system is symmetric about the mid plane and

unchanged along the x direction, we choose the mid plane as z = 0 and define

the probability density of finding a monomer at (x, y, z) given that the spring is

tethered to (0, yt, zt) as Pl0(x, y, z|yt) with zt = ±1
2 H0

[
1 + ε sin(ky)

]
(“−” for the lower

wall and “+” for the upper wall). ε is the magnitude of waviness varying from

0 to 1. When ε = 0 we obtain two plane walls; when ε = 1 the trough of the

upper wall touches the peak of the lower wall. H0 is the mean gap thickness.

As a particle moves in the array, it deforms the interparticle spacing and cre-

ates regions with increased and decreased fluid space such that the overall fluid

space remains unchanged, as depicted in Fig. 2.1(c). To capture this effect, for

a given H0 we change ε and estimate how the oligomer free energy varies with

the deformation.

Similar to section 2.1, the probability density is normalized,∫ ∞

−∞

∫ ∞

−∞

∫ H(y)
2

−
H(y)

2

Pl0(x, y, z|yt)dzdydx = 1 (2.10)
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with H(y) = H0
[
1 + ε sin(ky)

]
, and incompressibility of oligomers leads to a con-

stant monomer density throughout the interwall space such that for any given

x

n(y, z) = na

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ H(y)
2

−
H(y)

2

Pl0(x, ȳ, z̄|yt)δ(ȳ − y) [δ(z̄ − z) + δ(z̄ + z)] dz̄dȳdxdyt = n0

(2.11)

with n0 = 2na/H0. The free energy per oligomer averaged over a wavelength is

Fl0

kBT
=

1
l0

∫ l0

0

∫ ∞

−∞

∫ ∞

−∞

∫ H(y)
2

−
H(y)

2

Pl0(x, y, z|yt)
[
ln 2πPl0(x, y, z|yt)R3

g − 1
]

+
1

4R2
g

[
x2 + (y − yt)2 + (z − zt)2

]
Pl0(x, y, z|yt)dzdydxdyt (2.12)

and the Lagrange function takes the form

L[Pl0(x, y, z|0, yt)] =
Fl0

kBT
−

1
l0

∫ l0

0
λ(yt)


∫ ∞

−∞

∫ ∞

−∞

∫ H(y)
2

−
H(y)

2

Pl0(x, y, z|yt)dzdydx − 1

 dyt

−
1

l0na

∫ l0

0

∫ H(y)
2

−
H(y)

2

β(y, z)
{

n(y, z) − n0

[
U

(
z +

H(y)
2

)
− U

(
z −

H(y)
2

)]}
dzdy, (2.13)

where the functional Lagrange multiplier λ(yt) enforces the normalization of

oligomers tethered to yt and the functional Lagrange multiplier β(y, z) enforces

the incompressibility constraint for any x. Both λ(yt) and β(y, z) are periodic func-

tions with a wavelength of 2π/k. The minimization δL/δPl0(x, y, z|0, yt) yields

Pl0(x, y, z|yt) =
1

2πR3
g

exp
{
β(y, z) + β(y,−z) + λ(yt) −

1
4R2

g

[
x2 + (y − yt)2 + (z − zt)2

]}
(2.14)

with β(y, z) = β(y,−z). First substituting this expression into Eq. 2.11 to relate

β(y, z) to λ(yt) allows us to write P(x, y, z|yt) in terms of λ(yt) only. If we then

substitute the new expression for P(x, y, z|yt) into Eq. 2.10 we obtain a nonlinear

integral equation with respect to λ(yt):

2
H0

eλ(yt)
∫ ∞

−∞

∫ H(y)
2

−
H(y)

2

e
− 1

4R2
g
[(y−yt)2+(z−zt)2]

∫ ∞
−∞

e
λ(yt)−

(y−yt)2

4R2
g

e− (z−zt)2

4R2
g + e

−
(z−zt)2

4R2
g

 dyt

dzdy = 1. (2.15)
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Figure 2.3: Changes in the free energy of one bead-spring oligomer for
the wavy-wall model relative to the plane-wall model non-
dimensionalized by the thermal energy, ∆Fl0/kBT , as a func-
tion of the magnitude of waviness, ε, for various dimensionless
mean interwall separations H0/Rg at l0 = 2πRg.

Making use of a finite-difference discretization in yt and an extended multidi-

mensional trapezoidal method as the integrator, we solve for λ(yt) numerically

by applying a globally convergent method with line searches and backtrack-

ing for a nonlinear system of equations [3]. In this algorithm, the full Newton

step is tried and the reduction in the targeted numerical minimization function

is checked at each iteration. Backtracking along the Newton direction is per-

formed until an acceptable step is found. Once the function λ(yt) is obtained,

we substitute the resulting Pl0(x, y, z|yt) into Eq. 2.12 and again calculate the free

energy by numerical integration.

The change in the average free energy per oligomer relative to the plane-wall

result is compared in Fig. 2.3 for different waviness ε and mean gap thickness
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Figure 2.4: Comparison between the changes in the dimensionless free en-
ergy of one bead-spring oligomer for the wavy-wall model rel-
ative to the plane-wall model, ∆Fl0/kBT , as a function of the
magnitude of waviness, ε, for various aspect ratios l0/H0 and
the estimate using the Derjaguin approximation at H0/Rg = 0.2.

H0 at l0 = 2πRg. The introduced sinusoidal shape for the walls yield varying

gap thickness such that as ε changes there is a combined effect of compression,

relaxation, and stretching for different regions of fluid. When H0 < 2
√

6Rg, for a

given H0 the oligomer free energy between wavy walls increases monotonically

with ε and larger H0 leads to more increase in the free energy. As H0 ≈ 2
√

6Rg

the combined effect of steric repulsion and entropic attraction yields the most

increase in the free energy. This most substantial increase in the free energy with

increasing ε indicates that the particles are prone to retain the configuration that

minimizes the variations in the interparticle spacing. When H0 > 2
√

6Rg, the

increase in the free energy subsides. When H0 = 7Rg the substantial variation

of the gap thickness as ε > 0.5 crosses the broad free energy minimum region
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around H0 ≈ 2
√

6Rg and the entropic attraction region, therefore the free energy

remains almost unchanged at small ε and a minimum is observed at larger ε.

The Derjaguin approximation [6, 7] can be made when the minimum sepa-

ration and the range of the interaction are both small compared with the radii

of curvature of the surfaces such that the total interaction energy of curved sur-

faces 1 and 2 can be approximated as F̃curve(D) =
∫

S 1
fplane(H)dA with D being

the minimum separation of the curved surfaces, fplane being the interaction en-

ergy per unit area between two parallel plates separated by H, and S 1 being the

surface of 1. Applying this approximation, we may simply calculate

FDA(H0) =
1
l0

∫ l0

0
F(H(yt))dyt (2.16)

as the approximated wavy-wall free energy per oligomer obtained from averag-

ing the plane-wall free energy over one wavelength, and compare FDA with the

full numerical result of Fl0 . As shown in Fig. 2.4 for a given separation, as the

aspect ratio l0/H0 increases FDA is a good approximation up to ε ≈ 0.7. This ob-

servation justifies the applicability of the Derjaguin approximation in the long

wavelength limit where the undulation is gentle. For more complex surface ge-

ometries full numerical calculation is unavoidable to obtain the free energy of

surface-tethered oligomers without a solvent.

17



BIBLIOGRAPHY

[1] H.-Y. Yu and D. L. Koch, Langmuir 26, 16801 (2010).

[2] D. A. McQuarrie, Statistical Mechanics, University Science Books, Sausalito,
2000.

[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in Fortran 77, Cambridge University Press, Cambridge, 2 edition,
1992.

[4] A. Chremos, A. Z. Panagiotopoulos, H.-Y. Yu, and D. L. Koch, J. Chem.
Phys. 135, 114901 (2011).

[5] H.-Y. Yu and D. L. Koch, Prepared for submission to J. Rheol. .

[6] W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, Cam-
bridge University Press, New York, 1989.

[7] R. J. Hunter, Foundations of Colloid Science, Oxford University Press, New
York, 1986.

18



CHAPTER 3

STRUCTURE OF SOLVENT-FREE NANOPARTICLE–ORGANIC HYBRID

MATERIALS

3.1 Abstract

We derive the radial distribution function and the static structure factor for the

particles in model nanoparticle–organic hybrid materials composed of nanopar-

ticles and attached oligomeric chains in the absence of an intervening solvent.

The assumption that the oligomers form an incompressible fluid of bead-chains

attached to the particles that is at equilibrium for a given particle configuration

allows us to apply a density functional theory for determining the equilibrium

configuration of oligomers as well as the distribution function of the particles.

A quasi-analytic solution is facilitated by a regular perturbation analysis valid

when the oligomer radius of gyration Rg is much greater than the particle radius

a. The results show that the constraint that each particle carries its own share

of the fluid attached to itself yields a static structure factor that approaches zero

as the wave number approaches zero. This result indicates that each particle

excludes exactly one other particle from its neighborhood.

3.2 Introduction

Solvent-less nanoparticle–organic hybrid materials (NOHMs) are a new type

of complex fluid composed of hard, inorganic nanocores with oligomeric chains

Reprinted with permission from (H.-Y. Yu and D. L. Koch, Langmuir 2010 26(22), 16801–
16811). Copyright (2010) American Chemical Society.
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covalently grafted to the surface of the core and with no other solvent molecules.

The cores are self-suspended in a fluid phase of the attached oligomers, which in

turn mediate the intercore forces. For typical polymer-stabilized micron-sized

colloidal particles, the polymer mediated forces can be described using a pair

interparticle potential. However, the absence of a solvent and the small size

of the nanocores in NOHMs make their oligomer-mediated interactions non-

pairwise-additive. To get insight into the thermodynamic, transport, and rheo-

logical properties of such a system, it is essential to first understand the structure

and interparticle forces at equilibrium. The purpose of this paper is to formu-

late a theory that can estimate the equilibrium structure of homogeneous, liquid

phase, solvent-free NOHMs without assuming a pairwise-additive interparticle

potential.

NOHMs are a promising new class of materials whose unique physicochem-

ical and transport properties have been demonstrated experimentally [1–5].

They provide a homogeneous nanoscale mixture of organic oligomers and in-

organic cores. Unlike most nanoparticle systems which aggregate irreversibly

due to strong van der Waals attraction, these surface functionalized nanos-

tructures can relax to an equilibrium state and show liquid-like behavior in

the absence of a solvent. One can calculate the van der Waals interaction be-

tween two equal spheres of radius a at a center-to-center separation r using

ΦvdW = −1
6 A

(
2a2

r2−4a2 + 2a2

r2 + ln r2−4a2

r2

)
with A being the Hamaker constant [6]. Since

the intercore potentials arising from the entropy associated with the oligomer

configurations are of O(kBT ) with kB being the Boltzmann constant and T be-

ing the temperature, the dimensionless number W = ΦvdW/kBT characterizes the

magnitude of the van der Waals attraction relative to the oligomer free energy.

For a typical solventless NOHMs system of silica cores with tethered polyethy-
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lene chains, the estimated non-retarded Hamarker constant would be about 0.1

kBT at 301 K given that the approximate dielectric constant and the refractive in-

dex are 3.91 and 1.45 for silica [7]; 2.26 and 1.482 for polyethylene [8]. For 10 nm

diameter cores with a volume fraction of 0.3, the average interparticle spacing

would be approximately the core radius and we obtain W ≈ 6 × 10−4 at 301 K,

indicating that the van der Waals interaction is much smaller than the oligomer-

configurational entropy in such NOHMs systems. The goal of our study is to

develop a theory of the many-core interactions arising from the entropy penalty

incurred as the oligomers attempt to uniformly fill the space between the cores.

We will see that the distribution of the cores arising from these interactions is

more evenly spaced than a random hard sphere distribution. Such a uniform

distribution occurs in ordered phases where each unit cell has a particle and its

share of fluid space. However, here we have a disordered system that can act as

a fluid but still has each particle surrounded by its share of the fluid, which is in

fact attached to its surface. These features of NOHMs motivate the theoretical

understanding of the intrinsic forces governing the equilibrium nanostructure

of the system. We believe that NOHMs constitute an important new class of

complex materials and the present study is an initial attempt to develop a the-

ory for their unique interactions and equilibrium structure.

Previous self-consistent field theories (SCFT) [9–12] and scaling analyses

[13–15] for particles with tethered molecules have emphasized attached poly-

mers whose molecular weight was large under conditions where the particle

interactions are pairwise additive. The tethered molecules are typically in a

solution of added solvent or a melt of unattached polymers. In contrast, the at-

tached molecules in NOHMs are oligomeric with typical lengths of 3–10 nm

that are only a few times larger than the molecules’ persistence length. In
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addition, the small O(5–10 nm) diameters of the cores and the absence of an

added solvent imply that the oligomers from several neighboring cores will

compete to fill the local interstitial space, leading to non-pairwise-additive in-

tercore potentials. SCFT and scaling analyses exploit a limit where the grafted

polymers’ contour length is large compared with the persistence length. In ad-

dition, monomer–monomer interactions are typically either neglected or incor-

porated only through a free energy penalty based on a virial expansion that is

accurate when the attached molecules have a low volumetric concentration in

a sea of added solvent. It would be difficult to accurately incorporate within

these theories the constraint that the oligomers from several neighboring par-

ticles must form a nearly constant density fluid in the interstitial space. An

attempt to accomplish this goal using SCFT would lead to the need to solve a

stiff set of integrodifferential equations in a complex interstitial geometry. The

Daoud–Cotton (DC) model uses scaling concepts to provide a more analytical

treatment of polymer chains grafted on convex surfaces and star polymers in

good and theta solvents [16]. However, this theory again does not account for

the space-filling nature of the chains. It has also been argued that the DC model

does not correspond to a true minimum of the free energy of a curved brush [17].

Several computational studies have considered nanoparticles with tethered

oligomers in added phantom solvents. For instance, the polymer reference

interaction site model (PRISM) has been applied to determine the effects of

a single tether [18] or multiple tethers [19] on the structure of nanoparticles.

In this approach, one solves an Ornstein–Zernike-like equation [20] for dif-

ferent site–site interactions with a chosen closure. The connected monomers

within a chain are freely jointed. The colloid–colloid interaction is modeled as

a Lennard-Jones-like pair potential and only the hard sphere repulsion is as-
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sumed for colloid–monomer and monomer–monomer interactions. The hard-

core monomer–monomer interactions can be considered to be applicable to a

situation where the tethered oligomers are in a phantom solvent of monomers

with the same chemical structure. Therefore non-pairwise-additive space-filling

effects are not addressed. The pair correlation function and the structure fac-

tor obtained depend on the intercore attraction, positions and number of teth-

ers, chain length, and particle volume fraction. Molecular dynamics simula-

tions [21, 22] for nanoscale colloids with a single tethered polymer have shown

interesting phase behavior driven by the change in the chain configuration,

polymer–colloid size ratio, and particle volume fraction. In these studies, a re-

pulsive, truncated, and shifted Lennard-Jones pair potential is used for colloid–

colloid interactions and bead–bead interactions. The neighboring beads within

a polymer are either freely-jointed or connected by harmonic springs. Again

these studies correspond to colloids suspended in a phantom solvent. While

these computational studies provide an initial indication of the interactions of

nanoparticles with tethered branches, we will seek a more analytical treatment

and one appropriate to a system without added solvent.

In the present study, we will treat the tethered oligomers as an incompress-

ible fluid. That is to say that the concentration of monomers contributed by

oligomers attached to all neighboring particles must be independent of posi-

tion in the interstitial space. A test of the validity of this assumption can be

made by comparing the entropic free energy associated with the translation of

the cores to the work required to compress the oligomeric fluid. The isother-

mal compressibility χT (Pa−1) of a fluid defined by χT = −(1
v )( ∂v

∂p )
T

with v being

the molar volume of the fluid or mediate oligomers and p being the pressure,

can be considered the inverse of the energy per unit volume required to com-
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press the medium by an amount comparable with the system’s current density.

Thus, the reciprocal of the product of the compressibility and the number den-

sity of the particles (n∗b) in the suspension characterizes the energy per parti-

cle required to compress the surrounding oligomers. A dimensionless number,

X = (χT n∗b)−1/kBT , is the ratio of the energy to compress the oligomers and the

thermal energy associated with the translation of the cores. For a suspension of

10 nm diameter cores with tethered polyethylene chains with χT ≈ 5× 10−10Pa−1

calculated from a Padé equation of state [23] and a core volume fraction of 0.3,

X ≈ 106 at 301 K. This indicates that the particle’s thermal energy is insufficient

to compress the intervening oligomeric fluid, which may then be considered

incompressible.

The application of a hard incompressibility constraint using a Lagrange mul-

tiplier that we adopt in the present study is unusual in statistical mechanics. The

typical procedure would be to specify the pairwise potential interactions among

the monomers that make up the oligomers and deduce the configuration of the

oligomers on this basis. In a liquid, however, the attractive interactions among

the monomers along with their short-range repulsive forces lead to a monomer

concentration that is very insensitive to pressure. It may be expected that the

incompressibility condition would be approximated by conventional simula-

tions and theories in the limit in which the attractive energy of the monomers

becomes large compared with the thermal energy.

Polymers or oligomers tethered to particle surfaces in a good or theta solvent

would typically be expected to yield a repulsive (steric) interaction between the

particles. This interaction arises because the brush on one particle must be de-

formed due to the close proximity of the surface of the other particle. The in-
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compressibility constraint on the total monomer concentration contributed by

the molecules attached to all particles in the absence of an unattached solvent

will be seen to yield a qualitatively new type of interparticle interaction. The

absence of an unattached solvent and the incompressibility of the fluid phase

imply that the space occupied by each particle and its attached oligomers must

exclude exactly one neighboring particle with its attached oligomers. This con-

straint is equivalent to the statement that the static structure factor at zero wave

number, which is related to the integral of the deviation of the conditional prob-

ability for finding a neighboring particle from the bulk number density, is zero,

i.e., S (k∗ = 0) = 1 + n∗b
∫

V∗
[g(r∗p) − 1]dr∗p = 0. Here S is the static structure fac-

tor, k∗ is the wave number, r∗p is the interparticle distance, V∗ is the suspension

volume, g(r∗p) is the radial distribution function, and n∗b is the bulk number den-

sity. It is well known that S (k∗ = 0) = 0 in an incompressible single-component

fluid [20]. However, S (k∗ = 0) is a finite value between zero and one in a disor-

dered hard-sphere colloidal suspension and in typical disordered suspensions

of particles with short-range repulsive forces such as those due to steric brush

interactions. The facts that the incompressible fluid suspending the nanocores

in NOHMs is attached to the cores and that each particle carries its own share of

this fluid on its back imply that the system may be viewed as an incompressible

single-component fluid with the component consisting of a particle plus its at-

tached oligomers. As a result the static structure factor for the cores, a quantity

often observed in scattering experiments, will satisfy S (k∗ = 0) = 0.

The static structure factor and the pair distribution function are interre-

lated. Thanks to Percus’ observation [24, 25], the pair distribution function,

i.e. the radial distribution function, in a uniform classical fluid can be calcu-

lated from the one-body density profile when one fluid particle is fixed, i.e.
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n∗(r∗2 − r∗1) = n∗bg(r∗2 − r∗1), where n∗(r∗2 − r∗1) is the density of fluid particles at

r∗2 in a subensemble in which a particle is centered at r∗1. This concept has been

widely used in the density functional theory, which successfully describes the

structure of inhomogeneous simple fluids around a fixed entity [26].

In this article, we formulate a density functional theory for two simple

coarse-grained models for pure NOHMs with bead-spring oligomers attached

in the absence of other solvent molecules, one in which the cores are points and

a second in which the finite hard-sphere radius of the core is taken into account.

We first define the free energy of the oligomers for a given particle configura-

tion. The equilibrium concentration field of the oligomers attached to a core is

obtained by minimizing the oligomer free energy subject to the constraints that

the field produced by the oligomers attached to an ith core is normalized and

the oligomer fluid number density at a given r∗ contributed from a sum of fields

due to i = 1, . . . ,N particles is independent of position throughout the fluid

phase volume. These constraints of normalization and incompressibility along

with the spring energy for the oligomers lead to an oligomer-configurational

entropy penalty for large spaces between the core particles. Consequently, our

results will be based on a different particle interaction mechanism than previ-

ous SCFT work or the DC model and conventional scaling laws for the polymer

brush conformation in an unattached solvent will no longer be appropriate in

such solvent-free systems. Analytical results for the concentration field are de-

rived from a regular perturbation scheme under a “weak-field” approximation

for the oligomer concentration. In particular, when the radius of gyration of the

oligomers is large compared with the core radius (Rg/a � 1), many neighboring

particles contribute oligomers to any fluid volume. As a result, the effect of each

particle on the local oligomer concentration field is small. Use of the resultant,
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weak-field solution for the oligomer concentration field along with a density

functional formulation allows a semi-analytic determination of the radial distri-

bution function and the static structure factor of cores. While our theory does

not capture the details of intra-chain excluded volume interactions, we will see

that it does describe the changes in chain and core configurations caused by the

requirement that all the chains from a test particle and neighboring particles

must uniformly fill space.

3.3 Theory & Results

3.3.1 Point NOHMs

We first consider the case where the nanocores and oligomeric chains are mod-

eled as point particles and bead-springs tethered to the central points, as shown

in Fig. 1(c). The springs are linear, massless, and have a rest length of zero.

The spring energy is defined by Fspring = 1
2ξr

∗2 with ξ being the spring constant

and r∗ being the distance between the bead and the central point particle. The

spring constant is chosen to be related to the radius of gyration Rg of an ideal,

unattached linear chain as ξ = kBT/2R2
g. The probability distribution function of

the bead, G(r∗) ∼ e−
Fspring

kBT , satisfies the normalization condition:∫
V∗

G(r∗)dr∗ = 1. (3.1)

The mean-square distance of the bead from the central point particle in the ab-

sence of chain–chain interactions is:

〈r∗2〉 =

∫
V∗

r∗2G(r∗)dr∗ = 6R2
g. (3.2)
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Figure 3.1: (a) A random particle array showing the oligomers can cross
over several particles. (b) Schematic of the finite-core NOHMs
model. The big central spheres are the hard cores and the small
beads represent the monomers. The monomers are connected
to the core with springs and each spring has one monomer. (c)
Schematic of the point NOHMs model. The junction beads are
the point cores with connected monomer beads. In our model
the number of oligomers per particle is an adjustable parameter
M and for clarity we only illustrate a few oligomers here.

Although the oligomers in NOHMs have only a moderate number of Kuhn

steps, for simplicity we model them using an ideal chain wherein the radius of

gyration is the sole parameter used for comparison with simulation and exper-

iment. The basic form of the theory would be unaltered if a more sophisticated

oligomer conformation model were adopted; this model would primarily alter

the function G. All starred variables are dimensional radii, distances, volume,

densities, and wave numbers. Unstarred variables are non-dimensionalized by

Rg and those with an over bar “–”are non-dimensionalized by the core radius a.

The relaxation of the configuration of cores requires motion of all the

oligomers attached to each core, while oligomer relaxation requires the motion

of only one oligomer. Thus, the oligomers can relax quickly compared with the

cores. Hence we assume that for a given particle configuration the oligomers

are at equilibrium. For a system of N particles we write down the fluid phase
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free energy as (after replacing ξ by kBT/2R2
g)

Ff

kBT
=

N∑
i=1

∫
V

Ci(r, ri)
[
ln Ci(r, ri)Λ3

b − 1
]

+
1
4

(r − ri)2 Ci(r, ri)dr, (3.3)

where the first term represents the ideal gas Helmholtz free energy of the beads,

the second term accounts for the spring energy, Ci(r, ri) is the concentration field

of the oligomers at r attached to particle i, ri is the position of particle i, and Λb

is the thermal de Broglie wavelength of the monomer beads. C(r) =
∑N

i=1 Ci(r, ri)

is the total oligomer fluid number density at r.

To determine the equilibrium concentration field of the oligomers, we must

minimize the fluid phase free energy with respect to variations in Ci subject to

the constraints that the probability of finding the oligomers attached to each

particle is normalized, ∫
V

Ci(r, ri)dr = M, (3.4)

and the fluid number density is a constant in the suspension (incompressibility

condition),

C(r) =

N∑
i=1

Ci(r, ri) = nbM, (3.5)

where M is the number of oligomers per core and nb

[
= n∗bR3

g

]
is the bulk number

density of the cores. In mathematical optimization, one can make use of La-

grange undetermined multipliers to find a maximum or minimum of a function

subject to constraints. A concise introduction to this technique can be found in

ref 27. The Lagrange function for minimizing the free energy of NOHMs for

a given core configuration subject to the normalization and incompressibility

constraints is

Lf [Ci(r, ri)] =
Ff

kBT
−

N∑
i=1

λi

[∫
V

Ci(r, ri)dr − M
]
−

∫
V
β(r)

 N∑
i=1

Ci(r, ri) − nbM

 dr,

(3.6)
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where the Lagrange multipliers λi enforcing the normalization make up a dis-

crete set with one multiplier for each particle and the Lagrange multipliers β(r)

enforcing the incompressibility constraint are a continuous set or a function of

position with the value of β at position r ensuring that the fluid number density

at position r is equal to the average value, nbM. For a given particle configura-

tion, the minimization δLf/δCi(r, ri) yields, after some manipulations and use of

Eq. 3.4,

Ci(r, ri) = MΛiB(r)G(r − ri), (3.7)

where B(r) = eβ(r) accounts for the incompressibility, G(r − ri) = 1

(4π)
3
2
e−

(r−ri)2

4 , and

Λi accounts for the normalization of the oligomers attached to particle i and

other uninteresting factors not included in B(r) or G(r − ri). We have made use

of functional differentiations to minimize Lf [Ci(r, ri)]. Some physically oriented

discussion of functional differentiations can be found in ref 20.

For the density functional theory, it will prove useful to define a conditional

ensemble average of the oligomer concentration. We first specify the position

of particle 1 as r1 and make it our chosen particle but consider all the other non-

chosen particles labeled 2 as indistinguishable, then define the (N − 1)-particle

conditional ensemble average of a quantity A given that particle 1’s center is

fixed at r1 as 〈A〉1(r|r1) =
∫

V
· · ·

∫
V

P(N−1)(rN−1|r1)A(r)dr2 · · · drN . Applying the con-

ditional ensemble average to the incompressibility constraint in Eq. 3.5 yields

〈C〉1(r|r1) =

∫
V
· · ·

∫
V

P(N−1)(rN−1|r1) [C1(r, r1) + (N − 1)C2(r, r2)] dr2 · · · drN

= 〈C1〉1(r|r1) + (N − 1)
∫

V
P(1)(r2|r1)〈C2〉2(r|r1, r2)dr2

= nbM, (3.8)

where 〈C1〉1(r|r1) is the conditional average of the concentration field of

oligomers attached to particle 1 given that particle 1 is fixed at r1, 〈C2〉2(r|r1, r2) is
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the conditional average of the concentration field of oligomers attached to parti-

cle 2 given that particles 1 and 2 are fixed at r1 and r2, P(N−1)(rN−1|r1) is the condi-

tional probability density function of finding N − 1 particles given that there is a

particle fixed at r1, and P(1)(r2|r1) is the conditional probability density function

of finding particle 2 at r2 given that there is a particle fixed at r1, which can be

related to the radial distribution function by the relation g(r2−r1)/V = P(1)(r2|r1).

The conditional average of the incompressibility constraint with one particle

fixed in Eq. 3.8 depends on the conditional average of the concentration of the

oligomers of a second particle (particle 2) with two particle positions fixed. A

conditional average of the incompressibility constraint with two particle posi-

tions held fixed would depend on an oligomer concentration field with three

particle positions fixed and so forth. This leads to a closure problem which is

common in ensemble average treatments of fields surrounding particles. One

common method of achieving closure in theories for suspensions of particles

in an unattached fluid solvent is to assume that the particles are dilute so that

clusters of interacting particles are rare compared with isolated particles [28,29].

However, NOHMs are never dilute. In the absence of an unattached solvent,

the oligomers of particle 1 must always be intertwined with the oligomers of its

neighbors and one cannot achieve a small core particle concentration in which

interactions are rare.

A second situation in which ensemble average field equations can be closed

is one in which many particles contribute to the field in a certain region of space

with no single particle having a disproportionate influence on the field. Un-

der these circumstances, the contribution of each particle to the field is small.

Furthermore, correlations of the field due to multiparticle interactions are weak
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compared with one-particle conditional averages. One precedent for this situ-

ation in the theory of particle suspensions is the fluid flow and chemical tracer

dispersion in a dilute fixed bed of spheres [29, 30]. In this case, the fluid ve-

locity and tracer concentration fields produced by a particle are only truncated

due to Brinkman screening at a large distance from the particle, large enough to

contain many neighboring particles.

The oligomer concentration field in NOHMs is influenced by many neigh-

boring particles when the radius of gyration Rg of the oligomers is large com-

pared with the interparticle spacing n∗−1/3
b , i.e., n∗bR3

g = nb � 1. We will ex-

ploit this limit to close the equations governing the oligomer concentration and

core pair probability distribution function in NOHMs. The B-field represents

the influence of the incompressibility constraint on the concentration of the

oligomers. When nb � 1, the oligomer concentration contributed by particle

i can readily be compensated by small O(1/nb) changes in the concentration of

the oligomers attached to other particles and so the B-field deviates from 1 by

only an O(1/nb) amount. Similarly, the surrounding particles have only a mod-

est influence on the normalization constant required for particle i. Thus, we can

write B(r) = 1 + B′(r) and Λi = 1 + Λ′i with B′(r) and Λ′i being of O(1/nb). It will be

seen that these weak fields yield a weak perturbation to the free energy of the

oligomers, resulting in a small change in the pair distribution function so that

g(r2 − r1) = 1 + hf(r2 − r1) with hf(r2 − r1) = O(1/nb). The weak-field approxima-

tion allows us to neglect nonlinear O(1/n2
b) terms such as Λ′i B

′(r) compared with

linear O(1/nb) terms such as B′(r) or Λ′i . Using this approximation, the condi-

tional averages with one and two particles fixed of the solution for the oligomer

concentration in Eq. 3.7 are:

〈C1〉1(r|r1) ≈ M
[
1 + 〈Λ′1〉1(r1|r1) + 〈B′〉1(r|r1)

]
G(r − r1) (3.9)
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and

〈C2〉2(r|r1, r2) ≈ M
[
1 + 〈Λ′2〉2(r2|r1, r2) + 〈B′〉2(r|r1, r2)

]
G(r − r2). (3.10)

When many particles (O(nb) particles) interact with a chosen particle, the cor-

relation between the disturbances created by neighboring particles is weak. To

quantify this concept, it is convenient to define a perturbation B′′ to the B-field

as B′(r) = B′′(r) + 〈B′〉1(r|r1) + 〈B′〉1(r|r2). Thus, B′′ represents the perturbations

to the B-field that are not captured by the conditional average B-field perturba-

tions with particle 1 fixed and with particle 2 fixed separately. As a result, 〈B′′〉2

represents the B-field perturbations resulting from the correlations between par-

ticles 1 and 2. Since the perturbation caused by particle 1 is O(1/nb) and there are

many (O(nb)) particles interacting with particle 1, we expect that each of them

will have a correlation 〈B′′〉2 = O(1/n2
b). Keeping terms up to O(1/nb), we can

approximate the conditional average B-field with two particles fixed as a sum

of one-particle fields

〈B′〉2(r|r1, r2) ≈ 〈B′〉1(r|r1) + 〈B′〉1(r|r2). (3.11)

Similarly, the perturbation to the normalization constant of particle i can be writ-

ten as Λ′i = Λ′′i +〈Λ′i〉1(ri|ri) where Λ′′i is the deviation of particle i’s normalization

constant from the conditional average of this constant with particle i fixed. The

conditional average of the normalization constant with two particles fixed is

〈Λ′2〉2(r2|r1, r2) = 〈Λ′2〉1(r2|r2) + 〈Λ′′2 〉2(r2|r1, r2), (3.12)

where up to O(1/n2
b) we can neglect the contributions of correlations with third

particles to 〈Λ′′2 〉2.
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After substituting Eqs. 3.9–3.12 into Eq. 3.8 we can equate terms of O(nb) and

O(1) to zero and neglect terms of higher orders. Applying the normalization

condition for 〈C1〉1 and 〈C2〉2 and making use of Fourier transformations allow

the O(1) equation to only involve ˆ〈B′〉1 in Fourier space. The characteristic length

scale in this problem is Rg quantifying the range over which the disturbances to

the field variables are important. Therefore we scale the wave number with Rg

such that k = k∗Rg and upon Fourier transforming we obtain

ˆ〈B′〉1(k) =
Ĝ(k)

[
1 + nbĥf(k)

]
nb

[
Ĝ(k2) − 1

] , (3.13)

ˆ〈Λ′′2 〉2(k) = − ˆ〈B′〉1(k)Ĝ(k), (3.14)

and

〈Λ′i〉1(ri|ri) = −
1

(2π)3

∫
Vk

ˆ〈B′〉1(k)Ĝ(−k)dk (3.15)

with Vk being all space in k, and the subscript i is 1 or 2. Note that Ĝ is of O(1) and

ĥf is of O(1/nb) as we have assumed, so ˆ〈B′〉1 is of O(1/nb) as is shown explicitly in

Eq. 3.13. The same is true for ˆ〈Λ′′2 〉2 and 〈Λ′i〉1. Since we have neglected terms of

orders higher than 1/nb in this analysis and proven the consistency of the order

of magnitude, the perturbations to the field variables are correct to order 1/nb.

The Fourier transform of f (x) and the inverse transform of f̂ (s) are defined by

f̂ (s) =
∫

f (x)e−is·xdx and f (x) = 1
(2π)3

∫
f̂ (s)eis·xds.

We have solved for the conditional average concentration field of oligomers

attached to a particle analytically. Our goal is to find the radial distribution

function of the particles subject to the fluid phase free energy contributed from

the oligomers. We can apply a density functional approach to achieve this. The

essence of the density functional theory is to formulate an expression for the

grand potential Ω, which is related to the Helmholtz free energy FHelm of the

entire system by Ω = FHelm − µN, with µ being the chemical potential of the
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particles. While the Helmholtz free energy is the thermodynamic potential of

the canonical ensemble, the grand potential corresponds to the thermodynamic

potential of the grand canonical ensemble [27]. If we follow Percus’ observa-

tion [24, 25], when we fix a chosen particle labeled 1 at the origin, there will be

a one-body density profile of other non-chosen particles labeled 2 around parti-

cle 1, n(rp) = nbg(rp), with rp being r2 − r1. The grand potential is therefore a

functional of this one-body density profile, Ω = Ftotal − µ
∫

V
n(rp)drp, and now

Ftotal includes FHelm and an additional “external” potential due to the fact that a

particle has been fixed. This external potential can be determined if the fixed

particle occupies a certain volume and interacts with other particles via a spe-

cific potential. In a NOHMs system with point cores interacting via a free energy

due to the oligomers calculated by the equilibrium oligomer structure that we

have determined, the external potential due to the fixed core is zero and the ex-

cess free energy contributed from the fixed particle’s oligomers can be included

within a part of the Helmholtz free energy denoted by Fex. The grand potential

is therefore written as

Ω
[
n(rp)

]
= Fid

[
n(rp)

]
+ Fex

[
n(rp)

]
− µ

∫
V

n(rp)drp. (3.16)

The ideal gas part of the free energy functional of the cores is

Fid

[
n(rp)

]
kBT

=

∫
V

n(rp)
{
ln

[
n(rp)Λ3

p

]
− 1

}
drp (3.17)

with Λp being the thermal de Broglie wavelength of the particles. For a given

core configuration the free energy of the oligomers is smeared out as a “me-

diated interparticle potential” (not the conventional pairwise one) between the

cores. Mathematically, the excess free energy relative to the ideal gas is there-

fore the fluid phase free energy of the tethered oligomers conditionally averaged
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over the configuration of N−1 particles given that particle 1 is fixed at the origin,

Fex

[
n(rp)

]
kBT

=

〈
Ff

kBT

〉
1

=

∫
V
〈C1 ln C1Λ

3
b〉1(r|0) +

[
r2

4
− 1

]
〈C1〉1(r|0)dr+∫

V
n(rp)

∫
V
〈C2 ln C2Λ

3
b〉2(r|0, rp) +

[
(r − rp)2

4
− 1

]
〈C2〉2(r|0, rp)drdrp,

(3.18)

where rp is the position of particles labeled 2 relative to the origin and r is the

position of the beads in the suspension relative to the origin.

At equilibrium, minimization of the grand potential δΩ[n(rp)]/δn(rp) and ap-

plication of µ = µbulk = µ|rp→∞ yield

n(rp) = nbg(rp) = nb exp
{
c(1)(rp) − c(1)

b

}
, (3.19)

where c(1)(rp) = −δ
(
Fex[n(rp)]/kBT

)
/δn(rp) is the so-called one-body direct corre-

lation function evaluated at rp, and c(1)
b = −

[
δ
(
Fex[n(rp)]/kBT

)
/δn(rp)

]
|rp→∞. The

superscript “(1)” is to remind ourselves that the direct correlation function here

is obtained from taking “one” functional derivative of Fex and is for one parti-

cle, distinguished from the “two-body” direct correlation function used in lit-

erature of the integral equation theory. Under a weak-field approximation for

the oligomers, we assume that the change in the excess free energy due to the

change in particle configuration is of O(1/nb) and the exponent can be linearized

such that we obtain

hf(rp) ≈ c(1)(rp) − c(1)
b . (3.20)

After substituting the field variables Λi and B(r) into Eq. 3.18, we can neglect the

correlations between the field variables caused by a second or third particle such

that 〈Λ′′22 〉2 ≈ 〈Λ
′′
2 〉

2
2, 〈B′2〉1 ≈ 〈B′〉21, and 〈Λ′′2 B′〉2 ≈ 〈Λ′′2 〉2〈B

′〉2, etc. based on the ob-
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servation that multi-particle correlations are weak for nb � 1 as discussed previ-

ously. Then functional differentiation δ
(
Fex[n(rp)]/nbkBT

)
/δhf(rp) with standard

chain rules finally yields to O(1/nb),

hf(rp) ≈ 2M
∫

V
〈Λ′′2 〉2(r′p|0, rp)

δ〈Λ′′2 〉2(r′p|0, rp)

δhf(rp)
dr′p − 2M

∫
V
〈B′〉1(r′|0)

δ〈B′〉1(r′|0)
δhf(rp)

dr′.

(3.21)

Since the changes in all the other particles’ field variables due to the pair prob-

ability of a given pair of particles 1 and 2 are important only within a distance

∼ Rg from the fixed particle 1, we conclude that when particle 2 is deep in the

bulk δ〈Λ′′2 〉2(r′p|0, rp)/δhf(rp) and δ〈B′〉1(r′|0)/δhf(rp) are essentially zero making

the integrals in Eq. 3.21 convergent. Equation 3.21 contains convolution inte-

grals which are simplified by Fourier transforming and using the convolution

theorem. Making use of Eqs. 3.13 and 3.14, we thereby obtain

ĥf(k) = −
2M
nb

{
Ĝ(k)2

1 − Ĝ(k)2 + 2MĜ(k)2

}
. (3.22)

The prefactor 1/nb shown explicitly again justifies the weak-field approxima-

tion. With this form of the perturbation to the pair probability in Fourier space,

we can obtain the static structure factor of this one-component fluid defined by

S (k) = 1 + nb

∫
V

[g(rp) − 1]e−ik·rpdrp = 1 + nbĥf(k) [20] directly. When k → 0 we

have Ĝ(0) = 1 and S (0) = 0, which is consistent with the physical argument

that each core in a solventless system must exclude one neighbor. The radial

distribution function or the pair probability g(rp) can be calculated by taking an

inverse Fourier transform of ĥf(k).

Figure 3.2 shows the scaled perturbation to the pair probability h̃f (= nbhf)

and the static structure factor S (k) for point NOHMs. The perturbation to the

pair probability yields a decrease in the number of near neighbors and a slight

increase in the number of neighbors at a distance of about three radii of gyration
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Figure 3.2: (a) The scaled perturbation to the pair probability h̃f (= nbhf) as
a function of the interparticle distance rp and (b) the static struc-
ture factor S as a function of the wave number k for the point
NOHMs model. M is the number of oligomers per core.

of the oligomers. As one might expect, these features become more pronounced

as the number of oligomers per particle M is increased. Although we choose

Rg to be the characteristic length scale quantifying the range of field interac-

tions without treating the chain configurations explicitly, the “stronger” field

observed in h̃f for more number of chains per core could also be rationalized by

the more uniformly stretched oligomer brush resulting in a more structured pair

probability. The decrease in the pair distribution function is relatively modest

even when scaled with 1/nb. However, the deficit extends to sufficiently large

distances allowing its volume integral to reach minus one so that each particle

excludes one neighbor and S (k = 0) = 0. This may be seen in Fig. 3.2(b) where

the static structure factor is plotted as a function of k for various M. In a sus-

pension of point particles without tethered molecules S = 1 throughout space.

The onset of the deficit of neighboring particles, corresponding to a decrease in

S with decreasing k occurs at larger k values for larger M due to the stronger

effects from the oligomers.
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3.3.2 Finite-Core NOHMs

In this section, we model the structure of a suspension of NOHMs with finite

cores having radius a and core volume fraction φb with bead-spring oligomers

tethered to the centers of the cores as illustrated in Fig. 3.1(b). We consider linear

springs whose rest length may be either zero or the core radius a. The spring

energy of the springs with a rest length of a is Fspring = 1
2ξ(r

∗ − a)2. The normal-

ization of the configurational probability of the oligomers and the definition of

the mean-square distance of the chain from the center of the core are given by

Eq. 3.1 and the first equality in Eq. 3.2. We will continue to use the radius of gy-

ration of an ideal unattached spring with rest length zero and spring constant

ξ, i.e., Rg = (kBT/2ξ)1/2, to parameterize the stiffness of the oligomers even when

discussing results for springs with rest length a.

We will consider the limit in which the radius of gyration is large compared

with the core radius R3
g � a3 and moderate core volume fractions φb ∼ O(1).

These conditions imply that n∗bR3
g = nb � 1 so that there are many neighbor-

ing particles within the distance Rg as there were in the point NOHMs model.

The oligomers again cross many neighboring cores as illustrated in Fig. 3.1(a).

In evaluating the pair distribution function, we can separate two length scales:

the length scale a over which hard-core interactions influence the distribution

of neighboring cores and the length scale Rg where most of a chosen particle’s

oligomers lie and over which those oligomers influence the probability of find-

ing neighboring cores. Over the length scale Rg characteristic of the oligomer

concentration field Ci we can neglect the hard-core correlations and assume that

the cores simply fill a fraction φb of the volume.

The condition nb � 1 allows us to use a weak-field approximation in de-
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termining the oligomer concentration field, neglecting correlations smaller than

O(1/nb) as was done in the point NOHMs model. The determination of the

oligomer concentration field and the free energy due to the oligomers is then

nearly identical to the treatment of the point NOHMs model in the previous

section. We formulate the oligomer free energy and minimize it subject to con-

straints of normalization of the concentration of oligomers attached to a given

core and incompressibility (or constant total oligomer concentration through-

out space). This leads to a fluid phase free energy of the form of Eq. 3.3 ex-

cept that the spring energy is now
∫

V
1
4

(
|r − ri| −

a
Rg

)2
Ci(r, ri)dr for the case where

the rest length of the spring is a. The Lagrangian is still of the form Eq. 3.6

and the minimization of the Lagrangian δLf/δCi(r, ri) = 0 for a given particle

configuration again yields the concentration field in the form of Eq. 3.7, where

G(r − ri) = K1e−
1
4

(
|r−ri |−

a
Rg

)2

with K1 being the normalization constant for G. Be-

cause most of the oligomers attached to a test particle are at an O(Rg) distance

from the particle center we can allow G and the field variables Λi and B to be

non-zero even within the core while making a small O(a3/R3
g) error in the free

energy. Applying the conditional ensemble average to the total concentration

shown in Eq. 3.5 yields the incompressibility constraint Eq. 3.8.

To obtain an analytical solution to the oligomer concentration equations, we

can exploit the limits R3
g � a3 and nb � 1, as we did for the point NOHMs

model, to assume small perturbations from uniform fields, i.e., Λi = 1 + Λ′i and

B(r) = 1 + B′(r) with Λ′i and B′(r) being of O(a3/R3
g). Neglecting the higher or-

der correlations between the field variables as before, we can write 〈C1〉1(r|r1)

and 〈C2〉2(r|r1, r2) as Eqs. 3.9 and 3.10. The incompressibility condition, Eq. 3.8,

involves the pair distribution function, which is now influenced by both hard-

core and oligomer-mediated core–core interactions. However, we will see that
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the weak oligomer fields imply that the pair probability can also be assumed to

have a small hf = O(a3/R3
g) perturbation from a reference hard sphere distribu-

tion so that

g(r2 − r1) = 1 + hHS(r2 − r1) + hf(r2 − r1), (3.23)

where hHS is the total correlation function of the reference hard sphere suspen-

sion without the oligomers. Substituting Eqs. 3.9–3.12 and 3.23 into the incom-

pressibility constraint (Eq. 3.8) results in O(R3
g/a

3) and O(1) equations that relate

the field variables and the core pair probability. Specifically, the O(1) equation

is written as

G(r − r1) + nb

∫
V

[〈Λ′2〉1(r2|r2) + 〈Λ′′2 〉2(r2|r1, r2) + 〈B′〉1(r|r1) + 〈B′〉1(r|r2)

+ hHS(r2 − r1) + hf(r2 − r1)]G(r − r2)dr2 = 0. (3.24)

While hf is O(a3/R3
g) smaller than hHS, hf extends over a volume of order R3

g and

hHS extends only over a volume of order a3, so that both terms make contribu-

tions of the same order to the Fourier transform of the field variables and to the

static structure factor. Application of the normalization conditions for 〈C1〉1 and

〈C2〉2 and Fourier transformation of Eq. 3.24 eventually lead to

ˆ〈B′〉1(k) =
Ĝ(k)

[
1 + nb ˆhHS(k) + nbĥf(k)

]
nb

[
Ĝ(k)2 − 1

] . (3.25)

ˆ〈Λ′′2 〉2(k) and 〈Λ′i〉1(ri|ri) have the same relations (Eqs. 3.14 and 3.15) to ˆ〈B′〉1(k) as

the point NOHMs model.

We again apply a density functional approach to solve for the radial distri-

bution function. The grand potential Ω is similar to the point NOHMs model

except that the excess free energy now has two terms: one is contributed from

the hard spheres FHS
ex [n(rp)] and the other caused by the tethered oligomers fill-

ing the interparticle space Ffluid
ex [n(rp)]. Also, the grand potential now includes an
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external potential due to the hard-sphere excluded volume of the fixed chosen

particle, V1(rp). Thus, the grand potential is

Ω
[
n(rp)

]
= Fid

[
n(rp)

]
+ FHS

ex

[
n(rp)

]
+ Ffluid

ex [n(rp)] +

∫
V

n(rp)
[
V1(rp) − µ

]
drp (3.26)

with Ffluid
ex being of the same form as Eq. 3.18 except that the spring energy of the

oligomers attached to the fixed particle is now
∫

V

[
1
4

(
|r| − a

Rg

)2
− 1

]
〈C1〉1(r|0)dr

and the spring energy of the oligomers attached to all the other particles is∫
V

n(rp)
∫

V

[
1
4

(
|r − rp| −

a
Rg

)2
− 1

]
〈C2〉2(r|0, rp)drdrp if the rest length of the spring

is a. The ideal gas free energy of the cores Fid[n(rp)] also remains the same as

Eq. 3.17. The minimization δΩ[n(rp)]/δn(rp) = 0 and application of equal chemi-

cal potential of the neighboring particles, µ = µbulk = µ|rp→∞, yield

n(rp) = nbg(rp) = nb exp
{

c(1)
HS(rp) − c(1)

HS,b −
V1(rp)
kBT

+ c(1)
f (rp) − c(1)

f,b

}
, (3.27)

where c(1)
HS(rp) = −

δ(FHS
ex [n(rp)]/kBT)
δn(rp) , c(1)

HS,b = −
δ(FHS

ex [n(rp)]/kBT)
δn(rp) |rp→∞, c(1)

f (rp) =

−
δ(Ffluid

ex [n(rp)]/kBT)
δn(rp) , and c(1)

f,b = −
δ(Ffluid

ex [n(rp)]/kBT)
δn(rp) |rp→∞. Equation 27 implies that the pair

probability can be expressed in the form g(rp) = gHS(rp)gf(rp), where gHS(rp) =

e
[
c(1)

HS(rp)−c(1)
HS,b−

V1(rp)
kBT

]
= 1 + hHS(rp) is the radial distribution function of the reference

hard sphere suspension with hHS(rp) being the corresponding total correlation

function, and gf(rp) = e
[
c(1)

f (rp)−c(1)
f,b

]
= 1 + hf(rp) can be viewed as an additional fac-

tor accounting for the change in the apparent core radial distribution function

relative to the bare hard spheres due to the tethered oligomer fluid with hf(rp)

being the total correlation function contributed from the oligomers. If we ex-

pand the product and write g(rp) = 1 + hHS(rp) + hHS(rp)hf(rp) + hf(rp), we can see

that hHS(rp)hf(rp) is smaller than hHS(rp) in the inner region and negligible in the

outer region where hf(rp) dominates. Therefore we can neglect the cross term

and obtain an expression for g(rp) that is consistent with the form Eq. 3.23 as-

sumed based on the regular perturbation expansion. Meanwhile, the separation
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of length scales implies that the change in FHS
ex [n(rp)] due to variations in hf(rp)

is only an O(a3/R3
g) perturbation to the change in FHS

ex [n(rp)] due to variations in

hHS(rp) at separations of O(a); while the change in Ffluid
ex [n(rp)] due to variations

of hHS(rp) is essentially zero on the length scale of Rg because hHS(rp → ∞) → 0.

By keeping the dominant contributions from these variations of the free energy

we conclude that c(1)
f (rp) ≈ − δ(Ffluid

ex [n(rp)]/kBT)
nbδhf (rp) and c(1)

HS(rp) ≈ − δ(FHS
ex [n(rp)]/kBT)
nbδhHS(rp) . This

is equivalent to neglecting the coupling between gHS and gf . Thus, we can use

standard approaches in the literature to solve for gHS without considering the

effects due to the oligomer configuration. Conventional density functional ap-

proaches such as the weighted-density approximations (WDA) have been used

to solve for gHS [26]. However, instead of using a density functional approach

for gHS in this article, we directly evaluate it by solving the Ornstein–Zernike

equation with the Percus–Yevick approximation [20, 27]. Using the weak-field

approximation, we can linearize the expression for gf and obtain:

hf(rp) ≈ c(1)
f (rp) − c(1)

f,b. (3.28)

Substitution of the field variables Λi and B(r) into Ffluid
ex [n(rp)]/kBT shown in

Eq. 3.18, truncation of the higher order correlations between the particles, and

functional differentiation δ(Ffluid
ex [n(rp)]/kBT)

nbδhf (rp) finally yield hf in the same form as

Eq. 3.21. After making use of the convolution theorem and the expressions for

ˆ〈B′〉1(k) and ˆ〈Λ′′2 〉2(k), in Fourier space we obtain

ĥf(k) = −
2M
nb

 Ĝ(k)2
[
1 + nb ˆhHS(k)

]
1 − Ĝ(k)2 + 2MĜ(k)2

 . (3.29)

The static structure factor is now defined by S (k) = 1 + nb ˆhHS(k) + nbĥf(k) and

S (0) = 0.

Results for the radial distribution function and static structure factor for

finite-core NOHMs with the model of zero-rest-length springs are shown in
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Figure 3.3: Results are for the finite-core NOHMs model with zero-rest-
length springs: (a) The radial distribution function g as a func-
tion of the interparticle distance non-dimensionalized by the
core radius, r̄p, for different core volume fractions with Rg/a = 2
and (b) the corresponding perturbation to the pair probability
due to the oligomers, hf , with the same parameters and curve
descriptions as given in (a). (c) The comparison of g for differ-
ent Rg/a and for a reference hard sphere suspension. The core
volume fraction is 0.2. (d) The corresponding comparison of hf.
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Figure 3.4: (a) The static structure factor S for the finite-core NOHMs with
zero-rest-length oligomers as a function of the wave number
non-dimensionalized by the inverse core radius, k̄, for different
core volume fractions with Rg/a = 2. The lines are defined as in
Fig. 3.3(a). (b) The comparison of S for finite-core NOHMs with
different Rg/a ratios and the reference hard sphere suspension
for a core volume fraction of 0.2. The lines are defined as in
Fig. 3.3(c).

Figs. 3.3 and 3.4. To observe the hard-core contributions in a familiar way, the

results are plotted as a function of the distance or wave number scaled by a.

The core radial distribution functions in Fig. 3.3(a) exhibit peaks similar to the

hard sphere distribution. From the perturbation to the core pair probability hf

plotted in Fig. 3.3(b) we can see that the oligomer effects increase as the core

volume fraction decreases. Experimentally [4], for a fixed molecular weight

of the tethered chains, the grafting density of the chains per particle changes

when the weight percentage of the cores varies so that the oligomer fluid fills

the space and yields a nearly constant fluid number density. Therefore, in the

following calculations for the finite-core NOHMs model, we choose the number

of oligomers per core as 600 when φb = 0.15 to be consistent with the experiment

and fix the fluid number density based on this chosen value; when we change

the core volume fraction the number of oligomers per core changes accordingly.
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When the core volume fraction is lower we have more oligomer beads per par-

ticle so the field produced by the space-filling oligomers is more substantial

and we obtain a stronger exclusion from the fixed particle. The effects of the

oligomers on the static structure factor are more striking than their effects on

the pair distribution function. In Fig. 3.4(a) we find two distinct length scales in

the static structure factor. For large k̄ values, the hard-core correlations dominate

corresponding to the length scale of a; for small k̄ values, a continuous deficit

of the particles around the fixed particle due to the space-filling oligomers takes

place on the length scale of Rg and enforces a zero S (0). To probe the change

in the structure due to the oligomer stiffness, we compare results with differ-

ent oligomer radii of gyration and the purely hard spheres for a given φb in

Fig. 3.3(c). The first peaks in g(r̄p) for NOHMs are slightly damped implying

that the oligomers produce a softened potential. This softening becomes more im-

portant when Rg/a is smaller because the effects of stiffer oligomers are stronger.

This can be confirmed by observing the perturbation to the core pair probability

hf presented in Fig. 3.3(d). As Rg/a decreases hf becomes more and more impor-

tant and the positions of the peaks change with Rg. This can be rationalized by

noting that, when Rg is shorter, the exclusion due to the fixed particle becomes

more significant but on the other hand the entropic penalty of the oligomers

makes a positive contribution to the probability of finding neighboring parti-

cles at close separation from the fixed particle. The corresponding S (k̄) results

for different radii of gyration in Fig. 3.4(b) show two distinct length scales as

in Fig. 3.4(a), characterizing different contributions from hard-core correlations

and space-filling oligomers. Once more, we see S (0) = 0 for finite-core NOHMs.

It is noteworthy that S (0) for the reference hard sphere suspension with the

same φb does not go to zero. One can make it closer to zero by increasing the
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core volume fraction but in general S (0) is never zero for hard spheres immersed

in a solvent. The continuous deficit of neighboring particles occurs at a higher

k̄ when Rg/a is smaller showing a stronger penetration of the oligomer effects

into the region where hard-core correlations occur if the oligomers are stiffer.

Of course, the perturbation analysis will become less accurate as Rg/a decreases

but the model still provides physically reasonable results and we plan to test its

accuracy by comparison with molecular dynamics simulations in a future study.

One might imagine that experimentally a slight deviation of S (0) from zero

could occur due to the intrinsic polydispersity in the core size and variations

in the surface grafting density of the chains. We expect that a deficit in S (k)

would still occur in a polydisperse system at a similar length scale to that for a

monodisperse system even if S (0) deviates from zero, because this length scale

is controlled by the oligomer chain length. In a future study, we will consider a

NOHMs system with a bidispersity in the core size as well as the chain grafting

density and compare with experimental measurements.

The constraint that the cores and oligomers must fill the volume of the sus-

pension implies that the grafting density M in an experimental system must be

changed while changing the particle volume fraction φb at fixed Rg/a. We took

account of this effect in our calculations. The change in the volume filled by

polymers with different Rg implies that M in an experimental system must also

decrease with increasing Rg by an amount that depends on such details as the

size of the monomer, the number of monomers per Kuhn step, and the number

of Kuhn steps per oligomer. For simplicity, we have neglected this change in

grafting density M with Rg in our calculations. From the results in Fig. 3.2 for

the point NOHMs system, one can see that the effect of M on the structure is
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weaker than the effect of Rg, so that the results in Figs. 3.3(c), 3.3(d), and the

following Figs. 3.5 and 3.6 would not be substantially altered by accounting for

the changes in grafting density.

Figure 3.5: (a) The comparison of the radial distribution function g as a
function of the interparticle distance r̄p for models with differ-
ent spring rest lengths for two Rg/a ratios and the reference
hard sphere suspension when φb = 0.1. The value of Rg/a for
the model with non-zero rest length is adjusted so that the two
models yield the same mean-square distance of the beads from
the core center. (b) The corresponding comparison of the static
structure factor S as a function of the wave number k̄ with the
same parameters and line definitions as in (a). The curves for
different Rg are shifted vertically by 1 for clarity.

The qualitative behavior we have discussed remains the same for the model

with the rest length of the springs being the core radius a. To make a reasonable

comparison, the radii of gyration for the two models are chosen such that the

calculated mean-square distances of the chain from the core center as defined

by the first equality in Eq. 3.2 are the same. After calibrating the radius of gyra-
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Figure 3.6: (a) The comparison of the radial distribution function g as a
function of the interparticle distance r̄p for models with differ-
ent spring rest lengths for two Rg/a ratios and for the reference
hard sphere suspension when φb = 0.5. (b) The corresponding
comparison of the static structure factor S as a function of the
wave number k̄ for the same parameters and line definitions as
in (a). The curves for different Rg are shifted vertically by 5 for
(a) and by 3 for (b).

tion, we can see that the two models give very similar results. The difference in

the quantitative results for the two models becomes more and more negligible

when we have longer oligomers or higher core volume fractions. Specifically,

we compare the two models for two different oligomer radii of gyration and the

reference hard sphere system for φb = 0.1 in Fig. 3.5. When the mean-square dis-

tance is chosen such that Rg/a = 5 for the model with zero rest length springs,

the two models exhibit basically the same g and S ; when Rg/a = 2 for the zero-

rest-length-spring model, the S (k) plot exhibits an offset in the wave number at

which the deficit of particles occurs and a slight phase shift and change in peak

49



heights in g. If we push our calculations further to even smaller Rg/a values, as

can be seen from Fig. 3.6, when φb = 0.5 the two models predict very similar

structure of finite-core NOHMs. While differences in g and S are observable for

the case of Rg/a = 0.7 for the zero-rest-length-spring model, the results for the

two models basically coincide when Rg/a = 1. In this figure, the static structure

factor for the reference hard spheres show small but non-zero S (0) because the

core volume fraction is relatively high.

3.4 Conclusions

We have formulated a density functional approach to address the structure of a

suspension of solvent-free nanoparticle–organic hybrid materials. Distinct from

conventional theoretical treatments of equilibrium properties for complex ma-

terials in which a pairwise-additive potential is assumed, we propose a direct

description of the fluid phase free energy functional as a mediated interparti-

cle potential. With the widely used coarse-grained models such as point parti-

cles or finite hard cores with bead-spring oligomers attached, the radial distri-

bution function and the static structure factor are solved in a quasi-analytical

fashion exploiting a limit where the radius of gyration of the oligomers is large

compared with the interparticle spacing. A simple estimate based on a typi-

cal oligomer’s isothermal compressibility indicates that the mediate oligomer

fluid is incompressible with a constant fluid number density. The effects due

to these space-filling oligomers on the nanostructure become more substantial

when the ratio between the oligomer radius of gyration and the core radius is

smaller and/or the volume fraction of the core is lower. Under all conditions

of core volume fraction and oligomer radius of gyration, the static structure
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factor goes to zero for zero wave number. This reflects the fact that a particle

carries its share of the fluid with it so that the particle and its oligomers fill

a volume of space that excludes exactly one neighboring particle. While this

situation is surprising from the perspective of colloidal science where particle

cores typically exhibit non-zero S (0) it is not surprising to the thermodynam-

icist who realizes that the nanoparticle–organic hybrid suspension constitutes

an incompressible single-component fluid. Given a radial distribution function, one

can also get insight into the non-pairwise-additive interparticle potential in such

solventless systems by direct calculation of the potential of mean force defined

by Vmf (r̄p)
kBT = − ln g(r̄p) [20, 27]. Vmf therefore depends on the geometric parameters

such as the core volume fraction, surface grafting density of the chains as well

as the size ratio between the chains and the cores.
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CHAPTER 4

STRUCTURE FACTOR OF SOLVENT-FREE BINARY

NANOPARTICLE–ORGANIC HYBRID MATERIALS

4.1 Abstract

We derive the apparent static structure factor for the core particles in model

bidisperse nanoparticle–organic hybrid materials using a density-functional

theory. The system consists of nanoparticles and tethered incompressible

oligomers in the absence of an intervening solvent. While for a monodisperse

system the materials can be viewed as an incompressible single component fluid

showing zero structure factor at zero wave number, variations of the core size

or the oligomer grafting density on the particle surface yield variations in the

tethered fluid volume per particle and distort the bulk structure at large length

scales. The theory exploits the limit where the oligomer radius of gyration is

much greater than the average core radius such that semi-analytic expressions

for the oligomer concentration and the core distribution functions are accessi-

ble. The resulting structure factor exhibits non-zero value at zero wave number

and bidispersity in the oligomer grafting density has stronger effects than bidis-

persity in the core radius.

4.2 Introduction

Nanoparticle–organic hybrid materials (NOHMs) contain inorganic nanocores

surface functionalized by oligomeric chains in the absence of unattached sol-
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vent molecules [1–5]. While these systems can be viewed as incompressible

single-component fluids with the structural properties been well-described by a

theoretical model of monodisperse hard cores, each of which is surrounded by

its tethered fluid [6], the intrinsic polydispersity in the core size and variations

in the oligomer surface grafting density lead to further structural complexity ob-

served experimentally. In this work, we aim to formulate a density-functional

theory for a bidisperse system of solventless NOHMs to demonstrate how the

observed static structure factor can be affected by polydispersity.

In our recent paper [6], we developed a density-functional theory for

monodisperse, pure NOHMs, in which we considered a coarse-grained model

of hard spheres and bead-spring oligomers tethered to the centers of cores with

one bead per chain and the stiffness of the linear spring being described by the

oligomer radius of gyration. When the oligomer radius of gyration is much

greater than the core radius, many particles contribute oligomers to any fluid

volume such that the effect of each particle on the local oligomer concentra-

tion is weak. With the aid of a regular perturbation analysis under this weak-

field approximation, the equilibrium configuration of the tethered oligomers

and the core distribution function were obtained analytically by free energy

minimization subject to the constraints of normalization and incompressibil-

ity of oligomers. Since each particle carries its own share of fluid with it, the

particle and its oligomers form an entity that fills a volume of space excluding

exactly one neighboring particle. Therefore the resulting static structure factor

S (k), defined by S (k) = 1+nb

∫ [
g(rp) − 1

]
e−ik·rpdrp with nb being the bulk number

density of particles, g(rp) being the radial distribution function, and rp being the

interparticle distance, approached zero at zero wave number k. However, exper-

imentally there could be polydispersity in silica core radius (typically 10–20%)

55



as well as oligomer molecular weight (. 10%) [4], and variations of oligomer

grafting density. As a result, the system contains entities occupying an amount

of space that is not proportional to their scattering volume. This leads to a devi-

ation of S (0) from zero for an apparent S (k) defined on the basis of assuming a

monodisperse system.

To address the deviation of S (0) from zero due to polydispersity effects,

for simplicity, we generalize the finite-core NOHMs model of our previous

monodisperse theory to the one that considers a system of bidisperse, solvent-

free NOHMs. As justified in the previous work, the oligomer radius of gyra-

tion affects the length scale at which we observe a drop in S (k) denoting the

deficit of neighboring particles but does not change S (0), therefore we will only

account for bidispersities in the core radius and the oligomer surface grafting

density given an average radius of gyration. Of course, the molecular weight of

oligomers also affects the oligomer volume. The effect on S (0) due to variations

of oligomer molecular weight is expected to be similar to the effect due to varia-

tions of oligomer grafting density in the sense of different fluid volumes. In sec-

tion 4.3, we present a density-functional theory for a binary mixture of nanopar-

ticles with different core radii and oligomer grafting densities. Similar to Ref.

[6], we treat the oligomers as incompressible and first derive the oligomer con-

centration field around each type of particles by minimizing the total oligomer

free energy for a given particle configuration subject to the normalization and

incompressibility constraints. Application of the weak-oligomeric-field approx-

imation allows us to relate the oligomer concentrations to the correlation func-

tions of 1–1, 1–2, and 2–2 pairs and determine the apparent static structure factor

that would be obtained in scattering experiments on NOHMs with bidispersity.

In section 4.4, we present the calculated S (k) and compare the effects for differ-
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ent extents of bidispersity. Finally, we conclude our work in section 4.5.

4.3 Theory

We consider a system composed of hard cores of radii a1 and a2 with M1 and

M2 identical bead-spring oligomers attached to the centers of cores, as de-

picted in Fig. 4.1(b). The oligomer grafting densities on the core surface are

σs1 = M1/(4πa2
1) and σs2 = M2/(4πa2

2). We choose the component 2 to have

the larger radius such that the ratio between the two radii is γ = a1/a2 with

0 ≤ γ ≤ 1. Since the two components are of the same chemical species, it

is reasonable to assume that the volumes of the two components are additive

without any volume change of mixing. Given that the core volume fraction

of component j is φ j = (4π/3)a3
jn j with n j being the core number density of

component j and j = 1 or 2, we obtain the volume-weighted average core ra-

dius, a =
[
(a3

1n1 + a3
2n2)/nb

]1/3
, and the average number of oligomers per core,

M = (n1M1 + n2M2)/nb, with nb = n1 + n2 being the bulk number density of cores.

Each oligomer has one monomer at the free end of the spring and the springs

are linear, massless, and have a rest length of zero. The spring energy is 1
4

kBT
R2

g
r2

with r being the distance between the oligomer bead and the core center, kB be-

ing the Boltzmann constant, T being the temperature, and the stiffness of the

spring being characterized by the radius of gyration Rg of an ideal, unattached,

linear chain. The probability distribution function of the bead, G(r) ∼ e
− r2

4R2
g , is

normalized such that ∫
V

G(r)dr = 1, (4.1)
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(a) (b) 

Figure 4.1: (a) A random array of particles of two different sizes with
oligomers long enough to span cross over several particles.
(b) Schematic of the coarse-grained model. The big central
spheres with two different radii (a1 and a2) are the hard cores
and the small beads represent the monomers. The monomers
are connected to the core with springs and each spring has one
monomer. The numbers of oligomers per particle for species 1
and 2 are adjustable variables M1 and M2.

and the mean-square distance of the bead from the core center in the absence of

chain–chain interactions is

〈r2〉 =

∫
V

r2G(r)dr = 6R2
g (4.2)

with V being the suspension volume.

When Rg � a, the oligomers can cross several neighboring particles as

shown in Fig. 4.1(a) such that many particles contribute their oligomers to fill

any given fluid space. The theory exploits this weak-oligomeric-field limit in

which we can separate the two length scales of Rg and a and make different

approximations. For particle separations of order a hard-core correlations dom-

inate since oligomers only contribute to a small perturbation while at separa-
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tions of order Rg the interactions of oligomers dominate. In the latter region,

we can neglect the detailed core–core correlations and assume that the particles

simply fill a fraction φb = φ1 +φ2 of the space. As shown in Ref. [6], the condition

nbR3
g � 1 also allows us to close the equations governing the oligomer concen-

trations and the core distribution functions by neglecting correlations smaller

than O(1/nbR3
g) or O(a3/R3

g).

We assume that the tethered oligomers have a faster relaxation time than

the cores such that for a given particle configuration the oligomers can reach an

equilibrium. For a system of N1 type 1 particles and N2 type 2 particles with

N1 + N2 = N, the fluid phase free energy from the oligomers is written as

Ff

kBT
=

2∑
j=1

N j∑
i=1

∫
V

C j,i(r, r j,i)
[
ln C j,i(r, r j,i)Λ3

b − 1
]

+
1

4R2
g

(
r − r j,i

)2
C j,i(r, r j,i)dr, (4.3)

where the first term represents the ideal gas Helmholtz free energy of the beads,

the second term accounts for the spring energy, C j,i(r, r j,i) is the concentration

field of the oligomers at r attached to particle i of type j, r j,i is the position of

particle i of type j, and Λb is the thermal de Broglie wavelength of the monomer

beads.

At equilibrium, the concentration field of the oligomers is determined by

minimizing the fluid phase free energy with respect to variations in C j,i subject

to the constraints that the probability of finding the oligomers attached to each

particle of type j is normalized,∫
V

C j,i(r, r j,i)dr = M j, (4.4)

and the total monomer number density is a constant throughout the suspension

(incompressibility condition),

C(r) =

2∑
j=1

N j∑
i=1

C j,i(r, r j,i) = nbM. (4.5)
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Making use of Lagrange undetermined multipliers for finding a minimum of a

function subject to constraints leads to the following Lagrange function:

Lf

[
C j,i(r, r j,i)

]
=

Ff

kBT
−

2∑
j=1

N j∑
i=1

λ j,i

[∫
V

C j,i(r, r j,i)dr − M j

]

−

∫
V
β(r)

 2∑
j=1

N j∑
i=1

C j,i(r, r j,i) − nbM

 dr, (4.6)

where the Lagrange multipliers λ j,i enforcing the normalization make up a dis-

crete set with one multiplier for each particle and the functional Lagrange multi-

plier β(r) enforcing the incompressibility constraint ensures that the fluid num-

ber density at position r is equal to the average value, nbM. For a given particle

configuration, the minimization δL f /δC j,i(r, r j,i) with the normalization condi-

tion yields

C j,i(r, r j,i) = M jΛ j,iB(r)G(r − r j,i), (4.7)

where B(r) = eβ(r) = 1 + B(r)′ accounts for the incompressibility, G(r − r j,i) =(
4πR2

g

)− 3
2 e
−

(r−r j,i)2

4R2
g , and Λ j,i = 1 + Λ′j,i accounts for the normalization of the

oligomers attached to particle i of type j. The perturbations B′(r) and Λ′j,i are

O(a3/R3
g) when R3

g � a3.

Following Ref. [6], we specify the position of particle 1 of any given type as

r1 and make it our chosen particle but consider all the other non-chosen particles

labeled 2 as indistinguishable. The probability that the chosen particle is of type

j is n j/nb; given the chosen particle of type 1, there will be distribution functions

of non-chosen particles of types 1 and 2 relative to the chosen particle, and vice

versa. We consider the case where the chosen particle is of type 1 and derive the

expressions for the resulting field variables B′(r) and Λ′j,i. The symmetric case

for a fixed type 2 particle would be similar. Applying the conditional ensemble

average to Eq. 4.5 leads to an equation for the conditional average concentration
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〈C〉1,1(r|r1) with one core particle of species 1 fixed at r1 that reads:

〈C〉1,1(r|r1) = 〈C1〉1,1(r|r1) + n1

∫
V

g11(r2 − r1)〈C2〉2,11(r|r1, r2)dr2

+ n2

∫
V

g12(r2 − r1)〈C2〉2,12(r|r1, r2)dr2

= nbM, (4.8)

where 〈C1〉1,1(r|r1) is the conditional average of the concentration field of

oligomers attached to particle 1 of type 1 given that particle 1 is fixed at r1,

〈C2〉2,11(r|r1, r2) is the conditional average of the concentration field of oligomers

attached to particle 2 of type 1 given that particles 1 and 2 are fixed at r1 and r2,

〈C2〉2,12(r|r1, r2) is the conditional average of the concentration field of oligomers

attached to particle 2 of type 2 given that particles 1 and 2 are fixed at r1 and r2,

and g11(r2−r1) and g12(r2−r1) are the radial distribution functions of 1–1 and 1–2

component pairs. In our notation of 〈Ab〉c,d with b = 1 or 2, c = 1 or 2 and d = 1,

11, or 12, the subscript b determines whether the quantity A is associated with

the particle labeled 1 or 2, the subscript c denotes the number of fixed particles

and the subscript d means the types of the particles that are fixed. Application

of the weak-field approximation retaining correlations up to O(a3/R3
g) allows us

to write

〈C1〉1,1(r|r1) ≈ M1
[
1 + 〈Λ′1〉1,1(r1|r1) + 〈B′〉1,1(r|r1)

]
G(r − r1), (4.9)

〈C2〉2,11(r|r1, r2) ≈ M1[1 + 〈Λ′2〉1,1(r2|r2) + 〈Λ′′2 〉2,11(r2|r1, r2)

+ 〈B′〉1,1(r|r1) + 〈B′〉1,1(r|r2)]G(r − r2), (4.10)

〈C2〉2,12(r|r1, r2) ≈ M2[1 + 〈Λ′2〉1,2(r2|r2) + 〈Λ′′2 〉2,12(r2|r1, r2)

+ 〈B′〉1,1(r|r1) + 〈B′〉1,2(r|r2)]G(r − r2), (4.11)

g11(r2 − r1) = 1 + hHS11(r2 − r1) + hf11(r2 − r1), (4.12)
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and

g12(r2 − r1) = 1 + hHS12(r2 − r1) + hf12(r2 − r1), (4.13)

where hHS11 and hHS12 are the total correlation functions of the reference hard-

sphere mixture for 1–1 and 1–2 interactions, and hf11 and hf12 are the corre-

sponding perturbations to the hard-sphere radial distribution functions due to

oligomers. hf11, hf12, and the conditional average field variables are O(a3/R3
g).

Substituting Eqs. 4.9–4.13 into Eq. 4.8 yields an equation of incompressibility

for O(1) contributions:

M1G(r − r1) + n1M1

∫
V

[〈Λ′2〉1,1(r2|r2) + 〈Λ′′2 〉2,11(r2|r1, r2) + 〈B′〉1,1(r|r1) + 〈B′〉1,1(r|r2)

+ hHS11(r2 − r1) + hf11(r2 − r1)]G(r − r2)dr2

+ n2M2

∫
V

[〈Λ′2〉1,2(r2|r2) + 〈Λ′′2 〉2,12(r2|r1, r2) + 〈B′〉1,1(r|r1) + 〈B′〉1,2(r|r2)

+ hHS12(r2 − r1) + hf12(r2 − r1)]G(r − r2)dr2 = 0, (4.14)

where the first term denotes the unperturbed oligomer concentration of the cho-

sen particle, the second integral term comes from the perturbations to oligomer

concentrations of non-chosen particles of type 1, and the third integral term is

the corresponding perturbations from non-chosen particles of type 2. We can see

that the equilibrium core configuration also affects the cooperation of oligomers

in filling the space via the correlation functions h. After applying the normaliza-

tion conditions for 〈C1〉1,1, 〈C2〉2,11 and 〈C2〉2,12, and noting that hHS12 = hHS21 and

hf12 = hf21 from symmetry, Fourier transformation of Eq. 4.14 eventually leads to

ˆ〈B′〉1,1(k) =
Ĝ(k)

{
M1 + n1M1

[
ĥHS11(k) + ĥf11(k)

]
+ n2M2

[
ĥHS12(k) + ĥf12(k)

]}
nbM

[
Ĝ(k)2 − 1

] ,

(4.15)

ˆ〈Λ′′2 〉2,11(k) = ˆ〈Λ′′2 〉2,12(k) = − ˆ〈B′〉1,1(k)Ĝ(k), (4.16)
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and

〈Λ′i〉1,1(ri|ri) = −
1

(2π)3

∫
Vk

ˆ〈B′〉1,1(k)Ĝ(−k)dk (4.17)

with Vk being an unbounded wave number space and the subscript i is 1 or 2. It

follows directly that the field variables associated with the case where the fixed

chosen particle is of type 2 are

ˆ〈B′〉1,2(k) =
Ĝ(k)

{
M2 + n1M1

[
ĥHS12(k) + ĥf12(k)

]
+ n2M2

[
ĥHS22(k) + ĥf22(k)

]}
nbM

[
Ĝ(k)2 − 1

] ,

(4.18)

ˆ〈Λ′′2 〉2,22(k) = ˆ〈Λ′′2 〉2,21(k) = − ˆ〈B′〉1,2(k)Ĝ(k), (4.19)

and

〈Λ′i〉1,2(ri|ri) = −
1

(2π)3

∫
Vk

ˆ〈B′〉1,2(k)Ĝ(−k)dk. (4.20)

As k → 0, Ĝ(0) = 1. The Fourier transform of F(x) and the inverse transform of

F̂(k) are defined by F̂(k) =
∫

F(x)e−ik·xdx and F(x) = 1
(2π)3

∫
F̂(k)eik·xdk.

To solve for the distribution functions for 1–1, 1–2, and 2–2 pairs, we apply a

density-functional approach similar to Ref. [6]. We define the grand potential Ω

of the entire system given that a chosen particle 1 of type i is fixed at the origin

as a functional of the one-body density profiles of other non-chosen particles 2

of type j around particle 1, ni j(rp), with rp = r2 − r1 and i and j being 1 or 2:

Ω
[
ni j(rp)

]
= Fid

[
ni j(rp)

]
+ FHS

ex

[
ni j(rp)

]
+ Ffluid

ex [ni j(rp)]

+

2∑
i=1

2∑
j=1

ni

nb

∫
V

ni j(rp)
[
V1,i(rp) − µi j

]
drp, (4.21)

where the ideal gas free energy of the cores is

Fid

[
ni j(rp)

]
kBT

=

2∑
i=1

2∑
j=1

ni

nb

∫
V

ni j(rp)
{
ln

[
ni j(rp)Λ3

pj

]
− 1

}
drp (4.22)

with Λpj being the thermal de Broglie wavelength of type j particles, µi j is the

chemical potential of type j particles given that a type i particle is fixed at the
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origin, V1,i(rp) is the external potential due to the hard-sphere excluded volume

of the fixed type i particle 1, FHS
ex is the excess free energy contributed from the

binary hard-sphere mixture, and Ffluid
ex is the excess free energy contributed from

the fluid phase oligomers. For a given particle configuration, we may smear

out the free energy of oligomers as a “mediated interparticle potential” as the

oligomers can always possess an equilibrium state according to the distribution

of cores. Therefore we obtain Ffluid
ex by conditionally averaging the fluid phase

free energy shown in Eq. 4.3 over the configuration of N − 1 particles given that

particle 1 of type 1 or 2 is fixed at the origin:

Ffluid
ex

[
ni j(rp)

]
kBT

=

〈
Ff

kBT

〉
1

=

2∑
i=1

ni

nb

{∫
V
〈C1 ln C1Λ

3
b〉1,i(r|0) +

[
r2

4R2
g
− 1

]
〈C1〉1,i(r|0)dr

+

2∑
j=1

∫
V

ni j(rp)
∫

V
〈C2 ln C2Λ

3
b〉2,i j(r|0, rp) +

[
(r − rp)2

4R2
g
− 1

]
〈C2〉2,i j(r|0, rp)drdrp

 ,
(4.23)

where rp is the position of neighboring core particles labeled 2 and r is the po-

sition of oligomer beads. The first term accounts for the contribution from the

oligomers of the chosen particle and the second term arises from the oligomers

of all the other non-chosen particles.

At equilibrium, the minimization δΩ[ni j(rp)]/δni j(rp) = 0 and application of

equal-chemical-potential condition for the particles of type j given a fixed par-

ticle of type i, µi j = µi j,bulk = µi j|rp→∞, yield

ni j(rp) = n jgi j(rp)

= n j exp
{

nb

ni

[
c(1)

HSij(rp) − c(1)
HSij,b

]
−

V1,i(rp)
kBT

+
nb

ni

[
c(1)

fij (rp) − c(1)
fij,b

]}
, (4.24)

where the one-body direct correlation functions for each i– j pair are defined by
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c(1)
HSij(rp) = −

δ(FHS
ex [ni j(rp)]/kBT)
δni j(rp) , c(1)

HSij,b = −
δ(FHS

ex [ni j(rp)]/kBT)
δni j(rp) |rp→∞, c(1)

fij (rp) = −
δ(Ffluid

ex [ni j(rp)]/kBT)
δni j(rp) ,

and c(1)
fij,b = −

δ(Ffluid
ex [ni j(rp)]/kBT)

δni j(rp) |rp→∞. As justified in Ref. [6], under the weak-field

approximation for oligomers and the separation of length scales as Rg/a � 1,

we can obtain the core distribution functions expressed in Eqs. 4.12 and 4.13

with 1 + hHSij(rp) = exp
{
(nb/ni)

[
c(1)

HSij(rp) − c(1)
HSij,b

]
− V1,i(rp)/kBT

}
and hfij(rp) ≈

(nb/ni)
[
c(1)

fij (rp) − c(1)
fij,b

]
. Keeping dominant contributions from these variations of

the free energy allows us to neglect the coupling between hHSij and hfij and we

obtain c(1)
HSij(rp) ≈ − δ(FHS

ex [ni j(rp)]/kBT)
n jδhHSij(rp) and c(1)

fij (rp) ≈ − δ(Ffluid
ex [ni j(rp)]/kBT)

n jδhfij(rp) . Therefore we

may directly adopt the literature results of hHS11, hHS22, and hHS12 obtained from

solving the Ornstein–Zernike equation with the Percus–Yevick approximation

for a mixture of hard spheres [7, 8]. Substitution of the oligomer concentration

field variables Λi and B(r) into Ffluid
ex [ni j(rp)]/kBT shown in Eq. 4.23, truncation of

the higher order correlations between the particles, and functional differentia-

tion δ(Ffluid
ex [ni j(rp)]/kBT)

n jδhfij(rp) finally yield to O(a3/R3
g):

hf11(rp) ≈
2∑

i=1

{
2niMi

n1

∫
V
〈Λ′′2 〉2,1i(r′p|0, rp)

δ〈Λ′′2 〉2,1i(r′p|0, rp)

δhf11(rp)
dr′p

−
2niMi

n1

∫
V
〈B′〉1,1(r′|0)

δ〈B′〉1,1(r′|0)
δhf11(rp)

dr′
}
, (4.25)

hf12(rp) ≈
2∑

i=1

{
2niMi

n2

∫
V
〈Λ′′2 〉2,1i(r′p|0, rp)

δ〈Λ′′2 〉2,1i(r′p|0, rp)

δhf12(rp)
dr′p

−
2niMi

n2

∫
V
〈B′〉1,1(r′|0)

δ〈B′〉1,1(r′|0)
δhf12(rp)

dr′

+
2niMi

n1

∫
V
〈Λ′′2 〉2,2i(r′p|0, rp)

δ〈Λ′′2 〉2,2i(r′p|0, rp)

δhf12(rp)
dr′p

−
2niMi

n1

∫
V
〈B′〉1,2(r′|0)

δ〈B′〉1,2(r′|0)
δhf12(rp)

dr′
}
, (4.26)

and hf22(rp) can be obtained from Eq. 4.25 by changing n1 to n2, hf11(rp) to hf22(rp),

〈Λ′′2 〉2,1i to 〈Λ′′2 〉2,2i, and 〈B′〉1,1 to 〈B′〉1,2. These integrals are convergent since the

changes in the field variables due to the core distributions are important only
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within a distance of O(Rg) from the fixed particle 1. When particle 2 is deep

in the bulk δ〈Λ′′2 〉2,i j(r′p|0, rp)/δhfij(rp) and δ〈B′〉1,i(r′|0)/δhfij(rp) are essentially zero.

After making use of the convolution theorem and the expressions for ˆ〈B′〉1,i(k)

and ˆ〈Λ′′2 〉2,i j(k), in Fourier space we obtain

ĥf11(k) =
2M1Ĝ(k)2

[
M1 + n1M1ĥHS11(k) + n2M2ĥHS12(k) + n2M2ĥf12(k)

]
nbM

[
Ĝ(k)2 − 1

]
− 2n1M2

1Ĝ(k)2
, (4.27)

ĥf22(k) =
2M2Ĝ(k)2

[
M2 + n1M1ĥHS12(k) + n2M2ĥHS22(k) + n1M1ĥf12(k)

]
nbM

[
Ĝ(k)2 − 1

]
− 2n2M2

2Ĝ(k)2
, (4.28)

and

ĥf12(k) =
2M2Ĝ(k)2

{
nbM

[
Ĝ(k)2 − 1

]
− 2n2M2

2Ĝ(k)2
}

{
nbM

[
Ĝ(k)2 − 1

]
− 2(n1M2

1 + n2M2
2)Ĝ(k)2

}2
− 4n1n2M2

1 M2
2Ĝ(k)4

×
[
M1 + n1M1ĥHS11(k) + n2M2ĥHS12(k)

]
+

2M1Ĝ(k)2
{
nbM

[
Ĝ(k)2 − 1

]
− 2n1M2

1Ĝ(k)2
}

{
nbM

[
Ĝ(k)2 − 1

]
− 2(n1M2

1 + n2M2
2)Ĝ(k)2

}2
− 4n1n2M2

1 M2
2Ĝ(k)4

×
[
M2 + n1M1ĥHS12(k) + n2M2ĥHS22(k)

]
. (4.29)

When n1 = nb, n2 = 0, and M1 = M such that hf11 = hf and hHS11 = hHS, or when

M1 = M2, a1 = a2, and n1 = n2 =
nb
2 such that hHS11 = hHS12 = hHS and hf11 =

hf12 = hf, Eq. 4.27 automatically reduces to Eq. 29 of Ref. [6] for monodisperse

NOHMs.

We define the structure factor S i j for any i– j pair as S ii(k) = 1 +

ni

[
ĥHSii(k) + ĥfii(k)

]
for i being 1 or 2 and S 12(k) = S 21(k) =

√
n1n2

[
ĥHS12(k) + ĥf12(k)

]
.

If we assume that the cores have a constant scattering density up to a radial dis-

tance ai, the “effective” structure factor defined based on interpreting a scatter-

ing experiment as if it were performed on a monodisperse system is written as

a “weighted-average” result accounting for the differences in the scatterer size
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and the number density [9–11]:

S (k) =
γ6n1P1(k)S 11(k) + 2γ3√n1n2P1(k)P2(k)S 12(k) + n2P2(k)S 22(k)

γ6n1P1(k) + n2P2(k)
, (4.30)

where Pi(k) = 9
(kai)6 [sin(kai) − kai cos(kai)]2 is the normalized form factor for

species i. As k → 0, Pi(0) → 1 and S (0) is non-zero, in general. The isother-

mal compressibility χT is defined by [12]

χT kBT =
S 11(0)S 22(0) − S 2

12(0)
n1S 22(0) + n2S 11(0) − 2

√
n1n2S 12(0)

. (4.31)

It is straightforward to show that our expressions for hfij automatically lead to

S 11(0)S 22(0) = S 2
12(0) such that χT kBT = 0, the system is incompressible although

S (0) , 0. Again, when n1 = nb and n2 = 0 or when γ = 1 and n1 = n2, we

obtain the structure factor for a monodisperse NOHMs system with S (0) = 0 for

incompressible single-component fluids.

4.4 Results & Discussion

As in Ref. [6], in the calculations we fix the oligomer number density to be the

value that corresponds to an average number of oligomers per core of 600 when

φb = 0.15. As φb varies, M changes accordingly. For simplicity, we choose n1 = n2

and introduce either bidispersity in the core radius or in the oligomer grafting

density. We focus on the structure factor of systems with different extents of

bidispersity at the same total core volume fraction, φb, and the same ratio of the

oligomer radius of gyration to the average core radius, Rg/a, to emphasize the

effects purely due to bidispersity. The effects of variations of these geometrical

parameters on the structure factor would be the same as those demonstrated in

Ref. [6]. If the system has x% bidispersity in the core radius but the oligomer
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Figure 4.2: The apparent static structure factor S as a function of the wave
number non-dimensionalized by the inverse average core ra-
dius, ka, for different bidispersities in the core radius ai but
fixed oligomer grafting density σs with φb = 0.1 and Rg/a = 1.
Results for the reference hard-sphere suspension with differ-
ent bidispersities and the monodisperse NOHMs suspension
obtained from Ref. [6] are shown for comparison.

grafting density is fixed (σs = σs1 = σs2), we define γ = (1 − x%)/(1 + x%), M1 =

γ2M2, and M2 = 2M/(1 + γ2); for systems with x% bidispersity in the oligomer

grafting density but with a fixed core radius (a = a1 = a2), we obtain M1 =

(1 − x%)M and M2 = (1 + x%)M.

In Fig. 4.2, we first compare the apparent structure factor for NOHMs with

different bidispersities in the core radius at φb = 0.1 and Rg/a = 1. For solvent-

less NOHMs, we can observe two distinct length scales: at larger k we observe

the hard-core correlations that vary on the length scale of a; at smaller k the

density fluctuations are suppressed and we observe a continuous drop in S (k)

roughly on the length scale of Rg, independent of bidispersity. In the specific
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Figure 4.3: The apparent static structure factor S as a function of the wave
number non-dimensionalized by the core radius, ka, for dif-
ferent bidispersities in the oligomer grafting density σsi but
fixed core radius a with φb = 0.1 and Rg/a = 1. Results for
the monodisperse hard spheres and NOHMs obtained from
Ref. [6] are shown for comparison.

case of Rg/a = 1 shown here, the deficit of particles occurs right below the k

value of the first peak in S (k). The complicated side peaks shown in the hard–

core correlations for bidisperse NOHMs and the reference hard spheres are due

to different separation distances for i– j pairs. While for monodisperse NOHMs

the deficit of neighboring particles at small k eventually yields zero S (0), bidis-

perse NOHMs show slight deviations from zero because different particles carry

different amounts of fluid space not proportional to their core volumes so they

are permitted to take on configurations that lead to fluctuations in scattering

density. For hard spheres, S (0) for a bidisperse system also exhibits a positive

deviation from the value for a monodisperse system because smaller particles

can fill in the interstices around larger particles.
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On the other hand, if the system has a fixed core size but bidispersity in the

oligomer grafting density, in Fig. 4.3 we find that while S (k) also exhibits two

length scales characterizing different particle correlations, the deviations of S (0)

from zero are more substantial than those shown in Fig. 4.2 given the same ex-

tent of bidispersity. This can be rationalized by the fact that when we vary σsi or

Mi we directly vary the fluid volume that each particle carries; however, when

we fix σs but change the core radius the share of the fluid volume each parti-

cle carries is proportional to a2
i , not much different from the variation of core

volume which is proportional to a3
i . Therefore, the weaker effect on the varia-

tion in the tethered oligomer fluid volume caused by the variation of the core

radius at a fixed oligomer grafting density leads to less deviation of S (0) from

zero. It is noteworthy that even with a moderate extent of bidispersity, S (0) for

NOHMs is still substantially smaller than S (0) for the reference hard spheres.

This indicates that in the absence of unattached solvents, the space-filling teth-

ered oligomers tend to enforce a uniform particle distribution and reduce the

apparent long range density fluctuations defined by an effective monodisperse

system.

We tabulate the value of S (0) shown in Figs. 4.2 and 4.3 for different bidis-

persities in table 4.1 to directly see the stronger effects due to bidispersity in the

oligomer grafting density than bidispersity in the core radius. It is expected that

if we consider both bidispersities at the same time, the tabulated theoretical S (0)

at different conditions would allow us to characterize the polydispersity in the

experimental system.

Based on the physical argument that a non-zero S (0) is caused by variations

of the volume excluded from each particle and its tethered fluid, it is expected
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Table 4.1: Predicted Apparent Static Structure Factor at Zero Wave Num-
ber for Different Bidisperse NOHMs at φb = 0.1 and Rg/a = 1

S (0) varying

Bidispersity (%) Core radius (ai) Grafting density (σsi)

10 0.009 0.011

20 0.018 0.042

40 0.011 0.131

Figure 4.4: The apparent static structure factor S as a function of the wave
number non-dimensionalized by the inverse average core ra-
dius, ka, for different bidispersities in the core radius ai but
fixed share of fluid space to core volume ratio, σsi/ai, with
φb = 0.1 and Rg/a = 1. Results for the reference hard-sphere
suspension with different bidispersities and the monodisperse
NOHMs suspension obtained from Ref. [6] are shown for com-
parison.
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that when the ratio of the share of fluid volume to the core volume (vfi/vpi) for

each particle is held fixed we obtain S (0) = 0. Since the volume of each oligomer

is assumed constant, the condition of fixing vfi/vpi is equivalent to fixing σsi/ai

given a variation in the core radius. In this condition, each particle excludes

a number of particles proportional to its own volume from the neighborhood,

as in a monodisperse system where each particle excludes exactly one particle

from its neighborhood. As presented in Fig. 4.4, the apparent static structure

factor shows zero value at k = 0, independent of bidispersity.

4.5 Conclusions

We have generalized the density-functional theory presented in Ref. [6] for

monodisperse NOHMs to a binary mixture of NOHMs. The coarse-grained

model considered here contains hard cores and linear bead-chains tethered to

the core center and allows us to directly formulate the oligomer free energy

as a mediated interparticle potential given a core distribution. As Rg � a,

many cores’ oligomers cooperate to fill any given fluid space such that the

weak-oligomeric field approximation is valid. When treating the detailed core–

core packing configuration on a length scale of a, the perturbation due to the

oligomers is minor; when dealing with the effect on the structure due to the

space-filling oligomers over a larger length scale of Rg, the cores merely occupy

a portion of space. As a result, the oligomer contributions are viewed as pertur-

bations to the equilibrium hard-sphere configuration and we derive the effective

structure factor for bidisperse NOHMs. Based on the assumption of volume ad-

ditivity for the two components, the theory predicts a non-zero S (0) when vari-

ations of the fluid volume each core carries are not proportional to variations
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of the core volume. Therefore, if we treat bidispersities in the core radius and

in the oligomer grafting density as two independent variables, we observe that

while bidispersity in the core size mostly distorts the hard-core correlations in

S (k) without deviating S (0) too much from zero, bidispersity in the oligomer

grafting density, on the other hand, yields more disturbances to the uniform

structure at larger length scales such that we observe stronger deviation of S (0)

from zero.

Although it is anticipated that the observed structure factor would exhibit

more complicated behavior for a polydisperse system with variations in the core

size, oligomer grafting density, and oligomer radius of gyration, the main fea-

ture of solvent-free NOHMs would be a smaller value of S (0) than the reference

hard-sphere suspension with the same core volume fraction as the tethered in-

compressible oligomers tend to fill the space uniformly. Meanwhile, S (0) would

be close to zero if the ratio of the tethered oligomer volume to the core volume

is close to a constant, irrespective of polydispersity.

We conjecture that variation of oligomer molecular weight will have similar

effects to variation of oligomer grafting density as both influence the fluid vol-

ume per particle. Consequently, it is important to have good monodispersity of

these quantities. An experimentalist trying to show S (0) ≈ 0 in NOHMs would

need to be especially careful to have ideal oligomers but could be more lax in

the monodispersity of the particles.
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CHAPTER 5

DENSITY-FUNCTIONAL THEORY FOR THE SOLVENT CAPACITY OF

NANOPARTICLE–ORGANIC HYBRID MATERIALS

5.1 Abstract

We predict the solvent capacity of nanoparticle–organic hybrid materials

(NOHMs) using a density-functional theory for a binary mixture of NOHMs

and an added solute. The tethered oligomers and captured solute molecules

cooperate to form an incompressible fluid with the oligomer–solute interaction

being modeled using a Flory–Huggins parameter and their configurations are

assumed to be at equilibrium for a given core distribution. To determine the

solvent capacity of the system, we first derive semi-analytic solutions for the

static structure factor and distribution functions of the cores, tethered oligomers,

and captured solute based on a regular perturbation analysis valid for large

oligomer radius of gyration compared with the core radius. These equilibrium

configurations then allow us to calculate the system free energy and obtain the

sorption isotherm of gases in the suspension. As the solute dilutes the hybrid,

the potential of mean force among the cores is weakened and the system exhibits

more density fluctuations. Meanwhile, the relaxation of the entropic frustra-

tions of the attached oligomeric chains upon uptake of the solute provides an en-

tropic driving force that is unique to NOHMs. The solvent capacity of NOHMs

is therefore a combined effects of the change in the oligomer-configurational

entropy and the enthalpic affinity to the solute. The general theory is applied

to consider poly(ethylene glycol)-tethered NOHMs and ionid-liquid-tethered

NOHMs. With Henry’s constants of gases in unattached oligomer melts as in-

75



put for the interaction parameter, comparison for Henry’s constants of gases in

NOHMs shows that NOHMs could have reasonably good CO2 selectivity over

N2 and CH4 and less poisoned by high affinity molecules such as SO2 relative

to the melts.

5.2 Introduction

Nanoparticle–organic hybrid materials (NOHMs) consist of inorganic cores self-

fluidized by the organic oligomers tethered to their surfaces. In pure, sol-

ventless condition, these materials exhibit fluid behavior experimentally [1–5]

and a recent density-functional theory shows that the equilibrium structure

is governed by the configurational-entropic penalty associated with the need

for the oligomer hairs to fill the interstitial space [6]. Therefore, NOHMs are

disordered, uniform liquid and yet the conformational space for the attached

oligomers is limited. It is envisioned that the addition of a second fluid species

into NOHMs may release the entropic frustrations of oligomers and decrease

the system free energy. This relaxation of the entropic penalty may provide a

thermodynamic driving force for solute uptake. In this work, we propose a

density-functional theory for a binary mixture in which we treat the NOHMs

fluid as a solvent absorbing a dissolved gas solute. Our objective is to predict

the solvent capacity of pure NOHMs and utilize the materials to capture CO2.

In terms of removing CO2 from high temperature combustion effluent, the

vaporization and the thermal stability of solvents are issues faced in the devel-

opment of efficient carbon capture processes. Hence, NOHMs liquid can be a

good candidate for CO2 capture as the materials have negligible vapor pres-

76



sure and the anchoring of the oligomers to the particles improves the thermal

stability of the oligomer melt [7]. Besides the practical advantages, the geomet-

rical parameters such as the volume fraction of the cores, relative ratio between

the oligomer radius of gyration and the core radius, and the grafting density of

oligomers, can be adjusted experimentally [3, 4] to introduce different “intrin-

sic” configurational-entropic penalty for the tethered oligomers. Meanwhile,

the chemistry of oligomers can also be carefully chosen to have different affini-

ties between the NOHMs system and the absorbed solute [8, 9]. As a result,

the solvent capacity of NOHMs is determined by the change in the configura-

tional entropy of the oligomers in conjunction with the enthalpic tendency upon

uptake of the solute. While alkanolamine solutions [10, 11], amine-based solid

sorbents [12, 13], and room temperature ionic liquids (RTILs) [14–16] have been

developed to capture CO2 via direct chemical or physical interactions, NOHMs

provide a new platform that allows us to engineer different carbon capture

mechanisms by utilizing the unique entropic driving force. The theory aims

to provide a framework to understand the effect of the aformentioned phys-

ical (geometrical) parameters and of chemical parameters such as the Flory–

Huggins interaction parameter on the solute uptake to guide the material de-

sign for NOHMs solvents.

To quantify the solvent capacity of pure NOHMs, it is essential to first de-

termine the equilibrium structure of the system as it provides us with the infor-

mation of the system free energy. In a pure, incompressible single-component

fluid, the static structure factor at zero wave number k∗ is zero, S (k∗ = 0) = 0 [17].

This means that each fluid molecule excludes exactly one other molecule from

its neighborhood and the molecular distribution is uniform. Similarly, in pure

NOHMs each entity contains the core and its share of incompressible fluid space
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and S (0) = 0 implies that the attached oligomeric hairs feel an entropic penalty

that governs both the oligomer configuration and the core distribution to pre-

vent large void spaces among particles [6]. When there is a second fluid species

present, the bulk structure of the system is altered. On one hand, the second

fluid can cooperate with the oligomers in filling the space such that the oligomer

concentration field is regulated and the deficit of neighbors around any given

NOHMs particle becomes less than one; S (0) , 0. On the other, non-zero S (0)

means that the system is slightly compressible with more observable density

fluctuations at larger length scales. Therefore the particle distribution is more

random than the pure NOHMs system and the additional fluid space weakens

the potential of mean force among the cores.

In this study, we propose a classical density-functional approach for a binary

system of oligomer-tethered nanoparticles as solvent and untethered molecules

as solute. Starting with the same NOHMs model as shown in the finite-

core NOHMs section of Ref. [6], we treat the core particles and the tethered

oligomers as hard spheres and bead-springs, respectively, and consider the so-

lute molecules as free, untethered beads in the fluid space. The soft spring con-

necting the bead to the core models the chain configuration with the spring

energy contributing to the oligomer-configurational entropy. We first formulate

the fluid phase free energy of the oligomers and solute for a given core parti-

cle configuration. After neglecting the interactions between the solute and the

cores, the enthalpic affinity between the NOHMs suspension and solute is char-

acterized solely by the Flory–Huggins interaction parameter of oligomer–solute

pairs. The fluid phase free energy is a sum of each species’ entropic contribution,

spring energy for the tethering, and the enthalpic interaction. The expression for

the equilibrium concentration field of the oligomers attached to a core is first ob-
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tained by minimizing the fluid phase free energy subject to the constraint of the

normalization of oligomer field. Since the dissolved gas molecules would have

strong close attractive and repulsive interactions with the oligomers just like

the interactions of the base oligomer liquid, the total fluid is incompressible and

the solute concentration field at a given position is determined by the oligomer

field subject to the requirement that the fluid phase volume is uniformly filled.

In the limit of large oligomer radius of gyration compared with the core radius

(Rg/a � 1) we may apply a “weak-field” approximation for the oligomers to

obtain analytical expressions for the fluid species concentration fields using a

regular perturbation analysis. Under the density-functional formulation, the

weak-field solutions for these concentration fields allow a semi-analytic deter-

mination of the radial distribution function and the static structure factor of

cores in the two-species system.

The core radial distribution function along with the fluid species concen-

tration fields can be utilized to calculate the total free energy of the entire sys-

tem as well as the solute chemical potential under a given solute concentra-

tion. For gas capture, application of the equal-fugacity (equivalent to equal-

chemical-potential) criterion of a two-phase equilibrium allows us to determine

the sorption isotherm and the Henry’s constant of the gas in NOHMs. In this

work, we utilize the proposed theory to consider the captured gas as CO2 and

show how the geometrical parameters such as the core volume fraction and the

oligomer radius of gyration can affect the carbon capture ability of the NOHMs

system. Depending on the chemistry of the oligomers, the interaction parame-

ter is presumed based on literature values for specific interactions between the

active group along the chain and CO2. Our results for NOHMs with a given

amount of the tethered oligomers are compared with the same amount of the
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identical untethered oligomer melt to characterize the physical driving force or

resistance produced by the attachment of the chains in addition to the enthalpic

or chemical interactions between the oligomer hairs and CO2 molecules. While

the theory is general and can be applied to any given oligomer and solute pair,

we will specifically consider poly(ethylene glycol)-tethered NOHMs and ionic-

liquid-tethered NOHMs as examples. Since the separation of CO2 from air or

post-combustion flue gas and the removal of CO2 from natural gas have gained

much attention, we discuss the ideal solubility selectivity of CO2 in NOHMs

over different gases such as CH4, C2H6, N2, and SO2 based on a comparison of

the predicted Henry’s constants for these species in NOHMs.

The theory and results are shown simultaneously. In section 5.3, we intro-

duce the coarse-grained model and formulate the density-functional theory fol-

lowed by the results for equilibrium structure of the two-species system. In

section 5.4, we construct a vapor-liquid equilibrium. The sorption isotherms of

CO2 solute physically absorbed in poly(ethylene glycol)-tethered NOHMs sys-

tems are presented in section 5.4.1 and the isotherms of chemically absorbed

CO2 in amine-based NOHMs are shown in section 5.4.2. The estimated ideal

selectivities of different gases in poly(ethylene glycol)-tethered NOHMs and

ionic-liquid-tethered NOHMs are presented in section 5.4.3. Finally, we con-

clude our work in section 5.5.

5.3 Structure of NOHMs–Solute Mixtures

In this section, we first consider a NOHMs system containing a specified content

of solute. We aim to find the concentrations of oligomers and solute as well as
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the distribution function of particles around a given fixed particle, which may

provide the information of system free energy that is essential in determining

the solute solubility in NOHMs. From the particle distribution function, we

may also obtain the static structure factor of particles in the mixture.

In the pure NOHMs system considered in Ref. [6], the entity of the single-

component fluid contained the core particle and the share of fluid attached to it.

We applied an incompressibility condition of the oligomers such that the teth-

ered bead-spring oligomers filled the interstitial fluid space where the monomer

number density was held fixed. Here, we consider a two-species suspension in

which the NOHMs fluid acts as the solvent soaking up a given amount of the so-

lute molecules. As depicted in Fig. 5.1, the solvent NOHMs are modeled as hard

cores having radius a and core volume fraction φb with bead-spring oligomers

tethered to the centers of the cores. The springs are linear, massless, and have

a rest length of zero. The stiffness of the chains is parameterized with the ra-

dius of gyration Rg of an ideal, unattached, linear chain such that the spring

contribution to the free energy is defined by Fspring = 1
4

kBT
R2

g
r∗2 with r∗ being the

distance between the oligomer bead and the core center, kB being the Boltzmann

constant, and T being the temperature. The probability distribution function of

the oligomer bead, G(r∗) ∼ e−
Fspring

kBT , is normalized via∫
V∗

G(r∗)dr∗ = 1 (5.1)

with V∗ being the total suspension volume; the mean-square distance of the

oligomer bead from the core center in the absence of chain–chain interactions is

〈r∗2〉 =

∫
V∗

r∗2G(r∗)dr∗ = 6R2
g. (5.2)

The solute molecules are modeled as untethered beads in the fluid phase and

contribute to a portion of the fluid space. We assume that in general one so-
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lute molecule occupies a different volume from one oligomer and the volume

ratio between one solute and one oligomer is γs. This ratio could incorporate

the detailed excluded volume between monomers and solute but for simplicity

we just use γs as an adjustable parameter. All starred variables are dimensional

radii, distances, volume, densities, and wave numbers. In the following analy-

sis, unstarred variables are length scales non-dimensionalized by a.

The theory exploits a weak oligomeric-field approximation valid when Rg �

a, so that many cores’ oligomers collaborate with solute molecules to fill any

region of the fluid space. In this limit, we can use different approximations over

two different length scales. For separations of order a hard-core interactions

dominate, while the fluid-species (oligomers and solute) interactions dominate

at separations of order Rg. In the latter region, we can neglect the detailed pack-

ing configuration of the particles and assume that the particles simply fill a frac-

tion φb of the volume. The condition n∗bR3
g with n∗b being the bulk number den-

sity of the cores also allows us to close the equations governing the oligomer

concentration, solute concentration, and the core radial distribution function by

neglecting correlations smaller than O(1/n∗bR3
g) or O(a3/R3

g) as justified in Ref. [6].

We assume that the oligomers and the solute can relax quickly compared

with the cores. Therefore we can first formulate the equilibrium fluid phase free

energy for a given particle configuration. For a system of Ms solute molecules

and N NOHMs particles each of which has M tethered oligomers, the ideal gas,

translational free energy of the fluid phase species is

F tr
f

kBT
= NM ln

(
NMΛ3

o

V

)
− NM + Ms ln

(
MsΛ

3
s

V

)
− Ms, (5.3)

where Λo and Λs are the thermal de Broglie wavelengths of oligomers and so-

lute, respectively. Since we are interested in the equilibrium configuration of
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Figure 5.1: (a) Schematic of the coarse-grained model considered in this
work. The big central spheres are the hard cores and the small
beads connected to the cores with springs represent oligomers.
Each spring has one monomer. The unconnected beads are
solute molecules. (b) A random particle array showing that
the oligomer configuration is restricted in the absence of other
fluid molecules filling the space. (c) A random particle ar-
ray showing that the physically added solute molecules help
the oligomers release the entropic frustration. (d) Schematic
of tethered oligomers with both physically (small beads free
in space) and chemically (small beads bonded to the oligomer
bead) absorbed solute molecules. The dashed circles represent
the new oligomer bead when the solute is chemically bonded.
In our model the number of oligomers per particle is an ad-
justable parameter M and for clarity we only illustrate a few
oligomers here.
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oligomers tethered to the core and the solute distribution, we may introduce

spatial variations in the oligomer and solute distributions in Eq. 5.3 and write

M
V as Ci(r, ri), the concentration field (number density) of the oligomers at r at-

tached to particle i with a position ri, N as
∑N

i=1, and Ms
V as Cs(r), the concentration

field of the solute at r. As a result, the fluid phase free energy for a given particle

configuration takes the following form:

Ff

kBT
=

N∑
i=1

{∫
V

Ci(r, ri)
[
ln

Ci(r, ri)
1 − φb

Λ3
o − 1

]
+

a2

4R2
g

(r − ri)2 Ci(r, ri)dr
}

+

∫
V

Cs(r)
[
ln

Cs(r)
1 − φb

Λ3
s − 1

]
dr +

χ

1 − φb

N∑
i=1

{∫
V
φi(r, ri)Cs(r)dr

}
+ NM ln(N),

(5.4)

where χ is the Flory–Huggins interaction parameter for oligomer–solute en-

thalpic interactions. The first integral contains the oligomer-configurational

entropy and the spring energy, the second integral represents the solute-

translational entropy, and the third integral accounts for the additional

monomer–solute enthalpic interactions relative to the monomer–monomer and

solute–solute interactions. The last constant term does not affect the equilibrium

configurations Ci(r, ri) and Cs(r) and is kept for consistency. φi(r, ri) = voCi(r, ri)

with vo being the volume of one oligomer. We include a factor of 1/(1−φb) in the

configurational/translational-entropic and the enthalpic terms because in the

mean-field fashion the concentrations in the volume not occupied by the cores

would be larger than the one in the total volume by this factor.

The dissolved gas solute and the oligomers form an incompressible fluid.

Therefore we may choose the pure, incompressible NOHMs system without the

solute as our reference state and define the fluid species’ total concentration. If

we neglect the volume change on mixing the two species, the concentrations of
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oligomers and solute satisfy the “incompressibility relation”:

N∑
i=1

Ci(r, ri) + γsCs(r) = n0
bM

1 − φb

1 − φ0
b

, (5.5)

where n0
b and φ0

b are the particle number density and volume fraction for the

reference pure NOHMs system before the solute is absorbed. The factor 1−φb

1−φ0
b

on

the right hand side takes into account the increase in the fluid phase volume

as the solute is added. nb = n0
b/

[
1 + msγs

(
1 − φ0

b

)]
and φb = φ0

b/
[
1 + msγs

(
1 − φ0

b

)]
with ms = Ms

MN being the ratio of the total number of solute molecules to the

total number of oligomers, or the molar ratio of solute to oligomer liquid in the

system.

The equilibrium concentration field of the oligomers can be determined by

minimizing the fluid phase free energy with respect to variations in Ci subject to

the constraint that the probability of finding the oligomers attached to a given

particle is normalized, ∫
V

Ci(r, ri)dr = M. (5.6)

Therefore we define the Lagrange function

Lf [Ci(r, ri)] =
Ff

kBT
−

N∑
i=1

λi

[∫
V

Ci(r, ri)dr − M
]
, (5.7)

where the Lagrange multipliers λi enforcing the normalization make up a dis-

crete set with one multiplier for each particle. For a given particle configuration,

the minimization δLf/δCi(r, ri) and making use of Eqs. 5.5 and 5.6 yield

Ci(r, ri) =

M
[
Cs(r)1/γs

]
exp

{
−2χvo

Cs(r)
1−φb
− a2

4R2
g

(r − ri)2
}

∫
V

[
Cs(r′)1/γs

]
exp

{
−2χvo

Cs(r′)
1−φb
− a2

4R2
g

(r′ − ri)2
}

dr′
. (5.8)

When R3
g � a3, many particles’ oligomers contribute to the local fluid density at

r and each particle’s oligomers only cause a small O(a3/R3
g) disturbance to the
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fluid density. Since this disturbance is compensated by the solute molecules to

satisfy the incompressibility condition, we may write Cs(r) = Cs,b
[
1 + C′s(r)

]
with

Cs,b = msnbM being the bulk solute concentration and C′s(r) being of O(a3/R3
g). Af-

ter substituting this expression into Eq. 5.8 and some manipulations we obtain

Ci(r, ri) = MΛi

[
1 +

C′s(r)
γs

] [
1 − 2χvo

Cs,b

1 − φb
C′s(r)

]
G (r − ri) , (5.9)

where G(r − ri) =

(
4πR2

g

a2

)− 3
2

e
−

a2(r−ri)2

4R2
g is the probability of finding a monomer bead

in the absence of particle interactions and Λi = 1+Λ′i is a normalization constant

with Λ′i being of O(a3/R3
g).

Following the procedure used in Ref. [6], Eq. 5.5 yields the conditional av-

erage total fluid species’ concentration 〈C〉1(r|r1) with one core particle fixed at

r1,

〈C〉1(r|r1) = 〈C1〉1(r|r1) + nb

∫
V

g(r2 − r1)〈C2〉2(r|r1, r2)dr2 + γsCs,b
[
1 + 〈C′s〉1(r|r1)

]
= n0

bM
1 − φb

1 − φ0
b

, (5.10)

where 〈C1〉1(r|r1) is the conditional average of the concentration field of

oligomers attached to particle 1 given that particle 1 is fixed at r1, 〈C2〉2(r|r1, r2) is

the conditional average of the concentration field of oligomers attached to par-

ticle 2 given that particles 1 and 2 are fixed at r1 and r2, and g(r2 − r1) is the core

radial distribution function. Under the weak-field approximation retaining up

to O(a3/R3
g) correlations,

〈C1〉1(r|r1) ≈ M
[
1 + 〈Λ′1〉1(r1|r1) +

(
1
γs
− 2χvo

Cs,b

1 − φb

)
〈C′s〉1(r|r1)

]
G(r − r1), (5.11)

〈C2〉2(r|r1, r2) ≈ M{1 + 〈Λ′2〉1(r2|r2) + 〈Λ′′2 〉2(r2|r1, r2)

+

(
1
γs
− 2χvo

Cs,b

1 − φb

) [
〈C′s〉1(r|r1) + 〈C′s〉1(r|r2)

]
}G(r − r2), (5.12)
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and

g(r2 − r1) = 1 + hHS(r2 − r1) + hf(r2 − r1), (5.13)

where hHS is the total correlation function of the reference hard sphere suspen-

sion without the oligomers and hf is the perturbation to the hard sphere pair

distribution function due to the oligomers. The conditional average field vari-

ables and hf are of O(a3/R3
g). Substituting Eqs. 5.11–5.13 into Eq. 5.10 yields the

O(1) equation:

G(r − r1) + γsmsnb〈C′s〉1(r|r1) + nb

∫
V
{〈Λ′2〉1(r2|r2) + 〈Λ′′2 〉2(r2|r1, r2)

+

(
1
γs
− 2χvo

Cs,b

1 − φb

) [
〈C′s〉1(r|r1) + 〈C′s〉1(r|r2)

]
+ hHS(r2 − r1) + hf(r2 − r1)}G(r − r2)dr2 = 0. (5.14)

Application of the normalization conditions for 〈C1〉1 and 〈C2〉2 and Fourier

transformation of Eq. 5.14 yield the field variables required to obtain the

oligomer and solute concentration fields to O(a3/R3
g):

ˆ〈C′s〉1(k) =
Ĝ(k)

[
1 + nb ˆhHS(k) + nbĥf(k)

]
nb

{(
1
γs
− 2χvo

Cs,b

1−φb

) [
Ĝ(k)2 − 1

]
− γsms

} , (5.15)

ˆ〈Λ′′2 〉2(k) = −

(
1
γs
− 2χvo

Cs,b

1 − φb

)
ˆ〈C′s〉1(k)Ĝ(k), (5.16)

and

〈Λ′i〉1(ri|ri) = −

(
1
γs
− 2χvo

Cs,b

1 − φb

)
1

(2π)3

∫
Vk

ˆ〈C′s〉1(k)Ĝ(−k)dk (5.17)

with Vk being all space in k, and the subscript i is 1 or 2. The Fourier transform

of F(x) and the inverse transform of F̂(k) are defined by F̂(k) =
∫

F(x)e−ik·xdx

and F(x) = 1
(2π)3

∫
F̂(k)eik·xdk.

With the expressions for the field variables on hand, we now apply a con-

ventional density-functional approach to solve for the core radial distribution
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function. The grand potential Ω of the entire system given that a chosen particle

labeled 1 is at the origin can be expressed as a functional of the one-body density

profile of other non-chosen particles labeled 2 around particle 1, n(rp) = nbg(rp),

with rp being r2 − r1:

Ω
[
n(rp)

]
= Fid

[
n(rp)

]
+ FHS

ex

[
n(rp)

]
+ Ffluid

ex [n(rp)] +

∫
V

n(rp)
[
V1(rp) − µ

]
drp, (5.18)

where the ideal gas part of the free energy functional of the cores is

Fid

[
n(rp)

]
kBT

=

∫
V

n(rp)
{
ln

[
n(rp)Λ3

p

]
− 1

}
drp (5.19)

with Λp being the thermal de Broglie wavelength of the particles, µ is the chem-

ical potential of the particles, V1 is the external potential due to the hard-sphere

excluded volume of the fixed particle 1, FHS
ex is the excess free energy contributed

from the hard spheres, and Ffluid
ex is the excess free energy contributed from the

fluid phase oligomers and solute. For a given core configuration, the free en-

ergy of the fluid species is smeared out as a “mediated interparticle potential”

between the cores. Therefore we obtain Ffluid
ex by conditionally averaging the

fluid phase free energy shown in Eq. 5.4 over the configuration of N−1 particles

given that particle 1 is fixed at the origin:

Ffluid
ex

[
n(rp)

]
kBT

=

〈
Ff

kBT

〉
1

=

∫
V

{〈
C1 ln

C1

1 − φb
Λ3

o

〉
1

(r|0) +

[
a2r2

4R2
g
− 1

]
〈C1〉1(r|0)

}
dr

+

∫
V

n(rp)
∫

V

{〈
C2 ln

C2

1 − φb
Λ3

o

〉
2

(r|0, rp) +

[
a2(r − rp)2

4R2
g

− 1
]
〈C2〉2(r|0, rp)

}
drdrp

+

∫
V

{〈
Cs ln

Cs

1 − φb
Λ3

s

〉
1

(r|0) − 〈Cs〉1(r|0)
}

dr

+
χ

1 − φb

∫
V
〈φ1Cs〉1(r|0)dr +

χ

1 − φb

∫
V

n(rp)
∫

V
〈φ2Cs〉2(r|0, rp)drdrp + NM ln(N),

(5.20)
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where rp is the position of neighboring core particles labeled 2 and r is the posi-

tion of beads.

At equilibrium, the distribution function is determined by minimizing the

grand potential, δΩ[n(rp)]/δn(rp) = 0, and applying equal chemical potential of

the neighboring particles, µ = µbulk = µ|rp→∞:

n(rp) = nbg(rp) = nb exp
{

c(1)
HS(rp) − c(1)

HS,b −
V1(rp)
kBT

+ c(1)
f (rp) − c(1)

f,b

}
, (5.21)

where the one-body direct correlation functions are defined by c(1)
HS(rp) =

−
δ(FHS

ex [n(rp)]/kBT)
δn(rp) , c(1)

HS,b = −
δ(FHS

ex [n(rp)]/kBT)
δn(rp) |rp→∞, c(1)

f (rp) = −
δ(Ffluid

ex [n(rp)]/kBT)
δn(rp) , and c(1)

f,b =

−
δ(Ffluid

ex [n(rp)]/kBT)
δn(rp) |r→∞. As justified in Ref. [6], under the weak-field approxi-

mation and the separation of two length scales we can obtain the core pair

probability expressed in Eq. 5.13 with 1 + hHS(rp) = e
[
c(1)

HS(rp)−c(1)
HS,b−V1(rp)/kBT

]
and

hf(rp) ≈
[
c(1)

f (rp) − c(1)
f,b

]
. We can neglect the coupling between hHS and hf by

keeping dominant contributions from these variations of the free energy at

the two length scales of a and Rg. As a result, c(1)
f (rp) ≈ − δ(Ffluid

ex [n(rp)]/kBT)
nbδhf (rp) and

c(1)
HS(rp) ≈ − δ(FHS

ex [n(rp)]/kBT)
npδhHS(rp) . Therefore we can directly evaluate hHS by solving the

Ornstein–Zernike equation with the Percus–Yevick approximation [17,18]. Sub-

stitution of the field variables Λ′i and C′s(r) into Ffluid
ex [n(rp)]/kBT shown in Eq. 5.20,

truncation of the higher order correlations between the particles, and functional

differentiation δ(Ffluid
ex [n(rp)]/kBT)

nbδhf (rp) finally yield to O(a3/R3
g):

hf(rp) ≈ 2M

 1
γs
− χvo

Cs,b

1−φb

1
γs
− 2χvo

Cs,b

1−φb

 ∫
V
〈Λ′′2 〉2(r′p|0, rp)

δ〈Λ′′2 〉2(r′p|0, rp)

δhf(rp)
dr′p

− 2M
[(

1
γs
− 2χvo

Cs,b

1 − φb

) (
1
γs
− χvo

Cs,b

1 − φb

)
+ ms

] ∫
V
〈C′s〉1(r′|0)

δ〈C′s〉1(r′|0)
δhf(rp)

dr′.

(5.22)

The convergence of these integrals is guaranteed since the changes in the

field variables due to the pair probability is important only within a dis-
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tance ∼ Rg from the fixed particle 1. When particle 2 is deep in the bulk,

δ〈Λ′′2 〉2(r′p|0, rp)/δhf(rp) → 0 and δ〈C′s〉1(r′|0)/δhf(rp) → 0. This equation indicates

that the pair probability depends on the cross-correlations of the the field vari-

ables and their variations, which are in fact dependent on the pair probability.

Therefore, hf is solved in a self-consistent manner. After making use of the con-

volution theorem and the expressions for ˆ〈C′s〉1(k) and ˆ〈Λ′′2 〉2(k), in Fourier space

we obtain

ĥf(k) = −

(
2M
nb

)
×

Ĝ(k)2
{
(1 − ∆) (1 − 2∆)

[
1 − Ĝ(k)2

]
+ γ2

s ms

} [
1 + nb ˆhHS(k)

]
{
(1 − 2∆)

[
Ĝ(k)2 − 1

]
− γ2

s ms

}2
+ 2MĜ(k)2

{
(1 − ∆) (1 − 2∆)

[
1 − Ĝ(k)2

]
+ γ2

s ms

} ,
(5.23)

where the prefactor ∆ = χvoγsCs,b/(1 − φb) can be viewed as the total strength

of the enthalpic interaction that depends not only on the interaction parame-

ter weighted by the size of the solute, χvoγs, but also on the total solute con-

centration, Cs,b = msnbM. The static structure factor of the cores is defined by

S (k) = 1 + nb ˆhHS(k) + nbĥf(k). As k→ 0, Ĝ(0) = 1 and S (0) , 0 since the added so-

lute molecules occupy a certain amount of fluid space not belonging to the share

of tethered oligomeric fluid of each core. In the absence of solute, ms = 0, Eq. 5.23

is reduced to Eq. 29 in Ref. [6] for incompressible single-component NOHMs

systems and we obtain S (0) = 0. The core pair probability g(rp) can be obtained

by taking the inverse Fourier transform of ĥf in Eq. 5.23 and adding the hard

sphere pair probability. The conditional average configuration of oligomers at-

tached to a given particle can be obtained using Eg. 5.11 and the conditional

average solute concentration is 〈Cs〉1(r) = Cs,b
[
1 + 〈C′s〉1(r)

]
.

We focus on the structural change due to the added solute at given geometri-

cal parameters of NOHMs since the effects of changing geometrical parameters
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Figure 5.2: (a) The radial distribution function g as a function of the in-
terparticle distance non-dimensionalized by the core radius, rp,
for the system with Rg/a = 1, φ0

b = 0.3, χ = 0, and γs = 1 at dif-
ferent moles solute/moles oligomer and (b) the corresponding
static structure factor S as a function of the wave number non-
dimensionalized by the core radius, k, with the same parame-
ters and curve descriptions as given in (a). The inset shows S
at small k.

have been presented elsewhere [6, 19]. We fix the fluid species number density

based on the experimental value [4] such that the number of oligomers per core

is 500 when φ0
b = 0.12; in the pure system, as the core volume fraction varies the

grafting density of oligomers changes accordingly.

Figure 5.2 presents the equilibrium core pair probability and static struc-

ture factor for the NOHMs system at different amounts of added solute with

χ = 0 and γs = 1. In this specific solute condition, the system can be viewed

as NOHMs with some unattached oligomer melt. We find that as the amount

of unattached fluid species increases, the core volume fraction decreases result-

ing in a less structured core pair probability and more disordered particle dis-

tribution. Since g(rp) = e−Vmf (rp)/kBT with Vmf being the potential of mean force

among the particles, damped oscillations in the core pair probability indicates
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Figure 5.3: (a) The static structure factor S as a function of the wave num-
ber non-dimensionalized by the core radius, k, for the system
with Rg/a = 1, χ = 0, and γs = 1 at different moles unattached
oligomer/moles attached oligomer with φb being fixed as 0.3.
(b) The ratio of the static structure factors at zero wave num-
ber between NOHMs and hard spheres, S (0)/S HS(0), as a func-
tion of moles unattached oligomer/moles attached oligomer
for Rg/a = 1, χ = 0, and γs = 1 at two different φb.

that the interparticle potential is weakened. The static structure factor shows

two distinct length scales: at larger k, the hard-core correlations are observed on

the length scale of a and become weaker as there are more unattached fluid; at

smaller k, the deficit of particles occurs roughly on the length scale of Rg. While

for pure NOHMs system without unattached fluid S (0) = 0, S (0) , 0 when the

unattached fluid is present. This means that we obtain more long-range density

fluctuations in the system, consistent with the observation in Ref. [19] where the

implicit added phantom solvent increased S (0). The deviation of S (0) from zero

remains quite small even with moderate amount of unattached fluid. This is

because that there are many degrees of freedom in the tethered and untethered

species that encourage them to mix and this effect is stronger than the entropy

associated with the core particle degrees of freedom.
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Figure 5.4: (a) The conditional average concentration of oligomers teth-
ered to a given particle 1 〈C1〉1 as a function of the distance
from the core center non-dimensionalized by the core radius,
r, for the system with Rg/a = 1, φ0

b = 0.3, χ = 0, and γs = 1
at ms = 0.1, (b) the conditional average total concentration of
oligomers tethered to other cores, 〈C〉1 − 〈C1〉1 − γs〈Cs〉1 , as
a function of the distance from the center of particle 1 non-
dimensionalized by the core radius, r, and (c) the conditional
average concentration of solute around a given particle 1 〈Cs〉1

as a function of the distance from the center of particle 1 non-
dimensionalized by the core radius, r , with the same parame-
ters as given in (a).
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While the structural variation we observe in Fig. 5.2 is also due to the change

of the core volume fraction as unattached fluid “dilutes” the pure system, more

subtle changes in S (k) at small k can be brought out by fixing φb as φ0
b but vary-

ing the number of tethered oligomers such that ms is the ratio of the number

of untethered oligomers to the number of tethered oligomers. As can be seen

from Fig. 5.3(a), if we increase ms by decreasing the oligomer grafting den-

sity, the hard-core correlations at larger k remain unchanged but S (k) at small-

k region gradually approaches to that for the reference hard spheres. If we

compare the ratio of S (0)/S HS(0) for different amounts of unattached fluid in

Fig. 5.3(b), we find that S (0) for NOHMs with unattached species remains fairly

small until ms ≈ 10 and S (0)/S HS(0) approaches to 1 when ms > 100. In the

limit of large ms, we obtain hard cores suspended in an unattached oligomer

melt. This little change of S (0) for NOHMs caused by increase in ms suggests

that NOHMs remain a well-dispersed system and do not immediately separate

from the unattached fluid or form clusters. Therefore, NOHMs can be useful

as solvents capturing a targeting gas such as CO2 or as electrolytes where the

added solute is ionic and the material retains high modulus and good diffusion

of ions [5].

The incompressibility condition enforces a constant fluid phase concentra-

tion contributed from the tethered oligomers and unattached species. As de-

picted in Fig. 5.4, from the distributions of oligomers and solute for the same

NOHMs system as Fig. 5.2 and ms = 0.1, the tethered oligomers cooperate with

the solute to fill the space. The deficit of other particles oligomers near particle

1 is compensated by the solute. The variations in the fields occur at a length

scale of Rg, consistent with the length scale at which the deficit of a particle is

observed in S (k). Aside from the effect on the fields due to the incompressibil-
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Figure 5.5: (a) The ratio between the conditional average fluid species dis-
tributions 〈C1〉1 and 〈Cs〉1 for χ = 0.5 and χ = 0 as a function
of the distance from the core center non-dimensionalized by
the core radius, r, for the system with Rg/a = 1, φ0

b = 0.3, and
γs = 1 at ms = 0.1 and (b) the ratio between the conditional
average fluid species distributions 〈C1〉1 and 〈Cs〉1 for χ = −0.5
and χ = 0 as a function of the distance from the core center
non-dimensionalized by the core radius, r, with the same pa-
rameters and curve description as given in (a).
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ity constraint alone, it is of interest to investigate how the enthalpic interaction

between the oligomers and added solute affects the fluid species distributions.

In Fig. 5.5 we introduce a non-zero χ to the system, calculate the new concentra-

tions, and compare the new concentrations with the original concentrations for

χ = 0. As we can see here, compared to the case of χ = 0, at χ = 0.5 energetically

oligomers and solute molecules like their own kinds better such that the teth-

ered oligomers tend to stay closer to the particle where the solute concentration

is lower. On the contrary, at χ = −0.5 we find that the tethered oligomers tend

to stretch more and mix with the solute and the solute concentration increases

near the particle.

5.4 Solvent Capacity of NOHMs

5.4.1 Physisorption

In this section, we first consider the case where the gas solute is physically ab-

sorbed into the NOHMs solvent. This means that the gas is captured by the

liquid phase via physical driving forces such as the changes in the system en-

tropy and enthalpy due to mixing. As depicted in Figs. 5.1(b) and 5.1(c), while

in the absence of an unattached fluid the conformations of oligomers are subject

to the constraint that the tethered chains must fill the interstitial space, as so-

lute is added to the system it facilitates the oligomeric hairs in filling the space

and increases the oligomer-configurational entropy. Therefore it is anticipated

that the tethered incompressible oligomers in NOHMs may provide an addi-

tional driving force for gas capture that is different from randomly mixing the

96



particles and the fluids.

The amount of solute captured is determined by the two-phase equilibrium.

At a given temperature and pressure, the fugacity of the solute will be equal in

both the liquid and vapor phases at phase equilibrium such that there is no net

flux at the liquid–vapor boundary [20],

f L
s = f 0

s (T, P)e
µL

s (ms)−µ0
s

kBT = f V
s = Psφ̂

V
s (T, P), (5.24)

where f L
s is the solute fugacity in the liquid-NOHMs phase, f V

s is the solute

fugacity in the vapor phase, f 0
s (T, P) is the fugacity of pure solute liquid at

temperature T and pressure P, µL
s (ms) is the chemical potential of solute in the

liquid-NOHMs phase and depends on the amount of solute absorbed, µ0
s is the

chemical potential of pure solute liquid, Ps is the partial pressure of the solute

vapor, and φ̂V
s (T, P) is the fugacity coefficient of the pure solute vapor at T and

P and can be evaluated using an equation of state. For a binary mixture of

NOHMs and solute, given that NOHMs have negligible vapor pressure, Ps = P.

f 0
s = Psatφ̂V

s (T, Psat) with Psat being the saturation pressure of pure solute liquid.

f 0
s and f V

s are physical properties of the pure solute and determine whether the

pure solute on its own has a higher tendency to be a liquid or vapor at a given

T and P. The factor e
µL

s (ms)−µ0
s

kBT is a measure of the effect of mixing the pure solute

liquid and the NOHMs solvent and is the only unknown in Eq. 5.24. Once this

is determined we obtain the solubility of the solute in the NOHMs liquid.

µL
s (ms) − µ0

s is calculated from the free energy of mixing ∆Fmix via

µL
s (ms) − µ0

s =

(
∂∆Fmix

∂Ms

)
T,N,M

, (5.25)

where Ms = msNM is the total number of solute molecules absorbed and

∆Fmix

kBT
=

Fmix

kBT
−

FL

kBT
−

Fs

kBT
(5.26)
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with Fmix being the total free energy of the binary mixture, FL being the total

free energy of the pure NOHMs liquid, and Fs being the total free energy of the

pure solute liquid. Since the enthalpy of the mixture relative to the two pure liq-

uids is taken into account by the interaction parameter χ, we may simply write

Fs

kBT = Ms

[
ln

(
C0

s,bΛ
3
s

)
− 1

]
with C0

s,b = 1
γsvo

being the number density of the pure so-

lute liquid. Both Fmix and FL contain ideal gas energy of the cores, excess energy

of the cores, and excess energy of the fluid. The ideal gas energies of the cores

are Fmix
id

kBT = N
[
ln

(
nbΛ

3
p

)
− 1

]
for the mixture and FL

id
kBT = N

[
ln

(
n0

bΛ
3
p

)
− 1

]
for the pure

NOHMs liquid. We adopt the Carnahan–Starling equation of state [21] to calcu-

late the excess free energies from the cores in Fmix and FL such that Fmix
core

kBT = N 4φb−3φ2
b

(1−φb)2

and FL
core

kBT = N
4φ0

b−3φ02
b

(1−φ0
b)2 . The excess free energy from the fluid phase species in

these two free energies can be obtained by ensemble averaging the fluid phase

free energy over all possible configurations of N particles. For a given quan-

tity A(r) =
∑N

i

[
〈Ai〉1(r|ri) + A′i(r)

]
, we may write the ensemble average of A(r) as

〈A〉(r) = N〈A1〉1(r|r1)+N(N−1)
∫

V

∫
V

P(2)(r1, r2)〈A′1〉2(r|r1, r2)dr1dr2 if the indices are

interchangeable with P(2)(r1, r2) being the probability density function of find-

ing a pair of particles 1 and 2 at r1 and r2. Therefore, to evaluate the excess

free energy from the fluid phase species, it is convenient to write the concentra-

tion fields as Ci(r, ri) = 〈Ci〉1(r|ri) + C′i (r, ri) for particle i’s oligomers and Cs(r) =

Cs,b
[
1 + 〈C′s〉1(r|ri) + C′′s (r)

]
for solute concentration. After making use of these

expressions, combining the oligomer-configurational entropy with the constant

term NM ln(N) in Eq. 5.4 such that
∑N

i=1 Ci [ln Ci + ln(N)] =
(∑N

i=1 Ci

)
ln

(∑N
i=1 Ci

)
, ne-

glecting higher order particle correlations, manipulations of ensemble averages,

and writing P(2)(r1, r2) = g(rp)/V2 and ln(1+ x) ≈ x if |x| � 1, for indistinguishable
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particles we arrive at,

Fmix
fluid

kBT
=

〈
Ff

kBT

〉
= N

∫
V
〈C1〉1(r|0)

{
ln

[
nbM

1 − φb
Λ3

o

]
+

a2r2

4R2
g
− 1

}
dr + N

∫
V

n(rp)
∫

V

〈C′1〉
2
2(r|0, rp)

〈C1〉1(r|0)
drdrp

+ Ms

{
ln

[
Cs,b

1 − φb
Λ3

s

]
− 1

}
+ NCs,b

∫
V
〈C′s〉

2
1(r|0)dr

+
Nχ

1 − φb

∫
V
〈φ1〉1(r|0)〈Cs〉1(r|0)dr +

NχCs,b

1 − φb

∫
V

n(rp)
∫

V
〈φ′1〉2〈C

′′
s 〉2(r|0, rp)drdrp

(5.27)

and

FL
fluid

kBT
=

〈
F0

f

kBT

〉
= N

∫
V
〈C0

1〉1(r|0)
{

ln
[

n0
bM

1 − φ0
b

Λ3
o

]
+

a2r2

4R2
g
− 1

}
dr + N

∫
V

n0(rp)
∫

V

〈C0
1
′〉22(r|0, rp)

〈C0
1〉1(r|0)

drdrp

(5.28)

with 〈C′1〉2(r|0, rp) ≈ M
[
〈Λ′′1 〉2(0|0, rp) +

(
1
γs
− 2χvo

Cs,b

1−φb

)
〈C′s〉1(r|rp)

]
G(r), 〈C0

1
′〉2(r|0, rp)

≈ M
[
〈Λ0

1
′′〉2(0|0, rp) + 〈B0′〉1(r|rp)

]
G(r), and 〈C′′s 〉2(r|0, rp) ≈ 〈C′s〉1(r|rp). ln(nbM) and

ln(n0
bM) arise from

∑N
i=1〈Ci〉1 = nbM and

∑N
i=1〈C

0
i 〉1 = n0

bM, the incompressibility

of oligomers. Quantities with a superscript “0” are for pure NOHMs liquid de-

fined in Ref. [6]. We can see that in addition to the leading contribution from the

concentration fields around each particle, the perturbations to the fields due to

interactions between two particles’ oligomers are also taken into account in the

fluid phase energies.

Substitution of these expressions for free energies into Eqs. 5.24–5.26 finally

yields to O(a3/R3
g):

ln
f V
s

f 0
s

= ln
msγs

1 + msγs
+

1 − γs

1 + msγs
+ χ

(
1

1 + msγs

)2

+ Φc + Φf, (5.29)

where

Φc = −
1
M

[
γs(1 − φ0

b)

1 + msγs(1 − φ0
b)

] {
1 +

4 − 2φb

(1 − φb)3

[
φ0

b

1 + msγs(1 − φ0
b)

]}
(5.30)
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is the contribution from the cores due to change in the core number density, and

Φf =
∂

∂ms

[
a2〈r2〉

4R2
g

]
+ nb

∂

∂ms

[
ms

∫
V
〈C′s〉

2
1(r|0)dr

−

∫
V
〈Λ′′1 〉

2
2(0|0, rp)drp +

(1 − 2∆)2

γ2
s

∫
V
〈C′s〉

2
1(r|rp)d(r − rp)

]
−

∂

∂ms

[
∆

1 − 2∆
〈Λ′1〉1

+
nb∆

1 − 2∆

∫
V
〈Λ′′1 〉

2
2(0|0, rp)drp −

nb∆(1 − 2∆)
γ2

s

∫
V
〈C′s〉

2
1(r|rp)d(r − rp)

]
(5.31)

arises from the concentration fields and is evaluated numerically. In Eq. 5.31,

the first term involves the change in oligomer mean-square distance from the

core center, terms in the second square brackets arise from the entropy of the

fluid species, and the rest terms in the third square brackets are due to the en-

thalpic interactions. ∆ = χvoCs,bγs/(1 − φb) as defined in Eq. 5.23. msγs/(1 + msγs)

and 1/(1 + msγs) are the solute volume fraction and oligomer volume fraction

in the fluid phase volume, respectively. It is noteworthy that in the absence of

Φc and Φf Eq. 5.29 is equivalent to the Flory–Huggins model for gas sorption

isotherms [7, 22] in polymers and yields the result for the untethered oligomer

melt of the same kind and molecular weight as those tethered to the cores. In

NOHMs, Φc adds to the driving force due to mixing the cores and the fluid

species and Φf accounts for the additional driving force or resistance resulting

from the tethering of oligomers to the particles and energy penalties arising

from the incompressibility of oligomers.

In the limit of infinite dilution such that ms → 0, Ps → 0, φ̂V
s → 1, and the

mole fraction of absorbed solute is approximately ms, we may rearrange Eq. 5.29
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to Ps = msH with H being the Henry’s constant expressed as

H = γs f 0
s exp

{
1 − γs + χ + Φc|ms→0 + Φf |ms→0

}
. (5.32)

Again, in the absence of Φc and Φf, we obtain the Henry’s constant for the

oligomer melt. Therefore, from Eq. 5.32 we can estimate whether grafting

oligomers on the particle surfaces enhances the solute solubility or not by cal-

culating the ratio of HNOHMs/Hmelt = exp
{
Φc|ms→0 + Φf |ms→0

}
given γs and χ for the

solute–oligomer pair and geometrical parameters of the NOHMs system such as

Rg/a, φ0
b, and the corresponding M. If HNOHMs/Hmelt < 1, NOHMs have a stronger

physical driving force for capturing the specific solute than the melt.

In Fig. 5.6, we compare HNOHMs/Hmelt for systems with different parameters to

gain a broader view of the parameter space. Figure 5.5 already shows that pos-

itive interaction parameters lead to a less stretched oligomer configuration or

a smaller mean-square distance of the chain while negative interaction param-

eters result in more stretched oligomers and reduce the chain-configurational

entropy. As a result, in Figs. 5.6(a) and 5.6(b), for a given volume ratio γs,

positive χ generally yields a higher solvent capacity of NOHMs with fixed φ0
b

or Rg/a. At χ = 0, which corresponds to the case where the captured solute

has similar chemistry as the monomers, since the oligomers tend to uniformly

fill the space, the increase in the interparticle spacing as the solute is absorbed

yields a reduced capacity of NOHMs. For a given φ0
b and γs, in Fig. 5.6(a) we ob-

serve a stronger enhancement or reduction in the solvent capacity of NOHMs as

Rg/a decreases because the solute may release or increase more of the entropic

penalties of stiffer oligomers depending on the value of χ. Besides the dominant

driving force resulting from the increase in chain conformations, the tethering of

chains along with the incompressibility of the system regulate the distribution

of fluid species such that on average the captured solute molecules have larger
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distance from the monomers and effectively reduce the strength of the enthalpic

interaction. Consequently, while in general solutes that interact with oligomers

via a positive χ yield less restricted oligomer configurations, at χ = 0.5, the more

subtle “regulation effect” combined with the increase in the interparticle spac-

ing eventually leads to a slightly lower capacity of NOHMs compared with the

melt.

On the other hand, the mixing entropy of the cores also plays a role. Fig-

ure 5.6(b) indicates that when we fix Rg/a and γs, increasing φ0
b always im-

proves the solvent capacity of NOHMs because the added solute increases

more of the core entropy at higher core volume fractions. While this effect fa-

vors gas capture, its contribution is minor compared with the change in the

oligomer-configurational entropy, as evidenced by the weaker variation of the

HNOHMs/Hmelt values. Intuitively, at smaller φ0
b the interparticle spacing is larger

and the oligomers are more entropically frustrated which should lead to a

higher solvent capacity of NOHMs than the melt. The slight increase in the ca-

pacity of NOHMs as φ0
b increases could be attributed to the fact that the changes

in the interparticle spacing and the chain stretching are not very sensitive to the

core volume fraction in the range of φb ≥ 0.1 [19] such that the increase in the

core entropy due to mixing becomes a more important factor that determines

the solvent capacity. It is expected that if we push the theory to even lower

core volume fractions, the relaxation of strongly restricted chain conformations

at higher grafting density and larger interparticle spacing combined with the

more substantial regulation effect on the fluid species distribution will eventu-

ally lead to an increase in the solvent capacity of NOHMs. This increase in the

solvent capacity at lower φ0
b is anticipated to be more pronounced at smaller

Rg/a ratios. Finally, Fig. 5.6(c) shows that the entropic driving forces caused by
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Figure 5.6: (a) The ratio of Henry’s constants between NOHMs and
unattached melt, HNOHMs/Hmelt, as a function of Rg/a for differ-
ent χ at φ0

b = 0.1 and γs = 1. (b) HNOHMs/Hmelt as a function of φ0
b

for different χ at Rg/a = 0.5 and γs = 1. The line descriptions
are the same as (a). (c) HNOHMs/Hmelt as a function of Rg/a for
different γs at φ0

b = 0.1 and χ = 1.
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mixing NOHMs and solute are reduced for smaller γs because all the above-

mentioned effects are weaker for smaller solutes.

With the general effects of different parameters in mind, we start to inves-

tigate the solubility of CO2 in NOHMs. The simplest NOHMs structure con-

sists of silica nanocores and poly(ethylene glycol) (PEG) as the majority of the

tethered oligomeric corona [4]. We adopt the interaction parameter data be-

tween monomers and gas species from Lin and Freeman [7] for cross-linked

poly(ethylene glycol diacrylate) (XLPEGDA) which contains 82% poly(ethylene

oxide) (PEO) and was assumed to have similar solubility data as PEG. Follow-

ing their work, we may write χ = χ0 + χ1/T + χ2/ (1 + msγs), which is dependent

on the processing temperature and the amount of solute captured. Specifically,

at 308 K χ = 0.93 for CO2 when ms → 0 (Table 5.1). After applying the same

virial equation of state as theirs for determining the fugacities of solute we may

obtain the full sorption isotherm of CO2 in NOHMs. The volume ratio between

CO2 and the oligomer can be estimated from the molar volumes of the pure

CO2 liquid and the PEG melt. The interaction parameter also depends on the

molecular weight of oligomers. Since these quantities depend on the detailed

intra-chain excluded volume interactions and the monomer–monomer, solute–

solute, and monomer–solute packing conformations, which are not described in

our model, to emphasize the space-filling effect explored in the theory, we focus

on the condition of γs = 1 in the following comparisons to bring out stronger

variations in the sorption isotherm due to Rg/a and φ0
b.

The sorption isotherms of CO2 in NOHMs and the corresponding PEG melt

without particles at 308 K is shown in Fig. 5.7. In Fig. 5.7(a) we first fix φ0
b = 0.1

and γs = 1 but change the radius of gyration of the oligomers. Since the pos-
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Figure 5.7: (a) Moles CO2/moles oligomers in PEG-functionalized
NOHMs with φ0

b = 0.1 and PEG melt at 308 K and γs = 1 as
a function of partial pressure of CO2. (b) Moles CO2/moles
oligomers in PEG-functionalized NOHMs with Rg/a = 0.5 and
PEG melt at 308 K and γs = 1 as a function of partial pressure
of CO2. (c) Comparison for moles CO2/moles oligomers in
PEG-functionalized NOHMs with φ0

b = 0.1 and Rg/a = 0.5 and
PEG melt at 308 K as a function of partial pressure of CO2 for
γs = 1 and γs = 0.1.
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itive interaction parameter makes oligomers retract to reduce the free energy,

NOHMs with smaller Rg/a have higher solvent capacity for CO2 while longer

oligomers can easily compromise with the space-filling constraint and yield less

tendency to absorb solute. If we fix Rg/a = 0.5 and γs = 1 but change the core

volume fraction in NOHMs, as shown in Fig. 5.7(b), we find that as indicated

in Fig. 5.6(c) the core volume fraction has only moderate effect on the CO2 cap-

ture capacity and NOHMs with higher φ0
b have slightly CO2 solubility. Finally,

if we fix Rg/a = 0.5 and φ0
b = 0.1 but change the volume ratio between one CO2

molecule and one oligomer, Fig. 5.7(c) shows that the entropic driving forces

caused by mixing NOHMs and CO2 are reduced for smaller γs, as expected.

Therefore the isotherm is very similar to the melt without particles.

Experimental studies have shown that NOHMs with grafted polyethers

(containing both ethylene oxide and propylene oxide monomers) which cap-

ture CO2 physically have higher CO2 solubility compared with the unattached

melt [9,23]. If we assume that polyethers have similar enthalpic interaction with

CO2 as PEG, then the predicted favorable trends of CO2 uptake with NOHMs is

consistent with the experimental observation.

5.4.2 Chemisorption

In a recent experimental work of Lin and Park [8], some of the NOHMs sys-

tems (NOHM-C-HPE and NOHM-C-MPE in their nomenclature) contained a

secondary amine per polyether chain. In this system, CO2 is not only physically

absorbed via the affinity to the ether groups with an interaction parameter χ

but also chemically reactive to the secondary amine. We assume a moisture-free
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condition for the absorption of CO2 such that the equilibrium reaction for amine

and CO2 follows [24]

2R1R2NH + CO2 
 R1R2NH+
2 + R1R2NCOO− (5.33)

with the equilibrium constant being

K∗eq =
[R1R2NH+

2 ][R1R2NCOO−]
[R1R2NH]2[CO2]

(5.34)

in the unit of m3. R1 and R2 are two different hydrocarbon groups bonded

to the nitrogen, R1R2NH is the unreacted oligomers, and the concentration of

physically absorbed CO2 is determined from the gas phase partial pressure of

CO2. The stoichiometry for amine and CO2 is 2 to 1 and the reaction results in

one negatively charge CO2-bonded polyether (R1R2NCOO−) and one positively

charged polyether (R1R2NH+
2 ). The charged chains form ionic liquid pairs and

the system is electrically neutral as a whole. We treat each oligomer as indepen-

dently grafted to the core and neglect any change on the translational entropy

of the chains due to reaction by assuming that any charged oligomer is easily

balanced by a nearby oppositely charged oligomer. To simplify the problem,

we also neglect any change on the stiffness of the chains or on the enthalpic

affinity of ether groups to CO2 such that Rg and χ remain the same as unre-

acted oligomers. Therefore, the only effect of binding CO2 to the oligomer in

our model is to increase the volume of the monomer bead for reacted oligomers

by an amount equal to the volume of one CO2 molecule, as shown in 5.1(d).

While chemically bonded CO2 becomes part of the oligomer, physically ab-

sorbed CO2 is free in space filling the volume not occupied by the cores and

oligomers. If we further assume that the volume occupied by a physically ab-

sorbed CO2 is the same as a chemically bonded CO2, then the change in nb and

φb due to the total amount of added solute remains the same as the case of ph-

ysisorption. Therefore in Fig. 5.1(d) the reacted oligomers have bigger beads
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than unreacted oligomers with the bead volume being increased by a factor of

1 + γs. If ms = mf
s + mrx

s is the total moles CO2/moles oligomer captured with mf
s

being the moles CO2/moles oligomer that is physically absorbed and mrx
s being

the moles CO2/moles oligomer that is chemically reacted, then on average the

volume of one oligomer bead is increased by a factor of 1 + γsmrx
s .

We assume that the cores are inert to the absorbed solute therefore we fo-

cus on the reaction equilibrium in the fluid phase volume not occupied by the

cores. In dimensionless form, let Co =
Mnb
1−φb

(
1

1+msγs

)
be the total concentration of

oligomers in the fluid phase volume with nb =
n0

b

[1+msγs(1−φ0
b)]

and φb =
φ0

b

[1+msγs(1−φ0
b)]

from the incompressible condition of fluid phase species, [CO2] = Comf
s be

the concentration of CO2 solute in equilibrium with the gas phase CO2 at a

given Ps, [R1R2NH] = Co(1 − 2mrx
s ) be the concentration of oligomers non-reacted

with CO2, [R1R2NCOO−] = Comrx
s be the concentration of negatively charged

oligomers complexed with CO2, and [R1R2NH+
2 ] = Comrx

s be the concentration of

positively charged oligomers, after substituting these expressions into Eq. 5.34,

at quasi-steady state once a local equilibrium is established we may calculate

the molar ratio of chemically absorbed CO2 to oligomers via

mrx
s =

√
Comf

sKeq

1 + 2
√

Comf
sKeq

(5.35)

with Keq being K∗eq/a
3. Therefore, the total moles CO2/moles oligomer in the

system is

ms =

√
Mnb
1−φb

mf
s

1+msγs
Keq

1 + 2
√

Mnb
1−φb

mf
s

1+msγs
Keq

+ mf
s. (5.36)

Once mf
s at a given CO2 partial pressure is determined, we can calculate the total

amount of CO2 captured.

We use the same approach as shown in section 5.4.1 for relating mf
s to Ps.
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Since the average ratio of the volume occupied by a physically absorbed (free

in space) solute to the volume occupied by an oligomer bead varies with the

amount of chemically bonded solute, we make the volume of oligomer as a

dependent variable of the number of solute molecules in the system. For conve-

nience we define vrx
o = vo(1 + γsmrx

s ) as the new volume of one oligomer bead and

γrx
s = γs/(1 + γsmrx

s ) as the new volume ratio of CO2 to oligomer when the amine-

CO2 reaction is present. The increase in the volume of oligomer bead leads to a

decreased effective interaction parameter such that χrx = χ/(1 + γsmrx
s ). With all

of the field variables 〈Λ′i〉1, 〈Λ′′i 〉2, and 〈C′s〉1 being retaining the same expressions

as the case of physisorption, replacing ms by mf
s, γs by γrx

s , vo by vrx
o , and χ by χrx

in the derivation yields

ln
f V
s

f 0
s

= ln
mf

sγ
rx
s

1 + mf
sγ

rx
s

+
1 − γrx

s

1 + mf
sγ

rx
s

+ χrx
(

1
1 + mf

sγ
rx
s

)2

+ Φrx
c + Φrx

f , (5.37)

where Φrx
c = Φc and Φrx

f is of the same form as Φf except that the partial deriva-

tive is taken with respect to mf
s and the field variables are defined by the new

parameters for chemisorption.

We obtain the information of the chemical equilibrium constant K∗eq from

absorption kinetics of CO2 with liquid-amine-impregnated solid sorbents [12]

that have similar reaction mechanism with CO2 as Eq. 5.33. For NOHMs with

a core radius of 5 nm, Keq ≈ 3.8 at 308 K. Substituting this value into our model

with χ being the same as PEG yields isotherms with combined physisorption

and chemisorption.

As can be seen from Fig. 5.8, the presence of amines leads to a fast increase

of absorption in the start-up region at low partial pressure of CO2. System with

a higher equilibrium constant Keq has a steeper start-up slope and a higher CO2

capture capacity. The maximum CO2 loading for chemisorptions is 0.5 moles
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Figure 5.8: Moles CO2/moles oligomers in polyetheramine-functionalized
NOHMs with φ0

b = 0.3 and Rg/a = 0.5 and polyetheramine melt
at 308 K and γs = 1 as a function of partial pressure of CO2 for
various Keq. Result for PEG-functionalized NOHMs with the
same φ0

b and Rg/a is also shown for comparison.

CO2/moles amines for 2:1 stoichiometry [12]. As amines are consumed (com-

pletely reacted with CO2), CO2 is absorbed via physisorption such that the

amount of CO2 captured increases further with Ps when ms > 0.5. Compared

with the physisorption isotherm for PEG-tethered NOHMs without amines,

the capacity difference between NOHMs with and without amines approaches

0.5 at high pressure. The positive value for χ yields more retracted chains as

physically absorbed CO2 can fill the interstices and release the entropic penalty

of oligomers. As a result, at high pressure when physisorption dominates

NOHMs start to show higher capacity than the unattached oligomer melt. As

more CO2 is chemically absorbed the average monomer size increases and the

configurational-entropic effect of tethered oligomers becomes weaker. There-
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fore, at small to moderate pressure the chemisorption with higher Keq shows

less difference between NOHMs and the melt while eventually at high pressure

limit the difference becomes independent of Keq. In our proposed model of one

representative bead per chain, each bead can be viewed as a single active site

for gas adsorption and once the first adsorption layer is formed by chemical

reaction between amines and CO2, multilayer adsorption can be achieved by

physisorption between PEG and CO2. This mechanism is conceptually equiva-

lent to BET model of adsorption [25].

5.4.3 Ideal Selectivity

For physisorption, the ideal solubility selectivity of a gas pair can be defined by

the ratio between the Henry’s constants (H) for the pair [16]. For example, selec-

tivity of A over B is defined by HB/HA and a higher ratio means that the solvent

is more selective of A over B. The thermodynamic driving force that is unique to

NOHMs has contributions from the relaxation of entropic frustrations of teth-

ered oligomers as solute fills the interstices and the increase in the translational

entropy of cores due to mixing. As discussed in section 5.4.1, since the solute

dilutes the system and increases the interparticle spacing, we can benefit from

the first contribution if the interaction parameter χ is positive and the chains can

retract to decrease the free energy. The first contribution along with the subtle

regulation effect that weakens the net enthalpic interaction make NOHMs with

stiffer attached oligomers exhibit higher solvent capacity than the melt if the in-

teraction parameter χ is more positive. Therefore, it is expected that NOHMs

with a given φ0
b and Rg/a would be more selective of A over B compared with

the melt if 0 < χB < χA. The enhancement in the selectivity in NOHMs would be
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Table 5.1: Interaction Parameters between Gases and Oligomers and Satu-
ration Vapor Fugacities of Gases

PEG (308 K)1 [hmin][Tf2N] (313 K)

gas χ∞2 f 0
s (atm) χ3 f 0

s (atm)4

CO2 0.93 53 0.43 54

CH4 1.36 351 0.99 260

C2H6 2.04 34

N2 0.40 1163

SO2 −0.25 6

1 Values are obtained from Ref. [7].

2 χ∞ is the interaction parameter at infinite dilu-

tion of solute.

3 Values are back-calculated from Henry’s con-

stants for gases in [hmin][Tf2N] RTIL reported

in Refs. [26–28] given γs = 1.

4 Values are evaluated with Psat being ob-

tained using Antoine equation coefficients

from Ref. [29] and φ̂V
s (T, Psat) being calculated

using Peng-Robinson equation of state [20].

For gas above its critical temperature, the hy-

pothetical Psat is obtained by extrapolating the

Antoine equation.
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more substantial if Rg/a is smaller at a fixed φ0
b. On the other hand, the contri-

bution from the core entropy due to mixing always adds to the driving force for

solute uptake, irrespective of the sign of χ. Therefore, given χA, χB, and Rg/a in

the system, NOHMs with higher φ0
b would yield a selectivity less different from

the melt compared with NOHMs with smaller φ0
b.

Lin and Freeman [7] compared the ideal solubility selectivity of CO2/CH4

and CO2/C2H6 gas pairs in XLPEGDA. Adopting their interaction parameters

and fugacities for different species into our model for γs = 1 and T = 308 K

yields the selectivity results for PEG functionalized NOHMs shown in Table 5.2.

Based on the physical arguments we have made, Henry’s constants for CO2 in

different NOHMs systems are decreased compared with pure PEG melt and the

selectivity of CO2/CH4 and CO2/C2H6 in NOHMs are also reduced mainly due

to the more positive χ for CH4 and C2H6 as summarized in Table 5.1. Specifi-

cally, in the systems investigated, more reduction in the selectivity is observed

for NOHMs with stiffer oligomeric chains because the system free energy de-

creases more as CH4 or C2H6 is absorbed. For fixed Rg/a, NOHMs with φ0
b = 0.3

has slightly higher CO2/CH4 and CO2/C2H6 selectivities than NOHMs with

φ0
b = 0.1 because the core entropy increases more at higher φ0

b, independent of

the variation of chain configurations due to different χ.

Room temperature ionic liquids (RTILs) are nonvolatile and show promis-

ing selectivity of CO2 over other gases [14–16]. Therefore, we are motivated

to play with the architecture and chemistry of the oligomers such that the

corona on the particle surface forms an array of room-temperature-ionic-liquid

pairs. As shown in a recent experimental work [30], the tethered oligomers in

nanoparticle hybrids are polyethylene (PE) with an imidazolium-based RTIL
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Table 5.2: Ideal Selectivity of CO2 in PEG-functionalized NOHMs and
PEG Melt for γs = 1 at 308 K

Solvent HCO2 (atm) HCH4/HCO2 HC2H4/HCO2

Rg/a = 0.3, φ0
b = 0.1 117.90 8.66 1.27

Rg/a = 0.3, φ0
b = 0.3 111.52 8.96 1.39

Rg/a = 0.5, φ0
b = 0.1 130.59 9.81 1.76

PEG 134.49 10.19 1.93

at the free end. Because the charged pairs are ionically bonded, without loss

of generality we may still “lump” the whole chain with ionic-liquid pair into

one bead-spring when dealing with the configurational entropy of the oligomer

and assume that the tethered RTIL interacts with the solute via the same in-

teraction parameter as the untethered RTIL. For RTILs, the mole fraction of

solute accounting for all neutral and ionized species as Ps → 0 is approxi-

mately 0.5ms [31]. To compare with the Henry’s constant for RTILs reported

in literature, given Ps = msHIL relationship, we adjust our definition of the

Henry’s constant and obtain HIL = 0.5H for pure RTILs and RTIL-tethered

NOHMs with H being defined in Eq. 5.32. For 1-n-hexyl-3-methylimidazolium

bis(trifluoromethylsulfonyl)amide ([hmin][Tf2N]) functionalized NOHMs, if

we consider only the interactions between the tethered ionic pairs and the cap-

tured gas species, we obtain the ideal solubility selectivities for different gas

species shown in Table 5.3. The input of χ in our calculations shown in Table 5.1

is obtained from HIL values for untethered [hmin][Tf2N] RTIL at γs = 1.

As can be seen from Table 5.3, compared with [hmin][Tf2N] RTIL, NOHMs

are less selective of CO2 over CH4 because χ for CH4 is more positive than CO2
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while NOHMs are slightly more selective of CO2 over N2 due to a slightly less

positive χ for N2 than CO2. The difference in the CO2/CH4 and CO2/N2 selec-

tivities between the NOHMs system and RTIL becomes more apparent as the

tethered oligomers in NOHMs are more entropically frustrated, as discussed.

On the other hand, we obtain higher ratios of HIL
SO2
/HIL

CO2
for NOHMs relative

to pure [hmin][Tf2N] RTIL because the negative χ between [hmin][Tf2N] ionic

pairs and SO2 molecules leads to more restricted (stretched) conformations for

the oligomers as shown in Fig. 5.5(b) and the incompressibility constraint makes

the effective interaction parameter less negative. Therefore NOHMs are gener-

ally less subject to poisoning by SO2 if higher purity of captured CO2 is desired.

Since the core entropy increases more at higher core volume fraction, for fixed

Rg/a, HIL
SO2
/HIL

CO2
is slightly smaller for NOHMs with φ0

b = 0.3 than φ0
b = 0.1. Note

that the enthalpic interaction between [hmin][Tf2N]–CO2 pairs is weak enough

such that for stiff chains (Rg/a < 1) the releasing of the spring energy is not sub-

stantial at infinite dilution of CO2 concentration and the observed net increase

in the Henry’s constants for NOHMs with lower φ0
b is caused by the less increase

in the core entropy.

5.5 Conclusions

We have formulated a density-functional theory for the equilibrium properties

of NOHMs–solute mixtures including the configurations of the cores and fluid

species and the solvent capacity of NOHMs for different gases. As Rg/a � 1, the

simple coarse-grained model of hard cores with attached bead-spring oligomers

in the presence of unattached solute beads allows us to derive the solutions for

the equilibrium structure of the system and the thermodynamic driving force
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Table 5.3: Ideal Selectivity of CO2 in [hmin][Tf2N]-functionalized NOHMs
and [hmin][Tf2N] RTIL for γs = 1 at 313 K

Solvent HIL
CO2

(atm) HIL
CH4

/HIL
CO2

HIL
N2
/HIL

CO2
HIL

SO2
/HIL

CO2

Rg/a = 0.3, φ0
b = 0.1 44.09 6.82 21.08 0.070

Rg/a = 0.3, φ0
b = 0.3 40.05 7.13 21.03 0.066

Rg/a = 0.5, φ0
b = 0.1 42.06 8.03 20.88 0.057

[hmin][Tf2N] 41.651 8.411 20.821 0.0542

1 Average value obtained from Refs. [26, 27].

2 Value calculated using HIL
SO2

from Ref. [28].

for solute uptake semi-analytically. As a result, additional solute molecules not

only cooperate with oligomers in filling the interparticle space but also produce

more density fluctuations to the system.

One important feature we have found in terms of the equilibrium structure

of the NOHMs–solute mixture is that S (0) remains fairly small until there is a

large amount of unattached fluid such that the oligomer-functionalized particles

are actually dissolved in a sea of unattached solvent. This also indicates that in

the presence of a moderate amount of unattached oligomers NOHMs remain a

well-dispersed system and do not phase separate and form clusters.

The distributions of cores and fluid species have been utilized to deter-

mine the chemical potential and fugacity of the solute in NOHMs. By mod-

eling the oligomer–solute interaction using a mean-field Flory–Huggins param-

eter, we have demonstrated how the combined effects of changes in oligomer-

configurational entropy and enthalpic interactions between oligomers and so-

lute govern the solvent capacity of NOHMs. Solutes with a high affinity for
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the oligomers form a nearly uniform mixture causing the oligomers to stretch

and reduce their configurational entropy. Solutes with a lower affinity for the

oligomers fill the interstitial space, allowing the oligomers to retract and lower

their energy. Therefore, the NOHMs configuration reduces the ideal selectiv-

ity of the solvent for CO2 over lower affinity molecules but it also reduces the

tendency of the solvent to be poisoned by higher affinity molecules. As a re-

sult, PEG-tethered NOHMs possess higher solubility of CO2 than PEG melt as

observed in experiments [9, 23] while the CO2/CH4 and CO2/C2H6 solubili-

ties are slightly reduced. On the other hand, while [hmin][Tf2N]-functionalized

NOHMs are less selective of CO2 over CH4 than pure [hmin][Tf2N] RTIL, they

are more selective of CO2 over N2 and less subject to poisoning by SO2. The

entropic tendency (governed by the geometrical parameters of NOHMs such as

Rg/a, φ0
b, and M) and the enthalpic affinity of the oligomers to the solute of in-

terest (determined by the chemistry of the tethered oligomers) work together to

achieve a variety of carbon capture operations.

While the theory is valid for Rg/a � 1, we have the equilibrium structure

for stiff chains with Rg ∼ 0.5 has shown qualitative agreement with molecu-

lar dynamics simulations [19]. Therefore, we expect that our calculations for

small Rg/a should capture the qualitative trend correctly. It is envisioned that

the theory can be modified by applying a more sophisticated model for intra-

chain configuration and a more detailed treatment of the enthalpic interactions

that accounts for the differences in the monomer size and the free volume of

oligomers that is available for monomers to pack in. The problem may turn

completely computational but the essential physics would not be altered.
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CHAPTER 6

PREDICTING DISORDER–ORDER TRANSITION OF SOLVENT-FREE

NANOPARTICLE–ORGANIC HYBRID MATERIALS

6.1 Abstract

The transition from disorder to face-centered-cubic solid of solvent-free

oligomer-tethered nanoparticles is predicted using a density-functional theory

for model hard spheres with tethered bead-spring oligomers. The phase bound-

ary is influenced by the loss of oligomer-configurational entropy in one phase

compared with the other. As the ratio of oligomer radius of gyration to parti-

cle radius decreases, the phase-boundary volume fraction first decreases then

increases. When the particles are localized to ordered phase the cooperation of

the oligomers in filling the space is hindered. Therefore stiffer oligomers feel

stronger entropic penalty in ordered solid and favor the disordered phase.

6.2 Theory & Results

Disorder–order transitions observed in colloidal suspensions with a solvent at

high enough particle number densities are driven by the larger interparticle cor-

relation distance in a localized crystalline structure than a delocalized dense

liquid. The unattached, free solvent molecules mediate the particle–particle in-

teractions such that the assumption of pairwise-additive interparticle potential

is applicable. Upon increase of particle concentration, for hard spheres com-

puter simulations [1–3] and density-functional theory [4–7] find the liquid–face-
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centered-cubic (fcc) transition; for soft spheres interacting via an inverse-power

pair potential u(r) ∼ r−n, when the softness increases or the index n decreases,

the liquid–fcc transition becomes the liquid–body-centered-cubic (bcc) transi-

tion, as evidenced by experiments [8, 9], computer simulations [10–13], and

theories [9, 13–15]. While these studies help understanding the origin of the

freezing–melting transitions in soft matter, a prediction of such phase transi-

tions for solvent-free colloidal suspensions is lacking. In this Letter, we use a

novel solvent-free nanoparticle fluid, called nanoparticle–organic hybrid ma-

terials (NOHMs), as the model system to apply a classical density-functional

theory that demonstrates a physical rationalization of the disorder–order tran-

sitions in solvent-free “self-suspended” particles in which the fluid is tethered

to the core. Since experiments for polymer-grafted particles in a good sol-

vent show fluid–fcc transitions as the effective core-shell volume fraction in-

creases [16,17], in this first attempt, we consider the disordered-liquid–fcc-solid

transition by assuming a weak effects of oligomers when the oligomer radius of

gyration is much greater than the core radius.

Pure NOHMs contain nanoscale hard cores with radius a surface function-

alized by oligomeric chains with radius of gyration Rg in the absence of solvent.

Experimental studies have shown that these materials can relax to an equilib-

rium state and exhibit disordered liquid behavior with the fluidity provided by

the tethered hairs [18–22]. The homogeneous mixture of inorganic particles and

organic chains without any unattached solvent yields many-body interparticle

forces. In addition, the core distributions and the chain configurations are gov-

erned by the space-filling requirement for the incompressible oligomers [23]. By

applying the coarse-grained model of hard spheres and bead-spring oligomers

with one bead per chain tethered to the center of each core via a soft, linear
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(a) (b) 

Figure 6.1: (a) Schematic of the proposed coarse-grained model of
NOHMs. The big central spheres are the hard cores and
the small beads represent the monomers. The monomers are
connected to the core with springs and each spring has one
monomer. (b) Schematic of fcc-solid NOHMs. The dashed
circles around the cores represent small displacements of the
cores around the lattice sites determined by the localization pa-
rameter α.

spring, as shown in Fig. 6.1(a), for a given configuration of N cores the free en-

ergy of the tethered oligomers is directly formulated as

Ff

kBT
=

N∑
i=1

∫
V

Ci(r, ri)
[
ln Ci(r, ri)Λ3

b − 1
]

+
1

4R2
g

(r − ri)2 Ci(r, ri)dr, (6.1)

which contains the ideal gas energy for the beads and the excess spring energy

for the chain configuration with the spring constant being proportional to 1/R2
g.

Ci(r, ri) is the concentration field of oligomers at r attached to particle i at ri, kB

is the Boltzmann constant, T is the temperature, V is the system volume, and Λb

is the thermal de Broglie wavelength of oligomer beads. At equilibrium, Ci(r, ri)

corresponds to the minimum of Ff subject to
∫

V
Ci(r, ri)dr = M (normalization

of oligomer concentration field) and C(r) =
∑N

i=1 Ci(r, ri) = nbM (incompressibil-

ity of oligomers) with M being the number of oligomers per core and nb being
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the bulk number density of cores [23]. In a solid, each core is localized around

its lattice site and we may approximate the average one-body core distribution

as a sum of normalized Gaussian spreads around the lattice sites {Ri} written

as n(r) =
(
α
π

)3/2 ∑N
i=1 e−α|r−Ri |

2 with α being the localization parameter [24], as de-

picted in Fig. 6.1(b). If we include only the effect of displacing each particle on

the oligomer concentration but neglect the coupling between particles, by pre-

averaging the total oligomer concentration C(r) over the particle configuration

n(r) relative to the lattice structure, the solution of Ci(r, ri) is

Ci(r, ri) =
nbMe

−
(r−ri)

2

4R2
g

∑N
j=1 e

−
(r−r j)2

4R2
g

≈
nbMe

−
(r−ri)

2

4R2
g(

4R2
gα

1+4R2
gα

) 3
2 ∑N

j=1 e
−

4R2
gα

1+4R2
gα

(r−R j)2

4R2
g

. (6.2)

The configurations of cores and oligomers allow us to obtain the information

of the system free energy that is essential to determine the thermodynamically

stable state of the materials. In both phases (subscripts L for liquid and S for

solid) the total Helmholtz free energy per particle is a functional of n(r) written

as FL(S)[n(r)]
NkBT = fL(S)[n(r)] = fid,L(S)[n(r)] + f HS

ex,L(S)[n(r)] + f oli
ex,L(S)[n(r)] with the ideal gas

part being fid,L(S) =
[
ln n(r)Λ3

p − 1
]
, f HS

ex,L(S) being the excess part contributed from

the hard spheres, f oli
ex,L(S) being the excess part contributed from the oligomers,

and Λp being the thermal de Broglie wavelength of particles. In a uniform liq-

uid, n(r) = nb in fid,L, f HS
ex,L is well-described by the Carnahan–Starling equation of

state [25], and Ff is smeared out as a mediated interparticle potential averaged

over all possible particle configurations such that f oli
ex,L = 1

N

〈
Ff

kBT

〉
with 〈〉 being

the ensemble average. In the solid phase near the freezing transition, αa2 > 10

yields non-overlapping Gaussian spreads associated with the neiboring cores

and an analytical approximation for fid,S is applicable [24]. We apply the modi-

fied weighted-density-functional approximation (MWDA) [7] to determine f HS
ex,S
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as a function of the weighted density n̂(nb, α) obtained from self-consistently

solving for n̂(nb, α) =

[
1 − 1

2 f HS
ex,S
′(n̂)

∑
Q,0 e−Q2/2αc(2)

0 (Q; n̂)
]

with c(2)
0 (Q; n̂) being the

Fourier-space two-body direct correlation function evaluated at the reciprocal-

lattice vectors (RLV) Q and f HS
ex,S
′ =

d f HS
ex,S

dn̂ . By choosing the uniform-liquid core–

core correlations as the solid-state reference using the Percus–Yevick approxi-

mation [26, 27], f HS,S
ex and c(2)

0 (Q; n̂) can be conveniently determined. f oli
ex,S for the

solid is directly calculated by substituting Eq. (6.2) into Eq. (6.1).

Finally, with the liquid-phase ideal free energy f 0 = ln nbΛ
3
p − 1 +

M
[
ln

(
MΛ3

b
R3

g

)
− 3

2 ln(4π) − 1
]

being the universal reference state, given that the

ensemble average of a quantity A(r) =
∑N

i

[
〈Ai〉1(r|ri) + A′i(r)

]
is 〈A〉(r) =

N〈A1〉1(r|r1) + Nnb

∫
V

g(r12)〈A′1〉2(r|r1, r2)dr12 if for any chosen particle 1 we treat

other nonchosen particles 2 as indistinguishable with g(r12) being the pair prob-

ability, r12 = r2 − r1, and 〈〉1, 〈〉2 being the conditional ensemble averages given

one or two particles fixed, as Rg � a the relative free energy for the equilibrium

liquid correct to O(a3/R3
g) is [23]

∆ fL =
4φb − 3φ2

b

(1 − φb)2 + Mnb

{
−

∫
V
〈Λ′′1 〉

2
2(r1|r1, r2)dr12 +

∫
V
〈B′〉21(r|r2)d(r − r2)

}
, (6.3)

where 〈Λ′′1 〉2(r1|r1, r2) = − 1
8π3

∫
Vk

Ĝ(k)2S (k)
nb[Ĝ(k)2−1]eik·r12dk is the perturbation to the nor-

malization constant of C1 given that particles 1 and 2 are fixed at r1 and r2

and 〈B′〉1(r|r2) = 1
8π3

∫
Vk

Ĝ(k)S (k)
nb[Ĝ(k)2−1]eik·(r−r2)dk is the perturbation to the total C

due to particle 2 with S (k) being the static structure factor defined by S (k) =

1+nb

∫
V

[g(r12)−1]e−ik·r12dr12 [26], Ĝ(k) = e−k2R2
g resulting from the Gaussian spring,

k being the wave number, and Vk being all space in k. In solid phase, as αa2 > 10

and Rg � a, variations in Ci are on a larger length scale than variations in the

mean-square displacement of cores relative to the lattice sites, therefore the rel-
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ative free energy in the solid phase has the form

∆ fS =

{
3
2

ln
(
αa2

π

)
−

3
2
− ln nba3

}
+

{
3
2

[(
1 − φ̂

)−2
− 1

]
− ln

(
1 − φ̂

)}

+ M

ln nbR3
g −

3
2

ln
 αR2

g

π(1 + 4R2
gα)

 − nbR3
g

π(1 + 4R2
gα)

αR2
g

3/2 〈 ln
(∑N

i=1 Gα,i

)
∑N

i=1 Gα,i

〉
v0

 ,
(6.4)

where Gα,i = e
−

4R2
gα

1+4R2
gα

(r−Ri)
2

4R2
g , φ̂ = 4πa3

3 n̂, and 〈〉v0 denotes the volume average over the

unit cell volume v0. The three terms in the curly brackets are the contributions

from the ideal gas energy, excess energy for hard spheres, and excess energy for

oligomers, respectively.

Experimentally, the solvent-free condition of NOHMs is achieved by first

chemically grafting the oligomers to the particle surfaces in the presence of sol-

vent and removing the unattached solvent after the reaction is completed. As

a result, for fixed oligomer molecular weight when the core volume fraction

φb varies we need to change the oligomer surface grafting density [20–22]; for

fixed grafting density the oligomer molecular weight is altered with φb [19, 21].

The ratio of oligomer radius of gyration to core radius (or the interparticle spac-

ing) provides us with a measure of the strength of the interaction as character-

ized by how easily the chains can fill the space. In this Letter, we aim to locate

the disordered-liquid–fcc-solid phase boundary of NOHMs for a given Rg/a in

the system. Therefore we fix the oligomer number density in such a way that

M = 600 at φb = 0.15 and M is proportional to the ratio of the fluid volume to

the number of particles, i.e., 1−φb
φb

. The volume ratio between one core and one

oligomer in this condition is 106.

The equilibrium crystal free energy corresponds to ∂∆ fS
∂α

= 0 at αa2 > 10

where Eq. 6.4 is valid. As shown in Fig. 6.2(a) for the system with Rg/a = 0.5
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Figure 6.2: (a) Comparison of the scaled relative free energy components
per volume ∆ f nba3 as a function of the scaled localization pa-
rameter αa2 for NOHMs with φb = 0.58 and Rg/a = 0.5. The
thick dashed-dotted-dotted curve is the scaled total free energy
per volume for NOHMs and the thick dashed curve is the cor-
responding result for hard spheres at the same φb. (b) Compar-
ison of the scaled relative free energy per volume as a function
of φb for liquid and solid NOHMs with Rg/a = 0.6. The inset
is the corresponding comparison for NOHMs with Rg/a = 0.5,
where below φb ≈ 0.55 a thermodynamically stable fcc solid is
unobtainable in the theory.
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and φb = 0.58, while fid,S increases monotonically with α because the more lo-

calized solid the lower the core entropy, f HS
ex,S decreases monotonically with α

since the localization reduces the chances for direct hard-sphere interactions.

This competition between the ideal energy and excess energy yields a free en-

ergy minimum that determines the equilibrium solid structure of hard spheres.

For NOHMs, on top of the above two contributions, f oli
ex,S also increases mono-

tonically with α as a consequence of more disturbed oligomer configuration

at strong particle localization. Therefore, in solventless condition the tethered

hairs yield some “randomness” to the equilibrium crystal compared with the

reference hard-sphere suspension at the same φb. The thermodynamic stability

of the equilibrium solid is determined by comparing ∆ fL and ∆ fS. Since the par-

ticles cannot be separated from their tethered fluid, macroscopic variations in

the volume fraction are prohibited and the thermodynamically stable phase ob-

servable is the one that has the lower free energy. As demonstrated in Fig. 6.2(b),

the crossover point φb,c of the two free energies yields the phase boundary of the

NOHMs system; above φb,c the system is a fcc solid and below φb,c a disordered

liquid is obtained.

The resulting φb–Rg/a phase diagram is constructed in Fig. 6.3. We have also

applied the same MWDA approach without oligomers to determine the phase

diagram for hard spheres. For comparison, the freezing transition point (φb,f),

melting transition point (φb,m), and crossover point for hard spheres are shown

in black curves. φb,f and φb,m are obtained by a common tangent construction in

the ∆ f nba3–φb diagram as Fig. 6.2(b) that satisfies the equal-chemical-potential

and equal-pressure criteria [4, 5, 7]. We find that at large Rg/a, the phase bound-

ary of NOHMs is close to the free energy crossover point of the reference hard

spheres because the oligomers can easily fill the space in both ordered and dis-
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ordered structures such that f oli
ex,S and f oli

ex,L only have weak contributions. As

Rg/a decreases gradually to 0.6, the crossover point shifts to a lower volume

fraction than hard spheres since the particles in a fcc solid are more well spaced

than a concentrated liquid such that the oligomers are less frustrated in a crystal

and favor the crystalization. However, as we further decrease Rg/a, the lower

limit of φb at which the theory can predict a thermodynamically stable fcc solid

with αa2 > 10 is highly increased such that the free energy crossover point is

missing. We determine the phase boundary in this case using this lower limit

at which ∆ fL is slightly greater than ∆ fS, as depicted in the inset of Fig. 6.2(b).

We conjecture that there could be a minimum of ∆ fS at 0 < αa2 < 10 that char-

acterizes a weakly localized crystalline solid or a disordered glass. To correctly

locate the minimum in this region full expressions for fid,S and f oli
ex,S without the

pre-averaging are necessary. Qualitatively, when Rg/a < 0.6 the phase boundary

for disorder–order transition starts to increase and eventually becomes greater

than φb,c of hard spheres. When Rg/a = 0.5 NOHMs can remain in disordered

phase at φb as high as 0.55. It is noteworthy that if we compare the predicted

phase boundary of NOHMs with the freezing transition point φb,f , then at all

Rg/a the disorder–order transition of NOHMs occurs at higher volume fractions

than hard spheres.

To directly investigate the free energy penalty for the oligomers due to the in-

compressiblity constraint in the two phases, we also compare the oligomer con-

tributions to ∆ fL (the second term in Eq. 6.3) and ∆ fS (the third term in Eq. 6.4) as

α→ ∞ for a perfect fcc crystal at the crossover point of hard spheres. As can be

seen from Fig. 6.4, while in both phases the oligomer free energy increases with

decreasing Rg/a, the increasing rates are different. Since oligomers tethered to a

given core cooperate with other cores’ oligomers in filling the space, the phase
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Figure 6.3: The predicted φb–Rg/a phase diagram of NOHMs with the
volume ratio of one core to one oligomer being 106. Above
Rg/a = 0.59 the thick solid curve with solid symbols is the
phase boundary obtained from the free-energy crossover point;
below Rg/a = 0.59 the thick dashed curve with open sym-
bols is the minimum-accessible fcc-solid volume fraction. The
predicted freezing (0.48), crossover (0.51), and melting (0.55)
points of hard spheres are shown in thin lines for comparison.

with more nearest neighbors is expected to have less frustrated oligomers at

small Rg/a. Therefore it is not surprising that as Rg/a decreases the free energy

penalty for oligomers increases faster in solid phase than liquid phase because

the number of the nearest Voronoi neighbors for a disordered fluid with a ran-

dom packing is larger than that for an ordered fcc solid [28, 29]. This result is

consistent with the phase diagram we predict and indicates that the localized

particle configuration in solid phase hinders the cooperation of oligomers in

filling the space therefore at small Rg/a the oligomers favor delocalization of

particles.
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Figure 6.4: The increase in the scaled oligomer free energy per volume
∆ f oli

ex nba3 in liquid and solid NOHMs due to applying the in-
compressibility constraint as a function of Rg/a at φb = 0.51, the
crossover point of hard spheres.

In conclusion, we have applied a density-functional approach to determine

the phase boundary of disordered-liquid–fcc solid transition for solvent-free

NOHMs. Utilizing the coarse-grained model of hard spheres with center-

tethered bead-linear spring oligomers, the free energies of liquid and solid

NOHMs are formulated semi-analytically which allows a direct investigation

of the entropic penalty of oligomers as a function of the core volume fraction

and the ratio of oligomer radius of gyration to core radius when the oligomer

number density is fixed. While there is a competition between the changes in

oligomer-configurational entropy in the liquid and solid phase relative to an

ideal random state as Rg/a decreases, the predicted disorder–order transition

always occurs at a higher particle volume fraction than the freezing transition

point of hard-sphere suspensions because the particle degrees of freedom fa-
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cilitate the cooperation of oligomers. This may help explain the experimental

observation that pure NOHMs can be disordered soft glasses even when the

core volume fraction was close to or higher than the hard-sphere freezing vol-

ume fraction [22]. For hard spheres at sufficiently high particle volume fraction

the free energy for a fcc crystal is lower than a bcc crystal [30]. Since fcc struc-

ture is more close packed than bcc, according to our theory bcc-solid NOHMs

would be unfavorable as the entropically frustrated oligomers further increase

the free energy. Molecular dynamics (MD) simulations of NOHMs with short

tethered chains in the presence of a moderate amount of phantom solvent have

exhibited a bcc structure [31]. We conjecture that as the solvent content is fur-

ther reduced, at equilibrium a transition to a more compact fcc structure may

occur due to more stringent space-filling requirement for the oligomers.
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CHAPTER 7

SELF-DIFFUSION AND LINEAR VISCOELASTICITY OF SOLVENT-FREE

NANOPARTICLE–ORGANIC HYBRID MATERIALS

7.1 Abstract

Nanoparticle–organic hybrid materials consist of 10 nm diameter spherical in-

organic core particles functionalized with oligomeric organic molecules. Al-

though these systems contain no added solvent, they exhibit fluid behavior

with the fluidity provided by the attached oligomers. We solve for the non-

equilibrium probability density function for pairs of particles subjected to a

weak applied flow without hydrodynamic interactions. The many-body inter-

core forces contains the hard sphere contribution and an O(a3/R3
g) perturbation

from the oligomers when the oligomer radius of gyration Rg is much greater

than the core radius a. While the obtained long-time self-diffusivity of the cores

and steady low shear viscosity of the system are similar to hard sphere suspen-

sions at higher core volume fraction or longer oligomeric chains, the material

exhibits stronger resistance to the motion of core particles as the tethered hairs

feel more entropic penalty to fill the space, which agrees qualitatively with ex-

periments and is a unique feature of the solvent-free nanoparticle fluid. The

high frequency limit shear modulus is a linear function of ω1/2 and the inter-

cept provides information for many-body forces that show both characteristics

of hard and soft potentials. The system is viewed as particles that carry their

fluid on their backs.
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7.2 Introduction

Solvent-free nanoparticle–organic hybrid materials (NOHMs) contain nanocores

self-suspended by the surface-tethered oligomers without any unattached sol-

vent. Experimental studies have demonstrated that solvent-free NOHMs dis-

play transport properties and rheological behavior that vary with the core vol-

ume fraction, oligomer molecular weight, and/or oligomer surface grafting

density [1–4]. The homogeneous mixture of the rigid cores and the soft space-

filling tethered oligomeric fluid exhibits both characteristics for polymers and

particles. The viscosity and the shear modulus are similar to viscous polymer

liquids at small particle contents with longer oligomers; however, these prop-

erties also increase with the core volume fraction, a trend seen in particle sus-

pensions. From a theoretical standpoint, the many-body entropic forces among

the cores that result from the space-filling constraint on the hairs will give rise

to unusual flow properties of NOHMs that are not captured in previous the-

ories and calculations for particles in a solvent with pairwise interparticle po-

tentials and hydrodynamic interactions. Recent equilibrium density-functional

theory [5] and molecular dynamics (MD) simulations [6] have shed light on the

unique structural properties of solvent-free NOHMs and demonstrated that the

core distribution as well as the chain configuration are governed by the con-

straint that no void spaces are allowed in the suspension. In this work, we aim

to develop theoretical predictions to the transport properties of NOHMs by an-

alyzing the interactions of pairs of cores subjected to a many-body potential of

mean force derived from the density-functional theory.

In general, there are two ways of evaluating the transport properties of inter-

acting colloids. The first one is from the direct flow calculation [7, 8] that is nor-
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mally simplified to involve pairs of particles that interact through a mean inter-

particle potential. The transport coefficients are obtained from the force/stress

formulation and the problem is solved in the real space. The second one is ap-

plication of the mode-coupling theory [9, 10] where the memory function for

dynamical couplings is the key to the theory and the problem is formulated

in terms of the Fourier-space correlation functions. While the mode-coupling

theory with the cage diffusivity evaluated based on a binary collision mecha-

nism has been applied to predict diffusivities and viscosities for hard-sphere

colloidal suspensions quite successfully [11–13], the complication introduced

by the tethered oligomeric fluid in the absence of unattached solvent makes

the short-time cage diffusion deviate from the simple analogy for concentrated

molecular hard-sphere fluids developed from the kinetic theory for binary col-

lisions. The cage diffusion depends largely on the preciseness of the description

of the pair potential between the colliding pair. To gain a more conceptually

visualizable picture for the dynamical behavior of the NOHMs system, in this

work we will proceed with the direct flow calculation approach from the statisti-

cal mechanical theory for the particle distribution that incorporates many-body

interactions and obtain the transport properties using fundamental constitutive

relations.

Starting with the Smoluchowski equation, we first derive the evolution

equation of any given pair of the NOHMs particles in which the relative parti-

cle motion is subjected to a convective applied force, diffusive Brownian forces,

and the mean force arising from the total interparticle potential. Since no the-

ory is available to describe the viscous response of a tethered fluid medium and

we believe that the interparticle potential forces will play a more important role

in controlling the dynamical properties, we neglect the detailed hydrodynamic
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interactions among the particles and assume a continuum viscous response for

the tethered oligomers with a viscosity ηs. In this fashion, we are still solving for

a suspension fluid mechanics problem but the space-filling tethered fluid pro-

vides a many-body interparticle force that governs the particle distribution. The

model NOHMs suspension considered is the same as the equilibrium density-

functional theory of Yu and Koch [5], where the coarse-grained model consists

of hard cores and bead-spring oligomers (one bead per spring) tethered to the

center of each core. The oligomeric fluid is assumed to be incompressible and

prevents the formation of large regions of free volume between the core par-

ticles. In the limiting case where the radius of gyration of the oligomers Rg is

large compared with the core radius a, each core experiences weak interactions

with the many other cores residing in its neighborhood within Rg and the core

distribution function can be approximated as a hard-sphere distribution for a

given particle number density nb plus a perturbation correlation from the teth-

ered oligomers that is of O(1/nbR3
g) or O(a3/R3

g). Under a weak applied force,

we determine the long-time self-diffusivity of the cores, low shear rate viscos-

ity, and the linear elastic properties for NOHMs in a quasi-analytical manner

based on the evoluton equation for pairs of particles experiencing an intercore

potential of mean force derived from the density-functional theory.

In section 7.3 we first present a short derivation for the pair evolution equa-

tion and elucidate two flow calculations: the tracer diffusion for obtaining the

long-time self-diffusivity of particles (section 7.3.1) and the small amplitude os-

cillatory shear (section 7.3.2) for the linear viscoelasticic properties of NOHMs.

The results and discussion are shown in section 7.4 followed by the conclusions

in section 7.5.
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7.3 Theory

We summarize briefly the derivation of the evolution equation for the distribu-

tion function of a pair of NOHMs particle subjected to interparticle and Brow-

nian forces in the presence of an applied flow but without hydrodynamic in-

teractions. For a monodisperse particle suspension of radius a, the N-particle

Smoluchowski equation reads:

∂P(N)

∂t
+

N∑
i=1

∇ · ji = 0, (7.1)

where P(N) is the probability density function of finding N particles and

ji = P(N)

Ui +

N∑
j=1

Di j

kBT
· F j

 (7.2)

is the flux due to the forces acting on each particle and the applied convective

flow. The diffusivity tensor is defined by Di j = D0I with D0 = kBT
6πηsa

being the

diffusivity of non-interacting isolated particles and I being the identity tensor.

Ui is the velocity of each particle due to the applied flow and

F j = −∇ jVN − kBT∇ j ln P(N) (7.3)

is the total force exerting on individual particle with VN being the total interpar-

ticle potential. T is the temperature and kB is the Boltzmann constant.

If we integrate over N − 2 particles’ positions except for particles 1 and 2, ap-

ply the divergence theorem along with the conservation of other third particles,

and recall the homogeneity of the suspension such that ∇2 = −∇1 = ∇, we arrive

at the evolution equation for a pair of particles,

∂P(2)

∂t
+ ∇ ·

[
P(2)〈U12〉2

]
− 2D0∇ ·

[
P(2)∇

〈VN〉2

kBT
+ ∇P(2)

]
= 0, (7.4)
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where P(2) is the probability density function of finding the two particles, U12 =

U2 − U1 is the relative velocity due to the applied flow, and 〈〉2 denotes a con-

ditional average given the two particles are fixed. For a given quantity A
(
rN

)
,

〈A〉2(r1, r2) =
∫

V
· · ·

∫
V

P(N−2)
(
rN−2|r1, r2

)
A

(
rN

)
dr3 · · · drN with P(N−2)

(
rN−2|r1, r2

)
be-

ing the conditional probability density function of finding N − 2 particle given

that particles 1 and 2 are fixed at r1 and r2 and V being the system volume.

∇〈VN〉2 is the mean force exerting on particle 1 averaged over non-equilibrium

configurations of particles 3 to N. The information of the correlations for non-

equilibrium forces relies on a closure approximation that accounts for the cou-

pling and cancellation effects between the equilibrium and non-equilibrium cor-

relations [14, 15]. Since for hard spheres the approximation of the equilibrium

mean force gives reasonably close rheological results to experiments [16] and

for NOHMs with Rg/a � 1 the perturbation to the equilibrium force on the

tagged particle 1 due to any third particle’s tethered oligomers can be attributed

to O((a3/R3
g)2) contributions [5], in the theoretical framework valid to O(a3/R3

g)

correlations we may retain the equilibrium particle correlations but neglect the

perturbation in the force from other third particles due to the distortion of the

equilibrim structure and simply write ∇〈VN〉2 ≈ ∇Vmf. Vmf is the potential of

mean force defined by Vmf(r) = −kBT ln g(r) with g(r) being the equilibrium pair

probability and r = r2 − r1.

Equation 7.4 with ∇〈VN〉2 being replaced by ∇Vmf should be solved with the

no-flux boundary condition at particle contact r = 2a

n ·
{

P(2)〈U12〉2 − 2D0

[
P(2)∇

(
Vmf

kBT

)
+ ∇P(2)

]}
(7.5)

with n being the surface normal vector, and P(2) → 1
V2 at infinite particle separa-

tions when the pair decorrelate.
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7.3.1 Tracer Diffusion

The long-time self-diffusivity of the suspension D∞s (φb) at a given particle vol-

ume fraction φb relates the mean velocity of a tagged particle to a steady applied

force acting on it [7,17]. Here we consider a tagged tracer particle 1 subjected to

this “thermodynamic force” F1 in a sea of force-free untagged particles 2 such

that the mean velocity of the tracer particle is 〈U1〉 =
D∞s (φb)

kBT F1 on the macro-

scopic level. As the tracer particle moves under the applied force, it deforms

the pair distribution function of the other particles relative to it and results in a

relaxation force Frel from the other particles caused by the deformation [15, 18].

Therefore, the total force exerting on the tracer particle is Ftot = F1 + Frel and

on the microscopic level 〈U1〉 is related to Ftot via the Stokes–Einstein relation,

〈U1〉 = D0
kBT Ftot, without hydrodynamic interactions. The relative velocity be-

tween the tracer particle 1 and a far way non-tracer particle 2 based on the

Stokes–Einstein relation is 〈U12〉2 = − D0
kBT F1. When the time scale τ � a2/D0,

at quasi-steady state the net flux of the tracer particle 1 is zero. If we non-

dimensionalize ∇ by the core radius a, Eq. 7.4 becomes

Pe∇ ·
[
P(2) F1

F1

]
+ ∇ ·

[
P(2)∇

(
Vmf

kBT

)
+ ∇P(2)

]
= 0, (7.6)

where Pe is the Péclet number defined by Pe = aF1
2kBT .

Since the thermodynamic force is a weak applied force, Pe � 1 and the

non-equilibrium pair probability can be written as a regular perturbation to the

equilibrium distribution function

P(2)(r) =
1

V2 g(r)
[
1 + Pe

r · F1

rF1
Q(r) + O(Pe2)

]
(7.7)

with Q being an O(1) scaler function. Substituting Eq. 7.7 into Eq. 7.6 yields an

O(1) equation for equilibrium distribution function and an O(Pe) equation that

141



reads with s = r/a

1
s2

d
ds

(
s2 dQ

ds

)
−

d
ds

(
Vmf

kBT

)
dQ
ds
−

2Q
s2 =

d
ds

(
Vmf

kBT

)
(7.8)

satisfying the boundary conditions dQ
ds = −1 at s = 2 and Q → 0 as s → ∞.

Solving for Eq. 7.8 numerically with the potential of mean force for a given

NOHMs system as input, we obtain the perturbed pair distribution function

under weak deformation from the equilibrium structure.

The relaxation force exerting on the tracer particle is calculated from averag-

ing the interparticle forces between the tracer and indistinguishable non-tracer

particles,

Frel =

∫
V
· · ·

∫
V

P(N−1)
(
rN−1|r1

)
(−∇1VN) dr2 · · · drN

= (N − 1)
∫

V
P(1)(r2|r1)∇〈VN〉2dr2

≈ nb

∫
V

g(r)
aQ(r)

2r2

d
dr

(
Vmf

kBT

)
rr · F1dr, (7.9)

where P(N−1)(rN−1|r1) is the conditional probability density function of finding

N − 1 particles given that there is a particle fixed at r1 and P(1)(r2|r1) is the condi-

tional probability density function of finding particle 2 at r2 given that there

is a particle fixed at r1. We have approximated ∇〈VN〉2 as ∇Vmf and written

P(1)(r2|r1) = 1
V g(r)

[
1 + Pe r·F1

rF1
Q
]

to derive the final expression. The spherically

symmetric g(r) does not contribute a net force.

Yu and Koch [5] obtained the equilibrium radial distribution function of

the NOHMs system based on the reference hard sphere suspension such that

g(r) = gHS(r) + hf(r) with gHS(r) being the hard-sphere radial distribution func-

tion at the same φb as NOHMs and hf(r) being the regular perturbation term of

O(a3/R3
g) contributed from the tethered oligomeric fluid. gHS(r) was calculated
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from solving for the Ornstein–Zernike equation with the Percus–Yevick approx-

imation [10, 19]. Taking into account that for hard spheres gHS(r) = 0 if r < 2a,

we may write g(r) = ḡ(r)H(r − 2a) with H being the unit step function enforc-

ing a zero pair probability if r < 2a. Finally, writing d
dr

(
Vmf
kBT

)
= −1

g
dg
dr in Eq. 7.9

yields the long-time self-diffusivity of NOHMs in the absence of hydrodynamic

interactions correct to O(φb):

D∞s (φb)
D0

=
Ftot

F1
= 1 −

1
2
φb

[∫ ∞

2

dg(s)
ds

Q(s)s2ds + 4g(2)Q(2)
]
, (7.10)

where g(2) and Q(2) are evaluated at the contact of the two particles. The re-

laxation force reduces the mobility of the tracer particle and is driven by the

tendency of the system to restore the equilibrium structure.

7.3.2 Small Amplitude Oscillatory Shear

The linear viscoelastic response of a suspension can be obtained by the appli-

cation of a small amplitude oscillatory shear. In this section, we aim to find

the shear viscosity and modulus of NOHMs in the absence of hydrodynamic

interactions. Under small amplitude oscillations, the relative velocity between

a pair of NOHMs particles due to the imposed time-dependent linear flow is

U12 = E · reiωt, where E is the rate-of-strain tensor with the magnitude of the

shear rate being γ̇ and ω is the frequency of the oscillations. While U12 considers

affine motion of the pair due to the applied shear, the potential force drives a

velocity that makes the total relative motion not affine. Similar to section 7.3.1,

non-dimensionalizing ∇ by a in Eq. 7.4 yields,

a2

D12

∂P(2)

∂t
+ Pe∇ ·

[
P(2) U12

aγ̇

]
− ∇ ·

[
P(2)∇

(
Vmf

kBT

)
+ ∇P(2)

]
= 0, (7.11)
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where Pe =
γ̇a2

D0
12

=
3πηsa3γ̇

kBT and D0
12 = 2D0, the relative diffusivity between particles

1 and 2.

For small amplitude oscillatory shear, the system structure is only perturbed

by the weak applied flow by a small amount and we may again write

P(2)(r) =
1

V2 g(r)
[
1 + Pe

r · E · r
r2γ̇

eiωt f (r, ω) + O(Pe2)
]

(7.12)

with f being an O(1) scalar function. After substituting Eq. 7.12 into Eq. 7.6 we

obtain the following O(Pe) equation:

iω
a2

D0
12

f −
1
s2

d
ds

s2 d f
ds

+
d
ds

(
Vmf

kBT

)
d f
ds

+
6 f
s2 = s

d
ds

(
Vmf

kBT

)
(7.13)

with the boundary conditions d f
ds = 2 at s = 2 and f → 0 as s→ ∞. We write α =

ωa2/D0
12 as a dimensionless number defined by the oscillatory frequency, which

is analogous to Pe defined by the shear rate. With Vmf being the input from the

equilibrium theory of Yu and Koch [5], we can solve for Eq. 7.13 numerically

for arbitrary finite oscillatory frequency and obtain the non-equilibrium pair

distribution function P(2).

For rigid particles in the absence of inertia, the bulk stress is related to the

time-dependent rate-of-strain tensor such that [16, 20–22]

Σ = −〈p〉I + 2ηsEeiωt +
1
V

N∑
i=1

SH
i +

1
V

N∑
i=1

ST
i (7.14)

= −〈p〉I + 2
[
η′(ω) − i

G′(ω)
ω

]
Eeiωt, (7.15)

where 〈p〉 is the isotropic pressure, SH
i and ST

i are particle stresslets that are hy-

drodynamic and thermodynamic in origin, respectively. η′ is the suspension

shear viscosity that is in-phase with the applied oscillations and G′ is the sus-

pension shear modulus. We also define the loss modulus G′′(ω) = ωη′(ω) and
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the out-of-phase viscosity η′′(ω) = G′(ω)/ω. In the absence of hydrodynamic

interactions, the hydrodynamic stress is [8]

1
V

N∑
i=1

SH
i = nb〈SH

i 〉 =
20
3
πa3nbηsEeiωt. (7.16)

The thermodynamic stress results from the interparticle forces
(
FP

i = −∇iVN

)
among indistinguishable particles and takes the following form:

1
V

N∑
i=1

ST
i = −

1
V

N∑
i=1

riFP
i = −nb〈r1FP

1〉1

= nb(N − 1)
∫

V
P(1)(r2|r1) 〈(r2 − r1)∇2VN〉2 dr2

≈ 3πn2
bηsa3eiωt

∫
V

rg(r) f (r, ω)
r · E · r

r2 ∇

(
Vmf

kBT

)
dr, (7.17)

where 〈〉1 denotes the conditional average given one particle is fixed and we

have used the same approximations as Eq. 7.9 and chosen any particle as our

reference with
∑N

i=1 r1FP
i = 0. If we write f = f1 + i f2 and recognize that for

hard-sphere distribution function we should include a step function in g(r) as

shown in section 7.3.1 since particles do not overlap, we obtain the following

shear viscosity and shear modulus for arbitrary oscillatory frequency:

η′(ω)
ηs

= 1 +
5
2
φb −

9
40
φ2

b

[∫ ∞

2
s3 dg(s)

ds
f1(s, ω)ds + 8g(2) f1(2, ω)

]
(7.18)

and
G′(ω)a3

kBT
=

3α
40π

φ2
b

[∫ ∞

2
s3 dg(s)

ds
f2(s, ω)ds + 8g(2) f2(2, ω)

]
, (7.19)

where α = ωa2/D0
12. Since we neglect the hydrodynamic interactions, the O(φb)

contribution to η′ is purely due to the hydrodynamic stress for isolated particles

and the thermodynamic stress resulting from the potential of mean force only

leads to O(φ2
b) contributions to η′ and G′. In the absence of hydrodynamic in-

teractions, the second terms in the O(φ2
b) contributions of η′ and G′ led by the

hard-sphere nature of the particles give the collisional contributions and are
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equivalent to the direct Brownian contributions to the stress, as indicated by

Brady [20].

Here we consider two limiting cases. As ω = 0, f = f1 and f2 = 0, we obtain

the steady low shear viscosity η0 from Eq. 7.18 at zero frequency,

η0

ηs
= 1 +

5
2
φb −

9
40
φ2

b

[∫ ∞

2
s3 dg(s)

ds
f (s)ds + 8g(2) f (2)

]
(7.20)

and G′ → 0. The system in this case behaves as a viscous liquid. On the other

hand, as ω→ ∞, from Eq. 7.13 we obtain an outer solution

fout(s, α)→ −
i
α

s
d
ds

(
Vmf

kBT

)
(7.21)

that satisfies the boundary condition at large particle separations, fout|s→∞ → 0,

because the interparticle forces decay to zero. However, Vmf = −kBT ln g with g

being finite at s = 2. Therefore this solution fails to satisfy the no-flux boundary

condition at s = 2. Near particle contact, there will be a boundary layer in which

the diffusive flux balances the convective flux resulting from the transient term.

From scaling analysis we find that the dimensionless boundary layer thickness

δ scales as α−
1
2 and we may define the boundary layer coordinate as x = α

1
2 (s−2).

To match fout the boundary layer solution should contain O(α−1) contributions.

Therefore we propose

fBL(x, α) = α−
1
2 f (1)

BL (x, α) + α−1 f (2)
BL (x, α) + O(α−

3
2 ) (7.22)

with the boundary condition d fBL
dx = 2 at x = 0. The final solution can be obtained

from matched asymptotic solution given limx→∞ fBL(x, α) = lims→2 fout(s, α):

f∞(s, α) = fout(s, α) + fBL(x, α) − lim
s→2

fout(s, α), (7.23)

which is a uniformly valid approximation. Substituting Eq. 7.22 into Eq. 7.13

yields

α−
1
2 f (1)

BL =
1
√

2α
(i − 1)e−

√
αi(s−2), (7.24)
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equivalent to the solution found by Brady [20] and Lionberger and Russel [21]

for hard spheres without hydrodynamic interactions. We proceed to O(α−1) con-

tributions and derive

α−1 f (2)
BL = −

1
√

2α
(i − 1)(1 + F0)(s − 2)e−

√
αi(s−2) −

i
α

(1 + F0)e−
√
αi(s−2) + i

2F0

α
(7.25)

with F0 = − d
ds

(
Vmf
kBT

)
|s→2.

Similarly, after some manipulations the high frequency solution can be writ-

ten as f∞ = f1,∞ + i f2,∞, where

f1,∞(s, α) = −e−
√

α
2 (s−2)

√2
α
−

1
√

2α
(1 + F0)(s − 2)


×

[
cos

(√
α

2
(s − 2)

)
− sin

(√
α

2
(s − 2)

)]
− e−
√

α
2 (s−2)

[
(1 + F0)

α
sin

(√
α

2
(s − 2)

)]
(7.26)

and

f2,∞(s, α) = e−
√

α
2 (s−2)

√2
α
−

1
√

2α
(1 + F0)(s − 2)


×

[
cos

(√
α

2
(s − 2)

)
+ sin

(√
α

2
(s − 2)

)]
− e−
√

α
2 (s−2)

[
(1 + F0)

α
cos

(√
α

2
(s − 2)

)]
−

s
α

d
ds

(
Vmf

kBT

)
. (7.27)

From Eq. 7.18 we see that at high frequency f1,∞ makes the O(φ2
b) thermodynamic

contributions decay as ω−1/2, therefore η′∞
ηs
→ 1 + 5

2φb and contains only the hy-

drodynamic contributions. The corresponding loss modulus G′′ −ωη′∞ grows as

ω1/2 at high frequency. To derive the shear modulus at infinite frequency G′∞ we

evaluate terms for the boundary layer solution and the outer solution separately
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in Eq. 7.19 and obtain

G′∞a3

kBT
=

3α
40π

φ2
b

[∫ ∞

2
s3 dg

ds
foutds + 8g(2) fout(2)

]
+

3α
40π

φ2
b

{∫ ∞

0
8

dg
ds
|s=2

[
fBL(x) − fBL(∞)

]
α−

1
2 dx + 8g(2)

[
fBL(2) − fout(2)

]}
=

3
√

2
5π

φ2
bg(2)α

1
2

+
3

40π
φ2

b


∫ ∞

2
s4g

[
d
ds

(
Vmf

kBT

)]2

ds + 8g(2)
[

d
ds

(
Vmf

kBT

)
|s=2 − 1

] . (7.28)

Note that the second term of the outer solution contributions 8g(2) fout(2) cancels

the boundary layer integral automatically. As ω → ∞, G′ diverges as ω1/2 and

η′′ decays as ω−1/2. This growing scaling is consistent with experiments [23–25]

and Brownian dynamics (BD) simulations [26], and also agrees with the limit-

ing modulus derived from the mode-coupling theory [11, 27] for hard spheres

with weak or no hydrodynamic interactions. Our derivation shows that G′∞ is a

linear function of ω1/2 with the slope being determined only by the equilibrium

particle radial distribution function at contact. Extropolation of the straight line

to ω = 0 yields the intercept determined by the interparticle forces as well as the

particle distribution function. This intercept is a signature of the many-body

thermodynamic interactions for systems with hard-core-like potentials and was

not calculated in previous work. For continuous interparticle potentials that

give dVmf
ds |s=2 = 0, Eq. 7.21 satisfies the no-flux boundary condition at two-particle

contact and one obtains

G′∞a3

kBT
=

3
40π

φ2
b

∫ ∞

2
s4g

[
d
ds

(
Vmf

kBT

)]2

ds, (7.29)

which is exactly the result derived by Russel and Gast [16] in the absence of

hydrodynamic interactions.
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7.4 Results & Discussion

Section 7.3 provides the formulation of non-equilibrium pair probability prob-

lems and transport properties for a given potential of mean force. In this section,

we calculate the transport properties with the input of the core radial distribu-

tion function obtained from the theory of Yu and Koch [5]. It is noteworthy that

although the weak oligomeric-field approximation is valid when Rg/a � 1, the

weak field theory explains many of the trends of the equilibrium structure seen

in MD simulations even when Rg/a is as low as 0.54 [6]. Therefore in the fol-

lowing calculations for transport properties we may extrapolate the weak field

theory beyond the Rg/a � 1 regime. To satisfy the incompressibility constraint

for the fluid phase oligomers, the number of oligomers per core is changed with

the core volume fraction such that the oligomer concentration in each system of

NOHMs investigated remains the same. We choose our reference condition to

be 600 chains per core at φb = 0.15.

Figure 7.1 shows the core radial distribution function and the potential of

mean force for NOHMs with different chain lengths at the core volume fraction

of 0.2 evaluated from the theory of Yu and Koch [5]. The core radial distribution

function for Rg/a > 1 generally shows damped peaks characterizing a softened

potential among the cores. On the other hand, for Rg/a < 1 the stronger entropic

frustrations of oligomers due to the space-filling constraint yield a substantial

attraction between the neighboring particles relative to the hard spheres. There-

fore g(s) at Rg/a = 0.7 is more structured with enhanced peaks and a closer

distance between the first and the second peaks than hard spheres. The gen-

eral behavior shown in this figure is true for different core volume fractions.

At larger φb the interparticle spacing is small and the soft oligomers can still
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Figure 7.1: (a) Comparison of the radial distribution function g of NOHMs
with different Rg/a and hard spheres as a function of the inter-
particle distance non-dimensionalized by the core radius, s, at
φb = 0.2 and (b) the corresponding comparison of the poten-
tial of mean force non-dimensionalized by the thermal energy,
Vmf/kBT , as a function of s. The line descriptions are the same
as (b).
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explore the conformational space therefore the changes in g(s) relative to hard

spheres are minor. As φb decreases the variation of g(s) is more apparent since

the configuration of tethered oligomers are more restricted to the space-filling

constraint.

The long-time self-diffusivity of the NOHMs particles with different chain

stiffness and core volume fraction is shown in Fig. 7.2. The current result for

hard spheres at different particle volume fraction in the absence of hydrody-

namic interactions is equivalent to that predicted by Brady [28], albeit Brady

solved for the Smoluchowski equation (Eq. 7.1) in Fourier space using self-

intermediate scattering function while we proceed with the interactions of pairs

of particles in real space. Since the variations of g(s) and Vmf caused by the

tethered oligomers are less substantial at moderate to high core volume fraction

(φb > 0.15), the predicted D∞s for NOHMs is similar to the reference hard sphere

suspension at the same φb. As we decrease φb, the interparticle spacing increases

and the oligomer-mediated potential of mean force exhibits stronger deviation

from hard spheres and we start to observe more apparent difference between

D∞s for NOHMs and hard spheres. While for hard sphere suspensions the diffu-

sivity increases with decreasing particle concentration due to increasing parti-

cle mobility, NOHMs exhibit substantially reduced diffusivity at lower φb than

hard spheres. Eventually when the configuration of the chains is so limited that

the oligomers prohibit large displacement of the core D∞s drops drastically. The

volume fraction at which this sudden drop in D∞s is observable depends on the

stiffness of the chains. As Rg/a decreases this drop occurs at higher φb because

stiffer chains have more difficulty in filling the space.

It is of interest to examine how the core pair probability behaves in the lim-
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Figure 7.2: The long-time self-diffusivity of the cores D∞s scaled by the
Stokes–Einstein diffusivity D0 for the NOHMs system with dif-
ferent Rg/a and hard spheres as a function of the core volume
fraction φb.

iting condition where the diffusivity decreases drastically. We compare the core

radial distribution function at very small φb for systems with two different Rg/a

ratios in Fig. 7.3 and observe two distinct characteristics of the structure. As

mentioned above, systems with Rg/a > 1 exhibit less structured g(r) than hard

spheres. At small φb, the soft shell provided by the tethered oligomers extends

due to more stretched chain configuration. Since the core concentration is dilute,

the oligomer grafting density per core is high enough to produce very strong

field that excludes the nearest neighbors of each particle from center-to-center

separations as close as hard spheres at r = 2a. As a result, in Fig. 7.3(a) we

obtain g(r) that oscillates on the length scale of Rg with nearly zero probability
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Figure 7.3: (a) The radial distribution function g of NOHMs with Rg/a = 2
and hard spheres as a function of the interparticle distance non-
dimensionalized by the core radius, s, at φb = 0.036. The car-
toon shows strongly stretched hairs yielding effectively larger
soft particles. (b) Same as (a) for Rg/a = 0.6 and φb = 0.064. The
cartoon shows a shell of neighbors around a chosen particle
leading to strong particle interactions.
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Figure 7.4: Comparison of the steady low shear viscosity for NOHMs
η0,NOHMs non-dimensionalized by the steady low shear viscos-
ity for hard spheres η0,HS at a given φb as a function of Rg/a.

at r = 2a, which qualitatively characterizes a suspension of soft particles with a

higher effective particle volume fraction than the reference hard sphere solution

and the long-time self-diffusivity decreases as expected. On the other hand, for

NOHMs with Rg/a < 1, the entropic attraction progresses as interparticle spac-

ing increases. Eventually when the attraction among the cores is strong enough

to build up a structured shell of neighbors around each core (or a “cage”), we

obtain a highly enhanced first peak followed by a very deep trough in g(r) as

shown in Fig. 7.3(b) and the tracer diffusivity is highly reduced.

Equation 7.20 yields the steady low shear viscosity for hard spheres that di-

verges as φb approaches the random-close-packing volume fraction φb,m, as also

predicted by many authors [16, 20, 22, 27]. In Fig. 7.4, we compare the ratio
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between the relative viscosity η0/ηs for NOHMs with a given Rg/a and η0,HS/ηs

for hard spheres in an unattached melt to investigate the viscous response pro-

vided solely from the tethered hairs. In general, for a given core volume frac-

tion longer oligomers lead to lower relative viscosity, a trend that is qualita-

tively consistent with the findings at small Pe of Goyal and Escobedo [29] using

MD simulations and with experimental observations of Agarwal and Archer [3].

On the other hand, for a given chain length systems with higher core volume

fraction show higher relative viscosity but the ratio between NOHMs and hard

spheres is lower. These general results agree with the physical argument that

when the oligomers feel more entropic frustrations for filling the space the sys-

tem exhibits slower dynamics. It is noteworthy that at higher φb there seems to

be a transition region near Rg/a = 1 at which η0/η0,HS shows a minimum and is

less than 1. If we estimate the interparticle separation with n−1/3
b we find that the

minimum corresponds to the case where n−1/3
b ≈ 2Rg. Therefore when Rg is com-

parable with the interparticle spacing the soft shell produced by the oligomers

makes the particles more evenly spaced and reduces the resistance. For small

enough φb the particle distribution is sparse enough such that we do not see this

minimum.

We may compare the strength of the thermodynamic contributions to the

relative viscosity for NOHMs and hard spheres by calculating Kη0(φb) =
η0−η

′
∞

ηsφ
2
b

,

which is the coefficient of the O(φ2
b) term in the relative viscosity. This quantity

provides a measure of the thermodynamic effect because the hydrodynamic η′∞

is excluded. As can be seen from Fig. 7.5, while for higher core volume fraction

the hard-sphere interactions dominate the thermodynamic integral such that

NOHMs are similar to hard spheres, as φb decreases the entropic penalty for the

oligomers comes into play and the thermodynamic contributions for NOHMs
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Figure 7.5: Comparison of the O(φ2
b) coefficient of the dimensionless steady

low shear viscosity η0/ηs for NOHMs with different Rg/a and
hard spheres as a function of φb.

could be one order of magnitude higher than the reference hard sphere suspen-

sion. Therefore, as the strong interparticle forces contribute to the divergence of

η0 as φb → φb,m for typical hard spheres in a solvent, the unique entropic forces

from the tethered oligomeric fluid in NOHMs yield a different mechanism re-

sponsible for the increase in the viscous response at lower φb.

At finite oscillatory frequency ω, the scaled complex viscosity (η′ − iη′′) pro-

vides us with the information of the dynamic response. As shown in Fig. 7.6

at a given φb, compared with the hard spheres, the scaled η′ and η′′ are shifted

to lower frequencies for NOHMs with Rg/a > 1 but to higher frequencies for

NOHMs with Rg/a < 1. If we examine Eqs. 7.18 and 7.19 carefully, we find
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Figure 7.6: Comparison of the scaled complex viscosity ( η
′(ω)−η′∞
η0−η

′
∞

and η′′(ω)
η0−η

′
∞

)
for NOHMs with different Rg/a and hard spheres at φb = 0.1.

that in O(φ2
b) contributions the second term resulting from the contact value of

the distribution function is more important than the first force integral term

when the system is close to hard spheres. In the specific case we present here,

NOHMs with longer tethered oligomers are closer to hard sphere suspensions

with smaller values of g(2) f1(2, ω) and g(2) f2(2, ω) than hard spheres, therefore

these systems have weaker thermodynamic forces to restore back to the un-

perturbed equilibrium structure and exhibit a slower relaxation process. Con-

versely, NOHMs with stiffer chains have comparable contributions from both

terms due to stronger many-body interactions at s > 2. Therefore the more sub-

stantial thermodynamic restoration forces lead to a smaller relaxation time as
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Figure 7.7: The reduced infinite frequency shear modulus a3G′∞
α0.5kBT for

NOHMs with different Rg/a and hard spheres as a function of
φb.

Rg/a is small. In fact, experimental observations show that NOHMs have much

longer relaxation times than hard spheres [3]. It is expected that if the approxi-

mation of Rg � a is relaxed then more strongly interacting particles would lead

to slower dynamics than our current predictions.

Finally, since G′ grows as ω1/2 at high frequency, we compare the reduced

shear modulus a3G′∞
α0.5kBT of NOHMs with hard spheres in Fig. 7.7. From Eq. 7.28,

when the dimensionless frequency α is high a3G′∞
α0.5kBT →

3
√

2
5π φ

2
bg(2), therefore the

reduced shear modulus at high frequency provides us with the contact value of

the core radial distribution function. Consequently, for a given chain length the

reduced shear modulus increases with the core volume fraction; for a given core

volume fraction, compared with hard spheres, NOHMs with Rg/a > 1 yields

lower modulus while NOHMs with Rg/a < 1 exhibits higher modulus.

158



Figure 7.8: (a) The intercept of the straight line of the infinite frequency
shear modulus derived in Eq. 7.28 for NOHMs and hard
spheres as a function of Rg/a at φb = 0.1, (b) φb = 0.3, and (c)
φb = 0.5. The line descriptions for (b) and (c) are the same as
(a).
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While the slope or growing rate of G′∞ with respect to α1/2 tells us the infor-

mation of g(2), the intercept may help us understand the importance of many-

body interactions. We compare the intercept from Eq. 7.28 for NOHMs and

hard spheres in Fig. 7.8. In general, the NOHMs system with a given chain

length and the reference hard sphere suspension both show stronger many-

body interactions at higher core volume fraction, as characterized by more struc-

tured pair probability. For a given core volume fraction, NOHMs with shorter

chains also lead to more substantial many-body forces because the oligomers

have to cooperate to fill the space and the more stretched stiffer chains result in

stronger correlations between the particles. Interestingly, when the interparti-

cle spacing is roughly 2Rg at higher φb, which corresponds to the minimum of

η0,NOHMs/η0,HS in Fig. 7.4, we obtain weaker many-body interactions for NOHMs

than hard spheres. This observation implies that when the particles are more

evenly spaced by the tethered soft shell, the fluidity of the oligomers reduces

the direct core–core interactions.

7.5 Conclusions

We have solved for the non-equilibrium pair probability density function for

pairs of NOHMs particles subjected to a weak applied force, Brownian forces,

and a mean interparticle force obtained from the equilibrium density-functional

theory valid in the limit of Rg/a � 1 in the absence of hydrodynamic inter-

actions. The long-time self-diffusivity is derived when the applied force on a

chosen tracer particle is the thermodynamic force while the linear viscoelastic

properties are obtained when the small amplitude oscillatory shear is applied

to the system. The results demonstrate that the transport properties of solvent-
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free NOHMs are governed by the requirement that the tethered oligomeric hairs

must fill the interstices. Therefore in general these materials show less resistivity

for particle motion when the longer oligomers can more easily fill the interstitial

space facilitating relaxation of the cores, a trend which is confirmed by experi-

ments [3] and MD simulations [29].

In the absence of hydrodynamic interactions, the discontinuity of the hard-

core potential at two particle contact leads to a shear modulus that diverges

as ω1/2 at high applied oscillatory frequency with the growing rate being de-

termined by the core radial distribution function at the closest particle contact.

The intercept obtained from extrapolating the linear function of ω1/2 to zero fre-

quency is a function of interparticle forces and particle distribution in the sus-

pension. While our treatment only considers the equilibrium potential of mean

force and neglects the coupling effects due to the perturbed force from the third

particles, the derivation for G′∞ is general. Therefore, it is expected that the

information regarding the appropriate closure for non-equilibrium many-body

interactions can be gained from experimental measurements by comparing the

slope and the intercept of the straight line of G′∞ = Aω1/2+B at the high frequency

limit.

Although the weak field approximation applied in this work captures many

of the essential physics of the dynamics of solvent-free nanoparticle suspensions

with tethered fluid, it fails to predict the very slow relaxation times observed

in experiment. Therefore, a more complete theory that gives a more explicit

treatment of the interactions of oligomers of neighboring particles or Brownian

Dynamics (BD) simulations that do not rely on the weak field approximation

would be desirable.
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Since the transport properties are governed by the potential of mean force

among the cores, it is anticipated that as another fluid species is present and

produces more density fluctuations in the system the weakened interparticle

potential will directly decrease the viscosity of the materials. This characteris-

tic might be advantageous to gas absorption such as carbon capture where the

fluidity of the system plays an important role in the process.
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