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SUMMARY

We describe methods for the construction of a confidence
interval for median survival time based on right-censored data.
These methods are extended to the construction of repeated
confidence intervals for the median, based on accumulating data;
here, the overall probability that all intervals contain the true
median is guaranteed at a fixed level. The use of repeated
confidence intervals for median survival time in Phase IV clinical

trials (post-marketing surveillance) is discussed.
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1. INTRODUCTION

A confidence interval for median survival time provides a useful
summary of the survival experience of a group of patients. The recent
papers of Brookmeyer and Crowley (1982), Efron (1981), Emerson (1982),
Reid (1981), Simon and Lee (1982) and Slud, Byar and Green (1984)
describe competing nonparametric confidence intervals for the median,
based on right-censored data. In §2 we propose a new form of single
sample confidence interval; this interval has asymptotically correct
coverage probability and Monte Carlo simulations suggest that it
is superior to its competitors for small sample sizes.

In survival studies data usually accumulate over a long period
of time and confidence intervals (CI's) for the median survival time
may be calculated on several occasions. When these CI's are used in
a decision making process there is the problem of 'multiple Tooks':
the probability that at least one interval fails to contain the
median may be much higher than the error rate for a single interval
and the probability of an incorrect decision of a corresponding
hypothesis test increases accordingly. Jennison and Turnbull (1984)
have proposed methods appropriate to such situations: a maximum
number of analyses, K, 1is fixed in advance and repeated confidence
intervals (RCI's) are constructed, for which the probability of all
K intervals containing the true median equals a chosen confidence
level; since a decision may be taken to stop the experiment after
less than K analyses, these RCI's are in fact conservative.

In §3 we extend the results of Meier (1975) to obtain properties

of the joint distribution of Kaplan-Meier survival probability
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estimates, based on accumulating data. An alternative derivation of
these results, using martingale techniques, is given in Jennison and
Turnbull (1985), Repeated confidence intervals for the median are
derived in §4 and their small sample size performance is assessed by
Monte Carlo simulation. An application of the use of RCI's is given
in §5.

Although we discuss CI's for the median only, all the methods
considered can be modified to give CI's for other quantiles; also,
there are related methods for calculating CI's for the survival

probability at a fixed time.

2. SINGLE SAMPLE CONFIDENCE INTERVALS

Slud, Byar and Green (1984), (hereafter referred to as SBG), com-
pare various methods of obtaining Ci's for median survival time. They
survey asymptotic results and, in the case of no censoring, exact small
sample properties; in the censored case they examine small sample pro-
perties by Monte Carlo simulation. In this section, we describe some
of the competing CI's and discuss the results of SBG. In particular
we note that the 'Simple Reflected' and 'Transformed Reflected' inter-
vals have highly unequal error rates in the two tails. We propose a new
form of CI which we shall subsequently adapt to the sequential setting.

Suppose that observed survival data (Ti,Ai), i=1,.00,N,
are generated from independent pairs of death and censoring times
(Xi’Yi) where T. = min(Xi,Yi) and A, = 1ot X, <Yy, 0 if

Xi > Yi‘ We write S{t) = P(X > t) and assume that S(.) is

continuous with cumulative hazard A(-); nothing is assumed about
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the censoring times Yi’ except that they are independent of the
death times. There will be no tied death times or simultaneous death
and censoring times and the median pu of Xi is uniquely defined
as ST'(1/2) = inflt: S(t) < 1/2}.

| Let rj be the number of Ti‘s which are 3_Tj, = 1,00a,N,
that is the size of the risk set at T,. Let BJ. =1 if 4, =0,

and (rj-1)/rj if Aj = 1. Also let aj = T-pj. The nonparametric

estimator of the survival function due to Kaplan and Meier (1958) is

' 3’ t > 0.
J:Tjjﬁ

This is the generalized maximum Tikelihood estimate of S(«)--Johansen

(1978), Scholtz (1980). Assuming some regularity conditions on

the {Yi}’ Meier (1975) has shown that the variance of §(t) is

consistently estimated by 'Greenwood's formula'

~ -~ 2 q‘
o(t) = SO ] L
J:T.<t "

an alternative estimate for t near the median is
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The variance of R(t) can be estimated (see SBG) by @G(t)/g(t)2

which equals 4$G(t). The inverses of the right-continuous step-

functions S and A are taken to be §-1(x) = inf{t: §(t) < x}

and £_1(x) = inf{t: K(t) > x} and we estimate the median u by

We consider the problem of obtaining a 1-2a level, equal
tailed confidence interval for u. This may be done by inverting a
family of tests of the hypotheses S(t) = 1/2, for t > 0.
Brookmeyer and Crowley (1982) invert tests which use the

~ ~

approximation S(t) ~ N(S(t),@G(t)) to obtain the interval

[t (8(¢) - 1/2)% < X%,Za ba(t)] (2.1)

Here, X%,Za denotes the (1-2a) point of a Xf distribution.
(Although pathological examples can be constructed for which this
does not give an interval this problem is unlikely to occur in
practice and we shall ignore it.) Brookmeyer and Crowley show that
this method gives asymptotically correct coverage probabilities but,
for small N, error rates tend to be too high. SBG argue that
Efron's (1981) bootstrapped confidence interval for pu should agree
closely with that of Brookmeyer and Crowley.

The methods of Reid (1981) and Emerson (1982) approximate the
distribution of §(t) by a binomial distribution and their

intervals are asymptotically anti-conservative in the presence of



censoring. The simulation results of SBG show that this is a
serious effect even when N is as low as 41.

Slud, Byar and Green distinguish between so called 'Test based'
and 'Reflected' intervals. In fact, these 'Reflected’ intervals do
correspond to families of tests: Emerson approximates Ng(t) as
binomial (N,S(t)) and tests S(t) = 1/2; the 'Simple Reflected’
interval described by SBG corresponds to tests of S(t) = 1/2 using
a normal approximation for §(t), with the variance of g(t)
estimated by EG(;); SBG's 'Transformed Reflected' interval corre-
sponds to tests of A(t) = A(p) (= 1oge2), with A(p) estimated
by K(Q) and a normal approximation for E(t) with the variance of
A(t) estimated by 456(;). Of course, the error rates of these
intervals are simply the Type I error probabilities of the
corresponding tests at t = p.

SBG show that the Simple Reflected intervals and their Trans-
formed Reflected intervals have asymptotically correct coverage
probabilities and they investigate by simulation the error rates for
N =21 and 41 under various censoring schemes. From these simu-
lation results, it appears that the Simple Reflected and Transformed
Reflected CI's have close to the desired coverage probabilities but
SBG do not distinguish between errors in the two tails. Our own
simulations show that, in fact, these procedures exhibit a great
imbalance between error rates in the two tails when censoring is
present (see Tables 2.1 and 2.2). This is not acceptable in

situations where the consequences of reporting intervals above and
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below the true median are different; this behaviour also shows that
the approximations underlying the CI's are poor (insofar as, if the
approximations were good both upper and lower tail error rates would
be close to their nominal values), and this casts doubt on the per-
formance of the CI's in other situations.

Of the intervals discussed so far, those of Brookmeyer and
Crowley are the most appealing although they are anti-conservative
in small samples. One possible reason for this anti-conservatism is
that &G(p) underestimates the variance of g(p) when §(p) £ 1/2
--this is certainly the case in the absence of censoring when Ng(u)
~ binomial (N,1/2) and &G(p) (p)(l-g(p))/N. When testing the
1/2, var{S

]

hypothesis S(t)

1/2. Let N(

]

= S

(t)} should be estimated under the
assumption S(t) t) be the number of Ti > t,
i=1,...,N and let N(t) = E{N(t)}. Breslow and Crowley (1974)
show that if the Y.'s are identically distributed, var{g(t)} ~
-S(t)2 jg ds(u)/ {N(u)S(u)} as N(t) » = and they claim that this
result still holds under different censoring schemes. (See also
more recent results by Gill (1983).) MWe therefore wish to estimate
var{g(t)} by an estimate of

-dS(u)

N(u)S(u)

. (2.2)

——
[a]
O, ot

In Greenwood's formula this is accomplished by substituting the
estimates S(t) for S(t), aj/ﬁj for —dS(Tj)/S(Tj) and 5
for (Tj). Under the constraint %(t) = 1/2, the generalized
nonparametric maximum likelihood estimate of S(u), (0 <u<t),

is S(u) = Hﬁ:T-jp

J SJ., where BJ. =1 if a, =0, (rj+}\~1)/(rj+>\)

J
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if A= and A is chosen so that S(t) = 1/2. (See Thomas and
Grunkemeier, 1975). We define 53 = 1-5j. Estimating N(Tj) by
rjg(Tj)/g(Tj) compensates for the occurrence of higher or lower
than typical survival up to time Tj; this estimate may be derived
more rigorously using the Markov property of the process
{N(u), u > 0} described by Meier (1975, Section 2.1). Substituting

these constrained estimates into (2.2) gives the 'constrained’

estimate of var{g(t)}

This estimate has been used by Thomas and Grunkemeier (1975) to
obtain CI's for S(t) at fixed time t; it has the desirable
property that it gives the correct binomial variance of §(u),
namely 1/4n, in the absence of censoring.

Using $c(t) as an estimate of var{g(t)} in the normal

approximation gives the CI for u:

t: (3() - 17207 < 1§ Ho0c (D)} (2.3)
We shall refer to this as the Constrained Variance interval. The
error rates of this CI are those of the test which rejects the
null hypothesis S(u) = 1/2 when (S(p) - 1/2)% > X{Zagk(u): the
error rates are asymptotically correct and small sample properties
are given in Tables 2 and 3 of Thomas and Grunkemeier (1975); for

censored samples the error rates are considerably nearer to their
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nominal values than those of the test using %G(u) as an estimate of

~

var{S(u)}, which corresponds to Brookmeyer and Crowley's CI for p.
Anderson, Bernstein and Pike (1982) have proposed CI's for
survival quantiles. Their 'Rothman-Wilson' interval is obtained by

~

replacing $ (t) in (2.1) or ¢ _(t) in (2.3) by
G c

) i a

2 2 J:T.<t "
S(t)(1-5(t)) J riP;

This gives asymptotically correct error rates and @R(t) is the
correct binomial variance in the absence of censoring. However,
Anderson, Bernstein and Pike report that neither this nor any of the
related methods which they consider, show any improvement in error
rates for testing S(p) = 1/2 over a test which uses $G(”) as an
estimate of var{g(u)}. If this is so, then the error rates of their
Cl's for u are no better than those of the Brookmeyer and Crowley CI.
Tables 2.1 to 2.3 show the results of simulation experiments
comparing four of the above methods. The survival and censoring
distributions are those used by Slud, Byar and Green. Survival
distributions are exponential with hazard rate 1, denoted by Exp(1);
Weibull with scale parameter 1 and shape parameter 0.7 denoted by
Weib(1,.7); and Weib{(1,1.5). Censoring distributions are Exp(1);
uniform on the interval 0 to 2, denoted Unif(0,2); Exp(.3); and
Unif(0,4.5). The entries of Tables 2.1 and 2.2 are the relative

frequencies with which the intervals failed to contain the true median
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of the survival distribution for sample sizes 21 and 41 respectively;
these errors are broken down according to whether the interval was
above or below the true median. Each entry of Tables 2.1 and 2.2 is
based on 6000 replications. Table 2.3 gives the average observed
length of CI's for sample sizes 21 and 41; calculation of a CI
requires considerably more work than testing that it contains the true
median and these entries are based on 1000 replications.

As in SBG (Section 4) to avoid degeneracy when rj =1, we have
replaced (rj-]) by s in the final term of the summation for EG(Q)
used in the Simple Reflected and Transformed Reflected intervals.

In choosing A to satisfy S(t) = 1/2 a bisection method was used
with initial interval (O,N(t])), where t1 is the smallest observed
death time (min T, for which a; = 1), when S(t) < 1/2, and
(Z—N(tm),O), where tm is the largest observed death time < t, when
g(t) > 1/2. A number of problems arise when the sample éize is small
or censoring is heavy: the Kaplan-Meier estimate g(t) is undefined
for t > maxi(Ti) and &C(t) is undefined for t < the smallest
observed death time. If S(t) = 1, one may test S(t) = 1/2 by
referring Ng(t) to a binomial (N(t),1/2) distribution; for small
sample sizes this can give a CI with lTower end point = 0. If the

hypothesis S(t ) = 1/2, where tmax is the largest observed

ma x
death time, is accepted then the upper end point of a CI for

should be . To simplify calculations we have adopted the approach
of SBG who treat the highest survival time as uncensored, whatever its

true nature; we have also imposed their restriction that CI's lie



10
between the lowest observed death time and the largest observed time,
Ti' The effect of these modifications on the error rates is
negligible in the examples considered (the resulting increase in
observed error rates is approximately 0.001 in the worst case).
Strictly speaking, all methods give CI's with infinite expected length
when censoring is present; but with the imposed restriction, the
average observed length is a simple and fair summary of the
distribution of the length of a CI.

From Tables 2.1, 2.2 we see that the Constrained Variance inter-
val gives both upper and lower tail error probabilities closest to the
nominal o level. From Table 2.3, we see that the expected lengths
of the Constrained Variance intervals are generally shorter than of
either the Simple Reflected or Transformed Reflected intervals.

As previously mentioned, these two latter methods can give severely
asymmetric error probabilities in the two tails. The Brookmeyer-
Crowley intervals yield the shortest intervals, but this is to

be expected since they are severely anti-conservative for these
sample sizes (N = 21,41).

Based on the superior performance of the Constrained Variance
intervals found in the simulation experiments, we shall concentrate
most of our attention on them in our discussion of sequential

confidence intervals that follows in the next sections.
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3. ASYMPTOTIC JOINT DISTRIBUTION OF KAPLAN-METER SURVIVAL
ESTIMATES BASED ON ACCUMULATING DATA

Breslow and Crowley (1974) derive the asymptotic joint
distribution of §(t), t > 0, for a single sample experiment with
independent identically distributed censoring times. Meier (1975)
treats the case of fixed censoring times but his results hold under
any form of random censoring which is independent of survival and for
which the realized censoring times satisfy the appropriate asymptotic
conditions with probability 1. We shall extend Meier's methods
to obtain the asymptotic joint distribution of {g(t), t > 0} over
repeated analyses of accumulating data; at successive analyses there
will be both new observations and additional information on previously
right censored observations.

Suppose a total of K analyses are performed and N subjects

are involved, Let Y, (1 <1 <N, 1<Kk < K) be the potential

K
censoring time for the i'th subject at the k'th analysis, with

Y =0 if the i'th subject has not yet entered the study; although

ik
they may have arisen in a random manner both N and the Yi ( can

be regarded as fixed. Both end of study and competing risk censoring
may be present so, for a fixed 1, Yi,k will increase with k up to
a maximum value (possibly infinite) equal to the competing risk
censoring time., Let Xi be the survival time of the i'th subject

and define T, , = min(X,,Y, and A, , =1 if X, <Y
i, i i,k i—

2 ik’

k i,
(1 <i <N, 1<k<K). As in §2, suppose that

0 if Xi > Yi,k

Xi‘s are independent with continuous survival function S(e) and
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median p; nothing is assumed of the Yi K except that they are

independent of the X.'s. For each k (1 < k <K) we define the

following functions of time t:

=
=~
—~
ot
N
i

number of Y, >t, 1
ik —

s

k( number of Ti,k >t, 1 <1<N

E(N (1)} = M (£)S(t).

o+
g
1]
| A
—l o
A
=

=
=~
o~
[ua
S
i

Suppose there are m distinct non-zero values taken by the

Y and label these L],...,Lm where 0 < L] < L2 < ..e <L . For

i,k m

a given value of t, Tlet h be the index such that L, <t S L

where L, =0 and Lm+1 = o, let 1 I be the half-open

0 12002 e

intervals
I'l = (OSL]]Q 12 = (L")LZ],"‘sIh = (Lh"],Lh]’ Ih,*,] = (Lh)t]s

and let

o1 = S(Ly)s Py = S(L)/S(Ly )seensmy = S /S(L )y Py = S(E)/S(L)

i.e. pj = conditional probability of survival over the interval Ij’

given survival to the start of that interval. Let q; = 1-pj. It

follows that

h+1
S(t) = I ps.
=1
We define also, for each k (1 < k <K): Ny = Nk(Lj~1+);

Dj,k number of Ti,k € Ij with Ai,k =1 (1

Ny = BNy ids

A

i <N); and

1



At the k'th analysis, the Kaplan-Meier estimate of S(e) 1is

+
O Py t <max (T k)
R i=] ’ i ’
S(t) =
0 t > m?x (T'I,k)
where
S Nik = Dk
ik :
Ni Lk
Letting
‘ h+1  q,
Wl =
i,kPi
N (8)
Meier (1975, page 78) has shown that if Ck(t)e > o as
Nk(t) > =, then

§k(t) - s(t) | 2
1im E = 1;
((E)>= S(t)/C (E)

N

and (page 82) that if N (t)C

" k(t) > =, then the random variable

§k(t) - s(t)
S(t)/C, (t)

converges in distribution to N(0,1) as Nk(t) > ®,

13

Consider a sequence of experiments of increasing size, for which

N (t) » = for each 1<k <K andthere exist constants Y5 j

(1 <1i,j <K) such that

T
N REURY
/Cy (t) 1°2

]

k2_<_K).
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We show in the Appendix that if, in this asymptotic setting,

Ny (t)
CK(t)e > =, then
(5, (t)-5(£))(5, (t)-5(t))
lim E ] 2 =1, forall 1<k <k, <K
s%(e)c, (t) (3.1)

2

also, if Ni(t)ck(t) > o for all 1 <k <K, the random vector £
defined by
S, (t)-S(t)
Z, = , 1<k <K, (3.2)
S(t)/Ck(ti

converges to a multivariate normal distribution with mean 0 and

covariance matrix x, where x%,. =

i = Yij for all 1<i <j <K,

Asymptotic properties of repeated significance tests of the
hypothesis S(t) = 6, based on the estimates gk(t), may be
derived from the above results. For these purposes, and for a fixed
value of t, the assumption Z ~ N(0,z) 1is equivalent to assuming
the joint distribution of the S (t)/C (t), (1 <k <K) to be

that of a Brownian motion, with drift S(t) and variance Sz(t)

per unit time, observed at times 1/Ck(t), (1 <k <K).

4, REPEATED CONFIDENCE INTERVALS FOR THE MEDIAN
In a single sample experiment a confidence interval is obtained

by inverting a family of hypothesis tests; similarly, in a
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sequential setting, repeated confidence intervals can be obtained by
inverting a family of sequential tests (see Jennison (1982),
Jennison and Turnbull (1984)). 1In this Section we derive RCI's for
the median from families of group sequential tests of the hypotheses
S(t) = 1/2, t > 0. RCI's for S(t), for a fixed t, can be
obtained in a similar way by inverting group sequential tests of the
hypotheses S(t) =9, 0<#8<T.

Consider testing sequentially the hypothesis S(t) = 1/2 for a
fixed value of t. According to the asymptotic approximations of
§3, we can regard the sequence §k(t)/Ck(t), (1 <k <K) as
being generated by observing a Brownian motion at times Ck(t)'].
Thus, the repeated significance tests proposed by Pocock (1977) and
0'Brien and Fleming (1979) are applicable if the increments in
Ck(t)-] between successive analyses are equal. Both tests are of
the form: Reject HO: S{t) = 1/2 at analysis k if HO is
rejected under a fixed sample size test at significance Tevel aé,

1 <k <K; K is a fixed number and the {aL} are chosen to give a
specified overall error rate; in Pocock's test the {aé} are all
equal, whereas the 0'Brien/Fleming {aL} increase with k. (See
Tables 4.3(a), (b) for a« = .05 and k = 5,10). We shall use

the fixed sample test based on the asymptotic normality of §k(t)
and the constrained estimate of var{§k(t)}, described in §2,

which we shall call bc k(t). The repeated significance tests with

approximate overall error rates 2« are then
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Pocock: reject S(t) = 1/2 in favour of %(t) > 1/2, at
analysis k, if

S (1) - 1/2 > 7 (Ka) o (t),

P C,

reject S(t) = 1/2 in favour of g(t) < 1/2, at

analysis k, if

S (8) = 1/2 < -z (Kl 6 (1)

0'Brien/Fleming: reject S(t) = 1/2 in favour of g(t) >1/2, at

analysis k, if

S(8) =172 > Zg(Kea) o (t)/k,

S

reject S(t) = 1/2 in favour of §(t) < 1/2, at

analysis k, if

S,(t) - 172 < -Zp(K,al b (£)/k.

Values of Zp(K,a) and Z,(K,a) for K =2,3,5,10 and « = 0.005,

B
0.025, 0.05 are given in Table 4.1 (taken from Jennison and
Turnbull (1984, Table 1).)

[Table 4.1 about here.]
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Suppose that one form of test and a fixed value of K are
selected before the start of an experiment. Let [Ek’;k) = {t: do
not reject the hypothesis S(t) = 1/2 at analysis k}, 1 <k <K.
Then {[Ekgﬁk]; 1 <k <K} 1is a sequence of RCI's for u and the

property

1-2a

Y

Pl ¢ Eﬁk’;k] for each 1 <k < K}

is inherited from the original sequential tests. In fact, since the
probability of both p < p, and p > Qk for some 1 < ky,k, <K
1 2 - -

is negligible (a typical value is 0.0001 when a = 0.05), we have

(4.1)

| A
Z
R
R

P{up < p, forany 1<k
and

P{u > p, forany 1 <k < K} (4.2)

n
Q
>

If an experiment may stop early, without all k RCI's being
calculated, the probability of observing an interval which fails to
contain the true median is reduced. The decision to terminate an
experiment early may in fact be based on one of the intervals
[Ek’gkj but (4.1) and (4.2) will still hold with < in place of =,
whatever system of early stopping is used.

The above development requires equal increments in Ck(t)-]
(1 < k < K) between successive analyses. Since the error rates for
a sequence of RCI's are those of the correspdnding sequential test
of S(t) =1/2 at t =, Equations (4.1) and (4.2) will hold if the

-1

increments in Ck(p) are equal. Suppose subjects enter a study
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at a steady rate, either at equal time intervals or according to a
Poisson process, and suppose each subject is exposed to the same
form of competing risk censoring. Let the calendar times of
analyses, measured from the start of the study, be xo+kx], 1 <k <K;
end of study censoring will occur at each analysis in the obvious
way. If t < then Nk(t) = a(t) + kb(t) for some constants a(t)
and b(t). If p< 15 and 7y > 75, SO that b(t) » a(t) for

0 <t <y, then N(t) is approximately proportional to k for

n
0 <t <yp and it follows that Ck(”)-] is approximately proportional
to k. Pocock (1977, page 197) notes that group sequential procedures
may be robust to variations in the group size, which correspond, in this
setting, to unequal increments in Ck(u)']; thus, in the above situa-
tion, with =t > 14, Equations (4.1) and (4.2) will hold approxi-
mately. In fact, the results of Monte Carlo simulations suggest these
equations hold quite accurately under much weaker conditions and a
simple but adequate practical approach would be to take =145 = p,
and Ty = Bg OF pO/Z, say, where g, is some initial estimate
of .

We have defined RCI's based on the Constrained Variance method;
however, all of the CI methods described in §2 correspond to
hypothesis tests and can therefore be used to define RCI's in a
completely analogous fashion.

Tables 4.2(a)-(d) give simulation results for overall error rates
of 5- and 10-look procedures with « = .005, .025, .05, for the

Constrained Variance, Brookmeyer-Crowley, Simple Reflected and
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Transformed Reflected methods. The survival distributions are the
same as those used by SBG and in §2, namely Exp(1), Weib(1,.7),
Weib(1,1.5) with no competing risk censoring. (Of course at each
look, there is "end-of-study" censoring present). For the Exp(1)
survival distribution, results are also shown for the case of
competing risk censoring with an Exp(.3) distribution. The tables

are based on 5000 replications and assume interim results are

calculated at times tk 1+ (.5)k for k=1,2,...,k where

K=5 or 10. The accrual rate is 20 subjects per unit time. This
led to moderate sample sizes which might be typical for a clinical
trial. More extensive simulations for different situations were
performed and results were similar; details are available from the
authors upon request. Tables 4.3(a),(b) show the estimated error
rates of the CI's at each interim analysis, for the first situation
considered in Table 4.2, namely Exp(1) survival distribution with no
competing risk censoring. Results for the other situations were
similar.

The implications of these results are similar to those of §2 where
the case K = 1 was discussed. The Brookmeyer-Crowley RCI's tend to
be anti-conservative especially for the Pocock construction where
non-normality at the early analyses (smaller sample sizes) affects the
overall error rates more than for the 0'Brien and Fleming method (See
Tables 4.3). The Transformed Reflected and to a lesser extent the
Simple Reflected RCI's give quite unequal error rates in the two tails.

On the other hand, the Constrained Variance RCI's give upper and lower
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tail error rates close to the nominal value in all cases shown, and in
addition the error rates are close to their nominal values, a;, at
each individual analysis--see Tables 4.3, This fact suggests that the
procedure is robust to non-equal increments in {Ck(t)'], 1 <k <K},

In a recent paper, Lan and DeMets (1983) have suggested an alter-
native approach to group sequential hypothesis tests. This approach
is a more flexible one, in which the maximum number of analyses K
and their times tk, 1 <k <K, need not be determined in advance.
The approach also avoids the technical problem of requiring equal

increments in {Ck(t)']}.

5. APPLICATION

Repeated confidence intervals for the median or other quantile
of a distribution are useful in a study with a single treatment
group. Such studies are conducted in post-marketing surveillance, or
"phase IV" clinical trials, both to check the efficacy of a drug and
to investigate the level of adverse reactions. The distribution of
overall survival time or duration of remission may be compared to that
observed in earlier controlled studies, to establish the treatment's
efficacy for the wider patient population; the level of an adverse
reaction may be assessed by RCI's for the median, or other quantile,
of time until its onset.

The use of RCI's when accumulating data is analyzed repeatedly

avoids the ‘multiple looks' problem which can lTead to too many falsely
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significant findings. In the broader decision making process, RCI's
can be used to summarize information on a particular feature and since
their properties do not rely on the rigid observation of a stopping
rule, they allow more flexibility than traditional sequential tests
(see Jennison and Turnbull, 1984).

We illustrate the use of RCI's for the median with data from a
clinical trial in the treatment of carcinoma of the oropharynx
(Kalbfleisch and Prentice, 1980, Data Set II, pages 225-229). We use
the data purely to provide a numerical example of our methods; thus,
although patients were randomized between two treatments, we regard
all patients as a single group. A total of 195 patients entered the
study over a five year period. The time of entry and survival time at
the end of the study are recorded for each patient; both end of study
censoring and loss to follow up censoring are present. We have
calculated RCI's for median survival time as if the accumulating data
had been examined repeatedly as the experiment progressed; at each
analysis, end of study censoring was imposed according to the time of
that analysis. Calculations were performed under several sequential
schemes and the results are summarized in Table 5. This table shows
Constrained Variance RCI's with an overall confidence level of 90%
under procedures with 5 and 10 analyses; RCI's based on both the
Pocock and 0'Brien/Fleming sequential tests are given. In the final
column are the CI's which would be obtained if a fixed sample
analysis, unadjusted for 'multiple looks', were performed at each

stage. At each analysis, the number of patients who had entered the
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study by that time and the number of deaths observed before that time
are shown; patients who had entered the study but not died at the time
of analysis are censored at that analysis. Note that the Pocock RCI's
are narrower than the 0'Brien/Fleming RCI's at the early analyses but
the reverse is true at later analyses; in both the sequential analyses
the final 0'Brien/Fleming RCI is only slightly wider than the CI
(376,532) from the single analysis at 2160 days.

Had this data arisen in a post-marketing surveillance study of a
drug, RCI's for median survival time could have been used to summarize
the survival experience of the patients. Suppose, for example, that
observed survival times were 1bwer than expected: an RCI for the
median would provide a numerical summary of this fact to be used in
conjunction with information on, say, the level of adverse reactions
in reaching a decision on whether or not to withdraw the drug. Such a
decision must be taken in a sequential setting but the complexity of
the situation precludes the use of a sequential procedure with a rigid
stopping rule; the use of repeated confidence intervals with their

inherent flexibility overcomes this problem.

This research was supported in part by the National Institutes of

Health.
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APPENDIX
The results stated in Section 3 are obtained by applying the
methods of Meier (1975) in a sequential setting. For computational
convenience we introduce the 'extended product 1imit estimator'

*
Sk(-), defined by

h+1 N* DY
* B * * . i,k i,k
S(t) = T py > where p; = ———,

i=1 N2

ik

. Ny i Ni g > 0
Ny k =

1 if Ni,k =0,
. Dy F N 0
Di k=

di,k if Ni,k = 0

and di K is a {0,1} random variable, independent of the sample, with
P{di K 0} = pi- S*(t) ds identical with §(t), except when |

t > m?x Ti,k’
(3.1) we make the following modification: if k] < k2 and Ni K= 0,

and S*(t) is unbiased for every t. In deriving

N

* _ % R * * -
set pi,k] = Pik this ensures that cov(pi,k1,p1’k2'N1,k] 1.’kz)

*
(pi,kZINi,kz)'
Heuristically, using the 's method' (Rao, 1973, page 388) twice

2
var

gives
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cov(p® P )
h+1 l,k]’ J.k

cov(Sy (t),S, (t)) ~ S(t)

1 2 i,j=1 p'ipj

var(py )
, htl pi,kz
1= p1

~var(SE (1)) ~ s(t)°

c, (t), for ki < ks,
5 k2 1 2

However, in the asymptotic setting, h, the number of censoring times
< t, will usually increase to « as the sample size increases. The
same problem arises in a single sample experiment; Meier ignores this
in his proofs but they can be corrected by a few simple modifications.
Meier's proof of proposition (c) on page 76 of his paper can be
extended to give a rigorous proof that if 0 < S(t) < 1,

(Sp (£)-S(t)) (s (t)-5(t))

lim E L 2 =1, for ki < k.

N, (81> Sz(t)Ckz(t)

* *
N N, LN, |} =
1,k1 1,k2| 1,k] 1,k2

p?/{1+qi/(N: 2p].)}. It is then necessary to show that

A simple calculation shows E{p

* e

MaXy i <h Ni,kZ‘P{Ni,kz < (1-e)N1’k2} >0 as Nkz(t) > o, even if

h+ e but, P{NY, < (1-g)N, , } is of the order exp(-aN; , ) as
1,k2 1,k2 1,k2

Ni K s for some a > 0 and the result follows. Together with the
*h2

fact P{S

A

(t) # S(t)} f.exp{-Nk(t)}, this establishes (3.1).

*

k
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To prove that Z defined by (3.2) converges to a multivariate
normal distribution we extend Meier's proof (pages 80-83) that
(g(t)-S(t))/S(t)/ETf7'+ N(0,1). According to the Multivariate Central
Limit Theorem (Rao, 1973, page 128) it is sufficient to show that
Zt=] szk converges to the appropriate univariate normal distribution
for any Apsoseshye The joint distribution of the Zk (1 < k < K)

is approximated by that of the random variables

N
h+1 i,k Xir—pi

)
JCkitS i=1  r=l Ni,kpi

, 1<k <K,

where Xir are independent binomial (1,pi) random variables and
N;,k = the integer part of Ni,k+]° Convergence of a linear combina-
tion of these random variables to the correct normal distribution is
proved using the Liapunov Central Limit Theorem.

We note that these results can be extended one stage further
using the same method of proof. Let x A y and x v y denote
min(x,y) and max(x,y) respectively. If S(T) >0 and

N (T) .
CK(t)e > o forall 0<t <T, then forany 0 <u,v <T with
S(u),S(v) >0

Cov{S ,S
y ov{ k1(“) kZ(V)} ]
im = 1,
S(U)S(V)Ck]vkz(UAv)

Also, if 0 < t1,t2,...,t < T and the random vector W is defined

K
by
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then, if AC(t)C,(t) » = forall 1<k <K and 0<t<T, W

converges to a multivariate normal distibution with mean 0 and

covariance matrix I, where

C v, (b Aty )
L vy kT TRy
"ok, T i Y/
SRS TRV

provided this 1imit exists. If the wk correspond to estimates
g(tk), for different values tk’ but for a single analysis these
results reduce to those of Meier (part (b) of the second Theorem on

page 78 and the Corollary on page 83).
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Table 4.1. Parameters Z,(N,a) and Z

P( B(
procedures of Pocock and 0'Brien/Fieming respectively

N,a) for multiple testing

z N,a) ZB(N’(Z)

pl

\\a 0.005 0.025 0.05 0.005 0.025 0.05
N

2 2,772 2.178 1.876 3.626 2.803  2.391
3 2.873  2.289 1.993 4.417 3.438 2.953
5 2.986 2.413 2.122 5.847 4.555  3.929

10 3.117 2.555 2.270 8.328 6.689 5.732



Table 4.2(a). Empirical error rates1 for (1-2¢) level repeated

confidence intervals based on Constrained Variance method

Survival Distribution Exp(1) Weib(1,.7) Weib(1,1.5) Exp(1)
Competing Risk Censoring None None None Exp(.3)
Pocock
o = 005 K=5 .004,.003 .005,.004 .004,.003 .003,.005
K=10 .004,.004 .004,.003 .005,.006 .004,.003
a = .025 K=25 .019,.020 .021,.019 .024,.020 .021,.021
K=10 .024,.025 .020,.019 .024,.026 .025,.023
a = 050 K=5 .040,.043 .044,.043 .042,.043 .047,.044
K =10 .049,.046  .046,.036 .047,.050 .047,.045
0'Brien/Fleming
a = 005 K=25 .005,.003  .004,.003 .006,.004 .005,.004
K =10 .005,.009 .005,.005 ,006,.007 .006,.005
a = 025 K=5 .021,.022 .022,.022 .024,.020 .024,.024
K =10 .025,.026  .021,.019 .024,.028 .023,.021
a = 050 K=25 .045,.042 .047,.042  .049,.048 .051,.048
K=10 .054,.052 .045,.043 .052,.051 .046,.044

1Entm’es show overall lower and upper tail error probabilities,
respectively, estimated from 5000 simulations. Intervals are calculated
at times t, =1+ (.5)k for 1<k <K and the accrual rate is 20

subjects per unit time. Standard errors are approximately .001, .002,
.003 for « = .005, .025, .050, respectively.



Table 4.2(b). Empirical error rates1 for (1-2a) level repeated

confidence intervals based on Brookmeyer-Crowley method

Survival Distribution Exp(1) Weib(1,.7) Weib(1,1.5) Exp(1)
Competing Risk Censoring None None None Exp(.3)
Pocock
a = 005 K=5 .012,.010 .013,.009 .016,.010 .014,.011
K=10 .013,.012 .011,.009 ,014,.015 .012,.011
a = 025 K=25 .034,.030 .034,.029 .040,.031 .042,.029
K=10 .039,.036 .036,.028 .041,.038 .043,.033
a = 050 K=25 .059,.056 .057,.054 .062,.054 .070, .056
K =10 .065,.060 .062,.053 .067,.066 .068, .058

0'Brien/Fleming

a = .005 K=25 .009,.007 .007,.006 .010,.006 .009,.007
K=10 .008,.010  .006,.006 .008,.011 .009,.009
a = .025 K=5 .028,.026 .029,.027 .031,.026 .032,.029
K=10 .031,.031 .024,.024 .029,.034 .028,.026
a = .050 K=25 .056,.050 .055,.049  .058,.054 .061,.053
K=10 .058,.057  .051,.048 .057,.058 .054,.050

lEntries show overall lower and upper tail error probabilities,
respectively, estimated from 5000 simulations. Intervals are calculated
at times t =1+ (.5)k for 1<k <K and the accrual rate is 20

subjects per unit time. Standard errors are approximately .001, .002,
.003 for ¢ = .005, .025, .050, respectively.



Table 4.2(c). Empirical error rates1 for (1-2a) level repeated

confidence intervals based on Simple Reflected method

Survival Distribution Exp(1) Weib(1,.7) Weib(1,1.5) Exp(1)
Competing Risk Censoring None None None Exp(.3)
Pocock
a = 005 K=5 .001,.004 .001,.003 .002,.004 .000, .006
K =10 .002,.005 .001,.003 .002,.007 .001,.006
o = .025 K=25 .008,.022 .007,.021 .011,.019 .004,.024
K=10 .011,.026 .010,.020 .012,.027 .007,.025
o = 050 K=5 .019,.045 .021,.044 .024,.042 .014,.046
K=10 .028,.049 .024,.038 .029,.051 .021,.048

0'Brien/Fleming

o = .005 K=5 .002,.004 .002,.004 .003,.003 .001,.005
K=10 .004,.009 .003,.005 .005,.008 .004,.006
a = .025 K=25 .015,.022 .015,.022 .018,.020 .013,.026
K=10 .022,.027 .017,.020 .023,.028 .016,.022
a = .050 K=5 .035,.042  .034,.043  .040,.047 .028,.047
K=10 .048,.053 .039,.044  .047,.051 .035,.047

1Entm‘es show overall lower and upper tail error probabilities,
respectively, estimated from 5000 simulations. Intervals are calculated
at times t =1+ (.5)k for 1<k <K and the accrual rate is 20

subjects per unit time. Standard errors are approximately .001, .002,
.003 for « = .005, .025, .050, respectively.



Table 4.2(d).

Survival Distribution
Competing Risk Censoring

Pocock

a:

. 1
Empirical error rates

for (1-2a) level repeated

confidence intervals based on Transformed Reflected Method

.005

.025

.050

K
K

K
K

K
K

0'Brien/Fleming

a:

1Entm’es show overall lower and upper tail error probabilities,
Intervals are calculated

.005

.025

.050

R

Fagia

[

Hon

Hon

[

Exp(1)
None

.000,.016
.000, .021

.003,.041
.016,.048

.010,.063
.015,.074

.000,.011
.002,.014

.010,.033
.016,.037

.029, .055
.038,.064

Weib(1,.7)
None

.000,.015
.000,.016

.003,.041
.005,.039

.011, .063
.013,.063

.001,.010
.001, .009

.009,.033
.012,.031

.028,.055
.031,.055

respectively, estimated from 5000 simulations.

at times t
subjects per unit time.

003 for

=1+ (.5)k for

1<k <K

Weib(1,1.5)
None

.000,.016
.000,.024

.003,.041
.005, .051

.012,.060
.014,.076

.001,.009
.002,.014

.010,.035
.015,.038

.030,.058
.039,.064

.000, .020
.000,.021

.001,.043
.002,.047

.006,.063
.010,.073

.000,.014
.001,.012

.007,.039
.010,.034

.023,.058
.030,.056

and the accrual rate is 20

Standard errors are approximately .001, .002,
a = .005, .025, .050, respectively.



Table 4.3(a). Empirical error ratesl, at each analysis, of (1-2a)-repeated
confidence intervals based on Pocock multiple testing

procedure with o = .05

Look Nominal Constrained Brookmeyer- Simple Transformed
k error rate Variance Crowley Reflected Reflected
%k

5-Look

Procedure
1 0169 .0148,.0170 .0270,.0252 .0008,.0180 .0000,.0262
2 .0169 .0150,.0166 .0210,.0228 .0030,.0164 .0004,.0252
3 0169 .0134,.,0168 .0210,.0204 .0066,.0184 .0022,.0232
4 .0169 .0136,.0164 .0180,.0188 .0092,.0166 .0060,.0212
5 0169 .0158,.0156 .0194,.0182 .0114,.0158 .0072,.0222

10-Look

Procedure
1 0116 .0118,.0098 .0222,.0178 .0004,.0114 .0000,.0212
2 0116 .0132,.0112 .0200,.0160 .0018,.0110 .0000,.0192
3 0116 .0100,.0098 .0152,.0128 .0034,.0094 .0012,.0172
4 L0116 .0110,.0082 .0150,.0120 .0060,.0086 .0020,.0140
5 0116 .0114,,0098 .0148,.0128 .0074,.0098 .0028,.0156
6 .0116 .0122,.0108 .0160,.0138 .0092,.0112 .0044,.0176
7 0116 .0104,.0096 .0128,.0116 .0082,.0100 .0044,.0138
8 0116 .0110,.0082 ,0130,.0120 .0096,.0086 .0062,.0140
9 0116 .0098,.0102 .0130,.0120 .0084,.0110 .0046,.0152
10 0116 .0108,.0096 .0118,.0112 .0090,.0104 .0054,.0148

1Entm’es show lower and upper tail error probabilities, respectively,
estimated from 5000 simulations. Intervals are calculated at
times t, =1+ (.5)k for 1 <k <K and the accrual rate is 20

subjects per unit time. Survival distribution is Exp(1) with no
competing risk censoring. Standard errors are less than .002.



Table 4.3(b). Empirical error ratesl, at each analysis, of (1-2a)-repeated
confidence intervals based on 0'Brien and Fleming

multiple testing procedure with « = .05

Look Nominal Constrained Brookmeyer- Simple Transformed
k error rate Variance Crowley Reflected Reflected
%k

5-Look

Procedure
1 .00004 .0000, .0000 .0012,.0014 .0000,.0000 .0000,.0022
2 .0027 .0020, .0028 .0052,.0052 .0002,.0026 .0000,.0078
3 0117 .0084,.0122 ,0132,.0158 .0026,.0122 .0012,.0198
4 .0248 .0208,.0238 .0272,.0272 .0138,.0228 .0100,.0290
5 .0395 .0384,.0352 .0440,.0400 .0314,.0354 .0268,.0414

10-Look

Procedure
1 .00001 .0000, .0000 .0000,.0000 .0000,.0000 .0000,.0000
2 .00003 .0000, .0000 .0004,.0000 .0000,.0000 .0000,.0004
3 .0005 .0008,.0000 .0014,.0002 .0000,.0000 .0000,.0030
4 .0021 .0018,.0010 .0030,.0024 .0010,.0012 .0002,.0044
5 .0052 .0034,.0038 .0064,.0068 .0020,.0048 .0008,.0094
6 .0096 .0098,.0090 .0126,.0110 .0070,.0094 .0032,.0148
7 0152 .0134,.0118 .0178,.0142 .0112,.0124 .0064,.0176
8 0213 .0220,.0174 .0240,.0208 .0178,.0182 .0130,.0248
9 .0280 .0276,.0260 .0284,.0282 .0230,.0266 .0186,.0316
10 .0349 .0298,.0314 .0324,.0358 .0274,.0328 .0236,.0370

1Entm’es show lower and upper tail error probabilities, respectively,
estimated from 5000 simulations. Intervals are calculated at
times ty = 1+ (.5)k for 1 <k <K and the accrual rate is 20

subjects per unit time. Survival distribution is Exp(1) with no
competing risk censoring. Standard errors are less than .002.
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