Achieving Reliability Through Distributed Data Flows and Recur sive Delegation

Krzysztof Ostrowski, Ken Birmari, Danny DoleV, and Chuck Sakoda

fCornell University $Hebrew University
Ithaca, NY 14850, USA Jerusalem 91904, Israel
{krzys, ken, cms235@cs.cornell.edu dolev@cs.huji.ac.il
Abstract broadcast, commit, transactions, state machine regitati

or consensus with dynamic membership. In the current im-
Strong reliability properties, such as state machine repli plementations of protocols that offer such propertiesgsod

cation or virtual synchrony, are hard to implementin a scal- are controlled by membership views generated lgyobal
able manner. They are typically expressed in terms of globalmembership servig€&sMS), which can be external, or a part
membership views. As we argue, global membership is non-of the protocol itself, and strong guarantees are expressed
scalable. We propose a way of modeling protocols that doesterms of the global views. Our work wouldn't be applicable
not rely on global membership. Our approach is based on to, for example, gossip protocols: these avoid global views
the concept of a distributed data flow, a set of messagesbut whereas we achieve strong properties, they typicadly ar
distributed in space and time. We model protocols as net-limited to weaker (convergent) ones.
works of such flows, constructed through recursive delega- GMS-mediated reliability can be problematic. First, as a
tion. The resulting system uses multiple small membershipsystem grows in size, the frequency of membership changes
services instead of a single global one while still support- grows proportionally; eventually, this can become a seriou
ing stronger properties. Our work was inspired by the func- burden on the members. Second, in protocols such as vir-
tional approach to modeling distributed systems pioneered tual synchrony every change trigg€P$n) work: anO(n?)
by I/0 automata. This paper focuses on the basic model. In-cost that rapidly becomes prohibitive. Batching changes is
ternal details of our system architecture and a compilettha an obvious option to consider, but doing so raises other con-
translates protocols from our data flow language to real ex- cerns: in many protocols, progress can't occur if a member
ecutable code will be discussed elsewhere. becomes unresponsive until the GMS excludes it from the

view. These factors compel a rethinking of the relationship

Keywords: strong reliability properties, 1/0 automata, dis- Petween membership and reliability, and suggest that glob-

tributed data flow, scalable protocol, monotonic aggregati ally visible, consistent, and incrementally reported memb
ship should not be a part of large-scale reliability models.

We propose a new approach, in which strong properties
emerge in the network in a decentralized, hierarchical man-
ner, and the role traditionally played by a single, mondadith
GMS is hierarchically decomposed and blends into the hi-
erarchy established by a scalable protocol.

Our technique relies on a new concept of monotonic ag-
gregation, which records all progress made by the protocol
in a hierarchical distributed flow of values that describe sy
tem state, global and local decisions. Membership changes

1. Introduction

We believe there is a need for large-scale replication and
reliable multicast; for example, in data centers, relialls-
ticast groups including thousands of nodes could store dy-
namic configuration state, such as partitioning of resairce
across applications. They could be usedaasistenthand
reliably distribute security policy updates, keys, or patches,

thus enabling fast and well-coordinated response to atthrea are viewed as perturbations that disrupt the integrity isf th

Our work is focused on distributed replication protocols, ; : .
: : . L . flow. The flow is designed to tolerate such perturbations by
in which nodes can dynamically join, leave, or fail by crash- S . o
locally recreating information that has been recorded. in it

ing, and where_churn c_ould be high. Th|s_|s typical of peer- This paper makes the following contributions.
to-peer scenarios, but it can also happen in data centers dur

ing load surges: timing-out connections can be perceived as e We propose a new model that allows the global behav-

failures. Churn tolerance is key to stability in such system ior of a distributed protocol to be expressed in a purely
The term “strong properties” in this paper refers to quasi- functional style, as a graph of distributed functions that
absolute [4, 7] properties such as virtual synchrony, atomi operate on sets of messages spread across the network.

We introduce basic building blocks, and illustrate their
use by dissecting a simple reliable multicast protocol.

e We explain how strong properties map to the properties
of our basic building blocks; in particular, we explain
how monotonicitya core concept in our approach, can |
be used to reliably record protocol state. We introduce the layer
and prove theorems characterizing the conditions un- we are
der which monotonicity can be achieved using simpler primarily
properties, and how it can be hierarchically composed. focused on

e We present an architecture that allows flow hierarchies
to be created through recursive delegation and employs
multiple small membership services to support a large
group of clients. Our approach has the additional ben-
efit of decoupling the core protocol semantics from the
process of establishing and maintaining the hierarchy.

e We discuss initial performance results with a real pro-
tocol stack running on top of a discrete event simulator,
focusing on two key factors affecting the performance
of monotonic aggregation. The results suggest that our
approach can scale well and tolerate high rate of churn.

code executing on the user’s machine

network
packets

application

lower layers data

i 1&(') I 1Dx(k)
C:I;e Iogjic T]’T’E)ntrol

Figure 1. Multicast logic as a transformation
from inputs R.(7) to outputs F,(j) and D, (k).

) ‘Rx(i)
L

- Toe

: -
HEPY 1
i

s

i ujoins

t,

t

timet; tg ts ts ty

Our prototype system, called Quicksilver Properties Frame
work, includes a compiler that translates protocol spegific
tions from data flow notation similar to that on Figure 3 into
executable code, but due to limited space we omit details of
the language and system internals, and we focus on the un
derlying model. Our goal in this paper is to show, through
analysis and simulations, that distributed monotonic eggr
gation is a viable alternative to GMS in terms of being able
to support strong properties.

Due to the space constraints, we present only those defi—,\lf_\

Figure 2. Messages in flow R are distributed
in time and space (different & and z in R, (k)).

IANANAA

F=\J'F;FyCRe4—aqaf—F=UM

/' a f W AR
AN~ ’

f M, —laPdIRIN R,
W

f/' f\w

a7f »R,:UR

v

nitions, theorems, proofs, and elements of the supporting a a, f,m o
chitecture, that are essential to understanding our approa ~ " >"g” ¢ fom S = MR c S
~~— AAAARAAA

2. Mod€

Figure 3. Multicast logic modeled as a graph

2.1. Distributed Flows of transformations on distributed data flows.

many application events at once, and processing at alldayer

in the protocol is done for sets of such events in parallel.

carrying valuev € V tagged with aversionnumberk € K, For example, in reliable multicast we can identify three

exchanged on node € A/, attimet € 7, by instances of flows R, F', andD, defined as follows. Eadlx, ¢, k,v) € R

two software components or protocol layers. Messages atepresents a method call from a layer that receives packets

the same node always flow at different times, and if they from the network to upper layers that implement loss recov-

carry the same versiah they also carry the same value ery. Itis thek-th such call onr, and we can logically think

7 andC must be isomorphfowith N (natural numbers). of v as representing the set of identifiers of all packetsithat
We focus mainly orcontrolflows, where each value rep- received untiltime, e.g.,v = {1..25, 28} (note how we use

resents a protocol state or a decision. To support protocolsa set notation to enable batched processing). For notationa

that stream data at high rates, we focus on batched processzonvenience, we denote this valuefag k) (see Figure 1).

ing, where each value can carry state or decision regarding We assumed that,. (k) contain identifiers oéll packets,

but only formodelingpurposes. Our methodology permits

the introduction of optimizations (such as truncatigk)

to contain only identifiers not previously reported) at a eom

We define adistributed dataflowas a set of quadruples
of the form(z, ¢, k, v); each quadruple representhassage

1The model can be extended to use partial ordering oliVe use total
ordering for clarity of the presentation. All proofs carmyen without much
change. The timestamps are hidden and not accessible td trgyrmdes.

pilation stage, while transforming specifications intoeod used in the aggregation. Valuesarwith different versions
Similarly, each message i carries a valuéd,, (k), the k, at different locations;, may be aggregated over different
set of identifiers of packets that can be delivered to the ap-sets of nodeg.,(k), and different versions,.(k,y). Plac-
plication; valuesD,, (k) flow from the layers implementing ing additional constraints upgn, ando, allows us to dis-
the core synchronization logic to a lower layer that managestinguish between different “flavors” of aggregation, sush a
the receive buffers. Finally, messagesfirmodel requests in-order or guardedaggregations we discuss later.
to forward packets to other nodes. EaEh(k) is a set of In our reliable multicast example, we can identify an in-
pairs(y, i), wherey is the destination that should forward ternal flowS defined as an aggregation ovewusing the set
data to, and is the identifier of the packet to be forwarded. intersection operatan (see Figure 3, bottom-right). Each
Messages in a given flow adéstributedin space £) and value S, (k) is a set of identifiers of packessablein some
time (t). The set of nodes on which messages are appearingrroupy (k), i.e., received by every node in it (note that we
often changes as nodes join or leave the protocol (Figure 2).used the superscriptto refer to the particular membership
In every protocol, we can distinguish the part of the stack function definingS). In many protocols, senders compute
that implements the core logic, whereas other parts might beS,. (k) by collecting ACKs to drive retransmissions, and hi-
involved in tasks such as physical network transmissions orerarchical protocols, such as RMTP, comp8iék) for in-
buffering. In our approach, we express the behavior of this creasing subsets of node$(k). We do not assume any par-
core logic as a distributefinctiongenerating output flows ticular implementation or method of aggregation; we sim-
from input flows; specifically, each value in an output flow ply note thatS materializes at a certain layer in the system.
is expressed as a result of applying some operator to some Similarly, we can identify flowR’, an aggregation oR

set of values at the input. In our exampl&is an input flow;
values inD, F' are calculated from values iR. Each value

is computed from past input; i.e., a value flowing at titne

can only be computed from values flowing at tintes: ¢.

Our protocol as a function distributedin the sense that

a given valueD,. (i) or F.(i), generated on node depends
not only on valuesR, (j) received one, but usually also on
many valuesk, (k) received on multiple other nodgs# z.

using the set union operatar. EachRj, (z) carries infor-
mation about messages received by some nodes, in a certain
group. Multicast protocols often collect such information
issue NAKs to the sender, or to drive peer-to-peer recovery.
It should be noted at this point that although equation (1)
does refer to memberships (k), we are only assuming the
existencef such sets. Unlike in the traditional approaches,
where nodes must actuallyarn global membership as part

Like I/O automata (IOA) [17], our model is functional, of the protocol, in our architecture membershipgk) are
and it may be possible to express it as an extension of IOA.never explicitly constructed and never materialize anyehe
However, it also differs from 10A, in that its purpose is not in the system. We discuss this in more detail in Section 2.5.
only to specify protocol behavior in terms of events, butto The definition of flowS on Figure 3 contains an equation
do so constructively, and in a manner that represents the log R C .S. We use such equations to further constrain the way
ical flow and can be automatically translated into a scalablevalues must be aggregated; we discuss them in Section 2.4.
implementation. To this end, we introduce a set of scalable Transformations. Flow 3 is atransformationof flows

building blocks —aggregationstransformations dissemi- at,a? ... omifforcertain operatorg, : V* — V, mem-
nations anddistributions— and we show how to express the bership functiong,. : Kx {1,2,...,n} — N, and selector
semantics of multicast as compositions of these (Figure 3). functionso, : £ x {1,2,...,n} — K, wherezx € N, the
following holds for each message, ¢, k, v) € j3:
2.2. Building Blocks
Bz (k) = Uy(vr,v2,...,0,) , (2)
Aggregations. Flow 3 is anaggregatioron flow « if for where Vici<p vi = o, (02(k, 7)) - 3)

some associative commutative binaperator® : VxV —
V, and a set of finitenembershifunctionsy,. : £ — P(N)
andselectorfunctionso, : K x N — K forall z € N, the
following condition holds for each message ¢, k, v) € 3:

Q) ayloa(k,y)) - (1)

YEpz (k)

ﬁm(k) =

Intuitively, condition (1) states that each value appegaiim
[can be represented as a result of applying operatora

set of values appearing in Functiony, determines nodes

from which values are taken, and functions determine

Intuitively, these conditions state that every valugliis a
result of applying? to a list of values from!, a2, .. ., o™.
Again, we can distinguish between different flavors of trans
formations by placing additional constraints @pando,.

In multicast, we can identify an internal flolv, a trans-
formation onR,, R’ defined byU M (v1, vo) = 2 x (v2\v1).
Here, component,\v; represents the set of messages miss-
ing at noder, calculated based on the most recent valyes
vy Obtained from flowsk,,, R’, andx x (vq \ v1) represents
the set of forwarding requests that must be satisfied for node
2 to catch up with other nodes. These values are aggregated

the versions of values appearing at those nodes that must b form an internal flowf” representing a global “todo” list.

In a real system)/ could be represented by NAKs and ag- A node isnon-faultyif it eventually begins and never ceases
gregated intd®’ at the sender, and in peer-to-peer protocols, to execute the protocol. We assumefdiestopmodel [20].
differentnodes: might calculate theif, (k) independently. In our multicast example, we would like to guarantee that
Even if forwarding requests are not centrally aggregated, if any node, even a faulty one, delivers packetventually
it is still useful to think ofS, R’, andF”’ as representing the all non-faulty nodes do so. We can express this requirement
global state of the system (this is symbolized by the double by substitutingy = D and¢(v) = (i € v) in equation (7).
border on Figure 3). In Section 2.5, we show how to imple- In an asynchronous system, of course, such property can-
ment thesglobalflows in a scalable, hierarchical manner. not be guaranteed unconditionally [7]; typically, it is cn
Disseminations. Flow 3 is adisseminatiorof « if each tional on the existence of an appropriate failure detedfpr [

value appearing iff appeared previously in; formally, the In practice, the latter is typically approximated by the GMS
following holds for somey, : K — A ando,, : K — K: The property is then achieved by recording the information
about packeton all nodes in some global membership view
Ba(k) =y,) (02(k)) - 4) before any node can deliver it, and transferring state to new

Dissemination also has multiple flavors depending on which members. This ensures that at the tiniebeing delivered,
values fromn are included in3, where, or in what sequence. information about it has beeamemberedn the sense that
that our protocol is delivering packets stable on g€ték). The key to understanding our approach lies in the differ-
Distributions. The concept offistributioncan be under- ~ ent way information isememberedn the system. Instead
stood as the opposite of aggregation; fiévs a distribution ~ 0f relying on global views and state transfer, we require tha

ona if each valuey in a subset’ C o maps to aset’ C V certain flows benonotonicas defined below. Monotonicity
of values ing such that aggregating values frafryieldsy. itself does notimply equation (7), butit does so in a combi-
Formally, we assume the existenced@sftributionfunctions ~ Nnation with liveness properties.
8, : o/ — P(B), forz € N, for which the following holds: Monotonicity. Flow is (strongly) monotonicif mes-
sages with higher versions also have larger values (with re-
Vimear V(M) = @,resm) V(M) (5) spectto a partial ordet onV), as formally defined below:
B=Umear 5(m). © Vimep (K(m) < k(m') = v(m) <v(m')) . (8)

In the abovey(m) is the value ofn, v((xz,t,k,v)) £ v.

Givend, we can define the aggregation that this distribu- In the aboves:(m) is the version ofn, «((x, t, k, v)) £ k.
tion is an inverse of by expressipgandc in terms ofs. We Note that equation (8) doesn’t assume that messages
can then specify the flavor of our distribution by specifying ™' flow at the same location; if equation (8) holds only for
the flavor of this aggregation (details omitted for brevity) ~ such pairs of message$js said to beveaklymonotonic.

In our exampleF is a distribution oveF”; global “todo” Strong monotonicity is a stronger property, and in partic-
lists of forwarding requests are partitioned among reaigie ular, it subsumes total ordering: a strongly monotonic flow
so that those requests can be handled in parallel. Consglition iS consistentwhere aconsistenflow is one in which mes-
(5, 6) ensure that local forwarding decisio#d @t all times ~ sages carrying identical versions also carry identicales
reflect the combined needs of the system as a whdle (

Like aggregations, distributions can also have additional Vimmes (K(m) = k(m') = v(m) =v(m’) . (9)
conditions, limiting how much of the value being distribdite
can be “chopped off” and placed in any individual message.
In our example |2 C R”, which is as abbreviation for the
longerY, exViexIwex {i |3y (v.1) € Fo(k)} C Ry (K),
states simply that a node cannot commit to forwarding pack-
ets that it has not already received.

In our exampleR is weakly monotonic and not consistent,
for different nodes: generate theiRz, (k) values indepen-
dently. Flow.S, however, must be monotonic (this is sym-
bolized by the lettern on the arrow connecting and.sS).
Before explaining how to achieve monotonicity, let’s il-
lustrate its role in a proof that non-faulty nodes delivex th
same packets (equation (7) f@or= D and¢(v) = (i € v)).
Proof (sketch) Suppose that nodec N delivers packet

In our model, strong semantics are expressed by defining” soi € IDI(/{()ijI’ SOT/Gk € K. V\Ille wlantéo Iproye_that ﬁaCh
apredicate : V — B, whereB={true, false}, and stating Pon- al;]ty n(t)a: ec(;]e o eventua yaS(r)] k? verg 1.e., that
that if ¢(v) holds for some at noder in some flowa, then or each suchy, there existé € K suchthat € Dy, (ko).

for each non-faulty node, € A, some value, eventually SinceD is a dis_semination of, all values appe_aring in
flows atzo in o such tha(vo) holds, as specified below: 2 Must have previously appearedinso there exist some
' € N,k € K for which D, (k) = S,/ (k). Now, if our

Vinea (P(v(m)) = Yaoens Inoek ¢z (ko)) - (7) system doesn’t grind to a halt and flawdoesn’t terminate,

2.3. Strong Semantics

new messages will keep flowing fwith versionst” > £'.

At this point, monotonicity ofS' (with respect to the partial
order defined by) ensures that,- (k') C S, (k”); hence,

i € Sy (E"). If the system is live, some of these values are
eventually propagated to flow at each non-faulty,, i.e.,
D, (ko) = Sy (k") for somez” € N and somékg, k" €

K such that” > k. This yieldsi € D, (ko). R

For a full proof, we'd need to formalize progress con-
ditions, ideally using the)V failure detection model [4].
This is hard [5], and is beyond the scope of this paper.

The reader may have noticed that failure handling is not

explicit in our model; indeed, it is implicit in the definitic
of properties such as monotonicity. If nodéails right after
a values, (k) flows at it, monotonicity still constraints val-
uesg, (j) that flow at nodeg # x. Protocols implementing

This means that each node joining the aggregation must ob-
tain at least a partial result of the current or the immedijate
preceding aggregation before its own value can be included.

Theorem 2.1 If 5 is a guarded, in-order aggregation an
using a strongly monotonic, idempotent operaggrand o
is weakly monotonic, thefi is strongly monotonic.

Proof. Let 8, (k), 8./ (k') be any two values that flow ifi
such that < k’. We need to show that, (k) < B, (k).

Let’s partition nodes involved in aggregations into three
groups: letN, = u. (k) \ u. (k) be nodes involved in only
the older aggregationy,, = u. (k) \ p. (k) those only in
the newer one, ant¥, = p,. (k) N o (k') those in both.

Letv, = @, cn, ay(0z(k,y)) be a partial result of the

monotonicity must explicitly address such cases. Indezd, a older aggregation oV, andv, = &, v, @y (0 (k, y)) on
explained in Section 3, each flow in our system is internally N, the aggregate value is the (k) = v, ® vy,. Similarly,
implemented by a small group of clients managed by a localwe haves, (k') = vy @wv;, forvy, = @, n, (02 (K',y))
membership service. Each such group individually handlesandv;, = @, ay(o.(k',y)). What we need to prove

its own failures; each flow is thusdividually subject to the
FLP result [7], so a flow cannot be both monotonic and live.

2.4. Achieving Monotonicity

The key result of this section is Theorem 2.1, which sug-
gests how to achieve monotonicity using simpler properties

and directly motivates the protocol presented in Sectién 3.
Before stating the theorem, we introduce a few definitions.
Aggregationg is in-order if functions 1.2, o are same

for all z € N for which they're defined, and if in addition,

newer aggregations select newer versions, as defined below;

VayenViwex (b <k = ook, y) < ou(K,y) . (10)

This property is easy to satisfy if aggregation@®happens

in rounds, and each node always contributes the latest.valu
A commutative binary operatad is weakly monotonic

if it satisfies only the first, andtrongly monotonidf it also

satisfies the second condition below, for@all ve, v3 € V:

(11)
(12)

Many operators satisfy the above, but with respect to differ
ent orders oV, e.g.,Nis such forv < v’ = v C v/, but for
U, the opposite order must be employeds v =+’ C v.
Aggregations on « is guardedif for each pair of aggre-
gated values with subsequent versiéns k’, and for each
new membeyy participating only in the newer aggregation,
the valuen, (o, (k',y)) contributed byy is no smaller than
either the full or any partial result of the former aggregati
Formally, for eactk < k' such that-3,» k < k” < k’, and
eachy € u, (k') \ ps(k), the following holds:

EJNpQ,uaE(k) (ay(aw/(klvy)) > ® O‘Z(Uw(kay))) .
zEN,

v Sv2 = V1 QU3 < V2 Qs
V1 QU < vy .

(13)

e

can now be rewritten as, ® v, < vj @ v,,. We prove it by
showing that (a}, < v;, and (b)v,®v, < v],. Specifically,
we prove it through the following chain of inequalities:

(i) (i1) , (#4%) , ,

Vo®Up = V1,0 QU < 1,9V, < v, Quy, . (14)
In the above, (i) follows from the idempotence®f Then,
(i) and (iii) follow from (a) and (b), respectively, comhad
with the monotonicity ofp. We assumed thaY¥,, NV, and
N,, are non-emptyN, # 0 holds becausg is guarded. For
N, = N, = (), the desired result follows from (a) alone.
If only N,, = 0, thenvy ® v, < v follows from strong
monotonicity of®, and thenv, < v, from (a). Finally, if
only N, = @, (b) reduces ta, < v/, as a special case, but
the reasoning behind it remains the same as below.

Part (a). Sincé < k’, andg is an in-order aggregation,
ox(k,y) < o (K',y). Sincea is weakly monotonic, we get
ay(oz(k,y)) < ay(ow (K, y)). Since® is monotonic, we
can combine inequalities for ajle N;; this yieldsv, < vj,.

Part (b). The fact that is a guarded aggregationimplies
that for everyy € NV, there existsVy C (k) = Ny U Ny
such tha@yeNg ay (02 (k,y)) < ay(o (K, y)). Merging
these inequalities for all € N,, yieldsv!, on the right side.
Since® is idempotent, the left side becomes an aggregation
overnN, = UyeN” NY. Now, sinceN, C (k) and® is
strongly monotonic, so excluding values fram(k) \ N,
could only have made the result larger, the left side is large
thanv, ® v,. Thus, we can conclude thag ® v, < v),. B

In our example R is weakly monotonic, but not consis-
tent, and operatan is strongly monotonic and idempotent.
The theorem guarantees thfais monotonidf only aggre-
gation onR is in-order and guarded. As explained in Sec-
tion 2.3, this suffices to achieve atomic delivery semantics

2.5. Hierarchical Composition C)-»-~-----~~-~protoco|

Pa S -flows
To conclude the presentation of our model, we now turn C
to scalability. For the sake of brevity, we focus on aggrega- P3 st A oy} f artial order
tions, as the most interesting (and challenging) case.rOthe) R
flow types can be handled in a similar manner. The primary Pz P3 /5\
result is of this section is Theorem 2.2, which underpins our Raf R.,f Rj Rj Rf R t

hierarchical delegation approach presented in Sectian 3.1 - Soaw K

A set of flowsH is anaggregation network there exists /1 r\‘\
a well-founded strict partial ordet on H, such that every Ra Ry Re Ra R
non-minimal elemen® € H is an aggregation on the union
of its children where thechildrenof a flow 3, denoted’ (3),

are its direct predecessors, formally defined as follows:

Figure 4. A tree of aggregation protocols and
the hierarchy of internal flows between them.

CB)={a€H|a<BATyena<y<pB}. (15)
performed on past value#l, remains well-defined, and all
We assume that all aggregations are using the same operat@ur assumptions still hold. Only finitely many aggregations
and are of the same flavor (e.g., all of them are monotonic).could happen in a finite time because we have assumed that
The minimal elements in an aggregation network are called7 is isomorphic withN. Each involves finitely many nodes.
sourcesthe maximal elements are callsithks and the sets For each of those aggregations, we can construct a finite tree
of sources and sinks are denotell andT#, respectively. as shown above, and further truncatg to leave only those
We assume potentialipfinite networks, in which anon- flows we encountered in the construction of those trees. The
minimal 8 can have infinitely many childrefC (5)| = oc. resulting network/ is finite, so finally, we can apply Theo-
rem 2.1 inductively, starting from the sources, and working

Theorem 2.2 Each sink in an aggregation netwoik is an towards(3, and eventually, we obtaifi, (k) < 3,/ (k). B
aggregation over the union of all sources . If in addi-

tion, all sources are weakly monotonic, and all non-minimal
0 € H are guarded, in-order aggregations on their respec-
tive JC(8) using a strongly monotonic, idempotent opera-
tor ®, then all sinks3 € T# are strongly monotonic.

The practical significance of this theorem is as follows.
Suppose that small groups of nodes run internal aggregation
protocols. For example, machineandb run protocolP; to
aggregate their local valuég, andR;, (Figure 4) and nodes
¢, d, ande run another protocab, to aggregatér., R4, and

Proof Let 3, (k) be any value appearing in a certain sink ft. The aggregate values generated by protofolsnd P

3 € H. We'll construct a value tree, with nodk (k) atthe form internal flowsS" andS?, respectively. A higher-level
root, in which each node has at most finitely many children, ProtocolP; aggregates those values, plus values from node
the value in each node is an aggregation of values in its child &7, to produce flowS, consumed by some componeft
nodes, and the hierarchy reflects the partial ordeHome ~ The hierarchy may, of course, be deeper, and since this is a
proceed inductively. LeT’ be any partially constructed tree dynamic system in which nodes may join, leave, or fail, the
andlet3’, (k') by aleaf node in it such tha isn'tasource. St of nodes running each protocol may change, and internal
Equation (1) yields3,/ (K') = &,,¢,, (k) (T (K',y)), protocols can be started and terminated as the system grows

so we create one child for evegye 4, (k), and place value and shrinks. Theorem 2.2 ensures thqt as long as proto_cols
ay (04 (k,y)) in it. Indeed, the parent is an aggregate of its '€ well-ordered, and.each of them satlsfl_es the z_:\ssumptlons
children, by definition we have, (k)| < oo, and since ofThe.orem 2.1, flows is s?ron_gly monotonic despite churn,
is a network, we can assume < 3. We repeat this for all anq yv|th_qo global cogrdlnatlon needed bgtween_protoco!s.
nodes. If this were to go on forever, then by Konig’s lemma, Th|_s justifies the archltecture we propose in Section 3.1, in
there would be an infinite descending path in the tree, whichWhich each protocolis controlied by a separate membership
would yield an infinite descending chain of flows, and this is Service, and is managed independently of other protocols.
impossible since the order di is well-founded. Knowing
that the tree is finite and all leaves are sources, by associa-
tivity of ® we can represert, (k) as a finite aggregation of
values in sources. This concludes the first part of the proof.

Now, take any pair of values, (k), 8./ (k'), appearing in
messagesq, m’, and lett be the later of the times at which
m, m’' appear. Letd; be a network obtained by truncating
every flow inH at timet. Now, since aggregation is always

3. Architecture application--f__— |} client delegation
send/recv----- ""Hl%l -------- =msg channel authority &

3.1. Hierarchical Delegation | " ian AL

working .

. . . . component
In this section we present a practical approach to creating -

protocol hierarchies such as those shown on Figure 4. values-~
We begin by discussing the internal structure of the client gata flow

protocol stack. The stack includes three components shown component |

on Figure 1, including thevorking componentepresenting

lower layers and thdata flow componen® implementing Figure 5. The structure of the client’s protocol

the core logic. Interaction witl? is done via messages that stack: P's code is bootstrapped fromthe DA.

contain values tagged with version numbers (Figure 5).
Initially, P contains no actual protocol logic, and doesn’t

delegate code

! description of P’s
“delegation protocol stack

know what to do with the values it receives; it only contains 3t flow —values “values 777 |2,
abootstrap codéor contacting alelegation authorityDA). component HY I iff '
Upon request, the DA returns a serialized descriptioR’sf aggregation--- P \‘g { vv,..v"al']ts;fi:;
stack. It hands out exactly the same code to all of its clients .

The are two classes of DAs: theot authority(RA), and aggregate, | ue P C=—— _recursively
all the rest. The RA returnsraot codethat doesn't involve collect R | embedded

any interaction with other nodes; it simply consumes values token ring
performs internal computations, and sends results back on
the same node on which it is running. This code implements token
thedecisionlogic. It runs at a single node in the system at a
time (except for brief periods during reconfiguration).

Aregular, non-root DA returnsggregatiorcode that im- Figure 6. The internal structure of a data flow

plements a token ring protocol running among all clients component P running the aggregation code.
boostrapped from this DA (Figure 6). The aggregation com-

ponent described in Section 3.2 uses the token ring to aggre-

join membership

~~~~~~

transport"' membersr:\ip membérship view

gate and disseminate values in this local client group;rit co Y ‘DA1
responds to a single protocol in the hierarchy on Figure 4. P1 M E E MS,
The group uses a private, local membership service (MS) to b + E EW‘
self-organize. A single DA manages only a small subset of d M E @ @MsZ
clients, so the local MS shouldn’t experience a heavy load. P + E B DA;
The code for contacting a local MS, including addresses and 3 M E = @ @MS&;
all parameters, is embedded in the code returned by the DA. P E ﬁ 2
P’s aggregation stack includes a (recursively embedded) 4 l RA

data flow componen®’. Normally, P’ remains inactive. It
can prefetch code from its own DA, but doesn't activate the ~ Figure 7. A stack of aggregation components.
downloaded code, anll doesn’t attempt to interact with it.
P’ stays dormant until the local node becomes the leader of
the token ring, at which point it boostraps itself and starts
communicate withP?. Once the local node ceases to be the
leader,P’ is deactivated and all its runtime state is disposed. F LDV, j g MS,
The above pattern can repeat recursivélycontains an L % : : - DA g
embedded”, which containg”’”’, and so on (Figure 7). If
the node happens to be a leader in all rings it is part of, this
recursion terminates with the inner-most component boost-
rapped fromRA. Otherwise, the inner-mogt; is running
aggregation code, while the embeddgd stays dormant.
Delegation authorities form a hierarchy: each DA except
for RA has aparentDA. In the code returned by a DA, the
embedded component is configured to bootstrap from DA
As a result, a hierarchy of token rings emerges (Figure 8).

to other
nodes...

Figure 8. A hierarchy of token rings managed
independently by their regional DAs and MSs.



Each data flow componentin the protocol stack, and each
ring in the hierarchy, is independently bootstrapped friam i
own DA and independently managed by the associated MS.
The only form of cross-layer interaction is, when a data flow
component’, on a client activates, disposes, or exchanges
values with the componerit,, recursively embedded in it.
Different MSs and DAs never interact with one another.

The hierarchy of DAs emerges via the following process.
First, the RA is created, and configured to return root code.
A single top-level DA is also created with its associated MS;
the aggregation codg it returns is configured to bootstrap
its embedded’ from RA. All nodes bootstrapped from the
top-level DA become members of the top-level ring and one
of them always runs the root code. This lays the foundation.
The process now continues inductively, by passing around
invitations(the first invitation created by our top-level DA).

Aninvitationis a small packet containing three elements:
a serialized description of a working component (Figure 5),
the list of all aggregation rules (specifications for the eom
ponent named “aggregation” on Figure 6), and the bootstra
code for the DA that issued the invitation. Invitations can b
passed around through any channel, for example by email.

An invitation can be consumed directly by a client, by as-
sembling its parts into a protocol stack (Figure 5, Figure 6)
Alternatively, the invitation can be used to setup a new DA
with the DA that issued the original invitation as its parent
The new DA can now issue its own invitations, by replacing
the bootstrap code in the parent invitation with its own.

The process of passing invitations and setting up the hi-
erarchy of DAs could be performed manually, by adminis-
trators, similarly to how one manually sets up the hierarchy
of DNS servers. It could potentially also be automated, with

the DAs detecting one another via gossip and using peer-to-
peer techniques to form hierarchies. The discussion of suchv, <
techniques is beyond the scope of this paper. However, Note, & candidate can replacawith
that our model, due to its decentralized nature, places VelYyacome a regular member. |

transform f‘ bvjclist
M=R’\R
-CO-Tf disseminate ﬁ'_—CO-Tf'
o[ emresmewny_ £
o Bsswresme w21
M p—
extra client rules  regular aggregation rules root ruIe)s

Figure 9. Example aggregation rules (partial)

Values are aggregated by passing tokens around the ring.

The ring leader puts a value from its input bucket in a token,

and tags it with versio = (i, ), wherei is the number
of the current membership view, arids the number of the
current aggregation round in the view. Then, each node the

token passes by replaces vatuia the token with(v ® v'),
wherev’ is the value from its input bucket. When the token
Preturns to the leader, the aggregated value in it is placed in

an output bucket, and in the next round, it is disseminated
around the ring, and placed in output buckets of other nodes.
The behavior just described oversimplifies: it covers the
case of aegularmember. A new node starts asandidate
It can read values from tokens, or participate in non-guarde
aggregations; by doing so it can catch up with others (obtain
state transfer, participate in loss recovery, etc.). Tmbex
regular, a candidate must do the following (except when all
members of the view are candidates, and are automatically
promoted; details of the recovery phase omitted for brgvity
Whenever a token passes through a candidate, carrying a
partial resul of the current and some, even a partial result
" of the preceding aggregation, the candidate tests whether
" holds, where)” is the candidate’s value. If it does,
(v®v"), but it doesn’t yet
nstead, it records versiofi

v

few requirements, and is especially easy to support by SUC'}he current aggregation, and waits for the next round. Only

adaptive solutions, for in the light of Theorem 2.2, it sudfic
that DAs form a tree and never change their parents.

3.2. Aggregation Component

Aggregation components (Figure 7) interact usrafue
bucketsone bucket for each input or output flow (Figure 9).
When a value arrives from a component higher or lower in
the hierarchy, it goes into an input bucket, and when a value
in any output bucket changes, itis sent out. Internallyyeal
changes triggetulesthat update other buckets. All compo-
nents except the root ruagularrules, and the lowest-level
ones additionally ruglientrules. The root runsot rules.

Due to the limited space, in the remainder of this section

after a new token arrives with the result of this aggregation
(k), the candidate promotes itself to the regular statuself th
node later finds out that it's been dropped from the view, it
degrades itself to the candidate status. The process of pro-
moting and degrading is done locally, and does not require
any kind of coordination with other nodes or with the MS.

The above protocol ensures that aggregation is guarded;
a node does not participate in it until it learns at leastighrt
results of the immediately preceding round and ensures that
the guarding condition holds. Once a node finds out that its
local value affected the result, this is no longer needed.

As noted in Section 2.4, this aggregation is in-order be-
cause it is done in rounds, and values placed in the buckets
are always those with the highest versions ever received. If

we discuss only rules for a monotonic, guarded aggregationthe aggregation operator is strongly monotonic, then mono-

Other types of rules are implemented in a similar way.

tonicity of the aggregated flows follows from Theorem 2.1.



4. Performance — 200
) n=32768
. . | § 160
As noted earlier, for reasons of brevity, the scope of this ® \-’-nﬂm%

section is limited; we focus on what we believe are two most | 3 120 ens10
critical factors affecting the performance of our systehne t § 0.80
latencyof monotonic aggregation in the presence of churn, | § 0.40 -.""\.; ! "'+T”:54 :
and thespace overheadf value representation. To measure 0 s 10 - 20 -
the significance of these factors in their purest form, undis MTTR=Es MTTE (s)

turbed by performance of other mechanisms, such as packet
forwarding or state transfer, we use simplified protocols.

To evaluate truly large scale scenarios, we had to resort
to a discrete event simulation, but to make our results as re-
alistic as possible, only the transport and membershig$aye
were simulated; clients still communicate via asynchranou

Figure 10. Phase duration as a function of
system size and mean time to failure (MTTF).

messages, establish connections, form rings based on mem-| £ 1.5 T3

bership updates, and serialize transmitted packets. §eera ‘Z’ —e—decision latency /"f g

network latency is 10ms, and the rings circulate 10 tokens/s g 13 ¢ /:/' — 2 E
.. § 11 1 é

4.1. Aggregation in the Presence of Churn g oo L"./-.-/token size , S

In the first experiment, we cause clients to synchronously 0 200 400 600 800 1000

enter subsequent phases of processing. The integer-valued p=95% transactions/s n=10K

input flow L informs the protocol of the latest phades k)

entered by each C”ent, and the Output fldinstructs each Figure 11. Decision |atency and token size as

client which phaséV, (k) to execute next. The protocol can functions of the application event rate (TPS).

be concisely written a8’ = min L; N = L’ + 1. Mono-

tonic aggregatio,’ computes the last phase entered by the

slowest client. After incrementing, this is the last phdm t -

. ) ; ) = 16 : : : - 32
anyone else is permitted to enter. Qhents enter their ghase > -=—decision latency / )
instantly, but they do so at differenttimes dueto asyncpron | § -2 " l././’:_’___‘, 27 =
and churn. We measure the mean interval between entering| & 0.8 22 @
subsequent phases as a function of system size and churn. S 04 :7/://:// 17 E
All clients fail and reboot with exponential distributiotiye § ' T8
average time to failure (MTTF) is a parameter, and the mean | © ‘ ‘ ’ ‘ 12
time to reboot is 5s. Rebooted clients are delayed (aggrega- 4 32 256 2048 16384
tion is guarded). The token ring size is 8 nodes on average. | 1000TPS number of nodes p=95%

The results on Figure 10 show that latency grows as a
logarithm of system sizen. It takes about 4 additional to- Figure 12. Decision latency and token size as

ken rounds for each layer in the hierarchy (2 rounds each functions of system size (1000 events/s).

way), for a wide range of churn rates. Even under extreme

churn (MTTF=10s), latency grows by a mere 20%; this is

because aggregation in different parts of the system is done .

in parallel, unaffected rings still make progress, and de- 4-2- The Overhead of Value Representation

lays caused by membership changes are averaged out across

the system. It is worth noting that with 32K nodes and In the preceding experiment, all values would fit in a con-
MTTF=10s, the system undergoes about 4K membershipstant amount of space. In many real protocols, this is not so;
changes a second; in such scenarios, approaches based @alues could occupy much space in the tokens, and to bound
global membership would suffer from excessive reconfig- resource usage, we have to limit token sizes, truncating val
uration. In our system, reconfiguration after membership ues that cannotfit. As a result, smaller batches of events can
change normally takes 2-3 rounds, but each failure disruptsbe handled in parallel, and the system slows down.

on averag®(1), and in the worst cas@(log n) rings. The To illustrate this, in the second experimentwe run a sim-
benefits of hierarchically decomposing the GMS into mul- plified commit protocol: each client receives transactiains
tiple MSs are thus evident. a fixed rate, and independently decides to commit or abort,



with probability adjusted so that a fractiprof transactions % 095 25
commit globally. Values in input flows§', A are sets of iden- z 0.85 ’.__.__.—o——o-—*—"‘*i 20 2
tifiers of transactions that individual nodes wants to commi é ’ rr —e—decision latency 15 g
(C(k)) or abort (A, (k)). Output flowsC’, A’ carry global = 075 10 @
decisions. An internal flowD records identifiers of transac- ;g 0.65 4L i s 2
tions for which decisions have been made. The protocolcan | & . r,r | +E°ke“ S'Zf | o 2
be written ag”’ = (C\D); A’ = J(A\D); D = C"UA’. '
Aggregations”’ and A’ are guarded and monotonic. 0 0.2 04 0.6 08 1
) L . .| 1000TPS probability of commit n=4K

Each value, as a set of numeric transaction identifiers, is
encoded as a tupléay, b1), (a2, b2), ..., (ar, bx), c). Each .
pair (a;, b;) represents a séti;, a; + 1,...,b;}. The num- Figure 13. Latency and space overhead when
ber k of these pairs is limited by a parametg,, = 100. aggregated data is not truncated ( kax = 0),
The interpretation is as follows: for evety< ¢, element with 4096 clients and 1000 transactions/s.
is in the set iff it is within any of the rang€s,, b;), whereas
fori > ¢, this is undefined. Operatorsandn are modified —
accordingly to correctly operate on such “truncated” sits. 2 13 I —e—decision latency ‘3‘ ¢ =
multiple such values are combined usingr N, informa- § 11 \ —m-token size 39 g
tion is often lost in the process because some of theranges| & o8 &
(ak, br) don't fit within the limit k,,,,.. andc may become S 24 ¢
lower. Because of this, a single aggregation may no longer § 2 %
suffice to propagate all information from clients to the root T 0. , 16 ©

In the first scenario in this experiment, we fix the commit 5 10 15 20 25
probability atp = 95% in a group ofn. = 10000 nodes, and 1000TPS tokens/s n=4K

vary the transaction rate, measuring the time until the slow
est client commits or aborts (Figure 11). As expected, token  Figure 14. Varying the token circulation rate.
size grows linearly: the number of numeric rangesb; ) is
proportional to the number of events to reportin each round.
Latency is virtually unaffected. Processing each tokeagak
~200us (on Pentium 4, 3.8 GHz); 75% of that is the cost of
serialization. As tokens grow, more CPU is needed, but not
extrarounds. Only when the event rate exceetle50 TPS,
kmaz IS reached, values are truncated aggressively, transac-
tions pile up, and latency shoots to infinity (not shown).

In the second scenario, the rate is fixed at 1000 TPS, still
p = 95%, and we vary the system size (Figure 12). Latency | 1000TPS
and token size grow only logarithmically, and the latency is
nearly the same as in the preceding experiment. Again, we Figure 15. Varying average ring size (fanout).
find that as long as the average value that’s being aggregated
remains beneath thg, ... threshold, the system responds to
the increased load by increasing the token sizes, and latenc
remains virtually unaffected. A&32K nodes we're starting
to approactk, .., and the system becomes saturated; ifwe _ T0 conclude, we look at the effects of varying token rates
scale further, transactions start piling up. The system-ho  (Figure 14) and ring size (Figure 15). Having several to-
ever, does not collapse; it keeps aggregating at a stealy rat kens chasing each other (e.g:12 tokens/s in an 8-node

In the last scenario, we relax token sikg,,.. = oo, and fing W_'th ~+10ms latency) results n redur_1dantw0_rk. Wrong
we varyp with other parameters constant, to find how much fing sizes also hurt Iatency, for elth_er hierarchy |s_deep, 0
data would otherwise be truncated (Figure 13). We find that 't takes long to aggregate in each ring. A bad choice of ha-
when transactions commit at randop-£€ 50%), values can rameters can affect performance by a factor of 2. Replacing

occupy up to 12 KB/token: with 10 tokens/s, this meaits rings \{vith trees may partia.lly aIIevia}te the issue. In picgt
Mbps per-node control traffic in every ring, so the overhead ensuring that the overall hierarchy is bglanced appears to_b
can be fairly substantial, and truncating is necessaryeadh r a b|ggfer challenge. Aithough our archltectl_Jre IS er_X|bie, '
systems, each ring could adjust its own token ratefang, does_n t aIIow_protocoIs to changg parents in the hierarchy,
adaptively, based on the measured latency and bandwidth. making algorithms for self-balancing trees harder to apply

2.2 35
% —e—decision latency -

12 \ —#-token size / PN >

1.3 W
1 Vv - [

0.7 T T

0 4 8 12 16 20 24 28 32
average ring size n=1K

N

[ N
n %]
token size (KB)

decision latency (s)

4.3. Hierarchy Depth and Aggregation Rate

10



5. Related Work 6. Conclusions

Our work is closely related to, and was strongly inspired Ve proposed a new approach to building distributed pro-
by the rich prior literature on 1/O automata (I0A) [17]. IOA  tocols with strong properties that does not rely on GMS, and
pioneered an approach, in which distributed protocols arethat combines ideas from areas such as I0A, data flows, and
modeled as components that operate on and transform everf€nsor networks. We developed a theory to reason about our
streams. It's been successfully used to specify a number offodel, a supporting architecture, and we briefly reported on
protocols [16], and reason about composition [11], also in the performance of our initial prototype. Our approach ap-
real systems such as Ensemble [9]. TLA [13] is another ma-Pears to be fairly general, scalable, and very churn-totera
jor model in this space; it has also been explored in the con-
text of composition [1], and used to formalize Paxos [14], 7. Acknowledgements
but we're not aware of prior work on applying TLA to flows.

Whereas |OA has focused on the compositional structure  This work was supported in part by grants from AFOSR,
of protocols within individual endpoints, our work retams ~ AFRL, NSF, and Intel Corporation. We'd like to thank Rob-
similar functional flavor, but with a focus on flows. By elim- bert van Renesse and Daniel Freedman for their comments.
inating the node-centric aspects of IOA, we gain flexibility
that can be exploited to create freedoms: freedom to createR ef er ences
a hierarchy independently from the way the protocol aggre-
gates and disseminates, to batch events and exchange infor-1; m. Abadi and L. Lamport.
mation in ways convenient to the runtime system. Although TOPLAS 1995,
this paper does not focus on implementation, systems based[2] A. Banerji et al. Web Services Conversation Language
on our model can use these freedoms to achieve scalability (WSCL). http://www.w3.org/TR/wscl10/
and to adapt to the properties of their runtime environments  [3] H. Chan, A. Perrig, and D. Song. Secure hierarchical in-

High-level specifications similar to our dataflow notation hetwork aggregation in sensor networkiCS 2006.

. . [4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
have been used for workflow modeling [10] and web service failure detector for solving consensWACM, 1996.

choreography [2], but generally, specifications derivedifr [5] G. Chockler, I. Keidar, and W. Vitenberg. Group communi-

process calculi are too weak to express strong properfies [8 cation specifications: A comprehensive studyCM Com-
Work on declarative networking [15] shares some of our puter Surveys, 33(4):1, pp. 43, Dec 2002001.

goals, such as support for concise, high-level protocatspe  [6] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and

ifications. However, their architecture, unlike ours, has n - XAV }]’Vgiifseéhz?wﬁ“f i;ﬁgissam% Wbésugafé’f;gfﬁ?nzggsib”

been designed fr_om ground up t(_)_support hl_erarchlcal, scal- ity of distribu{ed consensds with one faulty proce3ACM,

able protocols with strong reliability properties, and we a

. . . 32(2):374-382, 1985.
not aware of any attempts to use their work in this context. [8] R. Fuzzati and U. Nestmann. Much ado about nothing?

Conjoining specifications.

The mechanisms they use are also very different from ours. http://www.brics.dk/NS/05/31995.
There has been much research on data flows in areas such[9] J. Hickey, N. Lynch, and R. van Renesse. Specificatiods an
as VLS| or DBMS, but also publish-subscribe [6] or routing proofs for ensemble layer§ACAS 1999.

[18]; the advantages of asynchronous, parallel and pipelin [10] IBM et al. Business process execution language for veeb s
processing are well understood. Flows encountered in those;, vices (BPEL).http://iwww.ibm.com/developerworkg007.
. . . ] B. Jonsson. Compositional specification and verifaaof

systems, however, aremistributedin the same sense as in distributed systemsTOPLAS 1994
our work; they are sequences of events, and transformationg12] |. Keidar, J. Sussman, K. Marzullo, and D. Dolev. Moshe:
on them are performed locally. We're not aware of any prior A group membership service for wariBOCS 2002.
attempts to combine data flow processing with I0A style of [13] L. Lamport. The temporal logic of action§OPLAS 1994.
modular specifications in a manner similar to our approach. [14] L. Lamport. The Part-Time ParliamentOCS 1998.

There has been much prior work on aggregationin sensor[15] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscand

. . . I. Stoica. Implementing declarative overlay@OSP 2005.
networks, even with stronger properties [3], butthe kinds 0 1] N Lynch. Distributed algorithmsviorgan Kaufmann1996.

properties targeted by those systems revolve mostly aroundj17] N. Lynch and M. Tuttle. Hierarchical correctness pmofifr

security, and we are not aware of any example uses of these  distributed algorithmsPODC, 1987.

techniques in protocols such as reliable multicast. [18] R. Morris, E. Kohler, J. Jannotti, and M. F. KaashoekeTh
Much research focused on making GMS scalable, in par- click modular routerSOSE 1999. o

ticular also through the use of hierarchy [12], but scalabil [19] K. Os.trOWSl.(" K. B|rrT1a_n, D. POIGV’ and J. Ahnn. Quicksil

o " . . ver Live Objects http://liveobjects.cs.cornell.eduz008.

ity in traditional GMS-driven protocols, such as virtuahSy 50} F. schneider. Byzantine generals in action: impleringnt

chrony, is ultimately limited by the fact that each member of fail-stop processorsTOCS 1984.

the group must ultimately receive the complete global view.

11



