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ABSTRACT

In this paper, we propose a general probabilistic model for modeling the
evolution of demand forecasts, referred to as the Martingale Model of Forecast Evolution
(MMFE). We combine the MMFE with a linear programming model of production and
distribution planning implemented in a rolling horizon fashion. The resulting simulation
methodology is used to analyze safety stock levels for a multi-product/ multi-plant
production/distribution system with seasonal stochastic demand. In the context of this

application we demonstrate the importance of good forecasting.
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L. INTRODUCTION

In this paper we make three contributions: (1) we propose a general probabilistic
model for modeling the evolution of demand forecasts, referred to as the Martingale
Model of Forecast Evolution (MMFE); (2) we describe an application of this model in a
simulation study to analyze safety stock levels for a multi-product/ multi-plant
production/distribution system with seasonal stochastic demand; and (3) in the context of
this application we demonstrate the importance of good forecasting. The simulation
model in (2) is a combination of the MMFE with a linear programming (LP) model of

production and distribution planning implemented in a rolling horizon fashion.

I1. CASE STUDY

We motivate the need for a general model of forecast evolution by considering
the specific problem posed in the application. The operating company is a national
producer and distributor of consumer grocery products. Any data in the case that could
identify the company or its product lines have been disguised. The focus of the study is a
product family consisting of five product lines that differ primarily in package sizes. The
family has dedicated production plants in different regions of the country with a number
of production lines of differing efficiencies and capabilities. It is also possible to
outsource the production with another ten possible suppliers, although outsourcing
arrangements are less flexible than internal production plans. The production plants feed
a national distribution system with eight regional warehouses. Transshipments between

warehouses can be used to redress inventory imbalances.

Demand for the product family is highly seasonal with a major selling season
spanning six months and the peak selling season spanning three months. Due to sales

promotions, one month in particular always exhibits significantly higher demand than



adjacent months. In general, demand in any month following a sales promotion is
negatively correlated with demand in the promotion month. This is due in part to major
buyers batching their orders to take advantage of the promotions. Forecasts are made by
region, by month, and by product line for twelve months in advance. Forecast error is
high, even on the eve of the month of sale. Demand is highly correlated across product

lines and, to a lesser extent, across regions.

Production capacity is limited and so inventory is produced in anticipation of
sales beginning three to four months in advance of the major selling season. The
inventory is sold on a first-in-first-out basis and, in any event, the product has a long
shelf life. So much inventory is created that the company must rent additional warehouse
space ("overflow"), at high cost, during the cyclic build-up phase of the season. In spite
of high production changeover times, every product line is produced in every plant in
every month. There is sufficient volume of some product lines to dedicate certain
production lines to these products. The company uses a linear programming model for
aggregate production and distribution planning by month. Plant-specific scheduling rules

are used to disaggregate this plan into weekly production schedules.

The existing corporate safety stock policy for each region is expressed in months
of supply at the beginning of each month: the region must have enough inventory to
cover s months of forecast demand. The current value of s at the beginning of the
study was significantly larger than 1. The safety stock factor, s, is a key input to the
aggregate production planning LP, and a major driver of the cyclic build-up of inventory

within the distribution system.

The performance attributes of the production-distribution system are COst and
customer service. Major cost categories are production costs (proportional to standard

hours of production), transportation costs (proportional to volume-miles), and inventory



holding costs (including financing cost and a premium for overflow inventory).
Customer service is measured by a weighted average of monthly fill rates across product

lines and regions.

The purposes of the study were as follows. The major concern was to find an
economical safety stock factor. The current, conservative value of s had been set during
the product family introduction phase some years earlier when demand uncertainty had
been extemely high and production capabilities were low. Although forecast errors were
still high, the product family was now in a mature phase of marketing and production
capabilities had expanded considerably. The company wanted a quantitative model of
safety stock analysis that would permit them to explore the impact of varying s by
product line, by region, and by month; and to explore the impact of adding additional

production lines in different parts of the country.

In approaching this study, we found the stochastic, sequential, and multi-
dimensional nature of the problem to defy an optimization-based approach, so we opted
to develop a simulation model of the system and use that model to explore issues
important to the company. Furthermore, since the company curréntly used a linear
programming model for aggregate production planning, we proposed to use a variation of
that model at the heart of the simulation to mimic the way in which production plans and
distribution decisions were made. Note that no claim is made that the linear programming
model yields optimal plans in the face of stochastic demands; only that it reasonably
approximates actual planning decisions. In developing a simulation model of the system,
it was clear immediately that a good model of the evolution of forecasts and demands
was crucial to the overall model's accuracy. Intuitively, the production distribution
system has many opportunities for substitution: low demand in one region of the country
can be balanced by shipping product from that region to a region experiencing high

demand; low demand for one product can be balanced by shifting production plans and



using the capacity to produce a high demand product; low demand in one period can be
balanced with high demand in another period by carrying inventory. However, the ability
to translate this flexibility into reduced safety stock requirements depends on demand
correlations. If demand among regions is highly positively correlated, then
transshipments will be less effective; if demand among products is highly positively
correlated, then reallocating production capacity will be less effective; and if demand
from one period to the next is highly correlated, then inventory becomes less effective.
Furthermore, since production and inventory plans are based on forecast demand, the
correlations between changes in forecasts by region, product, and time period also
become important. The forecast evolution model we propose and applied in this study

captures these correlations.

We fitted the simulation forecast model to four years of historical forecasts and
forecast errors to represent the behavior of the company's existing (human) forecasting
system. In an interesting twist to the study, we discovered that the company had
developed a detailed quantitative model for forecasting near-term demand on a weekly
basis, taking into account such things as local promotions and competitors’ prices. When
extended to a long term forecast model for monthly demands, the model appeared to
have many desirable properties. Accordingly, we simulated the performance of the
production distribution system under this model as well and demonstrated the cost and

customer service impact of this improved forecasting system.

Management scientists within the company conducted extensive simulation
studies using this model. Based on their recommendations and ours, the company
reduced the safety stock factor dramatically and accelerated the implementation schedule
for the new forecasting system. One year later, the company has achieved the predicted

cost reductions and still maintains the desired customer service level. While anecdotal in



nature, this case study illustrates that the proposed approach is practical and that it is

effective in demonstrating the cost and service impact of improving forecast accuracy.

In the next section, we review the literature that is related to this problem and
observe the differences from our approach. In section IV, we briefly describe the
simulation model. Details of the LP production planning model are deferred to the
appendix. In section V, we describe the Martingale Model of Forecast Evolution. In
section VI, we illustrate the method with specific results from the application. In section
VII, we summarize some of the simulation results from the application. Section VIII

concludes the paper.

III. LITERATURE REVIEW

Hausman [1969] suggests modeling the evolution of forecasts as a quasi-
Markovian or Markovian system. As a specific application, he suggests modeling a series
of ratios of successive forecasts for the same quantity as independent lognormal variates.
The independence implies the quasi-Markovian property. Hausman reports on several
statistical studies of actual forecasting systems, both human and mechanical, that support
the lognormal model and he suggests two rationales to explain the phenomenon. One of
his rationales, that is also used in the finance literature to justify the geometric Brownian
motion model of stock prices, will be used in this paper as the foundation for a more
general model. Hausman suggests using the independent conditionally lognormal forecast
ratio model in dynamic programming approaches to sequential decision problems.
Hausman and Peterson [1972] formulate a production scheduling problem for multiple
products in a single capacity-constrained facility with a single selling season but with
multiple production/selling periods. The forecasts for total sales in the selling season

evolve over the production/selling periods according to the lognormal model. The



dynamic programming state space is too large for practical computation so they propose

heuristic solution techniques.

The Hausman model seems not to have generated the sort of research interest that
we believe it deserves. The Martingale Model of Forecast Evolution, proposed here, can
be seen as an extension of the Hausman model. It fits within the framework of a quasi-
Markovian system but is more general than the specific model proposed by Hausman. In
particular, it accomodates the simultaneous evolution of forecasts for demand in many
time periods. Consequently, we are not limited to the single selling season models
considered by Hausman and Peterson. Our model captures correlation in forecasts
between products and between time periods. This is particularly important for the
application we describe. The model can capture both times series models of prediction as
well as the expertise of the human forecaster. In our case study, as in Hausman's studies,
the Iognormal model provides a good fit for the behavior of ratios of successive forecasts

in the industrial data we studied.

A competing approach would be a Bayesian model of evolving estimates of
demand distribution parameters. Scarf [1959] initiated the study of Bayesian inventory
models with a dynamic programming model of a single item periodic review inventory
problem in which the demands in each period are independent and identically distributed
random variables with an unkown distribution function. See Azoury [1985] for recent
extensions to the Bayesian inventory model. The Bayesian approach is applied by Bitran,
Haas, and Matsuo [1986] to a variation of the single selling season ("style-goods™)
problem in which there is a single selling period and each product family is produced in
only one period prior to this. They formulate a stochastic mixed-integer programming
problem to plan production and use a hierarchical approximation scheme that is easier to
solve. An application of this approach to a consumer electronics company reveals that the

model results in production plans that defer production of product families with initially



high forecast errors to late in the season when forecast errors are smaller. Other Bayesian
approaches to the style goods problem are reviewed and proposed in Bradford and

Sugrue [1990].

Another approach is to consider the use of time series models of forecasting
demand. These models are described by Box and Jenkins [1970]. For example, Johnson
and Thompson [1975] extend the results of Veinott [1965] to show the optimality of
myopic order-up-to inventory policies when demand is given by a stationary
autoregressive moving-average (ARMA) process. Erkip, Hausman, and Nahmias [1990]
extend the approach to a depot warehouse system and derive a closed form expression for
the optimal order-up-to system inventory level. Badinelli [1990] argues that exponential
smoothing techniques are routinely applied in practice when an examination of the
pattern of autocorrelations would actually suggest an ARMA process. He demonstrates
that such a mis-specification of the demand process results in a substantial inventory cost
penalty under a fixed order interval, order-up-to-S type inventory policy. Exponential
smoothing is developed for non-stationary processes. ARMA models are developed for
stationary processes. By this interpretation, the model we develop is for a stationary
process. As mentioned, the Martingale Model of Forecast Evolution can represent an
ARMA process as well as human forecasting systems. We will argue that the MMFE
approach is to be preferred to a direct times series approach in modelling the behavior of
forecasting-production-distribution systems because of its potential to capture the impact

of such factors as expert judgment.

A common approach in practice for single item problems is to assume the form of
a demand distribution (eg. Poisson or normal) and use statistical estimates of the
distribution parameters in the calculation of inventory policy parameters, using for
example the power approximation method of Ehrhardt [1979]. Periodically, these

estimates are revised based on more recent demand data and the safety stock policy



parameters are recomputed. The statistical estimates commonly used would be the
standard sample estimates of the mean and standard deviation. Jacobs and Wagner [1989]
demonstrate that when demand variability is high, exponentially smoothed estimators of
the distribution mean and variance result in lower inventory costs. This is because these
estimators are less sensitive to extreme values. Iyer and Schrage [1989] take a different
approach and suggest developing (s,S) parameters by optimizing the deterministic (s,S)
inventory problem using historical demands. They demonstrate that the (s,S) parameters
generated in this way outperform the parameters generated by optimizing the infinite
horizon (s,S) using a statistical estimate of the long run demand rate based on the
historical demands. The method also performs well when serial correlation is present in
the demand process. All of these papers indicate that imperfect knowledge of the form or
parameters of the demand process is an important consideration when applying inventory

models.

The combined use of a sophisticated model of forecast evolution with a linear
programming model of production planning in a rolling horizon is not new. Dzielinski,
Baker and Manne [1963] report on a simulation study in which the past history file of
orders was used as input in a rolling horizon fashion to an exponential smoothing
technique for forecasting orders. Orders were forecast as many periods into the future as
required by the production planning technique, a linear program that considered setup
costs, inventory costs, shortage costs, labor costs, and hiring and firing costs. The
production decisions for the first period of the planning model were taken as the
implemented decisions, in a simulation, and the simulation clock was advanced to the
next period. Although they report the impact of two different levels of protection in the
safety stock policy in their study, the thrust of their paper was to recommend the use of
optimization-based aggregate production planning techniques. Later studies such as Lee

and Khumawala [1974] also use aggregate production planning models in a simulation



study but the simulation is a test vehicle for examining the quality of alternative

production planning heuristics.

There is considerable emphasis in the literature of production planning models on
planning horizons. A planning horizon exists if extending the model plan beyond this
horizon has no impact on the decisions taken in the first period of the plan. (See, for
example, Bean and Smith [1984]). Relatively less has been said about the overall
effectiveness of rolling horizon models. Baker and Peterson [1979] review this literature
and, for a simplified model, study exact dynamic programming solutions. Here again, the

focus is on the length of the planning horizon.

Our use of simulation combining forecast evolution models with rolling horizon,
optimization-based production planning differs from these previously reported studies in
several ways. One difference is the purpose of the study. The operating company under
study already used linear programming production planning models and did not need to
be convinced of their value. Also, because of the highly seasonal nature of the business,
the choice of planning horizon was not a major issue. Every twelve month period
included a month of near-zero inventory so production decisions in the current month
would have negligible impact on inventory status after twelve months. What was of
concern was the level of safety stock in the system and a simulation study seemed the
most viable approach to adequately describing the system dynamics. The need for safety
stock in the distribution system is critically related to the flexibility of the production
system with regard to changes in forecast demand. Accordingly, it was important in the
simulation to model the evolution of the forecasts as carefully as possible. Our forecast
evolution model is therefore more detailed than in any previously reported study. The
study is also distinguished from past reported studies in its magnitude. The earliest study

of this type, Dzielinski, Baker and Manne, was limited to 70 constraints in the LP.



Advances in computing hardware and software have made the routine use of 2000

constraint LP's in a simulation study practical.

Simulation studies are not the only type of application for the forecast evolution
model that we propose. Research is underway using dynamic programming to understand
the form of optimal policies under such a model and to reduce the state space

requirements of computational dynamic programming approaches to the problem.

IV. THE SIMULATION MODEL

As the simulation progresses through time, it will track the evolution of inventory,
production and shipment decisions, and demand. Since production and shipment
decisions depend upon planned decisions for the future, the simulation will also generate
a production and shipment plan as well as forecasts of future demand. The forecasts are
generated by a program called SIMFORECAST. The methodology underlying this
program is described in the next section. The production and shipment decisions for the
current period of the simulation as well as the planned production and shipment decisions
for future periods are generated by the linear programming model called SIMLP. After
each period is simulated, the simulated demand observations, the inventory, production,
and shipment decisions, the cost summaries, and the customer service observations for

the period are stored in a file for subsequent statistical analysis.

SIMLP

SIMLP is a multi-location, multi-time period model of the production, shipment,
and inventory activities. The first period in the model, indexed by t=1, represents the
current period of the simulation. Decisions variables for this period represent decisions
made in the current period of the simulation. These decisions affect, among other things,
the cost and customer service reported by the simulation for the current period. In other

words, the simulation will implement the decisions for the current period. Decision
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variables for future periods in the model represent planned decisions. The simulation will
not implement those decisions. When the simulation advances to the next period, it will
solve a new LP and implement the decisions from the first period of the new model.
SIMLP is a variation on a standard linear programming model of production and
distribution. A simplified version of the formulation is summarized in the appendix. The
actual implementation included greater detail to handle the use of overflow warehouses,

and the limited flexibility associated with using certain production lines (copackers).

V. THE MARTINGALE MODEL OF FORECAST EVOLUTION

In this section, we develop a technique for modelling the results of forecasting
procedures. This will show that under simple and plausible assumptions we are ledtoa
class of models which is very general, yet very simple. The assumptions we make (or
very similar assumptions) underlie most forecasting methods. In particular, for methods
based only on previous demands, see the discussion in Brockwell and Davis [1987,
Chapter 5].

Although it might seem desirable to develop a stochastic model for these
quantities based on the particular statistical method which is used to produce the
forecasts, this turns out (in many cases) to be unnecessary. It is indeed fortunate that this
is so, for many forecasting techniques are based on more data than past demands. For
example, prices of competing goods, and marketing, advertising, and other promotional
plans, and sometimes even expert judgement are used to produce the forecasts on which
decisions are based. For many reasons (lack of data, the difficulty of modelling
competitors' price changes, and the obvious problem of modelling expert judgement) it
would be very difficult to produce and fit a model in this way, and to have confidence in

the resulting model.
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Notation

To make things precise we need some notation: For every pair (s,t) of times, we

denote by D(s,t) the predictions made at time s for the amount(s) demanded at time t.
(If we are considering demands for more than one type of good, each D(g 1) will be a
vector.) For s <t, these are genuine predictions, while for s 2t they are "predictions of
past demands” and thus are equal to the past demands. Of course, Dg 5) (which we
sometimes write as Dy ) is simply the actual demand at time s.

If each vector Dy y) contains N entries, (i.e., if we are predicting demands for
N goods), then for each s we construct the (infinite) vector Xg whose first N entries

are D(g ), whose next N entries are Dyg +1), and so on. The vector X is simply a

list of the current demands and the forecasts for all future periods. We now focus
attention on the changes in the X vectors. We develop two classes of models for the
behavior of these changes: the additive model and the multiplicative model. We explain
the simpler of these two first, the additive model, although the multiplicative model will
likely be the more useful in practice.
The Additive Model

For the additive models, we define the N-vector €5 by

gt = D(s,0)"D(s-1,1)

for t 2 s. We construct the infinite vector &g analogously to the vector Xg: &g = (Est)::-
Thus, the kth coordinate of gg is the kth coordinate of X minus the (k+N)th
coordinate of Xg_j. Clearly, each coordinate of €g represents the change from time s-1
to time s in the prediction of some demand occurring at or after time s. Moreover, &g
is known at time s. Figure 1 illustrates: each row shows the successive forecasts and

forecasts changes for a given time-dated demand vector. Forecasting ceases once the

actual demands are observed.
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Fore- Start with] Add: To Get: Add: To Get: Add: To Get:
casting Initial | Forecast | Period 1 | Forecast | Period 2 | Forecast | Period 3
Forecasts| Change | Forecasts] Change | Forecasts| Change | Forecasts
X0 €] X1 €2 X2 €3 X3

Do D(0,0)
Dy Do,y | &1, | DA,
Dy D2 | &1, | Pa2) | €22 | D@2)
D3 Doz) | €13 | Da3 | 823 | D3 | €33 | D33
Dy Do | 814 | Paa | g4 | D4 | €64 | D3EA

Figure 1. Forecast Evolution: Additive Model

The Martingale Model of Forecast Evolution in this case produces a model in

which the € vectors are independent, identically distributed, multivariate normal random

vectors with mean 0. The only model parameters are the variance-covariance matrix for

the distribution of each € vector and the initial state of the system, X.

Derivation of the Martingale Model of Forecast Evolution

The result in the additive model that the & vectors are independent, identically

distributed, multivariate normal random vectors with mean 0 follows from a sequence of

assumptions each of which narrows the domain of applicability of our methodology.

The first assumption we shall make is that the information available to make

predictions at time s grows as s increases. That is, at each time s, we suppose that a

certain amount of information Jg, is known and that Jg C Jg1-
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The second assumption requires some discussion, as it can be justified in at least

two different ways. The assumption is that €41 is uncorrelated with the information in

35, and hence is uncorrelated with all &, for u <s. Furthermore, E[gg+1] = 0.

This second assumption will be satisfied in two important cases. In the one case, it
will be satisfied if the predictions made are the conditional expectations of the variables
to be predicted given the available information. If one uses the most general prediction
techniques, then minimum mean-squared error predictors are conditional expected

values. In this case, we assume that Jg is a o-field describing the knowledge available at

time s, and the prediction of any future random variable Z is its conditional expectation

E[Zl)]. In this case the successive predictions for Z form a martingale. It is this

assumption that leads to the name for methodology. Hence,
est = D(s,n)"D(s-1,0)
E[D(t’t)lé?s] - E[D(t,t)ws—l]'

Assuming all random variables are square-integrable, it is easily shown that the

martingale property implies that &g is uncorrelated with any random variable

measurable with respect to Jg_1 and that E[eg¢] = 0.

Alternatively, the second assumption will be satisfied if we make the weaker
assumption that the predictions are the minimum mean squared error linear predictions
based on a set of observable random variables which grows with time and which includes
the current actual observations. In this case, the set Jg consists of those random variables
which have been observed by time s. In either case we assume that all past and present
demands are included in the information available at time s. A fundamental property of

the minimum mean squared error predictor is the following:
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Proposition. Suppose s1 < sy <t. If the predictions are minimum mean-squared error

predictions, then the change in predictions, D(Szat)'D(Sl,t)’ is uncorrelated with any of

the random variables in 331 and has mean 0.

Proof: The result follows, for example, from the discussion entitled "The Prediction
Equations" in Brockwell and Davis [1987, p. 53]. In their notation, X is the minimum

mean square error predictor of X, solet X denote Dy ), let Xi=D , the
(6 et X1 =Des 0

prediction of D(; 1) made at time s1, and let Xy = D(SZ’t)’ the prediction of Dy ) made

at time s9. Let € denote any one of the random variables observed by time s (also
observed by time s, since s1 <sp). Taking Y = € in Brockwell and Davis (2.3.8)
yields E[(X-X)e] = E[(X-Kp)e] = 0, so E[(X»-X1)e]=0. That is, the change in
predictions is uncorrelated with any observed €. Taking €=1 yields E{Xz—ﬁﬂ =0.¢

The second assumption, that changes in forecasts are mean zero and uncorrelated
with past observations, describes a desirable property of a forecasting system. In fact, if
the second assumption is not satisfied it will be possible to construct improved
predictions (in the mean squared error sense) as a linear combination of the given
predictions and the current observations and previous changes. Replacing the given
predictions by the best improved predictions ensures that this second assumption will be
satisfied.

The third assumption is one of stationarity. We assume that the changes in the
predictions (i.e., the € vectors) form a stationary stochastic process. As is usual in time
series modelling, "stationary" has several meanings. If one is interested only in properties
which depend only on the first two moments of all variables, then "weak stationarity”
(sometimes called "covariance stationarity”) suffices. If one is interested in all possible

properties, "strict stationarity” is needed. Under assumptions of normality, weak
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stationarity implies strong stationarity. In either case (considering only properties
depending on first and second moments, or assuming normality and considering
properties which may depend on the distributions), all important model properties can be
captured by the variance-covariance matrix of the vectors.

There are many techniques for transforming a time series to make it more nearly
stationary. Differencing, which is what these forecast changes represent, tends to
improve stationarity and can never destroy it. Most time series texts give good
discussions of techniques for modifying or decomposing a time series to obtain more
nearly stationary time series, and many of these techniques are useful in our setting. In
particular, the multiplicative model presented below, was useful in the case study for
improving stationarity.

The fourth and final assumption is that of normality (or alternatively the
assumption that whatever we do with our predictions depends only on the first and
second moments of these random variables).

Almost all of the existing forecasting techniques are based on assumptions
stronger than those required here; thus, our model is appropriate whenever these

forecasting methods are applicable.
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The Multiplicative Model

The above model represents the changes due to new information as additive. In
particular, the size of the changes in forecasts is unrelated to the sizes of the forecasts. In
the data of the case study, however, we observed that the standard deviation of forecast
error was roughly proportional to the size of the forecast! . (See Hausman [1969] for
documented examples.) Since the forecasts were highly seasonal this meant that the
stationarity assumption was violated. This observation suggested a log transformation
would be appropriate to improve stationarity. If all of the demands (and hence also the
forecasts) are strictly positive, a multiplicative model can be obtained by modelling the
logarithms of the forecasts and demands in an additive way.

For the multiplicative model, (assuming all the data values to be non-negative)

we define vg; by:

vgr = log(D(s 1)) - logD(s-1,1))

where the logarithms are taken componentwise. We construct the infinite vector vg

+Foo . .
analogously to the vector Xg: vg= (VSt)t—s' Thus, letting Yg = log(Xg), componentwise,
the kth coordinate of vg is the kth coordinate of Y minus the (k+N)th coordinate of
Y,.1. Clearly, each coordinate of vg represents the change from time s-1 to time s in

the log of the prediction of some demand occurring at or after time s.

Conversely, let Rg = exp(vy), taken componentwise. Then, a coordinate of Rg,

represents the ratio of successive forecasts for some demand occurring at or after time s.

If we assume, as before, that successive forecasts of a future demand form a martingale

1 Cf. Brown [1959, p. 94] "You will be very likely to find that the standard deviation of demand is nearly
proportional to the total annual usage, or to the average monthly usage.” See also his Appendix C on

applications of the Lognormal distribution to inventory models.
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process, then the expected value of each future forecast is the same as the current forecast

and the expected value of the ratio of these successive forecasts is 1. Furthermore, Rg41
is uncorrelated with Ry; for u<s.

Next, instead of assuming that the forecast differences are jointly normally
distributed, we assume that the components of Vg are jointly normally distributed. It

follows that the mean of each component of Vg must equal the negative of one half of the

variance of that component. (If 1 is N(p.,cz) then E[exp(n)] = exp(it + 62/2). Setting
E[exp(M)]=1 yields p = -0'2/2.) It also follows that the V's are uncorrelated. To see this,
note that if | and  are jointly normally distributed, then we have:
cov(exp(n),exp({)=exp(cov(n,l))-1. Hence if exp(n) and exp({) are uncorrelated, then
1 and { must be uncorrelated.

In summary, for the multiplicative model, we suppose that the vectors v are
independent, identically distributed multivariate normal random vectors with the mean of
each coordinate equal to the negative of one-half of its variance. Thus, once again, the
model does not require (nor allow) the exogenous specification of means. The

multiplicative model requires only the specification of variances and covariances and the

initial state, Xg.

The Forecast Update Horizon

We now impose one further restriction: we suppose that there is some finite
horizon M such that only the first MN components of each € (respectively, V) vector
are non-zero. That is, forecasts for the N products are not updated until time has
advanced to within M periods of the period being forecast. This is necessary to allow
estimation and computation, and should, for M large, provide a reasonable
approximation in a practical setting. Under this assumption, the model is completely

specified by an MNxMN variance-covariance matrix and the initial state.
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We stress that in each of the two models (additive and multiplicative), it is the
change vectors (€ or v) which are independent, and not the components of each vector.
Once the variance-covariance matrix is known, the means of these vectors are
determined. Thus, for each model, the only model parameters are the variance-

covariance matrix for the appropriate multivariate random vectors and the initial state of

the system, Xp).

Obtaining the Variance-Covariance Matrix

This variance-covariance matrix can be obtained in several ways. If the
predictions are obtained from a moving average time series model, then the matrix can be
computed directly. In this case, forecasts are available for all future periods, so the matrix
should have infinitely many entries. For practical purposes, it would be necessary to
truncate the matrix as discussed above. Causal autoregressive moving average models are
equivalent to moving average models with infinitely many lags. (For this equivalence,
see Brockwell and Davis [1987], Def. 3.1.3, p. 83; Thm. 3.1.1, p. 85; and Remarks on p.
86. For extension to the multivariate case, see Thm. 11.1.1, p. 408). Truncating the series
should provide a reasonable approximation.

If, instead, the predictions arise in a more complex way (using not only past
demand data, but other data and perhaps expert opinion), past data on forecasts and
demands should allow estimation of the variance-covariance matrix. From the past data,
one can easily produce the sample & (respectively V) vectors. Knowing that the mean of
the vector € must be zero simplifies estimation of the variance-covariance matrix. For
estimating the variance-covariance matrix of the v vector (under the restriction that the
means are related to the variances) we have used a simple method of moments estimator

(matching the averages of the outer products of the sample v vectors).
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Simulating Forecast Evolution

To simulate multivariate normals, Bratley, Fox, and Schrage [1983] suggest
finding a matrix C such that CC' is the desired variance-covariance matrix. Given C, the
multivariate normal is generated by w + CZ where Z is a standard normal random

vector (i.e., whose components are independent standard normal random variables).

There are many choices for finding C; we prefer to represent the variance
covariance matrix as UDU' where U is a real unitary matrix (so that U’=U“1) and D is
a diagonal matrix with non-negative entries which are decreasing down the diagonal.
(For existence of this representation, see Hoffman and Kunze [1961], Theorem 20 and
corollary, p. 266.) Thus, C can be chosen to be uDl2,

If C has been represented as above, then clearly CZ is a random weighted sum
of the columns of C (with independent standard normal weights). Moreover, the
columns of C are arranged in decreasing order of size. Thus, the changes in the
forecasts have been represented as sums of independent random vectors whose "sizes”
are decreasing. This is the "principal components representation.” The first component
(the first column of C) describes the "largest” sort of changes which occur; the second
the second largest; and so on. These components can give some idea of the type of
information which is revealed from period to period. As a simple example, if all of the
entries of the first column of C have the same sign, this means that the largest
component of the new information revealed is that all demands (present and future) will
tend to be be larger, or all will tend to be smaller, than was previously predicted. Section
VI includes an examination of the first principal component of the variance-covanance

matrix for two applications of this analysis.
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Examples

As a simple example, consider an additive model for the demand for a single
product. For the simplest case, suppose that M=1; i.e., that only the first component of
the vector can be non-zero. Suppose further that the initial state vector is of the form

(x1,%,X,X,...)'; i.e., today's demand is x1, and all predicted future demands are X. The

model is then characterized by the 1x 1 variance-covariance matrix whose only entry is
the variance of x1. This model corresponds to the case of independent demands with no
forecasting updates until the actual demand is observed.
A more interesting class of models results for the single product model with
M=2. Suppose that the initial state is (x1,X2,X,X,X,...)". Then the model is characterized
by the 2x2 matrix, X:
2
G; ©12
2
o021 O,

where G1p=071. Letting (Xg); denote the jth element of X, the state vector at time s,

we have (for s = 2),

(Xs)l
Xg) = X +(gg)
(Xs)j =% forj=3

X +(gg)1 +(5-1)2

It

Notice that the two values appearing in the first equation are independent
random variables since they are components of vectors observed at different times,

which are independent. However, the first two components of the X vector are typically

not independent, since they both depend on the vector €. In fact, their covariance will
be precisely 612. It follows easily that the covariance of (Xg)1 and (Xg41)1 is also 012.

Thus if 617=0, we still have independent demands, but some of the demand variation is
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predictable one time period in advance. In this special case, the fraction of the variability

L . . 2
which is predicted is exactly 02/(0?+0§).

Why Not Use Time Series Models?
This example illustrates why the Martingale Model of Forecast Evolution could be

more useful in a simulation of a production system than a more direct time series

2 .
approach. As an extreme case, suppose that (51=0. Then the demands are still

independent, but are entirely known one period in advance. In this case a time series
analysis of the demands would seem to support the simple models which assume
independent (and unpredictable) demands when in fact the production system could rely
on very accurate forecasts. Time series models that are based only on previous demands
cannot capture the potential existence of very accurate forecasts that are based on more
information than past demands.

We anticipate that a proponent of a time series approach to modelling forecast
evolution within a simulation study could respond to the above example by pointing out
that the predictions could be improved by basing the forecasts on more data than just past
demands. One can imagine that human forecasters have notebooks of competitors' prices,
weather forecasts, and other data that improve the accuracy of their forecasts. If these
notebooks were available to the time series modeller than perhaps the time series model
accuracy could rival that of the human forecaster. We agree. However, to simulate the
behavior of such an extended time series model, we would have to simulate the behavior
of these notebooks over time and we do not believe that a simulation model of notebook
behavior would have greater credibility than the model we propose. Besides, if one of the
notebooks contained the human forecaster's best prediction based on all available data
and such predictions really did minimize mean squared error, then no other notebooks

would be required: the extended time series model should select this prediction. We are
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still left with the problem of simulating the evolution of the human forecaster's

predictions.

Correlations Reveal the Nature of New Information

In the last example, if 617 is not zero, its sign tells something about the type of

new information which is learned at each period. If 617 is positive, then new

information has a tendency to result in either an increase in both the actual demand (over
that predicted) and in the prediction for the following demand, or a reduction in both of
these. If, on the other hand, G172 is negative, then new information tends to affect the
"timing" of the demand: when the actual demand turns out to be less than predicted,
there is a tendency for the prediction for the next period to rise (and vice versa). This
latter situation can arise if forecasters are confident about the total demand being
predicted but are unsure about the timing. For example, customers may be under
contract to purchase certain amounts or the marketing department may be able to
stimulate sales through subsequent promotions to achieve a total sales objective. Hence,
if demands are lower than expected in one period, it is natural to forecast that the

deficiency will be made up in the next period.

VI. APPLICATION OF THE MMFE

As mentioned earlier, the study considered two methods of forecasting in use
within the operating company. The first method, called the Traditional Method, consisted
of forecasts generated by specialists within the marketing department. We analyzed four
years of monthly demand and forecasts according to this method and estimated the 80x80
variance-covariance matrix for the multiplicative model of forecast evolution. The
dimension 80 comes from the product of 5 products, 8 locations, and a two month
forecast horizon. Using a weighted average of the variances in that matrix, we summarize
in Tablel the percentage of forecast variability that is resolved as the system evolves

from two periods out to 1 month out and from 1 month out to the month of sale. As is
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apparent from the table, a considerable fraction, 64%, of this variability is not resolved
until the month of sale. This can be expected to severely limit the ability of the

production system to satisfy demand without considerable safety stock.

In month of sale 1 mo. out

64 36

Table 1. Percentage of Total Forecast Variability Resolved by Forecast Period,

Traditional Method

To illustrate the demand and forecast correlations captured by the variance
covariance matrix, we reproduce in Table 2 the first principal component of that matrix,
scaled by the corresponding eigenvalue. Recall that in the simulation this principal
component is multiplied by a standard normal random variate and that it would represent
the largest sort of change to be commonly observed in the log of the forecast vector.
Observe that the sign of the change in the current period tends to be the opposite of the
sign of change in first period. That is, it seems that an important phenomenon of the
Traditional Method is that the change in forecasts one month out are negatively
correlated with observed forecast error (from one month out to the month of sale). This
suggests that the forecasting specialists are confident about the total demand over a two
month period so that if demand in the first month turns out to be higher or lower than

expected, then the forecast for the subsequent period is adjusted downwards or upwards

accordingly.
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Location

Period | Product 1 2 3 4 5 6 7 8
0 1 -5511| .0086| .0549| -.4902| -.1735| -.0286| .3602 | -.6934
0 2 -3526 | -.3450 | -.0854 | -.2994 | -.3982 | -.2608 | -.0907 | -.0183
0 3 -4483 | -.1447 | -.1369 | -.2256 | -.2584 | -.1792 | .0699 | .0687
0 4 -.6352| -.2848 | -.1855| -.3547 | -.6595 | -.2726 | -.2890 | .0758
0 5 -4719| 5393 | 2631 -.1407| -.0932| .2805| .1289| .4920

4343 | 5623 | 2880 | .1736| -.0027 | .1454| .2605| .7386

2081| .3231| .1257| .2454| 2418| .2621| .0654| .0285

A4571| 4149 .1714| 2560 | 2768 | .1838 | .0835| .0387

2555 1171 .1395| .0787| .1844| .1178 | -.0326 | -.0960

[ S S Ll L
(W RSN LUV § S L

2048 | 0651 | .0000| -.0045| .0421| .0000] .0474| .0000

Table 2. First Principal Component of VCV Matrix for Traditional Method

The operating company had in place a second method of forecasting demand for a
portion of the total business that appeared to give very good results. This was a detailed
quantitative model of customer behavior that included promotions and price
considerations. Furthermore, it was able to provide forecasts for up to four months into
the future. We refer to this method as the Statistical Method. In order to simulate the
likely behavior of this system when extended to the entire business, the Statistical
Method was simulated using two years of detailed historical data (three other years of
non-overlapping data were used to calibrate the Statistical Method). From the simulated
forecasts and actual demands for that two year period, we estimated the 160x160
variance covariance matrix of the logarithm of the forecast vector. The dimension of 160
is the result of the product of 5 products, 8 locations, and a forecast horizon of 4 months.
The total variability of both the Traditional Method and the Statistical Method is the
same. The major difference between the systems lies in when the reduction in variability

occurs. Table 3 summarizes the successive reductions in variability over the course of the
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four months. Comparing Table 3 with Table 1 reveals that the Statistical Method of
forecasting offers a great advantage over the Traditional Method. From the three month
out forecast to the actual sale accounts for roughly the same fraction of variability as
from the one month forecast to the actual sale in the Traditional method and the nearer
term forecasts are even better. This should permit more effective management of the
production and distribution system. In the next section we summarize the degree to

which this advantage can translate into improved customer service and lower costs.

In month of sale 1 mo. out 2 mo.s out 3 mo.s out

7 18 30 44

Table 3. Percentage of Total Forecast Variability Resolved by Forecast Period,

Statistical Method

To illustrate the demand and forecast correlations captured by the variance
covariance matrix of the Statistical Method, we reproduce in Table 4 the first principal
component of that matrix, scaled by the corresponding eigenvalue. The average absolute
value of entries is increasing by period (0.149, 0.238, 0.296, and 0.400 for periods 0, 1,
2, and 3, respectively). Taking the view that the magnitude of entries in the principal
component is indicative of the amount of information that is gained (or uncertainty
resolved), this is consistent with the observations concerning Table 3. Although not as
pronounced as in Table 2, Table 4 does exhibit a general trend towards sign reversals as
the forecast period increases: there are 27 negative numbers in periods O and 1 and 58
negative numbers in periods 2 and 3. This suggests the phenomenon that lower than

expected (respectively, higher than expected) sales in the current month result in
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downward (resp. upward) adjustments of forecasts for sales in the next month and

upward (resp. downward) adjustments in forecasts for sales in the following two months.

Location
Period |Product 1 2 3 4 5 6 7 8
0 1 1616 .1254 | -.1043 | .1974| .0373| .0416| .1342| .1776
0 2 -0650| -.0552| .3584| -.0248| .3673| .1770| .0677| -.1579
0 3 2146 .0507 | -.0115| .3478| .0323| .1288| .2140| .2724
0 4 0688 | -.0566| 2144| .0845| .3662| .1700| .1718] -.1038
0 5 10251 .0141] .1348| 3569 | .3547| .0684| .0863| .0802
1 1 3143 0621 -.2724| 2532 -.3628 | -.3628 | .2268| .1606
1 2 -.1466| .5185] .0789( .2807| .1212] -.3917| -.3019| -.1001
1 3 2580 | .0056| -.0824| .1076| -3237| -.1962 | .2455| .0121
1 4 -0087 | 5195] 2011 .3984| .1073| -.4212| -.1456| -.1140
1 5 21250 -2462 1 .1520| .1297| .1173| -7305| -.1789 | -.7194
2 1 -.0880 | -.0336| .5566| -.1703| .5851| .5965| -.2469 | -.2557
2 2 -2385 | -.1575| -.1836| .0515| -.1122{ -.5729 | -.2546 | -.2745
2 3 -0999 | 2656| .3814| -.1636| .6767| .3992| -.1412| .0293
2 4 -3108 | -.0727 | -.0952| -.0771 | -.0352| -.5335| -.3089 | -.5078
2 5 -4701 | -.4420| .1318] -.0971| -.1176 | -.7775| -.5727 | -.7525
3 1 22636 | -.5465| -.4960 | -.3411| -.4126 | -.4594 | -.5531| -.5784
3 2 5144 | -.3061 ]| -.3454 | -.2544 | -2015| .6555| .4665| .4505
3 3 -2339| -.3087 | -.3579 | -.3369 | -.2875 | -.3382 | -.3243 | -.3118
3 4 6342 | -.1717 | -.1985| -.1899 | -.0624 | .7127| .6639| .7549
3 5 4911 [-1.0359 | -.6303 | -.2990 | -.2929 | .0325| .2605| .2125

Table 4. First Principal Component of VCV Matrix for Statistical Method
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VIL. SIMULATION RESULTS

The simulation methodology, the rolling horizon LP with the MMFE, was tested
with data from the operating company for a variety of safety stock factor levels. Figures
2 and 3 summarize the results of these simulations by relating the minimum average fill
rate (minimum across products and locations and average over simulation runs) and
annual cost reductions, respectively, to the relative safety stock factor level. The figures
compare the impact of the two forecasting methods described in the previous section, the
Traditional Method and the Statistical Method. Each plotted point represents the average
across between ten and twenty simulated years; that s, the rolling horizon simulation was
terminated after at most twenty consecutive years. The Xq vector was identical for all
simulation runs and consisted of the forecast for the 1990-91 fiscal year repeated 20
times. The initial random number seed was identical for all runs using the same
forecasting model. Differences between minimum and maximum points for a given
forecasting method in both figures are significant at the 5% confidence level. The runs
are too short, however, to establish conclusively the significance of the difference, either

cost or fill rate, between the different forecasting methods.
[Insert Figures 2 and 3 about here.]

These preliminary simulations suggested that annual cost could be reduced by
several million dollars annually if the safety stock factor were reduced and that, provided
the new Statistical Method of forecasting was implemented and used in a timely manner
to plan production, there would be little adverse impact on customer service by reducing
safety stock. Other experiments were run that investigated the impact of increasing
capacity (adding another production line). These runs suggested that it was far more
important to increase forecasting accuracy than to increase capacity, at least for the year

under consideration. These results were sufficiently intriguing to the company that
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management scientists within the company made extensive simulation runs using the
methodology. These runs were all greater than 100 simulated years each with some runs
exceeding 240 simulated years to ensure greater statistical significance. The internal
studies confirmed the above conclusions and verified that the forecasting methods
yielded significantly different results. We are not at liberty to reveal the details of these
studies. However, as a result of these internal studies, the company made a commitment
to implement the new forecasting method for the entire business and, simultaneously, to
reduce substantially the safety stock factor for the 1990-91 year. After one year, the
company reports that it achieved the predicted cost savings and that customer service did
not suffer. Obviously, this experience of one year proves nothing, especially since the
extended simulations did reveal rare years in which the simulated business experienced
high costs and low customer service levels at all safety stock levels. However, the
example does show that the methodology was effective in assisting management to adopt

a new strategy for production management.

VIII. CONCLUSION

Production managers in many industries are aware that forecast error is a major
factor determining production and distribution costs. In discussions with higher level
management, however, they are typically unable to quantify the impact. This paper
considers one approach to subjecting the impact of forecast error on Cost and customer
service to quantitative analysis. The Martingale Model of Forecast Evolution is proposed
as a plausible model for the evolution of forecasts. We have demonstrated the
practicability of this model in a large scale simulation study for an operating company.
The study was effective in leading the company to implement improved forecasting
techniques. Applied research in this area is now being conducted with a company that
requires a more detailed production simulation model and with another company for

whom component lead time is a greater concern than assembly capacity. Theoretical
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research is focusing on the form of the optimal inventory policy under non-trivial
demand models and on state-space reduction techniques to implement the MMFE in

computational dynamic programming.
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APPENDIX L. LP FORMULATION

SIMLP FORMULATION

Variable Definitions:
Pjji = the production, in cases, of product i on line j in period t;

Oj¢ = the overtime on line j in period t; and

X;p]t = the transshipment, in cases, of product i from DC h to DC 1 in period t;

Ijjt = the inventory, in cases, of product i atDC 1 at the end of period t;

Bjj¢ = the backorders, in cases, of product i at DC 1 at the end of period t;

S;jt = the shortfall below the coverage target, in cases, of product i at DC 1 at the
end of period t;

K = total production cost (regular time and overtime) , shipping cost, and inventory
holding cost.
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Index Functions:
aj] = 1if DC 1 is supplied by line j; O otherwise;
f; = 1if t=1; O otherwise (first period indicator);

Sets:

DC = set of DCs;

PD = set of products;

LN = set of production lines;

PL = set of production facilities (a subset of DC);

RT = set of allowed DC transshipment possibilities (pairs of origin DC - destination
DC);

TM = set of time periods = {1,2,...,Horizon}

Coefficient and Constant Definitions:
pjj = production rate in cases/hr. of product i produced on line j;

Tjp = regular time hours available on line j in period t;

0j = overtime hours available on line j in current period;

dj); = forecast demand, in cases, for product i at DC 1 in period t (actual demand
for period t=1);

wj] = initial inventory less backorders, in cases, of product i at DC 1 in period 0;

gj]; = minimum inventory requirements, in cases, for product i in DC 1 atend of

period t;

Cost Coefficients:
Cjj = variable cost to produce one case of product i on line j and ship to local DC;

Xjp] = variable cost to ship one case of product i from DC hto DC 1, including

freight rates and in and out handling costs;
h;] = variable cost to hold stock of product i in DC 1 for one period, including cost

of capital and storage cost;
vj = variable cost of running line j on overtime for one hour in any period;
sj = penalty cost for shortage of product i in period 0;
b; = penalty cost for backorder of product i in period 0;
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Objective Function:

Min K = Z(j ¢ PD}Z{j e LN}Z(t e T™] CijPijt + Z(j e LN} V{Oj

+ Z(i e PD}Z{(h,]) € RT}Z{t e TM} Xih1Xihlt
+Z(i e PD}Z{l e DC} Z{t e T™M}hitlilt + biBil¢ + siSi1p)

Capacity Constraints:

-1 '
E{ie PD} pij Pijt - ftOj < Tjt forje LN,te TM; (D

Overtime Limits:
OJ' < 0j forje LN; )
Material Balance Equations:
Tt - Bitt = Lite-1 - Bile-1 + 2{j € N} 3jl Pijt + Z{(h,)) € RT} Xihlt
-Z{(Lh) € RT} Xilnt -diiy forie PD,le DC,te TM;(32)
Lijo- Bilo = w1 forie PD,le DC; (3b)

Coverage Constraints:
Lt - Bife + Siit = gjit forie PD,1e DC,te TM;  (4)
Backorder Limits:
Biit - Bilt-1 < djit forie PD,le DC,te TM; &)

Nonnegativity Constraints:

Pijt Oj» Xihle Lilt » Bile Site 2 0 forie PD,je LN, hle RT,1e DC,te TM;

Lio,Bjlg 20 forie PD,1e DC. (6)
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Observations Concerning SIMLP

Shipments of stock of any product are allowed in any period between DCs.
Shipments between particular pairs of DCs can be disallowed.

Each production line consists of only one component. Raw material availability is
ignored.

Overtime is allowed on each line in the current period only. There is no planned
overtime (overtime in future periods).

It is possible, since production in any period is limited, that the demand for a
particular product in a particular DC in the current period cannot be satisfied, even with
transhipments from other DCs. Shortages would result. Shortages in one period must be
satisfied by planned production, or shortages, in the next period, or be left unsatisfied at
the end of the horizon. In practice, shortages for some products are more critical than for
other products. Since the LP solution is extreme, it may concentrate all the shortages in
one product. We can discourage shortages in some products by making the penalty costs
for shortages in those sizes to be significantly higher than those in other sizes. However,
no other attempt is made in the model to balance shortages across products.

There is no penalty for underutilization of a line.

Coverage restrictions are typically stated in terms of months of supply. These are
translated into bounds on inventory.

In an extreme point solution to SIMLP, we will have Ijjg - Bjjo =0 forallie PD
and 1 € DC, because the corresponding columns in the matrix of coefficients are linearly
dependent. This is not true in general for the variables Ijj; and Bjj; because the inventory

variables, Ijj;, do not appear in the backorder limits, constraints (5). Hence, care must be

taken in analyzing the simulation history file to interpret variables and to compute costs

in a reasonable manner. The set of backorder limits are necessary because otherwise there

are examples in which the solution exhibits Bjj; > djj; and Xjjpe > 0; that is, some

backorders would be "shipped" to other locations.
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