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Abstract

Strong reliability properties, such as state machine repli-
cation or virtual synchrony, are hard to implement in a scal-
able manner. They are typically expressed in terms of global
membership views. As we argue, global membership is non-
scalable. We propose a way of modeling protocols that does
not rely on global membership. Our approach is based on
the concept of a distributed data flow, a set of messages
distributed in space and time. We model protocols as net-
works of such flows, constructed through recursive delega-
tion. The resulting system uses multiple small membership
services instead of a single global one while still support-
ing stronger properties. Our work was inspired by the func-
tional approach to modeling distributed systems pioneered
by I/O automata. This paper focuses on the basic model. In-
ternal details of our system architecture and a compiler that
translates protocols from our data flow language to real ex-
ecutable code will be discussed elsewhere.

Keywords: strong reliability properties, I/O automata, dis-
tributed data flow, scalable protocol, monotonic aggregation

1. Introduction

We believe there is a need for large-scale replication and
reliable multicast; for example, in data centers, reliablemul-
ticast groups including thousands of nodes could store dy-
namic configuration state, such as partitioning of resources
across applications. They could be used toconsistentlyand
reliably distribute security policy updates, keys, or patches,
thus enabling fast and well-coordinated response to a threat.

Our work is focused on distributed replication protocols,
in which nodes can dynamically join, leave, or fail by crash-
ing, and where churn could be high. This is typical of peer-
to-peer scenarios, but it can also happen in data centers dur-
ing load surges: timing-out connections can be perceived as
failures. Churn tolerance is key to stability in such systems.

The term “strong properties” in this paper refers to quasi-
absolute [4, 7] properties such as virtual synchrony, atomic

broadcast, commit, transactions, state machine replication,
or consensus with dynamic membership. In the current im-
plementations of protocols that offer such properties, nodes
are controlled by membership views generated by aglobal
membership service(GMS), which can be external, or a part
of the protocol itself, and strong guarantees are expressedin
terms of the global views. Our work wouldn’t be applicable
to, for example, gossip protocols: these avoid global views,
but whereas we achieve strong properties, they typically are
limited to weaker (convergent) ones.

GMS-mediated reliability can be problematic. First, as a
system grows in size, the frequency of membership changes
grows proportionally; eventually, this can become a serious
burden on the members. Second, in protocols such as vir-
tual synchrony every change triggersO(n) work: anO(n2)
cost that rapidly becomes prohibitive. Batching changes is
an obvious option to consider, but doing so raises other con-
cerns: in many protocols, progress can’t occur if a member
becomes unresponsive until the GMS excludes it from the
view. These factors compel a rethinking of the relationship
between membership and reliability, and suggest that glob-
ally visible, consistent, and incrementally reported member-
ship should not be a part of large-scale reliability models.

We propose a new approach, in which strong properties
emerge in the network in a decentralized, hierarchical man-
ner, and the role traditionally played by a single, monolithic
GMS is hierarchically decomposed and blends into the hi-
erarchy established by a scalable protocol.

Our technique relies on a new concept of monotonic ag-
gregation, which records all progress made by the protocol
in a hierarchical distributed flow of values that describe sys-
tem state, global and local decisions. Membership changes
are viewed as perturbations that disrupt the integrity of this
flow. The flow is designed to tolerate such perturbations by
locally recreating information that has been recorded in it.

This paper makes the following contributions.

• We propose a new model that allows the global behav-
ior of a distributed protocol to be expressed in a purely
functional style, as a graph of distributed functions that
operate on sets of messages spread across the network.
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We introduce basic building blocks, and illustrate their
use by dissecting a simple reliable multicast protocol.

• We explain how strong properties map to the properties
of our basic building blocks; in particular, we explain
howmonotonicity, a core concept in our approach, can
be used to reliably record protocol state. We introduce
and prove theorems characterizing the conditions un-
der which monotonicity can be achieved using simpler
properties, and how it can be hierarchically composed.

• We present an architecture that allows flow hierarchies
to be created through recursive delegation and employs
multiple small membership services to support a large
group of clients. Our approach has the additional ben-
efit of decoupling the core protocol semantics from the
process of establishing and maintaining the hierarchy.

• We discuss initial performance results with a real pro-
tocol stack running on top of a discrete event simulator,
focusing on two key factors affecting the performance
of monotonic aggregation. The results suggest that our
approach can scale well and tolerate high rate of churn.

Our prototype system, called Quicksilver Properties Frame-
work, includes a compiler that translates protocol specifica-
tions from data flow notation similar to that on Figure 3 into
executable code, but due to limited space we omit details of
the language and system internals, and we focus on the un-
derlying model. Our goal in this paper is to show, through
analysis and simulations, that distributed monotonic aggre-
gation is a viable alternative to GMS in terms of being able
to support strong properties.

Due to the space constraints, we present only those defi-
nitions, theorems, proofs, and elements of the supporting ar-
chitecture, that are essential to understanding our approach.

2. Model

2.1. Distributed Flows

We define a (distributed data) flowas a set of quadruples
of the form(x, t, k, v); each quadruple represents amessage
carrying valuev ∈ V tagged with aversionnumberk ∈ K,
exchanged on nodex ∈ N , at timet ∈ T , by instances of
two software components or protocol layers. Messages at
the same nodex always flow at different times, and if they
carry the same versionk, they also carry the same valuev.
T andK must be isomorphic1 with N (natural numbers).

We focus mainly oncontrolflows, where each value rep-
resents a protocol state or a decision. To support protocols
that stream data at high rates, we focus on batched process-
ing, where each value can carry state or decision regarding

1The model can be extended to use partial ordering onT . We use total
ordering for clarity of the presentation. All proofs carry over without much
change. The timestamps are hidden and not accessible to any of the nodes.
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Figure 3. Multicast logic modeled as a graph
of transformations on distributed data flows.

many application events at once, and processing at all layers
in the protocol is done for sets of such events in parallel.

For example, in reliable multicast we can identify three
flowsR, F , andD, defined as follows. Each(x, t, k, v) ∈ R

represents a method call from a layer that receives packets
from the network to upper layers that implement loss recov-
ery. It is thek-th such call onx, and we can logically think
of v as representing the set of identifiers of all packets thatx

received until timet, e.g.,v = {1..25, 28} (note how we use
a set notation to enable batched processing). For notational
convenience, we denote this value asRx(k) (see Figure 1).

We assumed thatRx(k) contain identifiers ofall packets,
but only formodelingpurposes. Our methodology permits
the introduction of optimizations (such as truncatingRx(k)
to contain only identifiers not previously reported) at a com-
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pilation stage, while transforming specifications into code.
Similarly, each message inD carries a valueDx(k), the

set of identifiers of packets that can be delivered to the ap-
plication; valuesDx(k) flow from the layers implementing
the core synchronization logic to a lower layer that manages
the receive buffers. Finally, messages inF model requests
to forward packets to other nodes. EachFx(k) is a set of
pairs(y, i), wherey is the destination thatx should forward
data to, andi is the identifier of the packet to be forwarded.

Messages in a given flow aredistributedin space (x) and
time (t). The set of nodes on which messages are appearing
often changes as nodes join or leave the protocol (Figure 2).

In every protocol, we can distinguish the part of the stack
that implements the core logic, whereas other parts might be
involved in tasks such as physical network transmissions or
buffering. In our approach, we express the behavior of this
core logic as a distributedfunctiongenerating output flows
from input flows; specifically, each value in an output flow
is expressed as a result of applying some operator to some
set of values at the input. In our example,R is an input flow;
values inD, F are calculated from values inR. Each value
is computed from past input; i.e., a value flowing at timet

can only be computed from values flowing at timest′ < t.
Our protocol as a function isdistributedin the sense that

a given valueDx(i) or Fx(i), generated on nodex, depends
not only on valuesRx(j) received onx, but usually also on
many valuesRy(k) received on multiple other nodesy 6= x.

Like I/O automata (IOA) [17], our model is functional,
and it may be possible to express it as an extension of IOA.
However, it also differs from IOA, in that its purpose is not
only to specify protocol behavior in terms of events, but to
do so constructively, and in a manner that represents the log-
ical flow and can be automatically translated into a scalable
implementation. To this end, we introduce a set of scalable
building blocks –aggregations, transformations, dissemi-
nations, anddistributions– and we show how to express the
semantics of multicast as compositions of these (Figure 3).

2.2. Building Blocks

Aggregations. Flow β is anaggregationon flowα if for
some associative commutative binaryoperator⊗ : V×V →
V , and a set of finitemembershipfunctionsµx : K → P(N )
andselectorfunctionsσx : K ×N → K for all x ∈ N , the
following condition holds for each message(x, t, k, v) ∈ β:

βx(k) =
⊗

y∈µx(k)

αy(σx(k, y)) . (1)

Intuitively, condition (1) states that each value appearing in
β can be represented as a result of applying operator⊗ to a
set of values appearing inα. Functionµx determines nodes
from which values are taken, and functionsσx determine
the versions of values appearing at those nodes that must be

used in the aggregation. Values inβ with different versions
k, at different locationsx, may be aggregated over different
sets of nodesµx(k), and different versionsσx(k, y). Plac-
ing additional constraints uponµx andσx allows us to dis-
tinguish between different “flavors” of aggregation, such as
in-orderor guardedaggregations we discuss later.

In our reliable multicast example, we can identify an in-
ternal flowS defined as an aggregation overR using the set
intersection operator∩ (see Figure 3, bottom-right). Each
valueSx(k) is a set of identifiers of packetsstablein some
groupµS

x (k), i.e., received by every node in it (note that we
used the superscriptS to refer to the particular membership
function definingS). In many protocols, senders compute
Sx(k) by collecting ACKs to drive retransmissions, and hi-
erarchical protocols, such as RMTP, computeSx(k) for in-
creasing subsets of nodesµS

x (k). We do not assume any par-
ticular implementation or method of aggregation; we sim-
ply note thatS materializes at a certain layer in the system.

Similarly, we can identify flowR′, an aggregation onR
using the set union operator∪. EachR′

k(x) carries infor-
mation about messages received by some nodes, in a certain
group. Multicast protocols often collect such informationto
issue NAKs to the sender, or to drive peer-to-peer recovery.

It should be noted at this point that although equation (1)
does refer to membershipsµx(k), we are only assuming the
existenceof such sets. Unlike in the traditional approaches,
where nodes must actuallylearnglobal membership as part
of the protocol, in our architecture membershipsµx(k) are
never explicitly constructed and never materialize anywhere
in the system. We discuss this in more detail in Section 2.5.

The definition of flowS on Figure 3 contains an equation
R ⊆ S. We use such equations to further constrain the way
values must be aggregated; we discuss them in Section 2.4.

Transformations. Flow β is a transformationof flows
α1, α2, . . . , αn if for certain operatorsΨx : Vn → V , mem-
bership functionsµx : K×{1, 2, . . . , n} → N , and selector
functionsσx : K × {1, 2, . . . , n} → K, wherex ∈ N , the
following holds for each message(x, t, k, v) ∈ β:

βx(k) = Ψx(v1, v2, . . . , vn) , (2)

where ∀1≤i≤n vi = αi
µx(k,i)(σx(k, i)) . (3)

Intuitively, these conditions state that every value inβ is a
result of applyingΨ to a list of values fromα1, α2, . . . , αn.
Again, we can distinguish between different flavors of trans-
formations by placing additional constraints onµx andσx.

In multicast, we can identify an internal flowM , a trans-
formation onRx, R′ defined byΨM

x (v1, v2) = x×(v2\v1).
Here, componentv2\v1 represents the set of messages miss-
ing at nodex, calculated based on the most recent valuesv1,
v2 obtained from flowsRx, R′, andx× (v2 \ v1) represents
the set of forwarding requests that must be satisfied for node
x to catch up with other nodes. These values are aggregated
to form an internal flowF ′ representing a global “todo” list.
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In a real system,M could be represented by NAKs and ag-
gregated intoF ′ at the sender, and in peer-to-peer protocols,
different nodesx might calculate theirF ′

x(k) independently.
Even if forwarding requests are not centrally aggregated,

it is still useful to think ofS, R′, andF ′ as representing the
global state of the system (this is symbolized by the double
border on Figure 3). In Section 2.5, we show how to imple-
ment theseglobalflows in a scalable, hierarchical manner.

Disseminations. Flow β is adisseminationof α if each
value appearing inβ appeared previously inα; formally, the
following holds for someµx : K → N andσx : K → K:

βx(k) = αµx(k)(σx(k)) . (4)

Dissemination also has multiple flavors depending on which
values fromα are included inβ, where, or in what sequence.

In our example, flowD is a dissemination ofS; meaning
that our protocol is delivering packets stable on setsµS

x (k).
Distributions. The concept ofdistributioncan be under-

stood as the opposite of aggregation; flowβ is a distribution
onα if each valuev in a subsetα′ ⊆ α maps to a setV ⊆ V
of values inβ such that aggregating values fromV yieldsv.
Formally, we assume the existence ofdistributionfunctions
δx : α′ → P(β), for x ∈ N , for which the following holds:

∀m∈α′ ν(m) =
⊗

m′∈δ(m) ν(m′) , (5)

β =
⋃

m∈α′ δ(m) . (6)

In the above,ν(m) is the value ofm, ν((x, t, k, v)) , v.
Givenδ, we can define the aggregation that this distribu-

tion is an inverse of by expressingµ andσ in terms ofδ. We
can then specify the flavor of our distribution by specifying
the flavor of this aggregation (details omitted for brevity).

In our example,F is a distribution overF ′; global “todo”
lists of forwarding requests are partitioned among recipients
so that those requests can be handled in parallel. Conditions
(5, 6) ensure that local forwarding decisions (F ) at all times
reflect the combined needs of the system as a whole (F ′).

Like aggregations, distributions can also have additional
conditions, limiting how much of the value being distributed
can be “chopped off” and placed in any individual message.
In our example “F |2 ⊆ R”, which is as abbreviation for the
longer∀x∈N∀k∈K∃k′∈K {i | ∃y (y, i) ∈ Fx(k)} ⊆ Rx(k′),
states simply that a node cannot commit to forwarding pack-
ets that it has not already received.

2.3. Strong Semantics

In our model, strong semantics are expressed by defining
a predicateφ : V → B, whereB={true, false}, and stating
that if φ(v) holds for somev at nodex in some flowα, then
for each non-faulty nodex0 ∈ N0, some valuev0 eventually
flows atx0 in α such thatφ(v0) holds, as specified below:

∀m∈α (φ(ν(m)) ⇒ ∀x0∈N0
∃k0∈K φ(αx0

(k0))) . (7)

A node isnon-faultyif it eventually begins and never ceases
to execute the protocol. We assume thefail-stopmodel [20].

In our multicast example, we would like to guarantee that
if any node, even a faulty one, delivers packeti, eventually
all non-faulty nodes do so. We can express this requirement
by substitutingα = D andφ(v) ≡ (i ∈ v) in equation (7).

In an asynchronous system, of course, such property can-
not be guaranteed unconditionally [7]; typically, it is condi-
tional on the existence of an appropriate failure detector [4].
In practice, the latter is typically approximated by the GMS.
The property is then achieved by recording the information
about packeti on all nodes in some global membership view
before any node can deliver it, and transferring state to new
members. This ensures that at the timei is being delivered,
information about it has beenremembered, in the sense that
it will reliably affect future decisions made by the protocol.

The key to understanding our approach lies in the differ-
ent way information isrememberedin the system. Instead
of relying on global views and state transfer, we require that
certain flows bemonotonic, as defined below. Monotonicity
itself does not imply equation (7), but it does so in a combi-
nation with liveness properties.

Monotonicity. Flow β is (strongly) monotonicif mes-
sages with higher versions also have larger values (with re-
spect to a partial order≤ onV), as formally defined below:

∀m,m′∈β (κ(m) ≤ κ(m′) ⇒ ν(m) ≤ ν(m′)) . (8)

In the above,κ(m) is the version ofm, κ((x, t, k, v)) , k.
Note that equation (8) doesn’t assume that messagesm,

m′ flow at the same location; if equation (8) holds only for
such pairs of messages,β is said to beweaklymonotonic.

Strong monotonicity is a stronger property, and in partic-
ular, it subsumes total ordering: a strongly monotonic flow
is consistent, where aconsistentflow is one in which mes-
sages carrying identical versions also carry identical values:

∀m,m′∈β (κ(m) = κ(m′) ⇒ ν(m) = ν(m′)) . (9)

In our example,R is weakly monotonic and not consistent,
for different nodesx generate theirRx(k) values indepen-
dently. FlowS, however, must be monotonic (this is sym-
bolized by the letterm on the arrow connectingR andS).

Before explaining how to achieve monotonicity, let’s il-
lustrate its role in a proof that non-faulty nodes deliver the
same packets (equation (7) forα = D andφ(v) ≡ (i ∈ v)).

Proof (sketch). Suppose that nodex ∈ N delivers packet
i, soi ∈ Dx(k) for somek ∈ K. We want to prove that each
non-faulty nodex0 ∈ N0 eventually also deliversi, i.e., that
for each suchx0, there existsk0 ∈ K such thati ∈ Dx0

(k0).
SinceD is a dissemination ofS, all values appearing in

D must have previously appeared inS, so there exist some
x′ ∈ N , k′ ∈ K for which Dx(k) = Sx′(k′). Now, if our
system doesn’t grind to a halt and flowS doesn’t terminate,
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new messages will keep flowing inS with versionsk′′ ≥ k′.
At this point, monotonicity ofS (with respect to the partial
order defined by⊆) ensures thatSx′(k′) ⊆ Sx′′(k′′); hence,
i ∈ Sx′′(k′′). If the system is live, some of these values are
eventually propagated to flowD at each non-faultyx0, i.e.,
Dx0

(k0) = Sx′′(k′′) for somex′′ ∈ N and somek0, k
′′ ∈

K such thatk′′ ≥ k′. This yieldsi ∈ Dx0
(k0). �

For a full proof, we’d need to formalize progress con-
ditions, ideally using the�W failure detection model [4].
This is hard [5], and is beyond the scope of this paper.

The reader may have noticed that failure handling is not
explicit in our model; indeed, it is implicit in the definitions
of properties such as monotonicity. If nodex fails right after
a valueβx(k) flows at it, monotonicity still constraints val-
uesβy(j) that flow at nodesy 6= x. Protocols implementing
monotonicity must explicitly address such cases. Indeed, as
explained in Section 3, each flow in our system is internally
implemented by a small group of clients managed by a local
membership service. Each such group individually handles
its own failures; each flow is thusindividuallysubject to the
FLP result [7], so a flow cannot be both monotonic and live.

2.4. Achieving Monotonicity

The key result of this section is Theorem 2.1, which sug-
gests how to achieve monotonicity using simpler properties,
and directly motivates the protocol presented in Section 3.2.
Before stating the theorem, we introduce a few definitions.

Aggregationβ is in-order if functionsµβ
x , σβ

x are same
for all x ∈ N for which they’re defined, and if in addition,
newer aggregations select newer versions, as defined below:

∀x,y∈N∀k,k′∈K (k ≤ k′ ⇒ σx(k, y) ≤ σx(k′, y)) . (10)

This property is easy to satisfy if aggregation onβ happens
in rounds, and each node always contributes the latest value.

A commutative binary operator⊗ is weakly monotonic
if it satisfies only the first, andstrongly monotonicif it also
satisfies the second condition below, for allv1, v2, v3 ∈ V :

v1 ≤ v2 ⇒ v1 ⊗ v3 ≤ v2 ⊗ v3 , (11)

v1 ⊗ v2 ≤ v1 . (12)

Many operators satisfy the above, but with respect to differ-
ent orders onV , e.g.,∩ is such forv ≤ v′ ≡ v ⊆ v′, but for
∪, the opposite order must be employed,v ≤ v′ ≡ v′ ⊆ v.

Aggregationβ onα is guardedif for each pair of aggre-
gated values with subsequent versionsk < k′, and for each
new membery participating only in the newer aggregation,
the valueαy(σx′(k′, y)) contributed byy is no smaller than
either the full or any partial result of the former aggregation.
Formally, for eachk < k′ such that¬∃k′′ k < k′′ < k′, and
eachy ∈ µx′(k′) \ µx(k), the following holds:

∃Np⊆µx(k)

(

αy(σx′(k′, y)) ≥
⊗

z∈Np

αz(σx(k, y))
)

. (13)

This means that each node joining the aggregation must ob-
tain at least a partial result of the current or the immediately
preceding aggregation before its own value can be included.

Theorem 2.1 If β is a guarded, in-order aggregation onα,
using a strongly monotonic, idempotent operator⊗, andα

is weakly monotonic, thenβ is strongly monotonic.

Proof. Let βx(k), βx′(k′) be any two values that flow inβ
such thatk ≤ k′. We need to show thatβx(k) ≤ βx′(k′).

Let’s partition nodes involved in aggregations into three
groups: letNo = µx(k)\µx′(k′) be nodes involved in only
the older aggregation,Nn = µx′(k′) \ µx(k) those only in
the newer one, andNb = µx(k) ∩ µx′(k′) those in both.

Let vo =
⊗

y∈No
αy(σx(k, y)) be a partial result of the

older aggregation onNo andvb =
⊗

y∈Nb
αy(σx(k, y)) on

Nb; the aggregate value is thenβx(k) = vo ⊗ vb. Similarly,
we haveβx′(k′) = v′b⊗v′n for v′b =

⊗

y∈Nb
αy(σx′(k′, y))

andv′n =
⊗

y∈Nn
αy(σx′(k′, y)). What we need to prove

can now be rewritten asvo ⊗ vb ≤ v′b ⊗ v′n. We prove it by
showing that (a)vb ≤ v′b, and (b)vo⊗vb ≤ v′n. Specifically,
we prove it through the following chain of inequalities:

vo ⊗vb
(i)
= vo⊗vb⊗vb

(ii)

≤ vo⊗vb⊗v′b

(iii)

≤ v′n⊗v′b . (14)

In the above, (i) follows from the idempotence of⊗. Then,
(ii) and (iii) follow from (a) and (b), respectively, combined
with the monotonicity of⊗. We assumed thatNo, Nb, and
Nn are non-empty.Nb 6= ∅ holds becauseβ is guarded. For
Nn = No = ∅, the desired result follows from (a) alone.
If only Nn = ∅, thenv0 ⊗ vb ≤ vb follows from strong
monotonicity of⊗, and thenvb ≤ v′b from (a). Finally, if
only No = ∅, (b) reduces tovb ≤ v′n as a special case, but
the reasoning behind it remains the same as below.

Part (a). Sincek ≤ k′, andβ is an in-order aggregation,
σx(k, y) ≤ σx′(k′, y). Sinceα is weakly monotonic, we get
αy(σx(k, y)) ≤ αy(σx′(k′, y)). Since⊗ is monotonic, we
can combine inequalities for ally ∈ Nb; this yieldsvb ≤ v′b.

Part (b). The fact thatβ is a guarded aggregation implies
that for everyy ∈ Nn there existsNy

p ⊆ µx(k) = No ∪ Nb

such that
⊗

y∈N
y
p

αy(σx(k, y)) ≤ αy(σx′(k′, y)). Merging
these inequalities for ally ∈ Nn yieldsv′n on the right side.
Since⊗ is idempotent, the left side becomes an aggregation
overNp =

⋃

y∈Nn
Ny

p . Now, sinceNp ⊆ µx(k) and⊗ is
strongly monotonic, so excluding values fromµx(k) \ Np

could only have made the result larger, the left side is larger
thanvo ⊗ vb. Thus, we can conclude thatvo ⊗ vb ≤ v′n. �

In our example,R is weakly monotonic, but not consis-
tent, and operator∩ is strongly monotonic and idempotent.
The theorem guarantees thatS is monotonicif only aggre-
gation onR is in-order and guarded. As explained in Sec-
tion 2.3, this suffices to achieve atomic delivery semantics.
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2.5. Hierarchical Composition

To conclude the presentation of our model, we now turn
to scalability. For the sake of brevity, we focus on aggrega-
tions, as the most interesting (and challenging) case. Other
flow types can be handled in a similar manner. The primary
result is of this section is Theorem 2.2, which underpins our
hierarchical delegation approach presented in Section 3.1.

A set of flowsH is anaggregation networkif there exists
a well-founded strict partial order< on H , such that every
non-minimal elementβ ∈ H is an aggregation on the union
of its children, where thechildrenof a flowβ, denotedC(β),
are its direct predecessors, formally defined as follows:

C(β) = {α ∈ H | α < β ∧ ¬∃γ∈H α < γ < β} . (15)

We assume that all aggregations are using the same operator
and are of the same flavor (e.g., all of them are monotonic).
The minimal elements in an aggregation network are called
sources, the maximal elements are calledsinks, and the sets
of sources and sinks are denoted⊥H and>H , respectively.

We assume potentiallyinfinitenetworks, in which a non-
minimalβ can have infinitely many children,|C(β)| = ∞.

Theorem 2.2 Each sink in an aggregation networkH is an
aggregation over the union of all sources

⋃

⊥H . If in addi-
tion, all sources are weakly monotonic, and all non-minimal
β ∈ H are guarded, in-order aggregations on their respec-
tive

⋃

C(β) using a strongly monotonic, idempotent opera-
tor ⊗, then all sinksβ ∈ >H are strongly monotonic.

Proof. Let βx(k) be any value appearing in a certain sink
β ∈ H . We’ll construct a value tree, with nodeβx(k) at the
root, in which each node has at most finitely many children,
the value in each node is an aggregation of values in its child
nodes, and the hierarchy reflects the partial order onH . We
proceed inductively. LetT be any partially constructed tree
and letβ′

x′(k′) by a leaf node in it such thatβ′ isn’t a source.
Equation (1) yieldsβx′(k′) =

⊗

y∈µx′(k′) αy(σx′(k′, y)),
so we create one child for everyy ∈ µx(k), and place value
αy(σx(k, y)) in it. Indeed, the parent is an aggregate of its
children, by definition we have|µx(k)| < ∞, and sinceH
is a network, we can assumeαy < β′. We repeat this for all
nodes. If this were to go on forever, then by König’s lemma,
there would be an infinite descending path in the tree, which
would yield an infinite descending chain of flows, and this is
impossible since the order onH is well-founded. Knowing
that the tree is finite and all leaves are sources, by associa-
tivity of ⊗ we can representβx(k) as a finite aggregation of
values in sources. This concludes the first part of the proof.

Now, take any pair of valuesβx(k), βx′(k′), appearing in
messagesm, m′, and lett be the later of the times at which
m, m′ appear. LetHt be a network obtained by truncating
every flow inH at timet. Now, since aggregation is always
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R� R� R� R� R�

P� P�P�P�
S�S

a b c d e

f

R
 S
�
R� R� R� R�R�S�S

protocol
flows

partial order

Figure 4. A tree of aggregation protocols and
the hierarchy of internal flows between them.

performed on past values,Ht remains well-defined, and all
our assumptions still hold. Only finitely many aggregations
could happen in a finite time because we have assumed that
T is isomorphic withN. Each involves finitely many nodes.
For each of those aggregations, we can construct a finite tree
as shown above, and further truncateHt, to leave only those
flows we encountered in the construction of those trees. The
resulting networkH ′

t is finite, so finally, we can apply Theo-
rem 2.1 inductively, starting from the sources, and working
towardsβ, and eventually, we obtainβx(k) ≤ βx′(k′). �

The practical significance of this theorem is as follows.
Suppose that small groups of nodes run internal aggregation
protocols. For example, machinesa andb run protocolP1 to
aggregate their local valuesRa andRb (Figure 4) and nodes
c, d, ande run another protocolP2 to aggregateRc, Rd, and
Re. The aggregate values generated by protocolsP1 andP2

form internal flowsS1 andS2, respectively. A higher-level
protocolP3 aggregates those values, plus values from node
Rf , to produce flowS, consumed by some componentP4.
The hierarchy may, of course, be deeper, and since this is a
dynamic system in which nodes may join, leave, or fail, the
set of nodes running each protocol may change, and internal
protocols can be started and terminated as the system grows
and shrinks. Theorem 2.2 ensures that as long as protocols
are well-ordered, and each of them satisfies the assumptions
of Theorem 2.1, flowS is strongly monotonic despite churn,
and with no global coordination needed between protocols.
This justifies the architecture we propose in Section 3.1, in
which each protocol is controlled by a separate membership
service, and is managed independently of other protocols.
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3. Architecture

3.1. Hierarchical Delegation

In this section we present a practical approach to creating
protocol hierarchies such as those shown on Figure 4.

We begin by discussing the internal structure of the client
protocol stack. The stack includes three components shown
on Figure 1, including theworking componentrepresenting
lower layers and thedata flow componentP implementing
the core logic. Interaction withP is done via messages that
contain values tagged with version numbers (Figure 5).

Initially, P contains no actual protocol logic, and doesn’t
know what to do with the values it receives; it only contains
abootstrap codefor contacting adelegation authority(DA).
Upon request, the DA returns a serialized description ofP ’s
stack. It hands out exactly the same code to all of its clients.

The are two classes of DAs: theroot authority(RA), and
all the rest. The RA returns aroot codethat doesn’t involve
any interaction with other nodes; it simply consumes values,
performs internal computations, and sends results back on
the same node on which it is running. This code implements
thedecisionlogic. It runs at a single node in the system at a
time (except for brief periods during reconfiguration).

A regular, non-root DA returnsaggregationcode that im-
plements a token ring protocol running among all clients
boostrapped from this DA (Figure 6). The aggregation com-
ponent described in Section 3.2 uses the token ring to aggre-
gate and disseminate values in this local client group; it cor-
responds to a single protocol in the hierarchy on Figure 4.
The group uses a private, local membership service (MS) to
self-organize. A single DA manages only a small subset of
clients, so the local MS shouldn’t experience a heavy load.
The code for contacting a local MS, including addresses and
all parameters, is embedded in the code returned by the DA.

P ’s aggregation stack includes a (recursively embedded)
data flow componentP ′. Normally,P ′ remains inactive. It
can prefetch code from its own DA, but doesn’t activate the
downloaded code, andP doesn’t attempt to interact with it.
P ′ stays dormant until the local node becomes the leader of
the token ring, at which point it boostraps itself and startsto
communicate withP . Once the local node ceases to be the
leader,P ′ is deactivated and all its runtime state is disposed.

The above pattern can repeat recursively:P ′ contains an
embeddedP ′′, which containsP ′′′, and so on (Figure 7). If
the node happens to be a leader in all rings it is part of, this
recursion terminates with the inner-most component boost-
rapped fromRA. Otherwise, the inner-mostPk is running
aggregation code, while the embeddedPk′ stays dormant.

Delegation authorities form a hierarchy: each DA except
for RA has aparentDA’. In the code returned by a DA, the
embedded component is configured to bootstrap from DA’.
As a result, a hierarchy of token rings emerges (Figure 8).

application

working
component

delegation
data flow
component

send/recv
bootstrap

delegation
authority 

client

P
description of P’s 

protocol stack

values

(DA)
1 2

delegate code
?

msg channel

Figure 5. The structure of the client’s protocol
stack: P ’s code is bootstrapped from the DA.

aggregation different
authority

recursively
embedded

DA

membership
service

data flow 
component

P

values values

transport
MS

membership
token
token ring

membership view

join

aggregate, 
collect P'

Figure 6. The internal structure of a data flow
component P running the aggregation code.
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Figure 7. A stack of aggregation components.
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Figure 8. A hierarchy of token rings managed
independently by their regional DAs and MSs.
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Each data flow component in the protocol stack, and each
ring in the hierarchy, is independently bootstrapped from its
own DA and independently managed by the associated MS.
The only form of cross-layer interaction is, when a data flow
componentPk on a client activates, disposes, or exchanges
values with the componentPk′ recursively embedded in it.
Different MSs and DAs never interact with one another.

The hierarchy of DAs emerges via the following process.
First, the RA is created, and configured to return root code.
A single top-level DA is also created with its associated MS;
the aggregation codeP it returns is configured to bootstrap
its embeddedP ′ from RA. All nodes bootstrapped from the
top-level DA become members of the top-level ring and one
of them always runs the root code. This lays the foundation.
The process now continues inductively, by passing around
invitations(the first invitation created by our top-level DA).

An invitationis a small packet containing three elements:
a serialized description of a working component (Figure 5),
the list of all aggregation rules (specifications for the com-
ponent named “aggregation” on Figure 6), and the bootstrap
code for the DA that issued the invitation. Invitations can be
passed around through any channel, for example by email.

An invitation can be consumed directly by a client, by as-
sembling its parts into a protocol stack (Figure 5, Figure 6).
Alternatively, the invitation can be used to setup a new DA,
with the DA that issued the original invitation as its parent.
The new DA can now issue its own invitations, by replacing
the bootstrap code in the parent invitation with its own.

The process of passing invitations and setting up the hi-
erarchy of DAs could be performed manually, by adminis-
trators, similarly to how one manually sets up the hierarchy
of DNS servers. It could potentially also be automated, with
the DAs detecting one another via gossip and using peer-to-
peer techniques to form hierarchies. The discussion of such
techniques is beyond the scope of this paper. However, note
that our model, due to its decentralized nature, places very
few requirements, and is especially easy to support by such
adaptive solutions, for in the light of Theorem 2.2, it suffices
that DAs form a tree and never change their parents.

3.2. Aggregation Component

Aggregation components (Figure 7) interact usingvalue
buckets; one bucket for each input or output flow (Figure 9).
When a value arrives from a component higher or lower in
the hierarchy, it goes into an input bucket, and when a value
in any output bucket changes, it is sent out. Internally, value
changes triggerrulesthat update other buckets. All compo-
nents except the root runregular rules, and the lowest-level
ones additionally runclient rules. The root runsroot rules.

Due to the limited space, in the remainder of this section
we discuss only rules for a monotonic, guarded aggregation.
Other types of rules are implemented in a similar way.

R’
S
S

R’
R’
S
S

R’
R’
S
S

R’
R’
S
S

R’

R

D
regular aggregation rulesextra client rules root rules

aggregate with
aggregate with

disseminate

disseminate

M
transform
M=R’\R

token value
bucket

Figure 9. Example aggregation rules (partial)

Values are aggregated by passing tokens around the ring.
The ring leader puts a value from its input bucket in a token,
and tags it with versionk = (i, j), wherei is the number
of the current membership view, andj is the number of the
current aggregation round in the view. Then, each node the
token passes by replaces valuev in the token with(v ⊗ v′),
wherev′ is the value from its input bucket. When the token
returns to the leader, the aggregated value in it is placed in
an output bucket, and in the next round, it is disseminated
around the ring, and placed in output buckets of other nodes.

The behavior just described oversimplifies: it covers the
case of aregularmember. A new node starts as acandidate.
It can read values from tokens, or participate in non-guarded
aggregations; by doing so it can catch up with others (obtain
state transfer, participate in loss recovery, etc.). To become
regular, a candidate must do the following (except when all
members of the view are candidates, and are automatically
promoted; details of the recovery phase omitted for brevity).

Whenever a token passes through a candidate, carrying a
partial resultv of the current and some, even a partial result
v′ of the preceding aggregation, the candidate tests whether
v′ ≤ v′′ holds, wherev′′ is the candidate’s value. If it does,
the candidate can replacev with (v ⊗ v′′), but it doesn’t yet
become a regular member. Instead, it records versionk of
the current aggregation, and waits for the next round. Only
after a new token arrives with the result of this aggregation
(k), the candidate promotes itself to the regular status. If the
node later finds out that it’s been dropped from the view, it
degrades itself to the candidate status. The process of pro-
moting and degrading is done locally, and does not require
any kind of coordination with other nodes or with the MS.

The above protocol ensures that aggregation is guarded;
a node does not participate in it until it learns at least partial
results of the immediately preceding round and ensures that
the guarding condition holds. Once a node finds out that its
local value affected the result, this is no longer needed.

As noted in Section 2.4, this aggregation is in-order be-
cause it is done in rounds, and values placed in the buckets
are always those with the highest versions ever received. If
the aggregation operator is strongly monotonic, then mono-
tonicity of the aggregated flows follows from Theorem 2.1.
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4. Performance

As noted earlier, for reasons of brevity, the scope of this
section is limited; we focus on what we believe are two most
critical factors affecting the performance of our system: the
latencyof monotonic aggregation in the presence of churn,
and thespace overheadof value representation. To measure
the significance of these factors in their purest form, undis-
turbed by performance of other mechanisms, such as packet
forwarding or state transfer, we use simplified protocols.

To evaluate truly large scale scenarios, we had to resort
to a discrete event simulation, but to make our results as re-
alistic as possible, only the transport and membership layers
were simulated; clients still communicate via asynchronous
messages, establish connections, form rings based on mem-
bership updates, and serialize transmitted packets. Average
network latency is 10ms, and the rings circulate 10 tokens/s.

4.1. Aggregation in the Presence of Churn

In the first experiment, we cause clients to synchronously
enter subsequent phases of processing. The integer-valued
input flowL informs the protocol of the latest phasesLx(k)
entered by each client, and the output flowN instructs each
client which phaseNx(k) to execute next. The protocol can
be concisely written asL′ = min L; N = L′ + 1. Mono-
tonic aggregationL′ computes the last phase entered by the
slowest client. After incrementing, this is the last phase that
anyone else is permitted to enter. Clients enter their phases
instantly, but they do so at different times due to asynchrony
and churn. We measure the mean interval between entering
subsequent phases as a function of system size and churn.
All clients fail and reboot with exponential distribution;the
average time to failure (MTTF) is a parameter, and the mean
time to reboot is 5s. Rebooted clients are delayed (aggrega-
tion is guarded). The token ring size is 8 nodes on average.

The results on Figure 10 show that latency grows as a
logarithm of system size (n). It takes about 4 additional to-
ken rounds for each layer in the hierarchy (2 rounds each
way), for a wide range of churn rates. Even under extreme
churn (MTTF=10s), latency grows by a mere 20%; this is
because aggregation in different parts of the system is done
in parallel, unaffected rings still make progress, and de-
lays caused by membership changes are averaged out across
the system. It is worth noting that with 32K nodes and
MTTF=10s, the system undergoes about 4K membership
changes a second; in such scenarios, approaches based on
global membership would suffer from excessive reconfig-
uration. In our system, reconfiguration after membership
change normally takes 2-3 rounds, but each failure disrupts
on averageO(1), and in the worst caseO(log n) rings. The
benefits of hierarchically decomposing the GMS into mul-
tiple MSs are thus evident.
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Figure 10. Phase duration as a function of
system size and mean time to failure (MTTF).
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Figure 11. Decision latency and token size as
functions of the application event rate (TPS).
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Figure 12. Decision latency and token size as
functions of system size (1000 events/s).

4.2. The Overhead of Value Representation

In the preceding experiment, all values would fit in a con-
stant amount of space. In many real protocols, this is not so;
values could occupy much space in the tokens, and to bound
resource usage, we have to limit token sizes, truncating val-
ues that cannot fit. As a result, smaller batches of events can
be handled in parallel, and the system slows down.

To illustrate this, in the second experiment we run a sim-
plified commit protocol: each client receives transactionsat
a fixed rate, and independently decides to commit or abort,
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with probability adjusted so that a fractionp of transactions
commit globally. Values in input flowsC, A are sets of iden-
tifiers of transactions that individual nodes wants to commit
(Cx(k)) or abort (Ax(k)). Output flowsC′, A′ carry global
decisions. An internal flowD records identifiers of transac-
tions for which decisions have been made. The protocol can
be written asC′ =

⋂

(C\D); A′ =
⋃

(A\D); D = C′∪A′.
AggregationsC′ andA′ are guarded and monotonic.

Each value, as a set of numeric transaction identifiers, is
encoded as a tuple((a1, b1), (a2, b2), . . . , (ak, bk), c). Each
pair (ai, bi) represents a set{ai, ai + 1, . . . , bi}. The num-
berk of these pairs is limited by a parameterkmax = 100.
The interpretation is as follows: for everyi ≤ c, elementi
is in the set iff it is within any of the ranges(ai, bi), whereas
for i > c, this is undefined. Operators∪ and∩ are modified
accordingly to correctly operate on such “truncated” sets.If
multiple such values are combined using∪ or ∩, informa-
tion is often lost in the process because some of the ranges
(ak, bk) don’t fit within the limit kmax andc may become
lower. Because of this, a single aggregation may no longer
suffice to propagate all information from clients to the root.

In the first scenario in this experiment, we fix the commit
probability atp = 95% in a group ofn = 10000 nodes, and
vary the transaction rate, measuring the time until the slow-
est client commits or aborts (Figure 11). As expected, token
size grows linearly: the number of numeric ranges(ai, bi) is
proportional to the number of events to report in each round.
Latency is virtually unaffected. Processing each token takes
≈200µs (on Pentium 4, 3.8 GHz); 75% of that is the cost of
serialization. As tokens grow, more CPU is needed, but not
extra rounds. Only when the event rate exceeds≈1050 TPS,
kmax is reached, values are truncated aggressively, transac-
tions pile up, and latency shoots to infinity (not shown).

In the second scenario, the rate is fixed at 1000 TPS, still
p = 95%, and we vary the system size (Figure 12). Latency
and token size grow only logarithmically, and the latency is
nearly the same as in the preceding experiment. Again, we
find that as long as the average value that’s being aggregated
remains beneath thekmax threshold, the system responds to
the increased load by increasing the token sizes, and latency
remains virtually unaffected. At≈32K nodes we’re starting
to approachkmax, and the system becomes saturated; if we
scale further, transactions start piling up. The system, how-
ever, does not collapse; it keeps aggregating at a steady rate.

In the last scenario, we relax token size,kmax = ∞, and
we varyp with other parameters constant, to find how much
data would otherwise be truncated (Figure 13). We find that
when transactions commit at random (p = 50%), values can
occupy up to 12 KB/token; with 10 tokens/s, this means≈1
Mbps per-node control traffic in every ring, so the overhead
can be fairly substantial, and truncating is necessary. In real
systems, each ring could adjust its own token rate andkmax

adaptively, based on the measured latency and bandwidth.
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Figure 13. Latency and space overhead when
aggregated data is not truncated ( kmax = ∞),
with 4096 clients and 1000 transactions/s.
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Figure 14. Varying the token circulation rate.
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Figure 15. Varying average ring size (fanout).

4.3. Hierarchy Depth and Aggregation Rate

To conclude, we look at the effects of varying token rates
(Figure 14) and ring size (Figure 15). Having several to-
kens chasing each other (e.g.>12 tokens/s in an 8-node
ring with≈10ms latency) results in redundant work. Wrong
ring sizes also hurt latency, for either hierarchy is deep, or
it takes long to aggregate in each ring. A bad choice of pa-
rameters can affect performance by a factor of 2. Replacing
rings with trees may partially alleviate the issue. In practice,
ensuring that the overall hierarchy is balanced appears to be
a bigger challenge. Although our architecture is flexible, it
doesn’t allow protocols to change parents in the hierarchy,
making algorithms for self-balancing trees harder to apply.
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5. Related Work

Our work is closely related to, and was strongly inspired
by the rich prior literature on I/O automata (IOA) [17]. IOA
pioneered an approach, in which distributed protocols are
modeled as components that operate on and transform event
streams. It’s been successfully used to specify a number of
protocols [16], and reason about composition [11], also in
real systems such as Ensemble [9]. TLA [13] is another ma-
jor model in this space; it has also been explored in the con-
text of composition [1], and used to formalize Paxos [14],
but we’re not aware of prior work on applying TLA to flows.

Whereas IOA has focused on the compositional structure
of protocols within individual endpoints, our work retainsa
similar functional flavor, but with a focus on flows. By elim-
inating the node-centric aspects of IOA, we gain flexibility
that can be exploited to create freedoms: freedom to create
a hierarchy independently from the way the protocol aggre-
gates and disseminates, to batch events and exchange infor-
mation in ways convenient to the runtime system. Although
this paper does not focus on implementation, systems based
on our model can use these freedoms to achieve scalability
and to adapt to the properties of their runtime environments.

High-level specifications similar to our dataflow notation
have been used for workflow modeling [10] and web service
choreography [2], but generally, specifications derived from
process calculi are too weak to express strong properties [8].

Work on declarative networking [15] shares some of our
goals, such as support for concise, high-level protocol spec-
ifications. However, their architecture, unlike ours, has not
been designed from ground up to support hierarchical, scal-
able protocols with strong reliability properties, and we are
not aware of any attempts to use their work in this context.
The mechanisms they use are also very different from ours.

There has been much research on data flows in areas such
as VLSI or DBMS, but also publish-subscribe [6] or routing
[18]; the advantages of asynchronous, parallel and pipelined
processing are well understood. Flows encountered in those
systems, however, aren’tdistributedin the same sense as in
our work; they are sequences of events, and transformations
on them are performed locally. We’re not aware of any prior
attempts to combine data flow processing with IOA style of
modular specifications in a manner similar to our approach.

There has been much prior work on aggregation in sensor
networks, even with stronger properties [3], but the kinds of
properties targeted by those systems revolve mostly around
security, and we are not aware of any example uses of these
techniques in protocols such as reliable multicast.

Much research focused on making GMS scalable, in par-
ticular also through the use of hierarchy [12], but scalabil-
ity in traditional GMS-driven protocols, such as virtual syn-
chrony, is ultimately limited by the fact that each member of
the group must ultimately receive the complete global view.

6. Conclusions

We proposed a new approach to building distributed pro-
tocols with strong properties that does not rely on GMS, and
that combines ideas from areas such as IOA, data flows, and
sensor networks. We developed a theory to reason about our
model, a supporting architecture, and we briefly reported on
the performance of our initial prototype. Our approach ap-
pears to be fairly general, scalable, and very churn-tolerant.
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