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Abstract

For a given poset and constant x, four problems are considered.
Covering: Determine a minimum cardinality cover of the poset
elements by chains(antichains), each of length(width) at most x.
Optimization: Given also weights on the poset elements, find a chain
(antichain) of maximum total weight among those of length(width) at
most k. It is shown that the chain covering problem is NP-complete,
while chain optimization is polynomial-time solvable. Several classes
of facets are derived for the polytope generated by incidence vectors of
antichains of width at most k. These facets provide the basis for a
polyhedral combinatorial algorithm for the antichain optimization
problem. Computational results are given for the algorithm on

randomly generated posets with up to 1005 nodes and 4 < x < 30.
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1. In tion

A classical result of Dilworth states that in any partially ordered set (poset)
the minimum cardinality of a partition into chains is equal to the maximum
width of an antichain. Here we investigate the following two related, but
more general, problems, where x is a fixed positive integer:
(1) determine a minimum cardinality partition of a partially ordered
set into chains, each of length no greater than x;
(2) determine a minimum cardinality partition of a partially ordered
set into antichains, each of width no greater than «x.
We shall refer to problem 1 as the Minimum Partition into Limited—length
Chains (MPLC) Problem, and to problem 2 as the Minimum Partition into
Limited—width Antichains (MPLA) Problem.
By associating to each element in the partially ordered set a positive integral
weight, two closely related combinatorial problems arise:
(3) determine a chain of maximum total weight among all chains
of length at most x;
(4) determine an antichain of maximum total weight among all
antichains of width at most x.
Problems 3 and 4 will be referred to as the Maximum Weight
Limited—length Chain (MWLC) Problem and the Maximum Weight
Limited—width Antichain (MWLA) Problem, respectively.
The problem MPLA is also motivated by the problem of scheduling
unit—execution time, precedence-related jobs on x identical machines, each
capable of executing any of the jobs. A classical scheduling problem is to
find an assignment of the jobs onto the machines so that all work is
completed at the earliest possible time without violating the precedence

requirements. Note that in any feasible schedule (i.e., one respecting



precedence), the jobs processed at any time instant form an antichain of
cardinality at most k¥ in the partial order stipulated by the precedence
relations. Hence any feasible schedule partitions the jobs into antichains,
each of cardinality at most k, and the minimum cardinality of such a
decomposition provides a lower bound for the completion time of any
. scheduling.

The remainder of this paper is organized as follows. We show in Section 2
that MPLC is NP-hard and give simple dynamic programming recursions
which provide polynomial-time algorithms for MWLC. The complexity
status of MPLA and MWLA remains unresolved. In Section 3, we use an
integer programming formulation for MWLA as the basis for a polyhedral
combinatorial approach to this problem. For a given partially ordered set
and width parameter x, we direct attention to the polytope whose extremal
elements are incidence vectors of antichains of width at most x. We derive
several classes of facets for such polytopes. (Note that MWLA is
linear—objective optimization over such polytopes.) Implementational
details of a strong cutting plane algorithm for MWLA are given in Section 4.
Computational results are provided for random problem instances with up

to 1005 nodes for values of x in the range [4, 30].

2. Computational Complexity of MPL.C and MWIL.C

We first consider MPLC in the following decision form: Given positive
integers p, x and a poset S, determine whether S can be decomposed into no
more than p chains, each with at most k¥ elements. We show that this
decision problem is NP-complete through a polynomial-time reduction
from the NP—complete problem Exact Cover by 3-sets (X3C), defined as

follows: Given a set S' containing 3p' elements, where p' is a positive



integer, and a collection C = {c, ,c,,...,c'} of 3—element subsets of S', where ¢’
is a positive integer, determine whether S' can be partitioned using only
subsets contained in C. The reader is referred to Garey and Johnson [1979]

for background material on computational complexity.

Theorem 2.1 MPLC is NP—complete.

Proof: Clearly MPLC e NP, as any partition of S into p chains, each of
length at most x, can be easily validated in polynomial-time.

Let S' with |S'| = 3p' and the collection C = {c, ¢, ;..sCq'} of 3-element subsets
of S' be an instance of X3C. We now define S, p and x, such that there exists
an exact cover of S' by the 3—sets from C if and only if there exists a partition
of the poset S into at most p chains, each of size no greater than x. The poset
S will be described as digraph G = (V, E) with vertices corresponding to poset
elements and the directed edge (i, j) € E if and only if i is related to j # 1 in
the partial order, i.e., when i dominates j. For simplicity, edges implied by
transitivity are omitted. To c¢; e C, say ¢ ={x, y;, z;}, we associate a
subgraph of 12 nodes and 11 edges in the graph G; this subgraph is denoted
(Vi, E;) -- see Figure 2.1. We then define V=V,0V,0...0V, and E=E;u
Egu...0Eg , so that V] = 3p'+9q =3 (p' +3q).

Figure 2.1: The subgraph (V; ,E,) for ¢; = {x;,y;, z}.

Q



Finally, we take S=V, x=3 and p =(p'+ 3q") as an instance of MPLC.

It is easily observed that if a feasible partition for the chain problem exists,
then the partially ordered set must be decomposed into exactly p chains,
each having exactly 3 elements. Moreover, each of these chains can only
consist of elements within a single configuration as in Figure 2.1. These two
conditions together imply that each subgraph corresponding to a ¢; must be
partitioned into chains of size three in one of the two ways illustrated in
Figures 2.2 and 2.3. Note that only the nodes denoted by x;, y; and z; can be
shared between two different configurations, and any chain must be

contained within a single configuration.

Figure 2.2 : One partition of ¢; into 3—chains.

Now, if there exists an exact cover for X3C, then a chain partition can be
derived in the following manner. If ¢; is a subset of S' included in the exact
cover, the chain partition for the configuration in G corresponding to ¢; will be
(see Figure 2.2) {a;[3],3;[61,a;[9]}, {x;,a;[2],a;[1]}, {y;,a;[5],a;[4]}, {z;,a;[7],a;[8]};
otherwise the partition will be (Figure 2.3) {a;[3],3;[2],8;[11}, {a;(6],2,[5],a;[4]},
{a;[9),8;[7],2;(8]}). Thus V is partitioned into p = 4p' + 3(q' — p) =p + 3q



chains, each having exactly 3 elements.

- -
-- -

covered by 3-chains of other configurations

Figure 2.3 : A second partition of ¢; into 3—chains.

Conversely, suppose there is a partition of V into p 3—chains. Then ¢; is
included in the exact cover for S' if its corresponding configuration
decomposes as {a;[31,a;[6],a; (9]}, {x;,a;[2],3; [11}, {y;,a; [6],a; (4]}, {z;,a;[7],8;[81};

otherwise ¢; is not in the exact cover. |

MPLC is polynomial-time solvable if ¥ <2 orif x 2 ®, where ® denotes the
size of a longest chain in S. When x = w, Dilworth's Theorem applies, and
MPLC can be solved via a transformation to the max—flow problem (see Ford
and Fulkerson [1962]), for which efficient algorithms are known. When « =
1, the problem is trivial. For the case x =2, we recall that a matching of a
graph is a set of edges with distinct endpoints. A matching M" is a
maximum matching provided |M*| > [M]| for every matching M in the
graph. In a matching in the directed acyclic graph representing the poset S,

the endpoints of each edge in the matching form a 2-chain; hence, each



matching M gives rise to a partition P of S into |M| 2-chains and (|S| —
2|M|) 1-chains. Note |P| = |[M| + (|S]| - 2|M|), so that |P| + M| = |S].
Similarly, in a partition P of the poset S into chains of length no greater than
2, the 2—chains in the partition induce a matching M of size equal the the
number of 2—chains, and again |P| + |[M| = |S|. Since |P| + |M]| = |S], it
is clear that minimizing |P| is equivalent to maximizing |M|. Thus one
may solve MPLC when « = 2 by solving the corresponding maximum
matching problem. Polynomial-time algorithms for the maximum
matching problem are well-known (see Lawler [1976]).

From the proof of Theorem 2.1, it is clear that MPLC is NP—complete even
for k fixed at the value 3. Furthermore, since k <® < |S| for any nontrivial
instance, the problem is strongly NP-complete, even for x =3 .

The Bellman-Ford shortest path algorithm (see Lawler [1976]) can be used
to solve MWLC in polynomial-time. Suppose we are given a poset
represented by the acyclic digraph G = (V,E). We create a new graph G' =
(V', E') by adding an artificial (source) node v, and |V|= n artificial edges.
Let V'=V ulvg,and E'=E,UE,, where E;={(vy,v):ve V}. For ve V
and (u, v) € E', we define the length of (u, v) as —w(v), where w(v) denotes
the (nonnegative) weight of node v in G. Note that G' also contains no
directed cycles. We can thus apply the Bellman-Ford algorithm to
determine a shortest path from v, to v, for each v € V, limiting the number
of intermediate edges to x. The shortest among these paths determines a
maximum weight chain of size no greater than x. A straightforward
analysis shows that this algorithm for MWLC runs in O(n2x) time.

Note that the above procedure works with the entire acyclic digraph
corresponding to the poset. We now indicate an alternative algorithm, also
with an O(n2x) worst—case time—bound, but which is more efficient in that it

requires only the Hasse diagram of the poset as input; i.e., we now denote



H = (V, F) as the subgraph of G obtained by omitting those edges implied by
transitivity. For ve V, we define P, ={v}u{ue V:(u,v) e E}. When P_ =
{v}, v is termed a source node. Finally, for v e V, denote W, [m] as the
maximum weight of a chain having at most m elements, each belonging to
P,. (Note that we do not stipulate that v itself be in the chain.)

A maximum weight chain in P, with at most m elements either contains v
or does not. If it does contain v, its weight is w(v) plus that of a chain of
maximum weight having at most m-1 elements in some P, for (u,v) e F ;
otherwise, its weight is equal to that of a maximum weight chain having at
most m elements in some P, where again (u, v) € F. This observation leads
to the following dynamic programming recursion for MWLC. We assume
that the nodes in G are indexed 1, 2,..., |V| so that (i, j) € F implies i < j.
For m=1,...,x, initialize Wj [m] = w(j), if j is a source node; else Wj [m] = 0.
Then for each non-source node j, in order of increasing index, compute:

W;(1] = max { max Wi[1], wi) } ,

W;[m]= max { max W,[m], max {Wm-1]+w@}}, m>1.
i:G,)eF i:G)eF

Upon termination, the optimum value for MWLC is max{ W [x]:ve V.

3. Antichain Polvtopes

As shown in the previous section, the covering and weighted optimization
problems for limited-length chains are NP—complete and polynomial-time
solvable, respectively. With no cardinality limitation, the corresponding
antichain problems are polynomial-time solvable. A minimum cover by
antichains is determined simply by recursive removal of the set of minimal
elements (source nodes) in the poset (see Fulkerson [1972]). On the other

hand, it is well-known that an antichain of maximum weight can be



determined via transformation to a bipartite max—flow problem (see
Cameron and Edmonds [1979], Shum [1989]). Throughout the present
section, we assume we are given a poset specified by an acyclic digraph G =
(V, E) with V = {1, 2,...,n}, with antichain width limit x and weight ¢; 2 0
associated with je V. When G is bipartite, MPLA can be solved in
polynomial-time (see Hansen, Hertz and Kuplinsky [1990]) and when the
complement of G is also the graph of a partial order, the recursion of Section
9 solves MWLA. But, in general, the computational complexity of MPLA and
MWLA remains unresolved.

We now develop polyhedral theory related to MWLA which is used in the
following section in a linear programming-based algorithm for this
problem, i.e., a polyhedral combinatorial algorithm. We consider the
following integer programming formulation of MWLA:

max ¢-X

subject to Z x;€1  for each maximal chain C
jeC

n

D x<x (IPx0)

i=1

X; = Oorl, je V.
We denote by P the convex hull of feasible solutions for (IP,). It is clear that
the extreme points of P are precisely the incidence vectors of antichains of
size at most x in the poset. We thus refer to P as the antichain polytope. P
is full-dimensional and hence uniquely determined (up to positive scalar
multiplication) by its facet inequalities (see Schrijver [1986]). We now give an
explicit description of several classes of facets for P.
First note that each nonnegativity stipulation X; 2 0 is satisfied at equality by
the n affinely indépendent points given by the origin and the unit vectors el

for i #j, and hence provides a (¢rivial ) facet of the antichain polytope.
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Chain facets. The simplest nontrivial facets result from maximal chains.

Theorem 3.1 (Fulkerson[1972]) Let C be a maximal chain of the poset and let

Kk = 2. Then relation (3.1) defines a facet of the antichain polytope.

Y x<1 (3.1)

jeC

Proof: Since any chain and antichain have at most one common element,
inequality (3.1) is clearly valid for P;i.e., all points of P satisfy (3.1). Given
the maximal chain C, we note that for each i e C, the unit vector e' satisfies
(8.1) at equality. Furthermore, since C is maximal, to each 1 e V\C, we can
associate an element j e C such that i, j} is an antichain and e + & (¢ P)
satisfies (38.1) at equality. The |V| affinely independent vectors so
determined prove that (3.1) gives a facet of P. |

(k. + 1)-antichain facets, We next show that any antichain of size x + 1

gives rise to a facet of P.

Theorem 3.2 Suppose the entire poset is an antichain;ie., E=¢. If 1<x =

V| — 1, then relation (3.2) defines a facet of the antichain polytope.

n

D xsx (3.2)

i=1
Proof: The validity of the inequality (3.2) is obvious because x is the

cardinality limit. For each j e V, denote w=1- &), where 1 is the vector of
|V| ones and & is the unit vector for node j. It is easy to see that the vectors
o are linearly independent . Thus {uj :je V} consists of |V| independent
antichain incidence vectors, each satisfying (3.2) at equality, and (3.2) gives a

facet for the antichain polytope. ||



Our use of Theorem 3.2 is not restricted to the case in which the entire poset
is an antichain. For antichain A €V with |A| = x + 1, replacement of V by
A in (8.2) yields a valid inequality for P which can be "lifted” to a facet (see
Nembhauser and Wolsey [1988]) through appropriate definition of coefficients
for variables {x; :je V\A}. In Section 4 below we discuss heuristic means
for accomplishing the lifting procedure.

Other facets. We now present several more complex classes of facets.
Consider the Hasse diagram (all edges are assumed directed "downwards")
of Figure 8.1, in which |S;| =m, |S;] =m-1 and [Sy| =|S;)| =x+1-m,
with m 2 2. The nodesin S,uS,’ US, constitute an antichain, as do those
in S;. Each node of S, is related to a single node of S;, and similarly for the
nodes of Sy, though the relative in S,is distinct from that for S,. Finally,

each node of S;' is related to precisely two nodes of S;, as indicated.

m— 1 nodes

- S—— %
K+1-m S \
nodes 1 m nodes

Figure 3.1 : The facet class described in Theorem 3.3.

Theorem 3.3 For the poset indicated in Figure 3.1, with B=x+1-m 2 2,
relation (3.3) defines a facet of the antichain polytope.

Z Px; + Z x; <mp (3.3)

je S, uS/ jeS, U8,

10



Proof: To show the validity of (3.3), one observes that if an antichain
contains only elements from S, U S/, then there can be at most m elements
in this antichain, and so its incidence vector clearly satisfies (3.3). If an
antichain has elements from S,uUS,, then at least one element in S; cannot
be included. Moreover, each element in S;' is related to exactly two elements
in S, and vice versa (except for the two nodes at the ends of 81)- As a result,
the "heaviest" (with respect to the coefficients in (3.3)) antichain containing
at least one node in S, S, is one that contains m — 1 nodes from S;uU S/
and x—(m—-1)=x+ 1—m nodes from S, S,. This antichain has weight
mp and size x. Therefore (3.3) is a valid inequality.

Since (3.3) is valid for the antichain polytope P, the vectors in P for which
(3.3) holds at equality define a face of P, which is contained in a maximal
proper face (i.e., a facet — see Schrijver [1986]) of P. Suppose this facet is
given by the elements of P which satisfy relation (3.4) at equality.

Z ax; <b (3.4)

jeV
We now show that (3.3) defines a facet of P by demonstrating that the
coefficients in (3.3) are the same (up to positive scaling) as those in (3.4). Let 1
and k be distinct elements in S,US,, and BcS,US,, |B| =p-1, i,ke B.
Consider the antichains A; =S, UB U {i} and A, =S, U B U {k}. Note that
|A; | = [A ] =@m—-1)+ (P -1)+1=x. Moreover, the incidence vectors of A,

and A, satisfy (3.3), and hence (3.4), at equality; i.e,,

2 aj+2aj+ai=b, 2 aj+Zaj+ak=b.

je 8/ jeB je Sy jeB

The difference of the above two equalities yields a, = a, . Since i and k are
selected arbitrarily from S, U S,, all variables corresponding to the
elements in S, S, must have identical coefficients in (3.4).

LetS5;=11,2,...,m}, S;'={1, 2,...,(m - 1)}, as shown in Figure 3.2. For



1 2' (m~-2) (m-1y

1 2 (m-1) m

Figure 3.2: Labeling of the nodesin S, and S;'.

1<k £m - 1, we consider antichains D, = {1, 2,...,k, (k + 1),..., (m - 1)'}U S,
and D, _; =1{1,2,...,(k-1,k, (k+1),..,m-1)) uS,. Note that |D, | =
ID, _; | =x. The incidence vectors of D, and D, _; satisfy (3.3) at equality, as
B(m — 1)+ 1(B) = mP; consequently, they satisfy (3.4) at equality. The
difference of these two equalities arising from (3.4) yields a, = a,.. Repeated
application of this argument shows that a, =a,. for k = 1, 2,..., m-1.
Similarly, from antichains E, ={1',2',..., K, (k+2), (k + 3),..., m} U S, and
E,_,=,2,.,&-1),(k+1),(k+2),.,muS,, weobtain a,. =a,,, for
k=1,2,..,m-1 Hence all variables corresponding to elements in S; U S/
have identical coefficients in (3.4).

Without loss of generality, we may thus assume that the coefficients in (3.4)
of variables indexed by S,US, are ones. All that remains to show is that a,
=B, ie S; U S,. Since we know that the coefficients of the variables
corresponding to the nodesin S, U S, are identical, it is sufficient to show
that a_ = . To this end, we consider antichains G, =11, 2,..., m} and
Gy=1{1,2,..,m-1}US,. Notethat |G,/ =m<xand |Gyl =m -1+ =«
Again the incidence vectors of these two antichains satisfy (3.3), and hence
(3.4), at equality and the difference of the two equalities arising from (3.4)
yields a_ =PB=]|S,|. Hence relations (3.3) and (3.4) are equivalent. E

Figure 3.3 demonstrates the facet class of Theorem 3.3. The rows of the

12



matrix in Figure 3.3 give linearly independent antichain incidence vectors

lying on the facet.

6 7 8 9 4 5 1 2 3

"1 1 0 01 1[0 0 0
o 11 0l1 1lo o o
1 01 01 1]l0o o o
1 0 0 111 1]l0 o0 o
1 1 0 0l1 0lo o0 1
0 o1 1|0 1|1 0o o
0 0 1 1l0 ol1 1 o
1 10 0o olo 1 1
00 0 oflo ofl1 1 1

. J

5 9
Facetzz 2x; + zxj <6
i=1 j=6

Figure 3.3 : An example of the facet class of Theorem 3.3 for x = 4.

Note that for m=1, k22 and B=x with [S,US)| =x+1, S;'=0 and S,

= {x}, we obtain a degenerate case of this facet ; namely,

Bxg + 2 5<P.

je S, USy)

A simple example of the degenerate case is shown in Figure 3.4. Although
the present proof no longer is valid, it is not difficult to see that this

inequality still determines a facet of the antichain polytope.
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Facet: 3xy+ X; + Xg+ Xg+ X, €3 , k=3.

Figure 3.4: A degenerate example of the facet class of Theorem 3.3 .

We next consider the poset represented by the Hasse diagram of Figure 3.5,
with node set S= S; US,US;US,, where ISI‘ =m, 'SZ! =mr + 2, iS3§ =1,
!841 = B, and parameters satisfying m2>1, r22, 22, q21. Eachof S, 5,
and S;uU S, is an antichain. Each node in S, is dominated by exactly r + 1
nodes in S,. In S, the node v"is independent of S; and the node u" dominates
all nodes in S,. Each of the remaining nodes in S, dominates exactly one
node in S;. S, consists of only a single node which dominates (any) mr + 2 —
q nodes in S,, including v*, but not u*. The node v" in S, is dominated by all

the nodes in S,. The nodes in S, only dominate v".

s, {j Q e Q} aoses

‘ \
\ / r nodes r nodes r nodes

Figure 3.5 : The facet class described in Theorem 3.4 .
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Theorem 3.4 Let S be the poset depicted in Figure 3.5 and let o = 3,
p=(k-q@P-1+1 If 1) x=mr+12m+PB and (2) 1<x-q-1<P-1

are satisfied, then relation (3.5) determines a facet of the antichain polytope.

ij+2ﬁxj+2 “Xj'*'zijKB (3.5)

je 8 je S, je S, je 8,
Proof: We show the validity of inequality (3.5) by considering first an

antichain A of size no greater than x containing no elements from S,. If A

€ S,u §,, it is easy to see that the maximum (coefficient) weight A can
attain is xf, achieved by x nodes from S,. If A< S,US;US, and A contains
the single node in S;, then the maximum weight is attained when A
contains the q nodes in S, unrelated to S5, the node in S; and any additional
(k—q—1) nodes of S,. The resulting weight is qB + p +(xk—q—1) = xp.
Alternatively, suppose A is an antichain of size at most k¥ containing at least
one element in S;. Note S;" A# @ implies u" ¢ A. Let ASS,US,US,.
Note that excluding any k; (< m) nodes from S; can at most result in
including rk; nodes of S,in A and © = rf. Since each antichain of size no
greater than x in S, U S, has weight at most kB, A has weight at most xf.
Finally, let A< S,US,US;U S, and suppose A contains nodes in both S,
and S;. Note that if k, (< m) nodes in S, are included in A, then rk, + 1
nodes among the q nodes in S, unrelated to S; cannot be included in A. Since
there are only P nodes in S, the "heaviest" weight that A could attain is k.o
+(q-tky—1DB+p+PB=qgf+p<xp.
Thus (3.5) is a valid inequality for the antichain polytope. To see that (3.5)
defines a facet, let F, denote the face of P determined by (3.5); as in the proof
of Theorem 3.3, there exists a facet F, represented by

D ax<b (3.6)

jeV

such that F, c F, = {x € P : x satisfies (3.6) at equality}. Again we prove that



F,=F, by showing that (3.5) and (3.6) are equivalent inequalities.

We first consider the coefficients of variables corresponding to the nodes in
S,. Let A be the set of g nodes in S, independent of S;. For i,ke S;,1=k,
select B; | ©S, suchthat i,ke B; , and IB; \ | = x—q—220 (by condition
2). Note that B, , may be empty. Consider antichains C; = {i} U By v Sq U
A, G ={k}UB; y US;u A. Each contains exactly x elements and has
weight x —q— 1+ + gB = xB. Evaluating (3.6) for C, and C, and then
taking the difference of the resulting two relations yields a; =a,. Hence 3, =
a ,forall i,ke S;.

For i,ke Syand i#k,let D; = S;\{i} and Dy = Sy\{k}. Note that each of these
antichains has width mr + 1 = x (by condition 1) and weight B(mr + 1) in (3.5).
Evaluating (3.6) for D; and D, shows that a; =a, ,foralli, ke S,.

Without loss of generality, we now assume a =1, forall je S,, We next
show that a . =B by considering antichains E;=S,US, and E, =S, U v7).
E, has width m + B < x (by condition 1) and weight B + mo in (3.5), while E,
has width m + 1 < ¥ (by condition 1) and the same weight as E;. By
substituting the incidence vectors of E; and E, into (3.6) and subtracting, we
obtain a =f, since a; = 1,je€ S,; hence, a; = B,je S, in(3.6).

We now suppose m = 2 and show that the coefficients of X; je S, , are
identical in (3.6). For any j e S,, define H; = fi:ie S,; ionly dominates j
S, and note that ]HJ- | =r. Consider the antichains G, = (S,\{ihu {v’} UH,
and G, =(S\k)D UV UH, ,where izk, i,ke S,. G, has width m+r < «x
(by condition 1) with weight (m — 1) + B + Br = mo + B (by condition 1).
Similarly, G, has identical width and weight as G;. Evaluation of G, and G,
in (3.6) yields a, =a,, foralli,ke S,.

Since a; = B, je S,, consideration of antichains E, and D, yields a; = B,

for all j € S,. Finally, we determine the coefficient 6f the singleton in S,

using antichains E, and C, , along with the definition of p. |
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An example of a facet of this type is given in Figure 3.6 along with an
invertible (0,1matrix whose rows are incidence vectors of antichains lying
on this facet. Here C(5,6) denotes the incidence matrix of 5-element subsets

of {1,2,3,4,5,6}.

1 2 3 4 5 6 7 8 9 10 1

- )
C (5,6) 0
10 0 0 0 O 1 1
0

11 1 6 0 0} 01

000 00 o0} 1 1]1 1 0

0 11 140 0J0 1 1

11 1} 0 01 0 1

6 8 10
Facet : Z 2Xj + 24"1’ + EXj +3x%;; <10
j=1 i=7 i=9

Figure 3.6: An example of the facet class of Theorem 3.4 for x = 5.

Further discussion and additional, more complicated facet classes for the

antichain polytope are presented in Shum [1989]. We conclude this section by



indicating one such class. Under appropriate technical stipulations, (3.7)
defines a facet of the antichain polytope for the poset of Figure 3.7, where o,

B, u are positve integers. Figures 3.8-3.10 demonstrate this type of facet.

2"’%‘* 2 Bx; + Z Xj+qujSKB (8.7

je 8, je8S, U8, U8, je§zuUs, je S

&

,9/636@{@ © W @
«/V/

a3 & ®
13 16 24 29
Facet: D 4x+ ), 12x+ O x+37Txps+ D, %, <48
TS NS P VIR U j=2

Figure 3.8: First example of the facet class of Figure 3.7; |Sg| = |S,| , x = 12.
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7 9 12 14 16
Facet : 22Xj+24Xj+ Z Xj+ 2 4XJ+ 2 Xj.<_12
j=1 j=8

j=10 j=13 j=15

Figure 3.9: Second example of the facet class of Figure 3.7; |S¢l=|S8;/=2, x=6.

Figure 3.10 : Third example of the facet class of Figure 3.7;|S¢| = |S;|=4, x = 10.
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4 n in ithm for

We now describe a linear programming-based algorithm for solving
MWLA. We assume throughout the discussion that P denotes the antichain
polytope for the poset S defined on elements 1,2,...,n. The algorithm
described here makes explicit use of the maximal chain facets and the (x +
1)-antichain facets developed in the previous section. A basic component of
the approach is the separation algorithm; i.e., given a point x" ¢ P, we
would like to determine a facet from one of these two facet classes which
separates x" from P, i.e., an inequality violated by x".

Separation algorithm for maximal chain facets. Suppose x" ¢ P. We
interpret component xj* as the weight associated with node j in the poset.
The form of inequality (3.1) shows that if some maximal chain facet is
violated by x", then there is a chain of weight greater than one in the poset.
In particular, the weight of the heaviest chain must exceed one, so any
algorithm for determining a maximum weight chain provides a separation
algorithm for maximal chain facets. If a chain of maximum weight (with
respect to x*) has weight less than one, then x* satisfies relation (3.1) for
every chain of the poset and hence no maximal chain facet separates x”
from the antichain polytope. Otherwise, if C is a maximal chain whose
weight exceeds unity, then x* violates the facet given in relation (3.1).

A chain of maximum weight can be determined in polynomial-time using a
simple dynamic programming algorithm. Assuming that the nodes of the
Hasse diagram for S are indexed so that (i, j) € E = i1 <j, we consider the
recursive relation U(QG) = max {U@) + w(§) : (4, j) € E}, where U(i) is the
weight of the maximum weight chain in PQ) = {i} U {j : j dominates i}, w(i) is
the weight of node i, E is the edge set for the Hasse diagram and UG) = w(i) if

11is a source node. Applying this recursion to the nodes in the order of



increasing index yields a chain of maximum weight. Since the degree of
each node is at most n, this algorithm will terminate in at most O(n? steps.
Separation algorithm for (x + 1)-antichain facets. No polynomial-time
separation algorithm is known for (x + 1)-antichain facets. We indicate
now a heuristic separation algorithm for this facet class. Let x"e¢P; to
improve computational efficiency, we remove each node j with X; * = 0 from
the poset. Thus for the present discussion, we assume X >0, 1€j<n.

We attempt to discover an antichain of width x + 1, all of whose members are
related to a single element of the poset, say j. This will insure that x;
receives a large coefficient (value x) as a result of the lifting process (see
below). The algorithm first sorts the nodes by decreasing degree into the list
L, with the node of highest degree, say j*, being the first element in L. Let R
be the set of elements related to j*. If R has fewer than x + 1 nodes, then j”
is deleted from L and the whole process repeats with the (new) first node in
L. IfR has more than k + 1 nodes, but is not an antichain, then the node
with the highest degree in R is deleted from R and the nodes of this smaller
set are re—-examined for independence. The size of R continues to decrease
until either R is an antichain of size greater than x or R contains fewer than
k + 1 elements. In the latter case, j* is deleted from L and the procedure
repeats from the beginning. In the former case, the inequality is lifted (see
discussion below) to the remaining nodes in the order of decreasing degree.
If x" violates the resulting inequality, it is added to the current LP and the
new LP is reoptimized; otherwise, j* is deleted from L. This procedure
continues until either L = & or the degree of the first node in L is less than
two.

Generally, the lifting procedure for strengthening a supporting hyperplane

to a facet is computationally prohibitive, requiring the solution of an integer

programming problem. We approximate this by solving the associated



linear programming relaxation. Crowder, Johnson and Padberg [1983]
have demonstrated practical effectiveness of this approach in the context of
general 0—-1 programming problems. Furthermore, only the constraints of
the current LP formulation (see below) are included in this relaxation and
coefficients of nodes j with xj* = 0 are assumed to be zero. These
approximations result in an underestimate of actual coefficient values for
variables in the (x + 1)—antiéhain facets. Certainly, this diminishes the
effectiveness of the (x + 1)-antichain inequalities generated, but this
approximation achieves an overall gain in computational efficiency.
Computational implementation, The implementation of the strong cutting
plane algorithm is based on the code XMP and is written in FORTRAN.
XMP is a simplex-based linear programming software package (see
Marsten[1981]). All problems were run on a SUN 3/60 equipped with a 68881
floating point processor and 8Mb of memory. We primarily used dual
simplex pivots, as this approach turns out to be more efficient than primal
simplex pivoting for our problems. This is often the case for combinatorial
problems which suffer from severe degeneracy.

The implementation begins with a heuristic procedure for determining an
initial solution; this heuristic is based on the fact that MWLA without the
cardinality restriction can be solved in polynomial-time using a max-flow
algorithm. We assume q = 2 is a given integer and let S' be the poset
generated by the q "heaviest" elements of S. We first find an antichain of
maximum weight in S', say A. If |A| > x, then only the k¥ heaviest elements
of A are retained, so that |A| =x. On the other hand, when |A] <k, all of
A is retained and we delete A and all elements related to members of A in S
to obtain a smaller poset T. As before, we find the heaviest antichain
(without cardinality restriction) in T, say A'. Now A u A'is an antichain

and we take (at most) x elements from A U A' as a trial solution. When this
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procedure is applied, different values of q may, of course, result in different
trial solutions. Our implementation considers seven values of q determined
by rounding up the quantity |S|/k, for k = 4,5,...,10; we then take as an initial
solution the heaviest antichain among these candidates. For our test
problems, this procedure was extremely effective, often producing an
optimal solution for the MWLA problem under consideration.

We begin the actual cutting plane procedure by including only the
cardinality constraint of relation (3.2) and the bounds 0 < X < 1,j=1, 2,...n,
in the linear programming (LP) formulation; suppose x* is the resulting
optimal LP solution. We first attempt to find a maximal chain facet violated
by x* using the algorithm described above. This is carried out regardless of
whether x* is integer—valued or not. Note that even when x* is integral, it
may still not be the incidence vector of an antichain, since our initial LP
formulation does not include all/ maximal chain constraints. If a
separating maximal chain facet is found, it is appended to the current LP
and the new LP is reoptimized. If no separating maximal chain facet can be
found and x" is integral, then x* satisfies all maximal chain constraints and
hence must be an optimal solution to the original problem. If x* has
fractional components, but no separating maximal chain facet is discovered,
then we attempt to generate a separating (x + 1)-antichain inequality using
the heuristic separation algorithm described above. If we succeed in finding
such an inequality, it is appended to the current LP and the new LP is
reoptimized. Otherwise, no further (x + 1)-antichain inequality can be
generated and x" yields an (infeasible) upper bound for the original problem.
In such cases our algorithm terminates with a fractional LP solution; the
initial (heuristic) solution provides the best known solution for these
instances. At this point, one could use the entire procedure described here
as the core of an enumerative algorithm for MWLA, but we have not

programmed such an algorithm. Nevertheless, as we discuss more fully
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below, our approach fails to produce an optimum solution for only about 3%
of 2886 MWLA problems considered.

As the algorithm generates constraints on the fly, the LP formulation
grows in size over time. In order to keep the formulation small, we
eliminate all nonbinding constraints whenever the number of such
constraints exceeds a certain limit. Our computational experience indicates
that fixing this limiting value to twenty works reasonably well in practice.
Data generation and computational results. Our sample problems were
produced by a program for random generation of Hasse diagrams of posets.
For input, this program requires the length of a longest chain and the
maximum number and minimum number of nodes in a level. A node j in
a Hasse diagram is said to be'long to level 1 if [ is the length of a longest
chain in the poset ending at j. The length of a longest chain in a Hasse
diagram is the number of levels in the diagram. The actual number of
nodes in each level is then randomly generated within these limits. Edges
between nodes belonging to ‘successive levels are generated at random with
Bernoulli trials; the probability that there exists an edge between a pair of
nodes is 0.5. Then (non-transitive) edges between nodes in non—consecutive
levels are randomly generated in a similar manner. Finally, we generate
positive integral weights uniformly distributed between 1 and 99 for the
nodes; three sets of weights were generated for each Hasse diagram. These
posets have sizes ranging from 100 to 1005 nodes, with the number of edges
in Hasse diagrams ranging from 503 to 21044. Altogether, 74 such posets
were generated. We have run our algorithms on each poset for each set of
weights with thirteen different values of the cardinality limit ranging from
k=2 to x=30.

Computational results for the posets described in Table 4.1 are given in

Tables 4.2-4.5. Under the "heur. opt." column, the (feasible) lower bounds
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resulting from the heuristic procedure described above are shown. In the
following three columns, "1" stands for the maximal chain facets and "2"
stands for the (x + 1)-antichain inequalities. Note that in the cutting plane
algorithm, (x + 1)-antichain inequalities are only generated when maximal
chains facets fail to produce an integral optimal solution. For example, in
row 4 of Table 4.4, poset i105a has a heuristic optimum of 1618. When the
cutting plane algorithm is applied to the same problem using only maximal
chain facets, we obtain an upper bound of 1633.8, 137 cuts are generated and
it takes 578 seconds to complete the run. In this case, the resulting solution
(value 1633.8) is not integral, so we attempt to generate violated (k+1)—
antichain inequalities. When both maximal chain facets and (k+1)-
antichain inequalities are generated, the upper bound decreases to 1632.6,
144 cuts remain in the final LP formulation and the computational time
increases to 7508 seconds. Under the "remark” column, "1" indicates that
using maximal chain facets alone results in a fractional upper bound
solution, "2" indicates that both types of inequalities are generated and the
cutting plane algorithm terminates because it can no longer generate
violated inequalities, although the final solution remains fractional, and "3"
indicates that the problem is abandoned due to severe degeneracy. The value
of the cardinality limit is indicated at the top of each table.

The reader should note that the cutting plane algorithm requires much
longer to terminate when (x + 1)-antichain inequalities are generated,
primarily because each time the coefficient of a variable is determined by
lifting, a linear programming problem must be solved. In most examples,
however, maximal chain facets suffice to yield integral optimal solutions.
We have tested our procedure on 2886 randomly generated problems. A
complete discussion of this computational testing is given in Shum[1989];

some typical instances are presented in Tables 4.2-4.5 below. Of these



problems, 2637 (91.4%) are solved to optimality using only maximal chain
facets. When both maximal chain facets and (x + 1)-antichain inequalities
are used, 158 (5.5%) additional problems are solved to optimality. Thus the
cutting plane algorithm solves 96.9% of the test problems to optimality.
There are 60 (2.1%) problems for which the algorithm (generating both types
of facets) terminates with fractional solutions and additionally 31 (1.1%)
problems are abandoned due to degeneracy; i.e., only about 3% of the test
problems cannot be solved to optimality using these routines. Furthermore,
in some problem instances for which an integral solution is not produced by
the cutting plane algorithm, the final LP value is actually within one unit of
the corresponding (feasible) heuristic lower bound. For such problems, the

heuristic has discovered, of course, an optimal solution.

Table 4.1: Sizes of some randomly generated Hasse diagrams.

problem # # of nodes # of edges # of levels
i64a 208 1983 31
i82a 300 2563 16
1100a 416 9126 10
1105a 513 8226 15
i110a 605 4956 40
i115a 715 17860 14
i119a 792 11690 26
i121a 891 14598 29
1123a 1005 10973 47



Table 4.2 : Computational results for MWLA problems; x = 4.
cut opt. # of cuts  CPU time
problem # heur. opt. (1 only/1 & 2)(1 onlv/1 & 2) (1 only/1 & 2) Remarks

164a 363.0 363.0/ — 37/ — 24/ —
182a 388.0 388.0/ — 7/ - 17/ -
1100a 383.0 392.0/ — 2V - 38/ —
1105a 388.0 388.0/ — 3V - 59/ —
1110a 387.0 387.0/ — 56/ — 102/ —
1115a 393.0 393.0/ - 18/ — 87/ —
1119a 391.0 394.0/ - 20/ — 102/ —
i121a 389.0 391.0/ — 23/ - 130/ -
1123a 387.0 392.0/ — 59/ — 211/ -

Table 4.3 : Computational results for MWLA problems; x = 12.
cut opt. # of cuts CPU time
problem # heur. opt. (1 only/1 & 2)(1 only/1 & 2) (1 only/1 & 2) Remarks

i64a 621.0 621.0/ — 47/ - 73/ —
182a 1037.0 1037.0/ — 30/ — 3V -
1100a 1062.0 1079.5/ 10784 135/ 87 264/ 1564 1,2
1105a 1085.0 1085.0/ — 51 — 110/ -
1110a 1015.0 1026.0/ — 43/ - 170/ —
i115a 1143.0 1143.0/ — 42/ — 125/ —
1119a 1087.0 1087.0/ — 82/ — 518/ —
i121a 1111.0 1111.0/ - 77 — 291/ -

1123a 1095.0 1095.0/ — 117/ - 726/ —



Table 4.4 : Computational results for MWLA problems; x = 20.
cut opt. # of cuts CPU time
problem # heur. opt. (1 only/1.& 2)(1 only/1 & 2) (1 only/1 & 2) Remarks

i64a - 621.0 621.0/ — 44/ — 60/ —
182a 1537.0 1537.0/ — 57/ — 56/ —
1100a 1597.0 1597.0/ — 119/ - 439/ —
1105a 1618.0 1633.8/ 16326 137/ 144 578/ 7508 1,2
i110a 1451.0 1451.0/ - 7V — 380/ —
i115a 1819.0 1819.0/ - 75/ — 186/ —
1119a 1637.0 1637.0/ — 11V - 1100/ —
i121a 1714.0 1714.0/ - 55/ — 449/ —
i123a 1595.0 1595.0/ - 105/ — 1418/ —

Table 4.5 : Computational results for MWLA problems; x = 30.
cut opt. # of cuts CPU time
problem # heur. opt. (1 only/1 & 2)(1 only/1 & 2) (1 only/1 & 2) Remarks

164a 621.0 621.0/ — 38/ — 46/ -
182a 1934.0 1937.0/ 19354 83/ 107 13V 6545 1,2,3
1100a 2151.0 2151.0/ - 124/ — 439/ —
1105a 2152.0 2152.0/ — 86/ — 336/ —
1110a 1625.0 1625.0/ — 105/ — 646/ —
1115a 2540.0 2540.0/ — 59/ — 194/ —
1119a 2136.0 2136.0/ - 133/ - 1761/ —
i121a 2284.0 2284.0/ — 127/ - 853/ —
1123a 2000.0 2000.0/ - 131/ - 2682/ —
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ncludi m

We have restricted attention in the previous two sections to the polyhedral
structure, i.e., derivation of specific facet classes, of the antichain polytope
and the exploitation of these facets in a linear programming-based
algorithm for optimization over this polytope (MWLA). Analogously, one
can consider the chain polytope for the problem MWLC, i.e., the polytope
whose extremal elements are the incidence vectors of chains of limited
length in a given poset. Classes of facets for the chain polytope, analogous to
those given here for the antichain polytope, are developed in detail in Shum
[1989].

Shum [1989] also reports computational experience fbr solving MWLC by a
strong cutting plane algorithm. As with MWLA, this algorithm for MWLC
is quite effective, solving 99% of the test problems generated to integral
optimality. Recall, however, that in Section 2 above we have given a dynamic
programming recursion which solves MWLC in polynomial-time. In Shum
[1989] it is shown that this polynomial-time algorithm is more efficient
computationally than the linear programming-based approach; we note
that this contrasts results of Grotschel and Holland [1985] for the matching
problem.

Finally, we mention that the existence of a polynomial-time algorithm for
MWLC suggests the existence of an explicit characterization of the (limited
length) chain polytope, though the facets described in Shum [1989] suggest

that such a description would necessarily be complex.
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