Deterministic Polynomial Time with
O(log n) Queries

Jim Kadin

TR 86-771
August 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

Deterministic Polynomial Time with

O(log n) Queries

Jim Kadin
Cornell University

August 21, 1986

Abstract

PNPlogn] is the class of languages recognizable by determin-
istic polynomial time machines that make O(logn) queries to
an oracle for NP. Many of the languages related to optimal
solution sizes of NP optimization problems are members of this
class. We relate PNF1°8"] to the study of sparse oracles for NP
by showing that if NP has a sparse <F-complete set, then the
polynomial time hierarchy collapses to PNPlogn] We also discuss
complete problems and show that UOCSAT, the set of CNF for-
mulas with the property that every assignment that satisfies the
maximum number of clauses satisfies the same set of clauses, is
<P _complete for PNFlloen],

1 Introduction

Binary search is an important tool in computer science. The exponential
speedup gained by using binary search over linear search makes many al-
gorithms tractable. It is not suprising that this exponential speedup finds
its way into complexity theory and the study of polynomial time computa-
tions and nondeterminism. For instance, the polynomial self-reducibility of
satisfiable Boolean formulas depends upon a binary search based algorithm

for finding a satisfying assignment from the exponentially many possible
assignments. Hence we know that given an oracle for satisfiable Boolean
formulas (SAT), there is a polynomial time function for finding satisfying
assignments of formulas.

Similarly, given an oracle for SAT, there are binary search algorithms for
finding the optimal solution sizes to NP-complete optimization problems.
For example, the cost of the optimal TSP (traveling salesperson problem)
tour of a graph with weighted edges can be computed with binary search
(relative to SAT). Again since the cost of the TSP tours can be exponential
in the size of the representation of the weighted graph, the search for the
optimal cost can take polynomially many queries.

For many other NP-complete optimization problems such as CLIQUE
and K-SAT (a pair (F, k) is a member of K-SAT if F is a conjunctive normal
form (CNF) formula and there is an assignment to the variables of F' that
satisfies k or more of the clauses of F) the size of whatever is being optimized
is bounded by a polynomial in the size of the problem representation. The
maximal clique size of a graph is bounded by the number of nodes of the
graph, and the maximal number of simultaneously satisfiable clauses of a
formula is bounded by the number of clauses. Thus for these problems,
there are deterministic polynomial time functions for computing optimal
solution sizes that require only O(log n) queries to an oracle for NP (SAT).
Intuitively, algorithms that require only O(logn) queries do not seem to
use the full power of polynomial time oracle machines.

If we look at language recognition problems that are related to opti-
mal solution sizes, we find the same type of split: languages that can be
recognized with O(logn) queries and languages that seem to require poly-
nomially many queries. Recognizing UOTSP, the set of weighted graphs
that have a unique optimal TSP tour, seems to require polynomially many
queries — a binary search to compute the optimal tour cost and one more
query to determine uniqueness.

UOCLIQUE, on the other hand, can be recognized with O(log n) queries.
Similarly the “unique optimal” versions of many other NP-complete opti-
mization problems such as K-SAT, vertex cover, graph colorability, etc. can
also be recognized with O(logn) queries. Other languages such as the set
of graphs whose maximal clique size is even also have this property. These
languages are members of a class that is probably distinct from PSAT.

2

Definition 1 PNPI°87] s the class of all languages accepted by polynomial
time oracle machines that make O(logn) queries to an NP oracle. That
is, L € PNPI°enl i¢ and only if there exists a deterministic, polynomial
time oracle machine M, a constant kyg, and an NP-complete set C such
that L = L(MC) and for all inputs z, M makes at most kps(log |z |) + kas
queries.

Stmalarly, PSATIo8n] ¢g the class of all languages accepted by polynomial time
oracle machines that make O(logn) queries to SAT (where SAT ts the set
of CNF Boolean formulas that have satisfying assignments).

Since SAT is <P -complete for NP, any machine that asks queries to
an NP-complete oracle set C can easily be transformed into a machine
that asks queries of SAT. The transformed machine will ask the same
number of queries and will take only polynomially more steps than the
original machine. Hence PNPlosn] — pSATlogn] - we wil] yse these terms as
synonyms. Similarly PNF and PSAT will be used synonymously.

This paper presents results concerning PNPI°8%] As many of the results
illustrate, the distinction between PNPI°87] and PP js often seen as the
distinction between binary search over polynomially many elements and
binary search over exponentially many elements.

It is important to keep in mind that PNFI°¢"l and PNP are classes of
languages and not classes of functions. Krentel has shown a pretty result
for the corresponding function classes FPNPlgl and FPMP. He has proved
that if P # NP, then there are polynomial time functions that make poly-
nomially many queries to a SAT oracle that cannot be computed with
O(log n) queries [Kr]. Thus, for functions, he has indeed proved that mak-
ing O(log n) queries does not use the full power of polynomial time oracle
machines (under the assumption that P # NP).

As we will see in section 4, Krentel’s result does not hold for relativized
versions of PNPI°8"] 3nd PP, Thus these language classes and function
classes are not necessarily as closely related as one might think.

Our discussion of PNPI°8"] hegins with section 2 where we introduce
some preliminary notions and define some of the languages in PNPllogn],

Section 3 shows that in addition to containing many natural languages,
PNPlogn] has natural complete languages. We show that UOCSAT, a version
of “unique optimal” K-SAT, and a variant of UOCLIQUE are <F -complete.

3

These results are reminiscent of a result by Papadimitriou. He has shown
that UOTSP is <P-complete for PNF [Pa]. This is strong evidence that
recognizing UOTSP really does require polynomially many queries and thus
is probably not in PNFlogn],

In section 4 we prove a result that ties PSATI°87] to the study of sparse
oracles for NP.

Recall that Karp and Lipton showed that if there exists a sparse oracle
for NP, then the polynomial time hierarchy (PH) collapses down to L¥
(NPSAT) [KL).

Mahaney took things a step further by proving that if the sparse oracle
is itself a set in NP, then the PH collapses down to A} (P5AT). His proof
involves showing that a PAT machine can actually enumerate (write down)
the strings in the oracle set [Ma,Ma2].

Long generalized Mahaney’s result by showing that if the oracle set is
anywhere in AP, then the collapse occurs down to AF. Long’s theorem
relies on the fact that if there exists a sparse oracle in AP, then all the
relevant strings in the oracle up to a certain length can be enumerated by
a PSAT machine [Lo).

Thus both Long’s and Mahaney’s results depend upon enumerating the
strings of the oracle set with algorthims that make polynomially many
queries.

We show that if the oracle set is in NP, then there is no need to enu-
merate the oracle in order to prove that the PH collapses. Instead, the
census function of the sparse oracle is all that is needed, and that can be
computed — by binary search — with O(log n) queries. Therefore we know
that if there is a sparse oracle for NP that is in NP, then the PH collapses
to PSATHogn] This sharpens Mahaney’s result and reasserts the distinction
between sparse oracles inside NP and oracles outside NP that was blurred
by Long’s result.

2 Preliminaries

The reader is assumed to be familiar with the concepts of Turing machines,
oracle machines, P (deterministic polynomial time), NP (nondeterministic
polynomial time), and PH (the polynomial time hierarchy).

Consider the following sets encoded in some reasonable syntax:

UOCSAT (Unique Optimal Clause Satisfiability) - the set of CNF for-
mulas with the property that all the assignments that satisfy the
maximal number of clauses happen to satisfy the same set of clauses.

UOASAT (Unique Optimal Assignment Satisfiability) - the set of CNF
formulas that have exactly one assignment that satisfies the maximal
number of clauses, and all other assignments satisfy fewer clauses.

UOBTSP(k) (Unique Optimal Bounded Traveling Salesperson Problem)
- the set of undirected graphs G = (V, E) with edge costs no more
than |V |*+ k such that there is a unique optimal Hamiltonian circuit
through the graph.

UOCLIQUE (Unique Optimal Clique) - the set of undirected graphs that
have one clique containing more vertices than each of the other cliques

of the graph.
UOCOLORING (Unique Optimal Graph Coloring).
UOVCOVER (Unique Optimal Vertex Cover).

SAT-MOD-k - the set of pairs (F,#™) such that F is a CNF formula,
and the maximal number of simultaneously satisfiable clauses of F is
equal to 0 mod m.

CLIQUE-MOD-k - the set of pairs (G, #™) such that G is an undirected
graph whose maximal clique size is equal to 0 mod m.

All these languages and many other problems similarly defined are easily
seen to be in PSATI°8"l The optimal solution size can be determined by
a binary search that uses O(logn) queries. The uniqueness of the optimal
solution can be determined with one more query; equivalence mod m can
be determined without further access to the oracle.

While PSATlg"] j5 the natural class that captures this binary search
technique, it is also represented by a very “clean” machine model. If M
is a PSATl8»] machine, then M is a nice, deterministic, polynomial time
bounded machine that makes only O(logn) queries. Given an input z, we

ACCEPT REJECT REJECT ACCEPT

Figure 1: Query tree of height 2.

can map out M’s query behavior on z in polynomial time — without access
to the oracle. We can simulate M on z trying both possible answers to each
query and see whether M accepts or rejects with each sequence of query
answers.

The query behavior of M on z can be represented by a query tree. A
query tree is a binary tree with query strings for internal nodes and leaves
that are labeled either ACCEPT or REJECT. The left branch from a node,
q, leads to a node that describes M’s behavior if the oracle answer to q is
“no”. Thus if the next query M would ask were ¢', the left child of ¢
would be labeled ¢'. If an answer of “no” to ¢ would make M reject or
accept without any more queries, the left child of ¢ would be a leaf labeled
accordingly. The right child of g similarly describes the behavior of M if
the answer to q is “yes”. Since M asks only O(logn) queries, the height of
the tree is O(logn), and the number of nodes is bounded by a polynomial
in the length of z.

For example, if M makes two queries on input z, the query tree for
M(z) might look like the tree in Figure 1. In this tree, g_, is the very first
query asked; go is the query asked if g_, & SAT; g, is the query asked if
g-1 € SAT. If g, & SAT and ¢, & SAT, then M accepts z. Similarly if
g-1 € SAT and ¢, € SAT, then M also accepts z.

We say a path from the root to a leaf is an accepting path if the leaf
is labeled ACCEPT. A path is a rejecting path if it ends at a leaf labeled
REJECT. There may be many accepting paths and many rejecting paths

in the tree for M(z), but there is only one path from the root to a leaf for
which all the queries are answered correctly. This path is called the valid
path. MSAT(z) accepts if and only if the valid path is an accepting path.
That is, M5AT(z) accepts if and only if the path that represents the true
query answers leads to acceptance.

From the preceeding discussion, it should be clear that the following

theorem is true.

Theorem 2 The set

Ti0g aef {T#"| T 13 a query tree of CNF queries of height < log(n),
and the valid path of T 13 an accepting path}

is <P -complete for PNFlogn],

3 Complete Problems

In this section we show that UOCSAT is <P-complete for PSATle"] The
proof involves reducing T,y to UOCSAT by encoding a query tree as a CNF
formula such that the formula has a unique maximal set of simultaneously
satisfiable clauses if and only if the valid path through the tree ends at a
leaf labeled ACCEPT.

The encoding of a query tree T into a single CNF formula F is done in
three major stages. First, each query g; in T is reduced to two formulas g;
and g¢;, such that

¢ € SAT <= ¢, € UOCSAT, and
¢ € SAT <= g¢;, € UOCSAT.

Second, the ¢;,’s and g;,’s are used to encode each accepting path p;
in T as a single formula F, .

Finally, we take the formulas Fj,,,...,F, encoding the accepting paths
P1,- - - ,Pm and combine them into one formula Fr such that Fr € UOCSAT
if and only if one of py,...,pn is valid. Recall that there is exactly one valid
path, and it could be either accepting or rejecting. Thus at most one and
possibly none of py,...,p, are valid, and this implies that at most one and

possibly none of Fp,... ,F, arein UOCSAT. Hence our Fr is designed so
that Fr € UOCSAT if and only if exactly one of F}, ,... F, isin UOCSAT.
At each step of the reduction, we have to count the number of clauses
and the number of simultaneously satisfiable clauses of formulas rather
carefully. We use the following notation:
Let F be a CNF formula.

Definition 3 NC(F) 13 the number of clauses in F'.

Definition 4 MC(F) is the mazimal number of clauses of F that can be
stmultaneously satisfied.

Definition 5 UC(F) is NC(F) — MC(F).

Definition 6 Let y be a Boolean literal (a variable or the negation of a
variable), then F vy 13 the CNF formula produced by tnserting the literal y
tnto each clause of F.

The proofs of the following lemmas are left to the reader.
Lemma 7 F € SAT — F € UOCSAT.

Lemma 8 Let F be a CNF formula. Let F* be F repeated (ANDed to-
gether) k times. Then

NC(F*¥) = kNC(F),

MC(F*) = kMC(F),

UC(F*) = kUC(F), and
F* € UOCSAT <= F € UOCSAT.

Lemma 9 Let Fy,... F; be CNF formulas with disjoint sets of variables.
Let F=F,A\N---ANFy. Then

NC(F) = f:NC(F.-),

MC(F) = Y MC(F),

UC(F) = f:UC(F.-), and

=1

F € UOCSAT <= Vi F, € UOCSAT.

Theorem 10 UOCSAT is <P -complete for PSATlosn],

Proof: We already know UOCSAT € PSATI8"] We will show UOCSAT
is <P-hard for PSATI6"l by reducing Ti,y to UOCSAT. Let T#" be a
candidate for membership in Tj,,. Thus T is a query tree of height < logn.

Step 1: Reduce SAT to UOCSAT. For each query g; in T, reduce g; to g;,

such that
gi & SAT <> ¢;,, € UOCSAT.

We do this reduction in several steps.

First, apply the reduction from SAT to USAT, the set of formulas
that have exactly one satisfying assignment [BG|. Given ¢; with variables
Z,...,Tk, let

def
q:.’u = (1:,,", AZ;A---A zk) \ (Nzncw A Qt)

where z,,., is a new variable. It is easy to see that

i, € SAT, and
g; € SAT <= there are at least 2 satisfying
assignments for g; .

Parsimoniously put g}, into CNF [Si], and let ¢;, be the CNF formula.
Since g;, and g¢;, have the same number of satisfying assignments,

¢iw € SAT, and
¢ € SAT <= ¢, € CNF-USAT

where CNF-USAT is the set of CNF formulas with exactly one satisfying

assignment.
In later steps, the number of variables in the g;,’s affect the number of

clauses in certain formulas. To keep things tidy, alter the ¢;,’s so that they
all have the same number of variables. Let

v % max (number of variables of g;).
1

For each ¢;, with fewer than v variables, add new variables and clauses

(yi,ncw.)(yi,ncwz) cee

9

so all the g;,’s have exactly v variables. Note that adding these new clauses
does not affect whether or not ¢;, € CNF-USAT.
Reduce g;, to g;, so that

giuw € CNF-USAT <= ¢;, € UOCSAT.

If g4 = Cy---Ci (i.e. the clauses of g¢;, are C;---Cj) with variables
Z,...,Ty, then let

Gin = C1--- Calz1)(~31) - (20) (~3o).

Since ¢;, € SAT, all the clauses C;---Cj are simultaneously satisfi-
able. Each assignment to z,,...,z, satisfies exactly v of the 2v clauses
(z1) - - - (~z,), and any two distinct assignments satisfy distinct sets of these
clauses. Hence
MC(Q:‘.n) = NC(Qi,n) -9, and
gi € SAT <= ¢;, € CNF-USAT <= ¢;,, € UOCSAT.

Thus we have reduced SAT to UOCSAT, and in polynomial time we can
map g; to gin.
Step 2: Reduce SAT to UOCSAT. For each g;, reduce g; to g;, such that

i € SAT <= ¢;, € UOCSAT.

This is fairly straightforward since a CNF formula that is in SAT is already
in UOCSAT. The formula merely has to be altered so that if all the clauses
are not simultaneously satisfiable, then the uniqueness is lost. If ¢; =
C,---C, let 2,., be a new variable, and let

qi,y déf (Cl \% zncw) t (Ck \% zncw)(Cl \ Nzncw) T (Ck \% Nznew)-

If g; € SAT, then ¢;, € SAT which implies ¢;, € UOCSAT. If q; & SAT,
then MC(g;) < k and MC(g;,) = k + MC(q;). This maximal number of
clauses of g;, can be achieved by setting z,., true and satisfying all of the
first k clauses or by setting z,., false and satisfying all of the last k clauses.
Hence ¢; € SAT implies g;, € UOCSAT. Note that

g € SAT — MC(q:',y) = NC(qi,V)s and
q; ¢ SAT = MC(q.-,,) < NC(q.-,,).

10

Step 3: Combine the encoded accepting paths. Step 4 shows how to encode
each accepting path p; of T into a CNF formula F,, such that

p; is the valid path of T <= F,,. € UOCSAT.

F,. is basically an ANDing together of ¢;y’s and gi,’s; see Step 4 for the
details. In this step, we show how to combine all the path formulas into a
single formula Fr so that Fr € UOCSAT <= T#" € Tioy- In doing so, it
will become clear what constraints have to be placed on the F, ’s.

Let py,...,pm be all the accepting paths of T, and let F,,... F, be the
corresponding formulas. Since the height of T < logn, m < n. If m =0,

then T#" & T, and we can simply let Fr be some fixed formula that is

not in UOCSAT. If m = 1, then we can let Fr & F,,. The rest of this step

is devoted to the case where m > 1.
Fr is constructed as follows.

Rename the variables in F,... ,F, so each formula has its own set of
variables.
Introduce new variables y,. .. ,yn.

Let EXACT1 be the CNF formula that is satisfied if and only if exactly
one of y;,...,yn, is set to true.

EXACT1 &f (Y1V- - V¥m) (~y1 V ~y2) c (~ Y ~Ym)
(~y2Vys) 0 (~92V~ym)

(“Ym—1V ~Ym).

Note that NC(EXACT1) < m? < n%. Thus EXACT]1 can be constructed
in polynomial time.
Let
c=_ max NC(F,).

J=1l,...,m
Finally,
Fr ¥ (F,, v ~4)(F,, V ~32) - (B, V ~ym) EXACT1.

Observe that Fr is set up so that if y; is set to false, then the clauses
from F,, are all satisfied. If y; is set to true, then the maximal number of

11

the clauses from F,, that are satisfiable is MC(Fp,). EXACT1 is designed
to choose one y; to set to true, and it is repeated enough times (¢ + 1) so
that it weighs more heavily than any of the F,’s in the determination of
MC(Fr).

We claim that the maximum number of clauses are satisfied when ex-
actly one y; is set to true. To see why, let

N ¥ Y NC(F,), and

j=1

E ¥ NC(EXACT1).

If all the y,’s are set to false, then all the F,,. clauses are satisfied (for

J = 1,...,m) and all but the first clause of EXACT1 are satisfied. If we let

no be the number of satisfied clauses with none of the y;’s set to true, we
have

ng = N+(c+1)E—(c+1). (1)

If exactly one y, is set to true, then all the clauses of EXACT]1 are
satisfied, and all the clauses from all but one of the Fy’s are satisfied.
Since the F,. that is “chosen” contains at most ¢ clauses, at most ¢ clauses
are not satisfied. Thus if n; is the number of clauses satisfied when exactly
one y; is set to true, we know

nn > N—-c+(c+1)E (2)
Stringing equations (1) and (2) together gives us
ng > N—-c+(c+1)E > N+ (c+1)E—(c+1) = ny.

So setting one y; to true satisfies more clauses than setting them all to false.

What happens if two y,’s are set to true? One of the clauses in EXACT1
is not satisfied, namely the clause containing the negations of the two vari-
ables set to true. Thus if n, is the maximum number of satisfiable clauses
with two y;’s true,

N+(c+1)E—(c+1) 2 np, and

ng > N—-c+(c+1)E > N+(c+1)E—(c+1) > n,.

12

Thus setting one variable true satisfies more clauses than setting two vari-
ables to true.

Things get even worse if more y;’s are set to true since this causes fewer
of the clauses of EXACT1 to be satisfied. We conclude that the most
clauses of Fr are satisfied when exactly one y; is set to true.

Which y; should be set to true to satisfy the maximal number of clauses
of Fr? The answer is the y; such that F,. has the least number of “unsat-
isfiable” clauses. That is, we want to pick j so that we maximize

(_NC(F,,)) +MC(F,,)
£
which equals

(X NC(F,) - (NC(F,,) - MC(F,)).

This is the same as picking j so as to minimize NC(F,,) — MC(F,,). Recall
that
UC(F,,) ¥ NC(F,,) — MC(F,)).

In summary, the most clauses of Fr are satisfied if we pick the j such
that UC(F,,,) is minimal, set y; to true (and all other y;’s to false), and then
pick an assignment that satisfies the most clauses of Fj,.. This satisfies all
the clauses that are not in (Fp, V ~y;). Hence this maximum number of
satisfiable clauses is achieved by a unique set of clauses if and only if there is
a unique j with UC(F,;) minimal, and the maximal group of simultaneously
satisfiable clauses of F, is unique. That is,

Fr €e UOCSAT <= (3Y) (F,, € UOCSAT, and (3)
(Vi # §) UC(F,) < UC(F,)).

We now know what constraints to place on F, ,... ,F, to ensure that

Fr € UOCSAT <= T#, € Ti,3. One constraint that we have mentioned
already is

pj is valid <= F,. € UOCSAT. (4)

The other constraint is that we need to know that if p; is valid, then the

maximal number of clauses of Fr is satisfied when y; is set to true. That is

pjis valid = (Vi # j) UC(F,,) < UC(F,,). (5)
If we can design F,,,...,F, so that properties (4) and (5) hold, then

13

Fr € UOCSAT = some F,. € UOCSAT (by (3)).
=> p; is valid (by (4)).
= T#" € Tiog (since p; is an
accepting path).

Going the other direction,

T#" € Ty => some accepting path p; is valid.
= Vi # j UC(F,,) < UC(F,),
and F,, € UOCSAT (by (4) and 5)).

= Fr € UOCSAT (since there is only
one valid path).

This means the proof will be complete when we show how to encode the
accepting paths into the formulas Fj,,,. .. ,F, so that properties (4) and (5)
hold.

Step 5: Encode the accepting paths so that properties (4) and (5) hold.

First, rename variables in all the formulas ¢;, and g;, so each has its
own unique set of variables.

Each F,; is simply the ANDing together of a sequence of ¢;,’s and g¢;,’s
with each ¢;, and g¢;, repeated a certain number of times. If query g; is on
path p;, and p; follows the “yes” branch from g;, then F,. will have copies
of g;y ANDed into it. If g; is on path p; and p; follows the “no” path from
gi, then F,. will have copies of g;n.

We claim that p; is valid <= F,; € UOCSAT. To see why, recall that
gi € SAT < ¢;, € UOCSAT, and ¢; € SAT <= ¢,,, € UOCSAT. Thus
we have the following chain:

p; is valid <= each query answer on p; is correct.

<= the ¢;,’s and ¢;,’s that are ANDed together
to make Fj,. are all in UOCSAT.

<= F, € UOCSAT (by Lemmas 8
and 9).

How many times do we repeat ¢;, and g;, in the construction of these
formulas? The idea is to repeat a g;, or g;, enough times so that any Fj,
representing path p; that splits off from the valid path at g; will pick up

14

so many “unsatisfiable” clauses with g;, or ¢;, that UC(F,,) will be large,
even if all the later queries on p; contribute no more “unsatisfiable” clauses.
This boils down to repeating the ¢;,’s and g¢;,’s that are higher in the tree
more than ones that are lower in the tree.

Recall that

¢ € SAT = UC(qi,) =0,
¢ € SAT = UC(gqiy) 21, and
UC(gin) = v regardless of whether g; € SAT.

Let g; be a query of height h in the tree. If path p; goes through g; with
a “yes” answer, i.e. if Fy, is to contain ¢;,, then repeat g;, 2**'v times in
F,.. If path p; goes through g; with a “no” answer, then repeat g;, in Fp,
2h times. Since the height of the tree is bounded by log n, the construction
of F,, with all these repetitions can be done in polynomial time.

Let pyaiia be the valid path through the tree, and let p; be another
path. We claim that UC(F,,,,.,) < UC(F,;). Let g; of height h be the
query where pyaiq and p; diverge. Above g;, puaiigd and p; are identical.
Hence the numbers of clauses of UC(F,,,,.,) and UC(Fp,) attributable to
queries above g; are equal. Call that number A;

AY UC(F,,,,,“above ¢;”) = UC(F,, “above ¢;”).

valid

Below g¢;, UC(F,,,,,,) is maximal if all the query strings are not in SAT.
Thus

h-1 h-1
UC(F,,,,.,“below ¢;”) < Y 2Fv < v} 2F = (2 - 1).
k=1 k=0

UC(Fy, “below ¢;”) is minimal if p; is correct below g;, and all the query
strings on the path are in SAT. In this case no more “unsatisfiable” clauses
are picked up below g;, hence UC(F,, “below ¢;”) > 0.

Finally, consider the part of UC(F,,,,.,) and UC(F,) attributable to g;.
If ¢; € SAT, then g;, is repeated 2"**'y times in F,_,,, and g;,, is repeated
2% times in F,.. Then

I

UC((g5y)%"*") 0, and
UC((gin)?") = 2hy.

15

Pulling together these bounds for UC(F,,,,,) and UC(F,,) under the
assumption that g; € SAT, we have

UC(Fp,,..) < A+0+v(2"—1) < A+2*v+0 < UC(F,)).
If g; ¢ SAT, then

@in is repeated 2* times in F,_,.,,
Giy is repeated 2"*'v times in F,_,
UC((gin)*") = 2%, and
UC((giy)*™") 2 2w,

This implies
UC(Fp,...) < A+2"v+v(2"—1) < A+2M'v+0 < UC(F,).

In either case UC(F,,,,,,) < UC(F,;). Thus we have succeeded in encod-
ing py,...,pm into Fy, ... F, while satisfying the necessary constraints.

This concludes the proof of Theorem 10. O

In pondering this result, particularly in light of Papadimitriou’s result
about UOTSP, the obvious question is what about UOASAT? What about
the stronger uniqueness condition? Is UOASAT <F -complete for pNPlogn]o
At present, this is an open question.

The requirement of a single assignment that satisfies the maximal num-
ber of clauses is much more stringent than the requirement that all the
best assignments satisfy the same clauses. The techniques developed for
UOCSAT simply do not work for UOASAT.

UOASAT is very similar to USAT. Both of these languages are easily
seen to be co-NP-hard, but it is not clear if they are NP-hard. Blass
and Gurevich have studied USAT [BG|. They have shown that USAT
is <P.complete for DY if and only if SAT<F USAT and that DF can be
relativized so that the relativized versions of USAT can be made complete
or incomplete for DP. This indicates that resolving whether or not USAT
is <P -complete for DF is probably going to be very difficult. An interesting

open problem is whether similar results can be achieved for UOASAT and
PNP[logn].

16

What about the uniqueness conditions of the other “unique optimal”
problems? Are these conditions too stringent to allow us to show their
completeness? At present, the answer is yes. The clique problem, how-
ever, does provide us with another example of how relaxing the uniqueness
condition lets us prove completeness.

Definition 11 UOGCLIQUE (Unique Optimal Grouped Clique) 1s the set
of undirected graphs whose vertices are partitioned into groups, with no
edges between vertices in the same group, with the property that all the
mazimal cliques contain vertices from the same set of groups.

Theorem 12 UOGCLIQUE is <P -complete for PNPlogn],

Proof: A PNPI°gn] 3leorithm to recognize UOGCLIQUE is similar to the
algorithm for recognizing UOCLIQUE.

We prove UOGCLIQUE is hard for PNPl°¢"] by reducing UOCSAT to
UOGCLIQUE. Actually, the standard reduction from SAT to CLIQUE
[AHU] suffices to reduce UOCSAT to UOGCLIQUE.

Let F be a CNF formula with clauses C;---Ci. Each clause C; is
reduced to a group of vertices, one for each literal of C;. The graph contains
edges between each pair of vertices from different groups except for the pairs
of vertices derived from a variable and its negation.

Each clique in the graph consists of vertices from different groups whose
corresponding literals are consistent. That is, the Boolean values that make
the corresponding literals true form a valid, if partial, assignment to the
variables of F. Thus the groups containing the vertices of a clique corre-
spond to the clauses that are satisfied by the assignment. Hence there is a
unique set of groups containing the maximal cliques if and only if there is
a unique maximal set of satisfiable clauses. O

The introduction of the groups serves only as a mechanism for relaxing
the definition of uniqueness, and structurally the groups obviously parallel
the clauses very closely.

We are not aware of ways to relax the uniqueness conditions on the
other similarly defined problems that permit us to prove completeness.

Krentel has found other complete problems for PNFloenl [Kr]. He has
studied polynomial time functions that access NP-complete oracles and has

17

shown that all such functions that make O(logn) queries can be reduced
to the function that outputs the maximum number of simultaneously sat-
isfiable clauses of a CNF formula. Thus knowing the maximum number
of simultaneously satisfiable clauses is “equivalent” to O(logn) queries. A
similar result holds for the maximum clique size of a graph. As corollar-
ies of these results, he shows that SAT-MOD-k and CLIQUE-MOD-k are
<P_.complete for PNFllen],

From a functional point of view, knowing the number of simultaneously
satisfiable clauses of a formula is “complete” for polynomial time functions
that make O(log n) queries. Thus, from a language point of view, a language
whose recognizer would seem to require knowing the number of satisfiable
clauses would be a good candidate for a complete language for pNPllogn] (e.g.
UOCSAT and UOASAT). Of course complete languages must also have a
certain richness and robustness. While we have shown that UOCSAT is
robust enough, UOASAT simply may not have the required richness to be
complete. On the other hand, we may just require different proof techniques
to the show the completeness of UOASAT.

4 Sparseness Results

Much attention has been focused on questions about sparse sets and NP.
One of the major areas of concern is whether NP is reducible to a sparse
set under any of the standard polynomial time reducibilities.

If NP is sparse reducible, then we could in principle spend large amounts
of computational resourses to compute and store the relatively few strings in
the sparse set up to a certain length. Once constructed, this table of strings
could be used to solve many instances of NP problems in deterministic
polynomial time.

Another more theoretical issue that has spurred on the research about
sparse sets is the conjecture by Berman and Hartmanis that all NP-complete
sets (under <P) are polynomial time isomorphic [BH]. If their conjecture
is true, then there can be no NP-complete sparse sets because no sparse
set can be polynomial time isomorphic to the known, relatively “fat”, NP-
complete sets.

Mahaney pretty much sewed up the question for <F by showing that if

18

there is a sparse NP-complete set, then P = NP, and if there is a sparse
NP-hard set, then there is a sparse NP-complete set [Ma].

The results concerning sparse <H-hard sets are a bit less dramatic. Karp
and Lipton (along with the results of Meyer appearing in [BH]) proved
that if NP has a sparse <P-hard set (i.e. NP C P®), then PH C ¥f
(NPSAT) [KL]. They also noted that if there exist any such sparse sets,
then there exists one that is in ¥¥. Mahaney added that if NP has a sparse
<P-complete set (that is, the sparse oracle is itself in NP), then PH C A}
(PSAT) [Ma,Ma2|. Long then generalized Mahaney’s result by showing that
if there is a sparse set S anywhere in AF such that NP C P°| then PH C A}
[Lo].

Mahaney’s result can be broken into two lemmas. The first states that
if N is an NP° machine (NP5 = NPSAT = ¥F if § is a sparse oracle for
NP), then there is an NP machine that can simulate N°(z) if it is given a
table of the strings in S up to the length of the longest query that N5(z)
makes. Since S is sparse, and N is a polynomial time machine, the number
of strings in the table (and the total length of the table) is bounded by a
polynomial in the length of z. The second lemma states that if S is sparse
and S € NP, then there is a PSAT machine that can enumerate all the
strings in S of length < n on input 1", that is, § is PS*T-printable. This
enumeration machine does a binary search making at least one query for
each bit of each string and hence requires polynomially many queries.

Thus Mahaney proves NPSAT C PSAT by showing that for every NP°
machine N, there is a PSAT machine that generates an initial segment of S,
and then accepts if the NP simulator of N accepts.

Long’s proof follows this same basic pattern; enumerate enough of the
sparse oracle so that an NP oracle machine can be simulated by an NP
machine that accesses the enumerated strings (as part of its input) instead
of an oracle.

Long’s simulation works as follows. Let N be an NP oracle machine.
N', an NP machine without an oracle, can simulate N5AT(z) by using a P°
acceptor for SAT to answer the queries if N' is given enough of the strings
in S. The length of the queries N makes is bounded by a polynomial in the
length of z. So N' need only be able to handle queries up to that length.
Similarly, the length of the queries made by any P° acceptor for SAT is
bounded by a polynomial. So the number of strings in S that N' needs is

19

bounded by a polynomial in the length of z.

How can a PSAT machine enumerate the strings N' needs? Recall that
by the self-reducibility of SAT, if there is a P° machine that accepts SAT,
then there is a PS machine that outputs satisfying assignments. That is,
there exists a deterministic oracle machine M such that

satisfying assignment if F € SAT

S(FY —
M(F) = { “no” if ¢ SAT

If we run M(F) using a subset of S as the oracle, and M(F') produces
an output that is incorrect, then we know that one of the queries it made
was incorrectly answered as “no”. Hence one of its queries is a string that is
in S and not in the subset of S. Thus we could run 2/ (F) using the subset
as an oracle to enumerate its queries, and then run the PSAT machine that
accepts S on the queries to find a new string to add to our subset of S. In
this way a PSAT machine, Mepum, can build up bigger and bigger subsets
of the set of strings in S up to a given length.

Using its current table of strings in S (call this table A), Mepum can
determine whether or not it has all the strings it needs by asking its SAT-
oracle if there exists a satisfiable formula F' such that the output of M4(F)
does not satisfy F. This question can be encoded as a SAT-question since
there is an NP machine Njs that on input (A,#") guesses a string F of
length < n, verifies that F € SAT, and then accepts if M4(F) does not
produce a satisfying assignment (n is the maximum length of queries N
would ask on input z). That is, Nas guesses a witness to the fact that M4
does not work correctly on all strings up to length n. If Ny/(A,#") does
not accept, then M4 does work correctly implying N' can use M4 (given A
as part of its input) to answer the queries during its simulation of NSAT(z).
If Nas(A, #") does accept, Menum can do a binary search to get hold of a
witness, F', that causes Njs to accept. Mepum can then use F' as above to
get hold of at least one new string in S to add to A.

This clever enumeration gives us all the strings necessary to simulate
an NPSAT machine with an NP machine, and the enumeration can be done
by a PSAT machine. Hence we know that if there is a sparse oracle in PSAT,
then PH C PSAT.

The enumerations in Mahaney’s and Long’s proofs take polynomially
many queries (at least one per enumerated string). It is hard to imagine

20

any way of enumerating the sparse oracle without making at least one query
per string. Hence showing any further collapse with a proof that requires
enumerating the oracle seems very difficult.

We show that if the sparse oracle is in NP, then we can simulate any
PSATmachine that may make many queries with only one query, and this
can be done without enumerating the sparse oracle. Rather than finding
the strings of the oracle, we need only compute the census function of
the oracle. Computing the value of the census function is just another
application of binary search over polynomially many elements. Thus the
existence of such an oracle implies that PSAT C pSATlogn],

Definition 13 For any set of strings S, CENSUSg(n) ts the number of
strings in S whose length is less than or equal to n.

If S is sparse, then CENSUSg(-) is bounded by a polynomial.

Theorem 14 If S s sparse, and S is <R-complete for NP, then PH C
PSAT[logn].

Proof: Assume S is sparse, S € NP, and SAT € P5. Let h(-) be a polynomial
bound on CENSUSg(-). From Karp, Lipton, and Mahaney we know then
that PH C PSAT. We will show that PSAT ¢ pSATllogn],

Let L be in PSAT| [= L(MZSAT). Since SAT € P®, there is a polynomial
time machine M, such that L = L(M}). Since M, is a polynomial time
machine, there is a polynomial bound on the size of the longest query string
M, asks on an input of length n. Let g(n) be the bound.

We will describe a PSATlo8) mmachine M that will accept L.

Given z, a candidate for membership in L with | z|= n, M first computes
g(n), an upper bound on the length of the longest query M; would ask on
input z. Then M computes h(g(n)) which is a bound on the number of
strings in S that have length less than or equal to g(n). Thus

0 < CENSUSs(g(n)) < h(g(n)).

M then does a binary search on the numbers from 0 to h(g(n)) to
determine CENSUSg(g(n)). There is an NP machine N that on input 0°1/
guesses § strings whose length is at most 5 and accepts if all the strings

21

are distinct and in S. Thus 0°1’ € L(N) if and only if CENSUSs(5) > 1.
Whether or not 0°17 € L(N) can be determined by one query to SAT. Hence
the question of whether or not + = CENSUSs(g(n)) can be answered by two
queries (is CENSUSg(g(n)) > 4, and is CENSUSg(g(n)) 2 ++17). Then the
binary search of 0,...,h(g(n)) to determine CENSUSg(g(n)) takes at most
2log(h(g(n))) queries - which is O(logn). The queries can be determined
in time bounded by a polynomial in n since there is a polynomial time
reduction from the set of strings accepted by N to SAT.

Once M has computed CENSUSg(g(n)), it needs only one more query to
determine whether or not z € L. The query is another “SAT encoded” ques-
tion of the form “does a particular NP machine accept a particular string?”.
The particular NP machine that M will query about, N;, behaves as fol-
lows. On input (0%, 17, z), N; deterministically simulates M (z). When M,
would query the oracle about a string g, N; does some nondeterministic
computations.

First it runs Nyes(q) where Nyes is an NP machine that accepts S. If
Nyes(g) accepts, ¢ € S, and the answer M; would get from its S-oracle
would be “yes”. So if Nyes(g) accepts, N, continues the simulation from
M;’s “yes” state. If Nyes(q) does not accept, N; still does not know that
g € S since Nyes may simply have guessed incorrectly. So N; runs another
NP machine Npo on input {0°,17,q). Nno guesses t strings of length at
most j and accepts if all the strings are distinct, all are different from g,
all are in S, and |g|< j. Note that if |g|< j and ¢+ = CENSUSg(j), then
Nno can guess t distinct strings in S that differ from ¢ if and only if ¢ € S.
Hence if |¢|< j and ¢ = CENSUSs(5), then (0°,17,q) € L(Nno) <> ¢ & S.
Nno accepts a sort of pseudo-complement of S. If Ny is given the correct
¢ and 7, it can be used to accept the complement of S. If Npo ({0, 17,q))
accepts, N, continues the simulation of M; from its “no” state. If Npo does
not accept, N; does not know how to deal with ¢ and just halts without
accepting.

If N; gets through all the queries M; would make with acceptance from
one of Nyes or Npo, it accepts or rejects as M; would.

Consider what N; would do on input (OCENSUSS("(")), 190), z). Since
M; on input z only asks queries that are no longer than g(n), for any query

22

q in M,’s computation on z
(OCENSUSS(g(n)), 19",) € L(Nno) <= q & $S.

Thus in Ny’s simulation of M;(z), if Nyes or Nno accept their input for
a particular query g, N, is going to continue its simulation with the cor-
rect query answer. Since each query string q is either in S or not in S,
there is some sequence of guesses that will cause exactly one of Nyes(g) or

Nno((OCENSUSS(”(")), 19(") q)) to accept. Hence
(0CENSUSsw(m) 19tn) 7y € L(N,) <= z € L(MF) < z € L.

M uses its values of CENSUSg(g(n)) and g(n) to construct one more
query, “is (OCENSUSS("(")), 19(*)) £} € L(N;)?”, and accepts z if and only
if the answer is “yes”.O

Hartmanis has recently shown that there exist relativized worlds in
which NP has a sparse <F-complete set (implying the PH collapses to
PNPllosnl) byt the PH collapses no further than PNPI°€"! [Ha). Thus we
know that Theorem 14 is in some sense optimal.

In any relativization where the PH collapes only to pNPlognl p i not
NP. Hence Hartmanis’ result implies that it is possible to collapse the PH
(including PN?) down to PNPlogn] and still keep the relativized versions of P
and NP distinct. Thus Krentel’s theorem that FPN? C FPNPlogn] — p —
NP does not hold for the languages classes PNP°¢7] and PNP,

Corollary 15 There ezist relativized worlds in which PN? C PNPllogn] gpd
P # NP.
5 Conclusion

The results of the preceeding sections along with the results of [Kr] and
[Pa] bring up several open questions.

First, are UOASAT and the other “unique optimal” languages <F-
complete for PpSATllognlp

23

Second, the collapse of PSAT down to PSATICE"] would seem to say a
lot about the “accessability” of SAT to deterministic polynomial time ma-
chines. That is, if polynomially many queries could be crammed into loga-
rithmically many queries, then it would seem that deterministic polynomial
time machines must be able to tell something about the satisfiability of for-
mulas. An interesting tangent would be to explore the consequences of
PSAT ¢ PSATlgn] 3nd PH C PSATIo#] (pote that Hartmanis’ relativization
indicates that this is probably a very difficult direction to pursue).

Another direction would be to explore the relationships among FPNF,
FPNPllogn] pNP 55 q pNPllos ", These relationships seem rather muddy in
light of Krentel’s work and the results of section 4.

6 Acknowledgements

I am indebted to Juris Hartmanis for his encouragement, patience, and
many helpful discussions while this work took form.

References

[AHU] A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley, 1974.

[BG] A. Blass and Y. Gurevich, “On the Unique Satisfiability Prob-
lem”, Information and Control 55 (1982), 80-88.

[BH] L. Berman and J. Hartmanis, “On Isomorphisms and Density of
NP and Other Complete Sets”, SIAM J. Comput. 6 (1977), 305-
327.

[Ha] J. Hartmanis, private communication.

[KL] R.M. Karp and R.J. Lipton, “Some Connections Between Nonuni-
form and Uniform Complexity Classes”, Proceedings of the 12th
ACM Symposium on the Theory of Computation (1980), 302-309.

24

[Kr]

[Lo]

[Ma]

[Ma2]

[Pa]

[Si)

M. Krentel, “The Complexity of Optimization Problems”, Pro-
ceedings of the 18th ACM Symposium on the Theory of Compu-
tation (1986), 69-76.

T. J. Long, “A Note on Sparse Oracles for NP”, JCSS 24 (1981),
224-232.

S. Mahaney, “Sparse Complete Sets for NP: Solution of a Con-
jecture of Berman and Hartmanis”, Proceedings of the 21st IEEE
Foundations of Computer Science Symposium (1980), 54-60.

S. Mahaney, “Sparse Complete Sets for NP: Solution of a Con-
jecture of Berman and Hartmanis”, JCSS 25 (1982), 130-143.

C.H. Papadimitriou, “On the Complexity of Unique Solutions”,
J. ACM 31 (1984), 392-400.

J. Simon, “On Some Central Problems in Computational Com-
plexity”, Ph. D. Disseration, Cornell University, Ithaca, New
York, 1975, pp. 80-82.

25

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif

