SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING

CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 896

March 1990
(Revised, November 1990)

OPTIMAL MOTION OF COVISIBLE POINTS
AMONG OBSTACLES IN THE PLANE

By

Joseph S. B. Mitchell
Erik L. Wynters

OPTIMAL MOTION OF COVISIBLE POINTS
AMONG OBSTACLES IN THE PLANE

Joseph S. B. Mitchell’

School of Operations Research
and Industrial Engineering
Cornell University
Ithaca, NY 14853

Erik L. Wynters?

Center for Applied Mathematics
Cornell University
Ithaca, NY 14853

Abstract

We consider the problem of determining an optimal pair of paths for two point robots that
must remain covisible while moving in a plane cluttered with polygonal obstacles. We solve
the (MIN-SUM) problem of minimizing the sum of the path lengths with an algorithm that
requires time O(E + nlogn) and space O(E), where E is the size of the visibility graph
induced by the set of obstacles. We also solve the (MIN-MAX) problem of minimizing
the length of the longer path in time O(E? + n?logn) and space O(E). In addition, we
discuss the (MIN-TIME) problem of obtaining a coordinated motion parameterized by time
that minimizes the time needed for both robots to reach their destinations. Assuming a
common upper bound on velocity, we find a pair of paths together with a parameterization
guaranteed to be within a factor of 2 of optimality.

Key Words: shortest paths, motion planning, coordinated motion, mission planning,

visibility graphs, funnels, computational geometry

1 Partially supported by NSF Grants IRI-8710858 and ECSE-8857642 and by a grant from Hughes Research
Laboratories.

2 Supported by a grant from Hughes Research Laboratories.

1 Introduction

Imagine that two robots must communicate with one another while travel-
ing among obstacles. The robot geometry, the obstacle geometry, and the
effectiveness of communication can be modeled in various ways, but let’s
assume that we have point-sized robots, polygonal obstacles, and a com-
munication system that works only when the robots can see one another.
Assume, also, that initial and final positions for each robot have been spec-
ified and that both robots have the same maximum speed. Under these
assumptions, we consider the following optimal motion planning problems:

MIN-SUM Find a pair of paths between the initial and final positions
that minimizes the sum of the two path lengths subject to the com-
munication constraint.

MIN-MAX Find a pair of paths between the initial and final positions
that minimizes the larger of the two path lengths subject to the com-
munication constraint.

MIN-TIME Find a coordinated motion parameterized by time that min-
imizes the time needed for both robots to reach their destinations
while maintaining communication.

Note: we define these problems more precisely later in the paper.

Alternatively, we can view these problems as motion planning problems
for a single robot with four degrees of freedom; imagine that the robot is
a collapsible rod that can simultaneously translate, rotate, and expand or
contract. We seek optimal motions for the rod, using the distances traveled
by its endpoints as optimization criteria.

Prior work in this field suggested that shortest path planning for a robot
with more than two degrees of freedom was inherently difficult. While
shortest paths among polygonal obstacles for a point robot or a translat-
ing polygon (two degrees of freedom) can be found exactly in worst-case
quadratic time, finding a shortest path for a point robot among polyhedra
in three-space (three degrees of freedom) is NP-hard [CR]. The problem
of moving a ladder (or any noncircular body free to rotate) in an optimal
manner among obstacles in the plane (three degrees of freedom) is also very

challenging and has been solved only for a restricted class of allowable mo-
tions [PS]. A characterization of optimal motions that doesn’t presuppose
a certain class of motions was obtained recently [[RWY], but it applies only
when no obstacles are present.

We were, therefore, somewhat surprised to discover that we can solve
the MIN-SUM problem, which admits four degrees of freedom and allows
obstacles to be present, in the same complexity as the best shortest path al-
gorithm for a single point robot with two degrees of freedom. Our algorithm
requires time O(E + nlogn) and space O(E).

The main ideas behind our algorithm are as follows: we characterize
the geometric form of optimal solutions; we bound the number of candidate
paths satisfying these geometric constraints; and we use the theory of funnel
trees and graph searching to enumerate and evaluate the candidate paths
in time and space proportional to the number of candidates found.

A variation of our algorithm solves the MIN-MAX problem in time
O(E? + n?logn) and space O(E). More generally, we can solve the “bi-
criteria” version of the problem: given an upper bound on the length of
one agent’s path, find a motion of both covisible agents that minimizes the
length of the other agent’s path.

The MIN-TIME problem with bounded robot velocity seems to be quite
difficult. We show that the optimal-time motion may correspond to a pair of
paths that are not even locally optimal with respect to distance. Although
we have not yet solved this problem exactly, we give a method of obtaining
an approximate solution guaranteed to be within a factor of 2 of optimality.

Our algorithms rely on a method for efficiently enumerating the lengths
of all “hourglasses” and “funnels” defined by an obstacle space. This same
method has applications to several other optimization problems. In par-
ticular, in [MW] we apply this method to yield an efficient solution to the
following bipartition problem: Given a set S of n points in the plane, find
a bipartition of S, S = §; U S;, such that the sum (or the maximum) of
the perimeters of conv(S;) and conv(S,) is minimized. The method further
extends to the case of bipartitioning a set of polygons according to various
optimality criteria.

[

This paper is organized as follows:
e Section 2 gives basic terminology;

e Section 3 characterizes the form of optimal motions for the MIN-SUM
problem;

o Section 4 outlines the MIN-SUM algorithm;

e Section 5 gives the combinatorial analysis and algorithmic details;
¢ Section 6 solves the MIN-MAX problem;

e Section 7 discusses the MIN-TIME problem; and, finally,

e Section 8 gives several extensions and future directions.

2 Definitions and Preliminaries

Consider a set O of disjoint, simple-polygon obstacles defined by a total of
n vertices. We define freespace, F, to be the set of all points in the plane
that are not contained in the relative interior of any obstacle. Note that
the boundaries of obstacles are included in freespace. A configuration is
an ordered pair of points in freespace that are visible to one another in
the sense that the line segment joining them lies within freespace. Such
points are called covisible, and the line segment connecting them is called
a feasible line segment.

The visibility graph, VG(O), of the obstacle set O associates a node with
each vertex of an obstacle and an edge with each pair of covisible vertices.
It is known that taut-string (locally-shortest) paths lie on the visibility
graph, and hence that the visibility graph can be used to search for shortest
paths ([Le],[LP],[LW],[Mi],[SS]). The visibility graph can be constructed
in time O(n?) ([AAGHI],[We]) or in output-sensitive time O(E + nlogn),
where E is the number of edges in the graph ([GM],[KM]). Alternatively, a
representation of the visibility graph can be constructed in O(E logn) time
using only O(n) space by the algorithm of [OW].

3

Ste ° 59

S1 $2

Figure 1: An instance of the MIN-SUM problem (left) together with its
solution (right).

A path function is a continuous function from the unit interval [0, 1} into
freespace that determines the position of a moving point at time 7 € [0, 1].
The image of a path function, the subset of freespace traversed by the point,
is called a path; and any path function with image p is called a parame-
terization of p. We denote the length of path p by u(p). A path-pair is an
ordered pair of paths (p;, p;) and is feasible if there exist parameterizations

fi and f; of p; and p,, respectively, such that for all times 7 the points
fi(r) and fi(7) are covisible.

Now we can formally state the MIN-SUM problem (which is illustrated
in Figure 1):

(MIN-SUM) The Two Point Covisible MIN-SUM Problem

Instance: A set of polygonal obstacles, an initial configuration (si,s2),
and a final configuration (ty,t;).

Question: Find a feasible path-pair (p;, p2) between these configurations
that minimizes the sum pu(p;) + p(p2).

4

3 Characterizing Optimal Motions

An optimal path-pair for the MIN-SUM problem must satisfy two necessary
conditions. We discuss these conditions below and show that path-pairs
satisfying them form characteristic shapes.

3.1 A Necessary Condition

The first necessary condition for optimality is topological feasibility. Loosely
speaking, we say that a path-pair is topologically feasible if its paths lie in
the same “channel” between the obstacles. This definition provides a good
intuitive “feel” for what topologically feasible path-pairs look like, but it
isn’t very rigorous. To remedy this situation, we now provide a more precise
definition based on obstacle-free polygons.

Define the path-polygon P determined by a path-pair (py, p2) from (s1, s2)
to (t1,t2) to be the closed path from s; to s; that consists of path p,, line
segment %;7,, path p, (traversed from ¢, to s3), and line segment 3757. We
call p; and p, the defining paths of P and call 3737 and %;{, the defining
segments of P. '

Remark: The term “path-polygon” is somewhat misleading for
two reasons: the individual paths in a feasible path-pair need
not be polygonal, and the “path-polygon,” even if polygonal,
may not be a simple polygon. However, we will show that only
path-pairs consisting of polygonal paths are important to us,
and we define what it means for a polygon to be obstacle-free
in such a way that it makes sense for non-simple polygons, too.

We call a path-polygon obstacle-free if it can be continuously deformed in
freespace to a single point (see Figure 2 for an example). More precisely,
we say that P is obstacle-free if P, viewed as a closed path, has a param-
eterization homotopic to the null loop f(7) = v where v, the basepoint of
freespace, is taken to be a vertex of P. We now present a more mathemati-
cally useful definition of topological feasibility: a path-pair is topologically
feasible if it determines an obstacle-free path-polygon.

Figure 2: An obstacle-free (non-simple) polygon (left) and a non-obstacle-
free polygon (right).

Our first lemma states that topological feasibility is a necessary condi-
tion for feasibility.

Lemma 1 If a path-pair is feasible, then it must be topologically feasible.

Proof: Suppose (p;,p;) is a feasible path-pair from (s;, s2) to (t1,%2). We
show that the path-polygon P determined by (p;, p2) has a parameterization
p homotopic to the null loop at the point s;.

Since (p1, p2) is feasible, we have parameterizations f; and f; of p; and
P2, respectively, with fi(7) and fo(7) covisible for all 7. Define parameter-
izations s and ¢ of the line segments 3737 and ,; by

(1) =(1—7)s1 + 732
and
tHr) = (1 — 1)ty + 7t5.
In addition, define two constant functions v and u by

v(T) = 81
and
u(r) = t.
The loop given by the composite path function
p=shtfi™

is a parameterization of the path-polygon of (p;,p2). We show that p is
homotopic to ¢ (denoted p ~ q), where

=vfiufil.

This proves the lemma, because, clearly, ¢ ~ fi fi! and fifi! ~v.
Consider the function H given by

H(o,7) = (1—0)p(7) + og(7).

The restriction of H to each of the closed regions shown in Figure 3 is clearly
a continuous function into R?, so H is a continuous function into R?. Also,
H contains only points of freespace in its range, because for every fixed 7o,
the path function H, (o) given by H, (c) = H(o,7) is a parameterization
of a feasible segment. Therefore, H is a continuous function into freespace

that transforms p into ¢ as o varies from zero to one. In other words, p ~ ¢.
1

v fi u fi!

ov of ou
-1

(1-0)s |(1=0a)fa| 1—o0)t

S fa t T

T

Figure 3: The homotopy H from p to q.

[0.4]

3.2 Hourglasses, Funnelglasses, and Bowties

Lemma 1 establishes that we can limit our search for an optimal path-pair
to the set of topologically feasible ones. But there is a continuous family
of topologically-feasible path-pairs for every homotopy class of paths from
$1 to t;. Since we find optimal path-pairs for the MIN-SUM and MIN-
MAX problems by enumerating and comparing feasible candidates, we must
reduce the search space further to do this efficiently.

We make the search efficient by considering only those path-pairs that
are locally optimal. A locally-optimal path for the single-point shortest
path problem is a path that cannot be shortened by making local changes;
it is a “taut-string” path, which is known to consist of visibility graph edges
([Lel, [SS], [Mi]). Similarly, a path-pair is locally optimal if each individual
path is a taut-string path.

Local optimality is the second of the two necessary conditions for op-
timality that we mentioned in the beginning of this section. In order to
show this, we have to address the question of whether a feasible path-
pair can always be “pulled taut” without destroying its feasibility. We
show that the answer to this question is “yes” in two steps: first, we show
that locally-optimal, topologically-feasible path-pairs form geometric ob-
jects called “hourglasses,” “funnelglasses,” and “bowties,” and then we
show that path-pairs forming these objects are always feasible. We now
define these objects.

An hourglass between a feasible line segment 3733 and another feasible
segment t,t, is an obstacle-free path-polygon determined by two disjoint
paths p; and p,, where p; is a locally optimal path from s; to ¢, and p; is a
locally optimal path from s, to t;. Figure 4 illustrates a simple hourglass.

A funnel between vertex v and line segment 3753 is a simple, obstacle-free
polygon bounded by 3737, a locally optimal path from v to s; and a locally
optimal path from v to s, (see Figure 5). The vertex v is called the apex of
the funnel, and the segment 3737 is called the base. The path from apex to
base with the interior of the funnel on its left side is called the lower chain
of the funnel and the other path is called the upper chain.

A funnelglass between a feasible line segment 375, and another feasible
segment %1, is a pair of funnels (f; and f, with bases 373; and #;¢;), re-
spectively, joined by a shortest path between their apices in such a way
that both the path p; from s; to ¢; and the path p, from s, to t; are taut.

9

Figure 4: A simple hourglass.

Figure 6 gives an example of a funnelglass.

A bowtie between a feasible line segment 3757 and another feasible seg-
ment t1, is an obstacle-free path-polygon determined by these line segments
and two locally optimal paths, p; from s; to t; and p; from s, to tz, that
intersect at a single point that is not a vertex. See Figure 7 for an example
of a bowtie.

10

Figure 5: A funnel with apex v and base 3733.

11

t,

t

82

31

A funnelglass.

Figure 6

Figure 7: A bowtie.

13

3.3 Previous Work and Miscellaneous Remarks

In this section we provide additional background information on funnels,
hourglasses, funnelglasses, and bowties. We mention previous work related
to these objects, state a few of their important properties, and illustrate
some special configurations that can occur.

Funnels have been described before in the computational geometry lit-
erature. They arise naturally in shortest path and visibility problems in
simple polygons ([LP],[GHLST],[He],|GH]). They also play a crucial role in
Ghosh and Mount’s algorithm for finding the visibility graph of a polygon
with holes ([GM]).

Although funnels are not, themselves, path-polygons, they are of ut-
most importance in our algorithm, too. We use funnels to construct fun-
nelglasses, to generate hourglasses and bowties efficiently, and to analyze
the combinatorial complexity of the set of locally-optimal, topologically-
feasible path-pairs.

We also define something called a pseudo-funnel. A pseudo-funnel is an
object that must satisfy every requirement for being a funnel except the
one requiring its apex to be located at a vertex. We use pseudo-funnels in
arguments where we need to apply funnel properties to a funnel-like object
that may or may not have its apex at a vertex.

Funnels (or pseudo-funnels) have two important properties that we make
use of in this section: first, the upper and lower chains of a funnel are
inward-convex [LP]; and second, the apex of a funnel is visible from a point
on the interior of its base [GM]. Some other funnel properties established
by previous workers are mentioned in Section 5.

Hourglasses also have a history in computational geometry. They arise
in visibility-from-an-edge problems ([GHLST],[AGT]) and in shortest path
problems in a simple polygon ([GH]). In addition, Ghosh and Mount use
hourglasses to prove the correctness of their funnel-splitting method of con-
structing the visibility graph ([GM]).

The hourglasses that arose in [AGT], [GHLST], and [GM] were always
simple polygons with inward-convex defining paths. Our definition of an
hourglass is less restrictive; it forces us to consider non-simple hourglasses,
which can arise as follows:

e one of the defining paths may be a closed (polygonal) curve, as shown
in Figure 8§;

14

t2

Figure 8: An hourglass for which p, is a closed curve.

e one of the defining paths may intersect itself and the defining line seg-
ments (which necessarily intersect each other in this case), as shown
in Figure 9; or

e the defining line segments may intersect each other while the paths
between them do not self-intersect and do not strictly intersect the
line segments, as shown in Figure 10.

In the last case above, the hourglass is called a twisted hourglass; we show
in Section 5 that twisted hourglasses require special processing by the al-
gorithm.

Funnelglasses were also used to find short paths in a simple polygon [GH]
but were called closed hourglasses by Guibas and Hershberger. Bowties

15

Figure 9: An hourglass with p; crossing itself.

16

t1 S2

S1 t2

Figure 10: A twisted hourglass.

17

bubble
coincident coincident

Figure 11: A bubble.

have not been named before in the computational geometry listerature,
but the notion of a bowtie is evident in [GH] and in [GHLST]; these papers
describe shortest paths for a single agent that cut across an hourglass, using
portions of each convex chain of the hourglass together with a common
tangent to these chains.

To conclude this section of general remarks, we mention a way of dis-
tinguishing between a bowtie and a degenerate funnelglass formed from
two funnels with the same apex. A funnelglass of this sort looks a lot like
a bowtie; these funnelglasses and bowties are both unions of two pseudo-
funnels with a common apex. But the common apex of a funnelglass occurs
at a vertex, while the common apex of a bowtie does not.

3.4 A Second Necessary Condition

Before we can show that optimal path-pairs must be locally optimal, we
must show that locally-optimal, topologically-feasible path-pairs only form
path-polygons that are hourglasses, funnelglasses, or bowties. To do this,
we define something called a bubble.

If the intersection of two polygonal paths is not connected, we define a
bubble to be a simple obstacle-free polygon formed by these paths between
two consecutive connected components of their intersection; Figure 11 il-
lustrates this idea.

We show that bubbles cannot occur in the kinds of path-pairs we're
interested in:

Lemma 2 If a path-pair is locally optimal and topologically feasible, then it
determines a bubble-free path-polygon.

18

Proof: The proofis by contradiction. Suppose we have a bubble between
two points b; and b, formed by the paths of a topologically-feasible path-
pair (p1,pz) that is locally optimal. Two cases are possible, each of which
leads to a contradiction.

Case 1: The path p; between b, and b, consists of a single line segment.
In this case, we can shorten p; by replacing the portion of it involved
in the bubble by the corresponding portion of p;. This contradicts
our assumption that p, is locally optimal.

Case 2: We have a vertex b; not coincident with b; or b, such that b; is
the first vertex reached when traveling from b, to b on p;. Since the
paths are assumed to be locally-optimal and the bubble is obstacle-
free, the segment b3, b, is the base of a pseudo-funnel, with apex by,
formed by p; between b, and b3 and from p, between b; and b,. It is
known that the apex of a funnel (or pseudo-funnel) must be visible
from the interior of its base ([GM]), so we have a point z in the interior
of b3b, visible to b,. Since 7 is a point on p;, we can shorten p by
replacing the portion of it between b; and ¢ by the line segment bz.
This contradicts our assumption that p; is locally optimal. 1

Now we can prove the following lemma:

Lemma 3 If a path-pair is locally-optimal and topologically feasible, then its
path-polygon must be an hourglass, a funnelglass, or a bowtie.

Proof: The paths of a path-pair satisfying the hypotheses of the lemma
cannot form a bubble by Lemma 2 and consist of visibility graph edges.

Therefore the paths must satisfy exactly one of the following three condi-
tions.

1. the paths are disjoint;

2. the intersection of the paths is a polygonal chain whose endpoints are
vertices of the visibility graph (this includes the case in which the
intersection is a single vertex); or

3. the intersection of the paths is a single point that is not a vertex of
the visibility graph:

19

If the paths satisfy the first condition, they determine an hourglass; if
they satisfy the second condition, they determine a funnelglass; and if they
satisfy the third condition, they determine a bowtie. 1

Our next lemma states that locally-optimal, topologically-feasible path-
pairs not only form characteristic shapes but also admit feasible parame-
terizations.

Lemma 4 If a path-pair is locally optimal and topologically feasible, then it
must be feasible.

Proof: We need to show that the paths that determine hourglasses,
funnelglasses, and bowties can be parameterized so as to keep the moving
points covisible at all times. After partitioning one of these path-polygons
into simple polygons and triangulating its components, we construct a fea-
sible parameterization using three types of elementary motions that we call
“single-step motions,” “double-cross motions,” and “telescoping see-saw
motions.”

A single-step motion is one in which one of the two moving points re-
mains stationary at a vertex while the other moves the entire length of a
single straight line section of its polygonal path. A sequence of single step
motions is sufficient to parameterize a funnel or a simple hourglass since a
triangulation of one of these objects gives a sequence of diagonals between
initial and final configurations in which adjacent diagonals correspond to
configurations obtainable from one another by a single-step motion (this
follows from the inward-convexity of the defining paths). Non-simple non-
twisted hourglasses like those shown in Figures 8 and 9 can be partitioned
by a tangent edge (see Section 5) into a sequence of two simple hourglasses
with the final configuration of one hourglass equal to the initial configura-
tion of the next one. So these hourglasses, along with funnelglasses, can be
parameterized by single-step motions.

A double-cross motion is a coordinated motion in which the two points
move simultaneously along two intersecting line segments in such a way
that they meet at the intersection point. Double-cross motions together
with single-step motions are sufficient to parameterize bowties, because
a bowtie can be decomposed into two simple hourglasses joined by two
intersecting line segments.

A telescoping see-saw motion is a coordinated motion obtained from a
rotating line segment. We use these motions to parameterize twisted hour-
glasses like the one shown in Figure 10. We rotate a line segment through
the intersection point of the defining segments of the hourglass, from the
initial configuration to the final configuration. The intersection points of
this rotating segment with the two polygonal paths gives a simultaneous
parameterization of the paths that keeps the moving points covisible. 1

We are finally at the point where we can state that local optimality is
a necessary condition for optimality.

Lemma 5 If a path-pair is optimal, then it must be locally optimal.

Proof: An optimal path pair is topologically feasible by Lemma 1. It
must also be locally optimal; otherwise, it could be improved by “pulling
it taut” and the resulting locally-optimal, topologically-feasible path-pair
would still be feasible by Lemma 4. 1

3.5 Main Results for the MIN-SUM Problem
Our algorithm for the MIN-SUM problem is based on the following result:

Theorem 1 An optimal path-pair for the MIN-SUM problem is obtained by
selecting one for which the path-polygon is an hourglass, a funnelglass, or a
bowtie, and the associated cost (u(p1) + p(p2)) is minimum.

Proof: Lemmas 1 and 5 establish that topological feasibility and local
optimality are both necessary conditions for optimality. This, together
with Lemma 3, proves that an optimal path-pair determines an hourglass,
funnelglass, or bowtie as its path-polygon. The hourglass, funnelglass, or
bowtie that minimizes u(p,)+p(p;) is feasible by Lemma 4, so it corresponds
to the optimal path-pair. 1

Theorem 1 establishes the correctness of our algorithm, which appears
in section 4. The efficiency of our algorithm depends on the number of
hourglasses, funnels, and bowties that can occur. In section 5, we show

that the following combinatorial bound on the number of these objects
holds:

Theorem 2 There are at most O(E) hourglasses, funnels, and bowties.

21

4 The MIN-SUM Algorithm

Instance: A set @ of polygonal obstacles, an initial configuration (sy,s2),
and a final configuration (t1,12).

Algorithm:

1. If 3755 and %77, don’t intersect, then compute the visibility graph VG,
of the obstacle set @ and the points sy, s3, t1, and ¢, treating 3757 and
11, as line segment obstacles. Otherwise, compute the visibility graph
V@G, of the obstacle set © and the points sy, s2, 1, and t; treating
3757 as a line segment obstacle, then compute the visibility graph VG
of the obstacle set O and the points sy, sq, t1, and i, treating #;t; as

a line segment obstacle, and then match corresponding edges in V Gy
and V{,.

2. Generate all funnels with base 3733 or f1¢; while maintaining and up-
dating at each vertex a representation of the best funnel (in terms of
total chain length) on each base having that vertex as its apex.

3. Generate all hourglasses and bowties from 3733 to #1t; and determine
which has the best associated path-pair.

4. Define an augmented visibility graph G as follows:

¢ Beginning with the visibility graph VG obtained in step 1, create
an additional “funnel” node fn for each minimal funnel f found
in step 2.

e Connect each funnel-node fn to the node v corresponding to the
apex of funnel f. Let the length of edge (fn,v) be half the sum
of the two lengths of the defining paths of f.

e Create a “supersource” node s, linking it with an edge of length 0
to each funnel-node corresponding to a minimal funnel based on
515;. Similarly, create and link a “supersink” node t to each
funnel-node corresponding to a minimal funnel based on #;1,.

5. Find a shortest path from s to t in the graph G. This determines the
best path-pair for which the path-polygon is a funnelglass.

22

6. Compare the results of Step 3 and Step 5. If Step 3 produced a value
smaller than twice the length of the shortest path found in Step 5, then
return the path-pair corresponding to the best hourglass or bowtie.
Otherwise, return the path-pair corresponding to the best funnelglass
found in Step 5.

5 Discussion and Analysis

Step 1 of the algorithm builds each visibility graph in O(E+nlog n) time and
O(E) space using the algorithm of Ghosh and Mount [GM]. The structure
obtained in this step, which is called the “enhanced visibility graph” by
Ghosh and Mount, provides, for each node, a representation of the nodes
visible to it sorted by angle.

In the edge-matching portion of Step 1, we link together with pointers,
any edges e; and e, satisfying the following conditions: e; is an edge of VG,
ez is an edge of V Gy, and the two edges correspond to the same feasible line
segment. In other words, for each edge that occurs in both graphs, we link
together its two different representations. Because matching edges in this
way is equivalent to merging two sorted lists, it takes O(F) time, where E
is the maximum of the number of edges in VG, and the number of edges in
VQG,.

We generate funnels in step 2 of the algorithm in time and space propor-
tional to the number of funnels found. We can represent each funnel with
a fixed amount of storage space because a funnel is uniquely determined by
the first edge on its lower (or upper) chain when its base is fixed [GM]. Since
this fact also guarantees that the number of funnels generated is at most 2F,
the total space required to represent the funnels is O(E).

Funnels can be generated in output-sensitive time because they are linked
to one another in a structure called a funnel tree [GM]. Funnel trees, which
are contained implicitly within the enhanced visibility graph, allow us to com-
pute the lengths of each funnel’s chains in constant time from the lengths of
its parent’s chains. A traversal of the “lower” funnel tree produces the lengths
of all lower chains, while a traversal of the “upper” funnel tree produces the
lengths of all upper chains.

In addition to providing us with the length of each funnel in amortized
constant time, a funnel tree traversal produces a linear ordering of the funnels

23

Figure 12: A tangent edge partitions an hourglass into two funnels.

called a funnel sequence [GM]. We show later that one such funnel sequence
enables us to calculate the length of a bowtie efficiently.

Ghosh and Mount show that funnel trees can be traversed in O(E) time
after constructing the enhanced visibility graph, so step 2 of the algorithm
takes O(F) time.

Step 3 of the algorithm generates hourglasses and bowties between 3753
and %;; and stores a representation of an hourglass or bowtie with the best
associated path-pair. We discuss the generation of hourglasses first.

First, we explain why an hourglass, like a funnel, is completely specified
by a single edge of the visibility graph. Each defining path of an hourglass
determines a convex polygon. If the path crosses itself, the region enclosed
by the path is a convex polygon; otherwise, the region bounded by the path
and the line segment between its endpoints is a convex polygon. The two
convex polygons formed by the paths of an hourglass have two inner common
tangents which lie on edges of the visibility graph. Call these edges tangent
edges. In the case of a twisted hourglass one tangent edge is the line segment
5157 and the other tangent edge is £;%,. In every other case, each tangent edge
determines two unique funnels, one on 375; and one on #1fy, that together
form a bipartition of the hourglass as shown in Figure 12. Therefore, the
tangent edge determines the hourglass. This argument also shows that there
are at most F non-twisted hourglasses.

We generate all non-twisted hourglasses in O(F) time by scanning the
funnel sequence obtained from the lower funnel tree on 3733. If an edge that

24

Figure 13: The crossing edges of this bowtie determine four funnels.

determines a funnel in this sequence also determines a funnel in the upper
funnel tree on #;%;, then that edge determines a non-twisted hourglass; its
length can be found in constant time from the upper and lower chain lengths
of the funnels.

If 5737 and %1%, intersect at a point p, then the optimal path-pair could
determine a twisted hourglass. Since a twisted hourglass is uniquely specified
by the initial and final configurations, there is only one twisted hourglass to
check. We find its defining paths by taking convex hulls of the vertices in
triangle Asypt; and triangle Asypts, respectively. This part of Step 3, if
required, takes O(nlogn) time and O(n) space.

Now we consider bowties. A bowtie is also completely specified by a single
edge of the visibility graph. We explain this property of bowties below.

Each defining path of a bowtie has a special edge: the edge containing
the intersection point of the two paths. Each of these crossing edges specifies
two funnels, one on 3737 and one on #;f, as shown in Figure 13. Given both
of these edges, we can calculate the bowtie’s length from the chain lengths
of these four funnels in constant time.

But we don’t want to check all pairs of intersecting visibility graph edges
to generate bowties; there could be O(n?) of these pairs. Instead, we show
that if we are given one of these crossing edges, then we can find the other
one in constant time. This means that a bowtie can be represented by a
single crossing edge, and it means that there are at most E bowties.

We represent a bowtie by the crosssing edge (v,u) that determines a

25

funnel f, with apex v in the lower funnel tree of 3757 (i.e. (v,u) is the first
edge on the lower chain of a funnel with apex v and base 373z). The other
crossing edge (z,y) determines a funnel f, with apex z in the upper funnel
tree of 373;. Consider the sequence of vertices along the lower chain of funnel
f between u and z (see Figure 13). Each of these vertices (except u) is the
apex of a funnel that is a descendent of the parent of funnel f, in the lower
funnel tree. Let w be the first vertex after u in this sequence. The funnel at
each vertex except w in this sequence must be the extreme clockwise child
of its parent in the lower funnel tree; otherwise, the funnel f, determined
by (u,v) in the lower funnel tree of #;Z; wouldn’t be obstacle-free. Also f;
must be a leaf node in the lower funnel tree; otherwise, its children’s apices
would be inside funnel f,. This establishes that f, is the predecessor to f,
in the funnel sequence obtained from a clockwise preorder traversal of the
lower funnel tree of 3753. So if we are given the crossing edge (v,u), we can
find the crossing edge (z,y) in constant time.

We generate all bowties in O(E) time by scanning through the funnel
sequence obtained from the lower funnel tree on 378;. If an edge that deter-
mines a funnel in this sequence also determines a funnel in the lower funnel
tree on 1;t,, then that edge determines a bowtie; its other crossing edge and
its length can be found in constant time.

Finally, the best funnelglass is found by searching the graph constructed
in Step 4 of the algorithm. The construction of this graph takes O(E) time
since O(E) vertices and edges are added to the visibility graph. The shortest
path from the supersource s to the supersink # in this graph must use a funnel
node adjacent to s and a funnel node adjacent to ¢. In other words, this path
represents a funnel on 3735 connected to a funnel on #;Z; by a shortest path in
the visibility graph. The shortest such combination must correspond to the
best funnelglass. Finding the shortest path in this graph takes O(E +nlogn)
time ([Di], [FT]).

In summary, Step 1 and Step 5 take O(E + nlogn) time, and every-
thing else takes O(E) time, except for calculating the length of the twisted
hourglass (which, if necessary, takes O(nlogn) time). This establishes our
main result.

Theorem 3 An optimal solution to the MIN-SUM problem can be found in
O(E + nlogn) time and O(E) space.

26

6 The MIN-MAX Problem

In the MIN-MAX problem we want to minimize the larger of the two path
lengths, rather than the sum of the two path lengths. We use the same
basic approach to solve this problem as the one we used for the MIN-SUM
problem.

We enumerate funnels, hourglasses, and bowties keeping track this time
of each of the two path lengths p; and p,. We now choose the best bowtie
or hourglass according to the min-max criterion, but the main difference is
that the augmented visibility graph now has two different lengths associated
with each edge. We are not able to solve as efficiently the resulting graph
search problem since it is a bicriteria shortest path problem. In general, the
bicriteria shortest path problem is NP-hard, but our problem has a special
structure that allows an efficient solution; namely, the only edges of the graph
with two different edge lengths are those edges incident to a funnel node.

We find the best funnelglass by enumerating all funnel pairs (with one
funnel on base 5737 and the other on base #;3) and connecting each pair of
apices by a shortest path in the visibility graph. To determine the distances
between all pairs of vertices without using £2(n?) space we repeat the following
steps for each vertex v:

1. Compute the shortest path tree rooted at v using Dijkstra’s Algorithm.

2. Find the best funnelglass such that one funnel has apex v and base 5757
and update the representation of the best funnelglass found so far, if
necessary.

The time needed for the n iterations of Dijkstra’s algorithm is O(En +
n?logn). Since there are O(E) funnels on each base, it takes O(E?) com-
parisons to find the best funnelglass (the cost of a funnelglass is calculated
in constant time using the shortest path tree).

In summary, we have the following theorem:

Theorem 4 An optimal solution to the MIN-MAX problem can be found in
O(E?* + n?logn) time and O(E) space.

We can generalize the above result to the case in which we are given an
upper bound on the length of one agent’s path, and we desire to minimize
the length of the other agent’s path subject to this constraint. The running
time remains the same.

27

& 81

Figure 14: The deviation from local optimality shown in dots saves time.

7 The MIN-TIME problem

Our methods can be used to find an approximate solution to the following
MIN-TIME problem: Given a common upper bound on the velocities of two
moving points, find a coordinated motion from an initial configuration (sy, s2)
to a final configuration (¢,,%;) that keeps the points covisible at all times and
minimizes the time needed to complete the motion.

It seems unlikely that our approach can be used to find the optimal solu-
tion exactly since min-time paths need not be locally optimal with regard to
distance. For example, Figure 14 shows that deviating from a “taut string”
path can reduce the time needed to complete the motion. Therefore, min-
time paths need not lie on the visibility graph and will not, in general, form
hourglasses, funnelglasses, and bowties. We show below, however, that any
parameterization of the min-sum path-pair satisfying two specific conditions
gives a provably good approximation to the optimal solution.

Theorem 5 Any parameterization of the MIN-SUM path-pair that always
keeps at least one agent moving at full speed and that never causes an agent
to backtrack gives an approzimate solution to the MIN-TIME problem that
takes no more than twice the time of an optimal motion. Furthermore, such
a parameterization always exists.

Proof: Without loss of generality, assume that the maximum velocity is 1.

Let t* denote the time value associated with the min-time motion, and let {
denote the length of the longer path in the min-time path-pair. Then t* > [

28

But { > t¢/2 where ¢ is the distance associated with the min-sum path-pair;
otherwise, the path-pair corresponding to the min-time motion would have
a better distance value than the min-sum path-pair. So t < 2¢.

If p is a parameterization satisfying the hypotheses of the theorem, then
p takes time at most ¢ to move both agents to their destinations. Thus p
approximates the min-time motion to within a factor of two.

The proof of Lemma 4 — in which we showed that an optimal path-pair
can always be parameterized by single-step motions, double-cross motions,
and telescoping see-saw motions — implies that a parameterization satisfying
these hypotheses can always be found. 1§

8 Conclusions and Further Research

We have shown that optimal solutions to the MIN-SUM and MIN-MAX
problems can be computed efficiently. Our algorithm for these problems is,
to the best of our knowledge, the first polynomial-time algorithm that finds
an optimal motion for a robot system with more than two degrees of freedom.
Many questions about optimal multi-agent motion remain open, however.

We are currently exploring the following extensions to the work presented
here and hope to have additional results to report on them soon:

Transparent Obstacles Our algorithm can be extended to the following
slightly more general case. Assume that the “obstacles” in the planar
environment are of two varieties: “mountains” (through which both
sight and travel is impossible), and “lakes” (over which we can see, but
through which we cannot travel). Then our problem is to find a pair
of feasible paths for the two agents such that their line-of-sight is not
obstructed by mountains.

Different Constraints There are a variety of other constraints that we
wish to impose on the pair of agents. For example, we are investigating
the difficult problem of putting an upper bound on the distance between
the agents, without requiring that they remain covisible.

Visibility Breaks Instead of demanding that the two agents always be co-
visible, we would like to allow brief breaks in the visibility. We may
want to find the best pair of paths (min-sum or min-max) subject to

29

the constraint that the agents not lose communication for more than
some given ¢ percent of their journeys. This gets us into the domain of
more general bicriteria optimization problems.

Better Parameterizations The parameterization described in Section 7
approximates the min-time motion to within a constant factor, but is
far from intelligent; in most cases, we move only one agent at a time. To
improve these parameterizations we could try to find the minimum-time
parameterization of the min-sum path-pair. This may not improve the
worst-case time bound but should be considerably better on average.
Another possibility is to approximate the min-time motion or the best
motion having a particular homotopy class using numerical methods.

Several Agents The case in which there are more than two agents is espe-
cially interesting. There are many tricky topological cases to consider,
but it seems that our general method will apply to the version in which
we wish to minimize the sum of the path lengths subject to clique vis-
ibility (that every pair of agents remain covisible at all times). Other
specifications of visibility constraints among multiple agents include re-
quiring that there is some path of line-of-sight communication joining
any two agents (i.e., that the communication network remain connected
at all times).

Acknowledgements

We would like to thank Esther Arkin, Robert Freimer, Samir Khuller, and
Christine Piatko for helpful discussions. This research was partially sup-
ported by a grant from the Hughes Research Laboratories, Malibu, CA, and
by NSF Grants IRI-8710858 and ECSE-8857642.

References

[AAGHI] T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai,
“Visibility of Disjoint Polygons”, Algorithmica, Vol. 1, (1986),
pp- 49-63.

[AGT] D. Avis, T. Gum, and G. Toussaint, “Visibility between Two
Edges of a Simple Polygon”, The Visual Computer, Vol. 2, (1986),
pp. 342-357.

30

[CR]

[GHLST)

J. Canny and J. Reif, “New Lower Bound Techniques for
Robot Motion Planning Problems”, Proc. 28th FOCS, pp. 49-60,
Oct. 1987.

Dijkstra “A Note On Two Problems in Connection With Graphs”,
Numerische Mathematik, 1 (1959), pp. 269-271.

M. Fredman and R. Tarjan, “Fibonacci Heaps and Their Uses in
Improved Network Optimization Algorithms”, Proc. 25th Annual
IEEE Symposium on Foundations of Computer Science, pp. 338-
346, 1984.

L. Guibas, J. Hershberger, D. Levin, M. Sharir, and R. E. Tarjan,
“Linear Time Algorithms for Visibility and Shortest Path Prob-
lems inside Simple Polygons”, Proc. of the 2nd ACM Symp. on
Computational Geometry, pp. 1-13, 1986.

L. Guibas, and J. Hershberger, “Optimal Shortest Path Queries
in a Simple Polygon”, Proc. of the 3rd ACM Symp. on Compu-
tational Geometry, pp. 50-63, 1987.

S.K. Ghosh and D.M. Mount, “An Output Sensitive Algorithm
for Computing Visibility Graphs”, Technical Report CS-TR-1874,
Department of Computer Science, University of Maryland, July
1987. (Also appears in FOCS, 1987.)

J. Hershberger, “Finding the Visibility Graph of a Simple Polygon
in time Proportional to its Size”, Proc. of the 3rd ACM Symp. on
Computational Geometry, pp. 11-20, 1987.

C. Icking, G. Rote, E. Welzl, and C. Yap, “Shortest Paths
for Line Segments”, Technical Report, Fachbereich Mathematik,
Freie Universitaet Berlin, September 1989.

S. Kapoor and S.N. Maheshwari, “Efficient Algorithms for Eu-
clidean Shortest Path and Visibility Problems with Polygonal
Obstacles”, Proc. Fourth Annual ACM Symposium on Computa-
tional Geometry, Urbana-Champaign, IL, June 6-8, 1988, pp. 172-
182.

31

[SS]

[We]

D.T. Lee, “Proximity and Reachability in the Plane”, Ph.D. The-
sis, Technical Report ACT-12, Coordinated Science Laboratory,
University of Illinois, Nov. 1978.

D.T. Lee and F.P. Preparata, “Euclidean Shortest Paths in
the Presence of Rectilinear Boundaries”, Networks, 14 (1984),
pp. 393-410.

T. Lozano-Pérez and M.A. Wesley, “An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles”, Communica-
tions of the ACM, Vol. 22, No. 10 (1979), pp. 560-570.

J.S.B. Mitchell, “A New Algorithm for Shortest Paths Among
Obstacles in the Plane”, Technical Report No. 832, School of Op-

erations Research and Industrial Engineering, Cornell University,
October, 1988.

M.H. Overmars and E. Welzl, “New Methods for Computing Vis-
ibility Graphs”, Proc. Fourth Annual ACM Symposium on Com-

putational Geometry, Urbana-Champaign, IL, June 6-8, 1988,
pp- 164-171.

M. Sharir and A. Schorr, “On Shortest Paths in Polyhedral
Spaces”, SIAM Journal on Computing Vol. 15, No. 1, pp. 193-
215, February 1986.

E. Welzl, “Constructing the Visibility Graph for n Line Segments
in O(n?) Time”, Information Processing Letters, Vol. 20 (1985),
pp- 167-171.

32

