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Abstract

Determining efficient sequences of x-ray diffraction measurements on a four-
circle diffractometer leads to extremely large traveling salesman problems.
Simple TSP heuristics give substantial improvements in utilization at small
computational expense. Furthermore, the Lin-Kernighan heuristic consistently
produces sequences that are near-optimal.



1. Introduction

Experiments in x-ray crystallography often involve sequential collection
of very large sets of data on a four-circle diffractometer. A small sample
of the single crystal under study is mounted in the apparatus, which has
computer—-driven motors that can accurately position the crystal and a
detector. When the diffractometer is positioned appropriately, the detector
measures the intensity of monochromatic x-rays scattered by the crystal at a
peak in the diffraction pattern. This gives, approximately, one coefficient
in the electron density function of the crystal. The purpose of the
experiment is to collect all of the coefficients in the electron density
function, which is a Fourier series. Then, with substantial computational
effort, the electron density function is calculated, and its contours are
plotted, in order to attempt to discern the detailed structure of the crystal
(see Figures 1 and 2). For information concerning x-ray analysis of crystals
see, for example, Luger [8].

These experiments typically involve 5000 to 30000 readings on the
diffractometer. The order in which the readings are taken is not relevant to
the analysis of the data, but it can have a profound influence on the time to
complete the experiment. Given a high intensity source of high energy x-
rays, the measurements can be made relatively quickly, once the motors are
set properly. However, the time to reposition the apparatus between readings
is significant. The accumulation of these delays, the slewing time, may
constitute a very substantial portion of the total time to complete an
experiment. How large a portion depends on the energy and intensity of the x-
ray source. Presently at the Cornell High Energy Synchrotron Source, slewing
time is about 25% of measurement time; imminent improvements in intensity

will result in a tenfold to hundredfold decrease in measurement time,



Figure 1. Electron density maps based on x-ray diffraction data: (a)
napthalene (C10H8); (b) anthracene (C14H10). Reprinted with permission from:

(a) The crystal and molecular structure of napthalene. II. Structure
investigation by the triple Fourier series method by S.C. Abrahams, J.M.
Robertson, and (in part) J.G. White, Acta Cryst. 2 (1949), copyright
International Union of Crystallography; (b) The crystal and molecular
structure of anthracene. II. Structure investigation by the triple Fourier
series method by V.C. Sinclair, J.M. Robertson, and (in part) A.McL.
Mathieson, Acta Cryst. 2 (1949), copyright International Union of
Crystallography.
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Figure R. The structure of penicillin. Three different projections into the
plane of electron density maps of potassium benzylpenicillin are presented as
(a)-(c). These are from an early study (see reference below) that first
revealed the exact chemical formula and fundamental stereochemical
configuration of penicillin. (d) The arrangement of atoms in the
benzylpenicillin ion as deduced from the x-ray crystallographic study.
Reprinted with permission from: The x-ray crystallographic investigation of
the structure of penicillin by D. Crowfoot, C.¥. Bunn, B.W. Rogers—Low, and A.
Turner-Jones, in: The Chemistry of Penicillin, eds: H.T. Clarke, J.R. Johnson,
and R. Robinson, Princeton University Press, Princeton, New Jersey (1949).
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resulting in slewing time becoming a very large fraction of the total time to
completion. Even at the low end (5000) of the range of readings of interest,
the slewing time is typically in the neighborhood of 15 - 24 hours.

There is a standard method used for sequencing the readings. It is
based upon a simple lexicography on the lattice dual to the crystal lattice,
the reciprocal lattice. The peaks in the diffraction pattern occur at points
of the dual lattice. One chooses a basis of the dual lattice, represents
each lattice point by a triple (h,k,1) with respect to this basis, and traces
lexicographically through all observable triples. If the incident x-rays are
of wavelength », then the observable triples are those within distance 2/% of
the origin.

It is natural to wonder whether one can improve significantly on the
conventional lexicographic method of sequencing the readings, in order to
improve the utilization of the diffractometer and x-ray source. Since the
problem of sequencing the readings to minimize the total delay is a traveling
salesman problem (TSP), standard TSP heuristics might work well here.( See
the recent book of Lawler, Lenstra, Rinnooy Kan, and Shmoys [6] for a wealth
of information on the TSP.) It should be noted, however, that the instances
arising in this setting are: (1) enormously large by conventional TSP
standards; and (R) non-Euclidean, though they do satisfy the triangle
inequality. The readings correspond to nodes of the TSP. The length of an
edge of the TSP is the delay time for the motors to reposition the apparatus
from the settings corresponding to one of the two ends of the edge to the
settings corresponding to the other. The lengths are symmetric and can be

computed readily.



2. Computational Tests

We have tested three different heuristics on twelve large TSP instances.
The instances have from 2762 to 14464 readings, with mean 8372. They come
from five different crystals, with variation of the wavelength of the
monochromatic x-rays resulting in more than one instance arising from a given
crystal. Table 1 identifies the five crystals in the leftmost column, and
indicates the number of readings in the next column. The instances are
grouped according to wavelength. The heuristics were coded in Fortran (77),
and executed on an IBM 3081 model K.

The lexicographic method can be applied with any of the six orderings of
the indices h, k, and 1. In order to be conservative in comparing the
heuristics to lexicography, all comparisons will be made with the best of the
six lexicographic tours.

Before applying any of the heuristics, some preprocessing was done. As
suggested in Lin and Kernighan [7], the complete graph on which the problem
is defined was replaced by a sparse graph in which only the d shortest edges
at each node were included, for an appropriately small d. We set d=10 and
restricted the choice of edges at a given vertex (h,k,1) to those joining it
to (h',k',1') with h',k' and 1' differing from h,k, and 1, respectively, by
at most one. The preprocessing times are included in our reports of the
execution times of the first heuristic, an approximation to Christofides’
heuristic.

Christofides' approach (see Golden and Stewart [1], or Johnson and
Papadimitriou{5]) begins with a minimum length spanning tree, adds edges to
make it Eulerian, traces an Euler tour, and compresses it to a traveling
salesman tour. In order to to get even degrees at every vertex, Christofides

computes a minimum length perfect matching on the set of odd-degree vertices
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of the spanning tree. The difficulty here is that the problems of interest
will have many thousands of odd-degree vertices in the minimum length
spannning trees. Thus we are unwilling to apply exact algorithms for the
matching problem, for which running time would grow faster than a quadratic
function of the number of odd vertices. Since the matching problem arises as
a subproblem within a heuristic, it is reasonable to do the matching
heuristically. We employed a greedy approach. It selects an odd vertex that
has not yet been matched and matches it with the nearest unmatched odd
vertex, continuing until all odd vertices are matched. It should be noted
that the simplest approach to getting even degrees, doubling the spanning
tree edges, generally led to traveling salesman tours longer than those
produced by lexicography.

The approximation to Christofides' heuristic was used to construct an
initial traveling salesman tour. In all twelve problem instances this tour
improved on the best lexicographic tour by 25% to 36% and used 34 to 239 CPU
seconds (including the preprocessing). Then two-opt (see [1]), a simple
local improvement heuristic, was applied to the previously constructed tour.
Two-opt iteratively interchanges a pair of edges in the tour with the pair of
missing edges that will re-connect it appropriately, if the tour length will
be reduced by the interchange. This is continued until the current tour is
two-optimal, i.e. no more improving interchanges can be made. This took no
more than 67 seconds on any of the twelve instances, and resulted in
improvements over the best lexicographic tour of 30% to 42%. The more
sophisticated variable depth local improvement heuristic of Lin and Kernighan
[7] was then applied to the two-optimal tour. The Lin-Kernighan heuristic
typically works extremely well in practice, but is more intensive

computationally than the first two heuristics. Given the expectation that
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Lin-Kernighan would use much more CPU-time, it seemed reasonable to invest
more effort in the preprocessing. We searched the entire complete graph for
edges among the ten shortest at some vertex, but absent from the template
used in the first preprocessor. The Lin-Kernighan CPU-times, including the
times for the additional preprocessing, range up to 10279 seconds. Lin-
Kernighan resulted in improvement over the best lexicographic tour of 347 to
46% in each of the twelve instances. What is even more impressive is that
Lin-Kernighan got very close to optimality in each case. We used the Held
and Karp [2,3] method of producing a lower bound on the optimal length of a
traveling salesman tour by one-tree relaxations and subgradient

optimization. Table 2 shows that the Lin-Kernighan tours are within 1.7% of
the lower bound in all twelve instances, and within 1.5% in all seven of the
instances with more than 6000 readings. Table 2 also lists the deviations
from the lower bound for the other heuristics, and for the best

lexicography. Table 3 gives the execution times of the heuristics and of the
lower bound calculations. Note that in practice the lower bounds need not be
calculated.

These tests indicate that one can expect to be able to make substantial
improvements over lexicography in sequencing the four—circle diffractometer.
In further work we will examine whether one can approach the excellent
performance of the Lin-Kernighan heuristic at less expense by partitioning.
In the instances tested here, it appears that the rate of growth of
computation in the Lin-Kernighan heuristic is approximately n1’85, as opposed

n?-? reported in [7]. Johnson, McGeoch, and Rothberg [4] report nt-% in

to
testing of a somewhat more sophisticated implementation on other large TSP
instances. However, given the problem sizes of interest here, one would like

to be able to employ linear or near-linear-time heuristics.



P e

Beyond the immediate relevance to the x-ray diffraction experiments, it
is interesting that in real problem instances of such large size, Lin-
Kernighan and Held-Karp consistently produced very good upper and lower
bounds, respectively, on the optimal length traveling salesman tour. This is
in keeping with previous wisdom on smaller problem instances, and with the
recent experimental work of Johnson, McGeoch, and Rothberg [4]. 1In spite of
the TSP being NP-hard, it seems that oftentimes it is not so difficult to get
close to an optimal solution, even for big instances. Indeed, very recently
Padberg and Rinaldi have used polyhedral techniques to solve to optimality on

a supercomputer a TSP instance with 2392 nodes (see the note at the end of

(9D
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APPENDIX

Table 1

The Twelve Test Problems

crystal wavelength
(see key) (angstroms)
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ammonium tartrate
biphenyl

number of
readings

4472
2950
7008
R76R%
6922

9070
5888
14012
55R0
13804

14464
13590

dinitrodiphenyltetrathiofulvalene
bis-2-imidazole iron (octaethylporphyrin)
iron dipyridyltetraphenylporphyrin



_10...

Table 2

% Over Lower Bound
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Best Approximate Two— Lin &
Lexicography Christofides opt Kernighan
56.0 16.0 8.4 1.7
59.5 15.2 9.0 1.7
55.9 13.7 7.3 1.2
78.3 15.9 9.6 1.4
79.0 16.2 8.3 1.2
60.1 14.0 7.4 1.3
63.1 13.4 7.3 1.7
59.3 14.4 7.8 1.5
82.5 15.6 8.6 1.5
82.3 15.5 8.5 1.4
66.4 12.5 7.0 1.5
88.4 13.6 7.8 1.4
Table 3
Execution Times (IBM 3081 seconds)
Approximate Two- Lin & Held &
Christofides opt Kernighan Karp
51 18 1061 547
37 10 417 259
93 26 2071 1147
34 9 390 273
102 28 2947 1169
17 43 2503 1562
80 R4 1462 774
213 72 6990 ?
7R 21 1271 708
239 67 10279 3079
201 60 7797 3R74
204 65 7077 3035
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