ON LOG-TAPE ISOMORPHISMS

OF COMPLETE SETS

J. Hartmanis

TR 77-318

Department of Computer Science
Cornell University
Ithaca, NY 14853

ON LOG-TAPE ISOMORPHISMS

OF COMPLETE SETS ‘
J. Hartmanis

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

ABSTRACT

In this paper we study logn-tape computable reductions between
sets and investigate conditions under which logn-tape reductions
between sets can be extended to logn-tape computable isomorphisms
of these sets. As an application of these results we obtain easy
to check necessary and sufficient conditions that sets complete
under logn-tape reductions in NL, CSL, P, NP, PTAPE, etc. are
logn-tape isomorphic to the previously known complete sets in the
respective classes. As a matter of fact, all the "known" complete
sets for NL, CSL, P, NP, PTAPE, etc. are now easily seen to be,
respectively, logn-tape isomorphic. These results strengthen and
extend substantially the previously known results about polynomial
time computable reductions and isomorphisms of NP and PTAPE
complete sets. Furthermore, we show that any set complete in CSL,
PTAPE, etc. must be dense and therefore, for example, cannot be

over a single letter alphabet.

e T o

R

e

1. INTRODUCTION

The research in computational complexity and in ﬁarticular the
study of feasible ccmputations has been strongly influenced and
furthered by the investigation of efficient reductions between dif-
ferent problems and problem classes. The investigation of such
classes of languages (or problems) as P, NP ‘and PTAPE, and the
discovery that the classes NP and PTAPE contain “naturél" complete
problems to which any other problem in the class can be efficiently
reducéd, has revealed.deep and unsuspected relations betiween differ-
ent problems and has indicated interesting structural relations
between these and other classes of problems [1,3,4,81].

Originally, the completeness of séts in NP was defined in terms
of polynomial time computations with oracle sets in NP, correspond-
ing to Turing reducibility in recursive function theory [3 1.

Soon after that it was realized that these reductions could be
performed by a polynomial time bounded Turing machine, correspond-
ing to many-one reduction in recursive function theory [8]. Since
then relations between these reductions have been investigated and

a i;rge nunber of new‘complete probiems under polynomial time reduc-
tions have been discovered for NP and PTAPE and other classes
{1,2,3,4,8,9].

On the other hand, it turned out that all previously studied
reductions between problems in NP, PTAPE énd such classes as

EXPTIME and EXPTAPE, respectively, can all be performed by logn-tape

bounded Turing machines [5,9). It is casily ‘'seen that the logn-tape

computable reductions are contained among the polynomial time reduc-=
tions but it is not yet known whether this containmee} is proper
(which we conjecture to be the case). Nevertheless, since the ori-
ginal work in NP and PTAPE complete problems under polynomial time
reductions, it has been shown that there exist further, more easily
computable classes of problems, such as NL, the class of languages
acceptable in non-deterministic logn-tape, and P, which have natural
complete problems under logn-tape reductions [5,6,7].

7 Similarly, as our results will show, logn-tape reductions seem
to be appropriate for the study of languages complete for the family
of coytext-sensitive languages since the previously studied "hardest"
context-sensitive languages are complete under logn-tape reductions
(2,4,9]. '

IS this paper we study logn-tape reductions between sets and
derive conditions when logn-tape reductions between sets can be ex-
tended to logn-tape computable isomorphisms of these sets. As an
application of these results we get very easily verifiable neces-
sary and sufficient conditions that a new comélete set is logn-tape
isomorphic to the classic complete sets of this family of languages.
For example, let SAT denote the set of all satisfiable Boolcan for;
mulas in conjunctive normal form, which is known to be a complete

set for NP [3,8]. Then our result states,

N

Theorem: Let B be a complete set (under logn-tape reductions) in
NP. Then B is logn-tape isomorphic to SAT if and only
if there exist two logn-tape computable functions D(,)
S() such that

1

1. (vx,y) [D(x,y) e B&px ¢ B]

2. (vx,v)[S °D(x,y) = yl.

i
i
'
i

Similar results hold for complete sets for NL, CSL, P, NP, PTAPE,
EXPTIME and EXPTAPE. As a matter of fact, these te%}s are soO easy
to appl& that we have applied them to the best known (published)
complete sets for different families of languages and verified that
they all are, respectively, logn-tape isomorphic. Thus showing that
complete sets of the well known families of languages are, respec-—
tively, very similar in a strong technical sense and that these
results extend to such classes as NL and P and the family of context-
sensitive languages, ‘for which polynomial time reductions are not
appropriate since P contains the classes NL and P, and it is ﬁot knowr
whether any language polynomial time reducable to a csl is itself
a csl.

It should be pointed out that if all complete sets in P (NP)
are L-isomorphic then it would follow that P (NP) propefly contzins
the family of logn-tape acceptable languages, which still is an
open problem. Similarly, if all complete sets for non-deterministic
logn-tape acceptable languages are logs—tape isomorphié then the
deterministic and non-deterministic logn-tape acceptable languages
are-different, which would solve a classic open problem.

The previous thecorem rescmbles very strongly the corresponding
isomorphism result for polynomial time reductions of complete sets
and the proof techniques are quite similar. At the same time, the
intérmediate technical results leading to the above theorem are
different. For the logn-tape reducible sets we establish-the fol-
lowing analogue to the Cantor-Bernstein-Myhill theorem, from which
we derive the above and other applications. ‘For the polynomial time

analogue see [2].

Theorem: ZLet £, and fz be reductions A to B and B to A, respectively,
such %hat

1. fl and f2 are one-to-one maps,

f—l -1

2. £ f2, 17 5y are logn-tape computable,

1’
3.0 e E ()] > ix12] for i = 1,2.

Then A and B are isomorphic under a logn-tape mapping.

It is interesting to note that because of an intermediate tech-
nical result the length squaring condition (3), required in our
proof. of the above theorem (the corresponding result for polynomial
time maps required only that the maps are length increasing [2]),
does.not apéear in the first result giving necessary and sufficient
conditions that an NP completé set is.logn-tapc isomorphic to SAT.

Furthermore, we show that sets complete for CSL, PTAPE apd
classes above ?T@PE cannot have sparse complete sets under logn-tape
reductions. This extends and strengthens further the previously

known results for polynomial time reductions [2].

2. PRELIMINARIES AND ISOMORPHISM THEOREM

~A 1222‘3222 transducer or an L-transducer is a three tape
Turing machine (Tm) with a two-way read only input tape, a one-way
output tape and, for input w, a log|w| 1long two-way, read-write
work tape.

We say that a function is logn-tape or L-computable if there

exists a logn-tape transducer which computes the function.
A set A, A ¢ I*, is logn-tape reducible or L-reducible to the

set B, B ¢ I'*, if therc cxists an I-transducer ”i such that

X € A& Mi(x) € B.

We denote this by
A SL B.

Two sets A, A ¢ L*, and B, B ¢ r*, are log-tare isomorphic

or L-isomorphic iff there exists an L-reduction p of A to B such
that

a) p is a bijection,

1

b) p ~ is a log-tape transduction.

Thus we see that p is a one-to-one onto L-reduction of A to B

and p_l is a corresponding L-reduction of B to A.

We denote the set accepted by the Tm Mi by T(Mi) and the maximal

running time and tape used for inputs ‘of length nAby Ti(n) and

Li(n), respectively. .

Let
L= {T(M;) |1, (m) < log n},
NL = {T(M) [M; non-deterministic and L, (n) < log n},
P = {T(,) [T, (n) < n¥, x = 1,2 }
. i i — 1 ’ LA 4
NP = {T(Mi)(Mi non-det. and Ti(n) < nk, k=1,2,...1},
pTAPE = (T(M,)| L (n) <, k= 1,2,...0

CSL = {T(Mi)lMi non-det. and L;(n) < n}.

A set B is logn-tape complete or L-complete for a family of

languages F iff

a) BeF .

b) (A ¢ F)I[A s B].

We now start our investigation of L-isomorphisms with the goal
of developing very simple necessary and sufficient conditions that
a new complete set in one of the previously listed families of
languages is L-isomorphic to the previously known complete sets in
that family. Thus showing that in a very strong technical sense
all the "known" complete sets in these families of languages are
indeed very similar. Recall that, showing that all the complete
sets in NL or P are, respectively, L-isomorphic, would have some
4very profound consequences.

Theorem 1l: Let p and é be L-reductions of A to B and B to A,
respectively, such that
a) p and g are one-to-one,

1 and q—l are L-computable,

b) p~
2 . 2
e) |ptx)] > |x]|“ and’|g0x)| > [x]|°.

Then A and B are L-isomorphic.

Proof: From p and q we will construct an isomorphism ¢ between

A and B and show that ¢ and ¢-1 are L-computable.

-Let
- k
R, = {(g e p) x|k 2 0 and x £ q(I'*)}

0 and x ¢ p(L*)}

v

R, = {q° (pe q)kxlk

s, = {{p o q)kx}k 2 0 and x £ p(Z*)}

v

s, ={po° (g~ p)kxlk ¢ and x £ q(T*)}.

It is easily seen that

= = n * = o=
R, n R2 Sl n S, &, and I Rl] RZ’ T Sl u S

Note that if p_l(x) or q—l(x) are undefined then they output
a special symbol *. This can be done since we can detect cycling

on logn tape.

Define
¢(z) = if z ¢ R, then p(z) else q—l(z)

¢-l(z) = if z ¢ S, then p—l(z) else g(z). .

2

We first show that ¢ and ¢-1 have the desired properties and

then show that ¢ and‘¢-1 are L;computable. Since

= = *
R, nR ¢ and Rl v R2 z

the function ¢ is well defined. Similarly ¢_l(z)—is well defined.

It is seen that
- _ -1 _ -1 _
¢(Rl) = 52, ¢(R2) = Sl’ [(32) = Rl’ -] (Sl) = Rz,

and that ¢ is a one-to-one onto mapping and that ¢ and ¢-1 are
indeed inverses.
To compute ¢(z) we have to determine whether z is in R, or

R..” This can be done by computing the minimal k 2 0 such that

5t

(@t pre)kg x) = * or plegt e pt kg =

In the first case

L}

¢ (x) p(x),

i in the second case .

L}
[le]
—

x

¢ (x)

*

Since p and g are such that
: 2 2 .
lpx) "> |x|® and |q(x)]| > |x]%,

we see that

-1 1/2

’P-l(x)l < lx]l/z and |q “(x)]| < |x]|

Since
loglx[l/z = 1/2 log|x]|

we see that the tape requirements for computations of successive
inverses are cut in half. This fact can be exploited to compute
¢ (z) and ¢~l(z) on logn-tape. - The only difficulty is that during

the computation there may be intermediate values for

al@, p e g, gt pt e a2, etc.

which are too large to be written down on the available working
tape. This difficulty can be avoided by never writing these values
down but recomputing them (recursively).when they are required in
the_subseguent computations.

4 We now outline how this computation is performed on Tm M¢.
We can assume that the Tm's computing p and g use exactly log|w]
tape for input w and let M¢ have effectively & logiw]| tape available
for input w (this can be achieved by choosing a sufficiently large

tape alphabet). Let the tape of M, be divided in log|w| scgments

¢
of length

4 loglx|, 2 log|w|, loglw|, 1/2 log|w|, etc.

10

These segments will be used to compute, respectively,

1o ol gl

q—l(W), p_l ° q'l(w), q P (w) etc.,

as far as needed to determine whether

¢(w) = p(w) or ¢(w) = T L.

We will refer to the computations of

-1,

Yy, p T).,

respectively, as the first stage, second stage, etc. On each tape
segment for each stage of the computation will be recorded the
state of the Tm (which computes p—1 or q—l of the output of the
previous stage), the contents of the work tape of this Tm and
which tape square it is scanning, furthermore it will be recoraed
which tape symbol it ?s scanning on the (simulated) input tape and
how many output symbols it has received from the previous stage.

The computation starts by the first stage computing the first
output symbol of q-l(w). .

-If during the computation in a given stage an output symbol isA
computed the computation in this stage stops and the output symbol
is passed to the next stage which becomes active. If this output
symbol permits the next stage to continue its computation, it com-
putes until it produces an output or needs a new input. In the
first case the next stage is activated and the output is passed con,
in the second case, the previous stage is activated and an output

is requested. In this manner all stages are cycling through com-

11

puting (many times over) their output which is passed on to the

next stage for it to find the appropriate input symbél it is waiting
for. At some point one of the computations must yield a * from
which M¢ can determine whether to compute p(w) or q‘l(w) to get

6 (w), which again can be done on log|w|-tape.

This completes the proof that there exists an L-isomorphism
between the sets A and B. a
Next we derive several technical results which will lead to

‘a very simple result giving necessary and sufficient conditions

that a complete set is L-isomorphic ﬁo a fixed, well known complete
set in the class under consideration.
First, we derive condition under which a logn-tape reduction
can yield a one-to-one logn-tape inverta#le reduction.
Lemma 2: Let A be a set for which two L-computable functions
SA(,) and DA() exist such that
1) (¥x,y) [SA(x,y) ¢ A iff x € A)
2) (¥x,y) [D,(S(x,y)) = y].
Then if f is any L-reduction of C to A, the map
- £i(x) = SplE(), x]

is a one-to-one L-reduction of C to A and (f')—l is

L-computable.

Proof: From condition 1) we see that

LY

SA[f(x), X]
is an L-reduction of C to A sirce

X € A iff SA[f(x), X] ¢ A,

To sce that f' is one-to-onc assume that
£'(x) = £'(y) -
then
X = DA[f'(X)] = DA[SA(f(x)' x}] = DA[SA(f(Y), y)l = v,
so f' is a one~to-one map. Furthermore,
q(x) = if x = SA[f(DA(x)), D, (x)] then D, (x) else *

is the inverse of f' and since SA’ DA and £ are all logn-tape
computable so is (f‘)_l, as was to be shown. . d
To apply Theorem 1 we still need the length sguaring property,

which we consider next.

Let A ¢ L*. Then ZA:Z* + I* is a padding function for the
set A if
1. ZA(X) ¢ A iff x € A

2. ZA is one-to-one.

Lemma 3: Let f be onc-to-one L-reduction of A to B and let f—l be
- L-computable. Assume that either A or B has a padding
function Zy (x = A or B) which satisfies the conditions:

1) 2, and Z;l are L-computable,

2
2) () tlz (] > [y]® + 1)
Then there exists a one-to-one L-reduction f' of A to B
such that .
i) (f')_l is L-computable, .

i) (e LE W | > lyl1%).

13
Proof: Let x = A. Since f and f-l are computable on logn-tape
there exists a (non-decreasing) polynomial p such thét p(n) > nz and
W 1]£60] < p(lx]) and [£7 00| < pCixDI.

Then from condition 2) we know that there exists an integer r such

that
wa []zZ60 | > p(lx?).

Therefore '

£ 22 0] > %12,
since)

£ o zieal < [x|?
implies that

|71 e £ o 2y (x) | = lzy | < p(1x]%),

which is a contradiction. Thus
£1(x) = £ ° 7, ()

is an L-reduction of A to B with the desired properties.
Assume that the padding function exists for the set B, ZB'

Then there exists an integer r such that for all x

lzg 0| > p ° pUlx])

14
where p is the polynomial defined in the first part of the proof.
Then
(w) (£) > [x|1,
since
p(le D) < x|

implies that £(x) =y and

£ x| < pilyh < Il

cont;adicting the fact that

£l e f(x) = x.
But' then
£ =5 0 £
is a one-to-one L-reduction of A to B with (f')—l L-computable, and
€160] = 25 ° 26l > p @ pUEGI D = pUUx) > [xl.

This completes the proof.
We now combine these results to get our next result.

Theorem 4: Let the set A be L-reducible to B and B be L-reducible
to A; furthermore let the set A have a padding functicn
Zp satisfying Lemma 3 and functions Sp and Dz satisfying
Lemma 2. Then B is L-isomorphic to A iff B has functions
Sp and Sp satisfying Lerwma 2.

Proof: If A and B are L-isomorphic under the bijection ¢ then we

15

can define

-1 .
Sglx, ¥yl = ¢ = ° Splox), Y] -
and
Dy (x) = DA[¢(X)].
Clearly, SB and DB are L-computable since SA’ DA’ ¢ and ¢—1 are.

Furthermore for all x and y

x € B iff ¢(x) ¢ A iff S, [¢(x), yl ¢ A

iff ¢t o Splex), y) = s;lx,y] ¢ B
and
DB[SB(X’ y)l =vy.

Conversely, if the functions SB and DB exist then by using
Lermmas 2 and 3 with Theorem 1 we get an L-isomorphism between A
ard B. This completes the proof.

3. APPLICATIONS

To apply the previously developed result, Theorem 4, we will

pick from each of the families
NL, CSL, P, NP and PTAPE,

a well known complete language and show that cach of these lan-

guages has a padding function ZA and functions DA and SA satisfy

1

1o

Lenmas 2 and 3, respectively. Then any complete set B in the
corresponding class will be L-isomorphic to these “classic" sets
if and only if B possesses the two L-computable functions SB and

D satisfying Lemma 2. As it will be seen from examples, this

BI
is a very simple test.

The fcllowing are our representative L-complete sets frem

different classes.

NL: The graph accessability problem, GAP, defined below,
is complete for NL [6].

INPUT: Directed graph G with an "in" and "out” node.

in

PROPERTY: There is a directed path from the " to

the "out" node.

CSL and PTAPE: The regular ‘expression problem denoted by RZ*'

is complete for CSL and PTAPE {(1,4,8].

INPUT: Regular expression R over I,+, u, *,), (.

PROPERTY: L(R) # L¥*.

P: The context-free language emptiness problem, CFL9, is com-

plete for P [7].
INPUT .: Context-free grammar G.
PROPERTY : L(G) = ¢.
NP: The conjunctive normél form Boolean function satisfi-
ability problem, SAT, is complete for NP [1,3,8].
INPUT: A Boolean function'F(xl, Kor weey xn) in CNF.

PROPERTY: There exists an assignment x, € {0,1},

1 < i £ n, such that F(xl, x2,..., xn =

[

17

Lemma 5: Each of the sets: GAP, RY*’ CFL4, and SAT has a padding
function 2 and functionZ D and S, satisfying Lemmas 2
and 3, respectively.

Proof: We note that the GAP property cannot be destroyed nor intro-
duced by adding a set of new nodes which do not connect to any of

the old nodes. We now describe informally the desired functions.

ws

in

1. 2 adds to G in the description of (G, ", "out") a

GAP
new node with an edge leading back to itself, followed by

enough new nodes without edges, to square the length of the

description of the old problem. '

2. DGAP(X’ y) (let x ¢ £* and y ¢ {0,1}*) adds to the graph
described in x a new node with two edges and then encodes
y in a sequence of new edges with one edge and no-edge,

representing ones and zeros, respectively.

3. SGAP is such that

o -
Scap © Dgap (X ¥) = Y-

It is easily seen that all three functions exist and are L-computable

.] ~to- 3 72°% is 1- " -
and that ZGAP is one-to-one and ZGAP is L-computable.

Next we consider the set Ry, which is complete for CSL and

PTAPE. We denote the corresponding functions by ZR, DR and SR'
|2 12
IRIZ, 0+ plRIT*1g

1. ZR(R) = (A +0+ 1)
2. DR(R, y) =y + (A + 0+ l)Iyl + (0 + 1)[Y| + 1 R

3. SR ° DR(R, y) =Y.

properties and that 2

18

Again it is easily seen that the three functions have the desired

D and Z;l are L-computable.

R" "R’ SR
For the CFL$ problem let the context-free grammar be given by

G = (N, T, T, Pr}).

where N, T, Tand Pr denote, respectively, the set non-terminal
symbols, termiral symbols, the starting syﬁboi and preductieons.
To construct the desired functions Zc’ Dc andé Sc we will add three
new symbols to N and sufficiently many new productions in these

symbols (the productions may be repeated many times in Pr) to

square the length of G. This yields
= '
ZC(G) G'.

Similarly, DC(G,y), y ¢ {0,1}* encodes the sequence y with new

productions added to Pr by using, say Nl > NlNl as a marker and
" " ” "
then N1 - NlNZ for a "zero" and Nl > N1N3 for a "one". Clearly
-1

Zc' Zc B Dc and Sc are all L—;omputable and satisfy the recuired

conditions.
“Finally, we note that the desired functions ZSAT’ DSAT and

SSAT exist for the satisfiability problem. Let F have the vari-

ables xX,, X

1 AR Xy then let

ZSAT(F) =F « (x +

with k such that

19

Let

~

—_ —yl _Y2 _y l
Doap (Froy) =Felx g + X)% 4o Xpig oo0 Xnadi|y]

where
x & = if y; = 0 then x else X.

Again it is easily seen that these functions are L-computable and

that so are Z._l and S satisfying

SAT SAT’

o -
Ssap ° Dgap(Fr ¥) = ¥-

This completes the proof.
Theoren 6: Any complete set B in NL, CSL, P, NP or PTAPE is,
respectively, L-isomdrphic to

GAP, R CFL$, SAT or RZ*

DL

iff there exist two L-computable functions DB(;)
and SB() such that

1. (Ux,y) [D(x,y) ¢ B&>X < B]

2. (¥x,y)[Ss o D(x,y) = y].

Proof: Combining Lemma 5 and Theorem 4.

As seen from theAexamples in Lemma 5 and [2] the necessary and
sufficient conditions cf Theorem 6 are very easy to check. We
have checked them for a large number‘of complete sets for differ-
ent families of languages\without encountering any difficulties.
Thus we caﬂ assert the following. .

CLAIM: The "known" complete sets for NL, CSL, P, NP, PTAPE, etc.
are all, respectively L-isomorphic.

LV

At the same time it should be recalled that we do not know
whether all complete sets in these classes are L-isomorphic.
Furthcrmore, a proof of this fact for the classes NL and P, for

example, would yield that
{TMy) L; (n) < logn} ¢ NL and P,

which are at the present unsolved problemsland appear to be

quite difficult.

4. DENSITY CONSIDERATIONS

It was shown in [2] that languages complete for EXPTIME .and
EXPTAPE, under polynomial time reductions, could not be over a
single letter alphabet nor could they be sparse. In_this section
we stfengthen these results for completeness defined unéer
L-reductions and extend them to compqtationally less complex fami~
lies of languages. ‘

A language A, A ¢ I*, is sparse if there exists a éolynomial P

such that
|a f1£n] < p(n).

Theorem 7: No language L-complete for CSL, PTAPE, EXPTIME ox
EXPTAPE can be sparse.

Proof: We will outline a diagonalization process which constructs

a non-sparse set A, acceptable on deterministic linear tape,

A ¢ TAPE[n], such that any L-reduction of A to any other set must

21

be one-to-one almost everywhere. Therefore, a complete set to
which A is L-reducible cannot be sparse, since one-to-one L-

mappings map non-sparse sets into non-sparse sets.
Construction of A:

Let Ml, M be an enumeration of all L-transducers. Let

grees
In be a subset of this enumeration, namely those L-transducers
which up to stage n in our construction cf A have been found no

to be L-reductions of A to any set.

TAGE 0: Let I_= ¢, A = ¢, A' = ¢.

Go to®stacE 1° °
STAGE n: Let w be the first string not in A v A' ;. On
X n-1l n~% -
|w| tape enumerate as many Mij not'in In—l s pos-
sible, refer to this enumerated list as'L.. If
Ln is empty let .
A =a v iy | Iyl = l«D)
' =
An An-l
In = In-l

and go to STAGE n+l.

Mis in Lp, let Ly < Lp - {Mj.}, and try to find cn

the available tape (a minimal pair) x and z such that

x # z, Mij(z) = Mij(x),
and
x and z are'not both in A or A' .
n-1 n-1
If such x and z are found, add them to An-l or
A%—l so that (or check that) .

X € An and z ¢ Aﬁ or vica versa,

furthermore, to make A dense, let Ay contain all y
such that |y| = |w| + 1, and lct

SUBSTEP: If sublist Lp is empty go STAGE n+l, else pick first

R

22

Go to STAGE n+l.
If no x and z is found in available tape, go to
SUBSTEP.

It is seen from the construction that A is such that any M,

which L-reduces A to any set must be one-to-one from some point

on, or else we would have placed and x in A and z in A such that
My () = M, (2),

insuring thgt Mi is ﬁqt an L-reduction of A. Furthermore, it is
seen that A is in TAPE [n) and that A is not sparse. Thus we
conclude that there cannot exist any sparse set, recursive or
otherwise, to which A, A in TAPE [n], can be L-reduced. Thus no
L-complete set in CSL or PTAPE can be sparse, as was to be shown.
.It remains an interesting open gquestion whether NL or P can
have, respectively, L-complete sets which are sparse. We conjec-

ture that this is not the case.

23

REFERENCES

Aho, V. A., J. E. Hopcroft and J. D. Ullman, "The Design
and Analysis of Computer Algorithms", Addison-Wesley, Reading,
Mass., 1974.

Berrman, L. and J. Hartmanis, "On Isomorphisms and Density of
NP and Other Complete Sets", SIAM J. of Computing 6(1977) 305-322.

Cook, S. A., "The Complexity of Theorem Proving Procedures",
Proceedings 3rd Annual ACM Symposium on Theory of Computing,
1971, 151-158.

Hartmanis, J. and J. Simon, "On the Structure of Feasible
Computations", Advances in Computers, editors Morris Rubinoff
and Marshall C. Yovits, Academic Press, New York, 1976, 1-43.

Jones, N. D., "Space-Bounded Reducibility Among Combinatorial
Problems", J. of Computer and System Sciences, 11(1975) 68-85.

Jones, N. D., Y. E. Lien and W. T. Laaser, "New Problems Com-
plete for Log Space", Mathematical Systems Theory, 10(1976)
1-17. .

Jones, N. D., and W. T. Laaser, "Problems Complete for Deter-
ministic Polynomial Time", Theoretical Computer Science
(to appear).

Karp, R. M., "Reducitility Among Combinatorial Problems",
In Complexity of Computer Computations, edited by R. E. Miller
and J. Thatcher, Plenum Press, New York, 1972, 85-104.

Stockmeyer, L. J., and A. R. Meyer, "Word Problems Requiring
Exponential Time: Preliminary Report", Proceedings Fifth
Annual AC!M Symposium on Theory of Computing, 1973, 1-9.

. N . :
i
Loy . . .
i .
. H !
v
]
4 : -
. .
.
. .
\
. .

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif

