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The presence of an air-filled organ, either lungs or a swimbladder, is a defining 
character of the Osteichthyes (bony vertebrates, including tetrapods).  It has long been 
hypothesized that lungs and swimbladders are transformational homologs, with lungs 
being ancestral for the Osteichthyes.  This homology is supported by many structural, 
functional and developmental similarities, as well as the developmental genetic data 
presented in this dissertation.  Chapter one examines the swimbladder expression of a 
core set of developmental regulatory genes previously believed to only be co-
expressed in the tetrapod lung, and compares the timing and location of expression in 
the tetrapod and fish model systems (mouse and zebrafish).  While the order of 
expression initiation appears to be conserved across taxa, tetrapod Nkx2.1 is the 
earliest known marker of the lung primordium, where in zebrafish its homologs 
(Nkx2.1a and Nkx2.1b) are not expressed until two days after bud formation.  Because 
the mouse Nkx2.1 null lacks tracheal septation and branching morphogenesis (like a 
swimbladder) I hypothesize that this delay in expression relative to morphological 
developmental time-points could be responsible for the transformation of an ancestral 
lung to a more swimbladder-like morphology.  Though a lack of tracheal septation and 
branching morphogenesis are often cited as characters that differentiate lungs and 
swimbladders, these characteristics are subject to variation and convergence and the 
fundamental difference is the point of evagination from the posterior pharynx: lungs 
always evaginate ventrally and swimbladders always evaginate dorsally.  This 
difference has been cited by many as evidence that lungs and swimbladders are not 
homologous, as there is no evidence for the traditionally cited mechanism of 
transformation, a gradual migration through laterally budding intermediates.  Chapter 
two takes our knowledge of dorso-ventral patterning in the mouse lung bud and 
examines the expression of two critical patterning genes (Nkx2.1b and Sox2) in the 
developing swimbladder.   I show that the expression pattern of the zebrafish 
homologs of these patterning genes are reversed, with Nkx2.1b expression restricted 
dorsally at the point of swimbladder evagination, and Sox2 expression restricted 
ventrally.  This is only the second known case of dorso-ventral inversion of structure 
and underlying patterning gene expression. 
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BIOGRAPHICAL SKETCH 
 

PART 1: On the Origin of Mandy  

CHAPTER 1: Variation under domestication 

I grew up on an island in Maine, a very unusual island.  On this island scientists 

immigrate in unusual numbers, drawn by a rich scientific community and spectacular 

surroundings, gradually supplanting and out-competing the traditional island 

population of old-time lobstermen and blueberry pickers.  Three quarters of the high 

school students are first cousins, and one quarter are products of the emerging 

immigrant community adding a limited amount of variability.  The definition of 

domestication is the continued genetic inbreeding of a specific group to amplify 

certain desirable traits.  By this definition, I am the product of variation under 

domestication. My parents were both members of the later group: immigrants and 

scientists, drawn by a thriving scientific community and the idyllic setting.  

 

CHAPTER 2: Variation in nature 

Though I was the product of two scientists grew up in in the midst of a natural park, I 

tried my best to be something other than a scientist.  When I was young, my parents 

both worked as scientists and sought out the best early education possible.  So I spent 

my days at Montessori preschool, where I had my choice of educational activities 

cleverly disguised as games.  The best way for a child to learn is to give them a 

choice, and trick them into thinking they’re playing.  I was never one for math, but 

became a voracious reader kept meticulous track of the plastic horse and dinosaur 
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collection, calling each by its name and demanding any lost souls be found and put in 

order before the end of play time.   

 

CHAPTER 3: The struggle for existence 

When I started public school, my mom tried to explain to the teachers that I probably 

didn’t need kindergarten; after all, I was older than most of my classmates, taller, and 

ahead in most subjects.  But skipping wasn’t allowed, until I reached first grade, when 

the teacher had me read to the class while she prepared lesson plans. First grade lasted 

two weeks, until the “no skipping grades” rule was abandoned and I was promoted. So 

for the rest of my school years, I was the youngest.   Being too tall too young led to an 

inevitable lack of coordination that made gym class and organized sports one of the 

deeper rings of my personal hell.  So I buried myself in books and became the 

yearbook’s inevitable most studious and most likely to succeed, thus persisting and 

thriving despite occupation of marginal habitat. 

 

CHAPTER 4: Natural selection 

Natural selection leads to the persistence of certain genetic variants under a given set 

of conditions.  I was a unique variant, living a mile down a dirt road on an island in 

Maine, spending a large percentage of my time lost in books.  The neighbors and we 

free to break fresh trails, build fairy houses from moss, precarious tree houses from 

scrap wood, name unnamed landmarks and generally get lost in the woods.  We came 

covered in the home covered with sun burns, bug bites, scraped knees and a Rorschach 

collection of rocks, sticks, animal bones and other priceless bits of nature that were 
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surely our abstract art. It was the opposite of the standard suburban childhood, we 

simply didn’t do pavement, and our phenotype excelled.  Transposed to another 

selective environment this phenotype may have failed miserably, but in this niche it 

thrived. 

 

CHAPTER 5: Laws of variation 

High school brought a broader adaptive landscape.  I initially headed towards a 

scientific adaptive peak, but my biology teacher fell victim to the all too common 

“open inquiry” method, which left me feeling unsatisfied and uninterested in science.  

My once boundless enthusiasm for the natural world evaporated.  But, through a series 

of excellent teachers I discovered an interest in politics and started up the base of a 

different peak on my way Mount Holyoke College.  MHC, like all good liberal arts 

schools requires a diversity of core courses and a minor.  No matter which adaptive 

peaks are summited, valleys must be crossed and all students are canalized to develop 

into a well-rounded liberal arts student.  After breezing through first-year biology and 

being hired as a department tutor, as a sophomore I hit the evolutionary biology 

portion of the core curriculum. It was the perfect melding of my interests in history 

and biology—is evolution not the history of life? And the cast of characters that have 

shaped evolutionary biology over the years are every bit as critical to understanding 

the development of evolutionary theory as the textbook versions of the theories 

themselves. Luckily, I discovered an advisor who loved both biology and history as 

much as I did, and encouraged me to meld my interests.  I had found my calling, my 

strange little niche, the spandrel filling the gap between evolutionary biology and the 
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history of science.  Because of my love of diversity, and an arbitrary preference for 

vertebrates I settled on a research project in the evolution of flatfishes, bizarre 

creatures who will always have special a place in my heart.   

 

 

CHAPTER 6: Difficulties on the theory 

While I was quite comfortable buried in the library stacks, I realized that a career in 

science required bench experience, so I applied for several summer internships. I 

accepted an internship at the National Museum of Natural History.  What possessed 

them to accept such an odd academic amalgamation as myself I will never know.   

When I arrived, it was learning by immersion, sink or swim (appropriate for the 

Division of Fishes).  I learned the minutia of fish anatomy from some of the best fish 

anatomists in the world.  I learned about museum collections, fish diversity and 

morphology.  I asked a lot of questions, but didn’t get a lot of answers: if each of five 

gill arches has the same feature, does that count as five characters or one?  If two 

larval fish look the same but the adults look different, which is more informative?  So 

I came back to school with more questions than answers, and found myself confronted 

with the same problems Darwin faced regarding development and evolution, that 

Gould so aptly addressed in his post-modern synthesis work and that modern evo-devo 

was now brought back to the forefront with a whole new quiver of molecular toys.  So 

my thesis became a combination of my morphology work, modern molecular 

systematics, the history of evolutionary thought and the integration of developmental 

biology and fish evolution.  My thesis was awarded summa cum laude, the department 
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award for best thesis and the Phi Beta Kappa Award.  That was a good day.  I thought 

I knew it all, but like anyone who thinks this, I was naïve. 

 

Part 2: On the Descent of Mandy 

From Mount Holyoke I planned to head to graduate school and had to make 

the decision between an advanced and established evo-devo program at the University 

of Chicago and a budding opportunity at Cornell.  Knowing that my phenotype was 

pre-adapted for a more rural environment and the desire to develop an independent 

program, I chose Cornell by way of a detour to Australia.   My original Australian 

Fulbright Fellowship project proved impossible, so I ended up working on alpha 

taxonomy of several local species and being quite bored with it.  This is not how I had 

imagined my research career. I wanted to unlock the secrets of diversity and the big 

patterns in morphological evolution, not count myomeres and melanophores.  It was a 

learning experience, but mostly learning what I did not want.   

 

When I returned home I headed to Cornell to join the McCune lab, an eclectic 

array of brilliant and disparate researchers, amongst whom I felt totally out of my 

depth.  I understood fish morphology and development, I was well read in the classic 

works of evolutionary biology, but there was no one in my department integrating 

development and evolution.  How was I, a lowly first year graduate student, to connect 

my knowledge to understanding the fundamental basis of diversity? I lacked a system, 

I lacked funding and I lacked wet-lab.  My advisor provided a system, one with a 

blessedly long history of study that I could easily and comfortably delve into: the 
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evolution of the fish swimbladder. A major morphological novelty! Nearly untouched 

by modern biology in a hundred years!  Discussed by every vertebrate morphologist 

since Darwin! I could not believe my luck.  So I did what I knew how to do: I hit the 

stacks, and a brick wall. What could I add to this? I knew very little about the wet-

work of developmental biology, and it seemed that the next step would be to look for 

lung development genes in swimbladder development and apply those fancy new tools 

to this fantastically classic system.  

With another stroke of luck, and an odd reversal of traditional roles, the 

Cornell graduate student joined an Ithaca College lab to learn to be a molecular 

biologist.  The goal was to do look for transcripts of lung development genes in 

swimbladders, which required a whole lot of luck and a little fairy dust.  After two 

years of heart-breaking and motivation-sapping failures, but extensive experience 

learning how to persevere, troubleshoot and try again, finally some progress: a 

working in situ hybridization.  Bands! Staining! Results! Just in time for my Ithaca 

College mentor to move to Washington State and send me back to Cornell with a 

handful of lab equipment to start from scratch.   

So, with a space that previously housed a rock-saw and a lot of hand-me-down 

equipment I built a molecular biology lab at Cornell.  Working with RNA is 

notoriously painful.  Human skin secretes the dreaded “fingerases”, the RNA 

degrading molecules that literally seep from every pore, and without constant 

vigilance will destroy any RNA based project.  So up went the aggressive signage to 

always wear gloves, don’t touch anything and don’t contaminate solutions (a difficult 

transition for a morphology and paleontology lab).  From there, we described the 
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expression of important developmental regulatory genes, and even a potential 

mechanism for the origin of the dorsal swimbladder by inversion of the ventral lung 

developmental program.  We were in the business of describing the genetic 

mechanism that eluded so many eminent biologists before us! 

Because of the lack of evolutionary developmental biologists at Cornell, we 

developed collaborations with a variety of researchers in molecular biology and 

development, neurobiology and behavior and biomedical sciences to provide 

assistance and support.  We also participated in a recurring course on Development 

and Evolution, where I coincidently met my now husband. 

Once things were rolling along nicely with zebrafish, we branched out into 

other species where the real roots of diversity lie.  The bowfin is what is known as a 

living fossil, not having accumulated much morphological change since the late 

Cretaceous, and they live in our proverbial back yard, Oneida Lake.  After several 

years of trolling Oneida Lake like some sort of bizarre New York gondoliers 

collecting information regarding bowfin natural history, gobs of bowfin eggs and fry, 

and fin clips from unfortunate daddy bowfin guarding their nests we have learned 

more about the natural history of this taxonomically critical species than anyone in the 

last hundred years, and begun to develop the tools to conduct molecular 

developmental biology studies on this species as well.    

The McCune lab and I are now equipped to charge forward and contemplate 

Darwin’s entangled bank at a deeper level than ever.  We are equipped to examine the 

differential expression of homologous genes between distantly related species and 

correlate these differences with phenotypes, thus describing the ultimate mechanism 
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for morphological innovation.  Without this innovation and novelty, there would be no 

entangled bank, for variation is as necessary as natural selection for evolution to occur. 

There is indeed grandeur in this view of life… and how all organisms [from phyla to 

individuals such as myself] have been and are being evolved. 
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CHAPTER 1 
 

INTRODUCTION 
 

 
I. INTRODUCTION: HOMOLOGY, TRANSFORMATION & NOVELTY 

Understanding the process by which complex features arise and evolve is central to 

understanding the origin and evolution of life.  Evolutionary developmental biology 

has yielded great insight into the genetic and developmental changes that occurred to 

produce many major morphological innovations.  Of particular interest are features 

that resulted in major ecological innovations (such as jaws or wings) or that 

characterize major extant clades (such as feathers and teeth).  These innovations are 

often referred to as novelties, but a phylogenetic and developmental perspective shows 

that novelties are almost always exaptations (1) or co-options (2) and subsequent re-

specializations of other structures, which were once “novel” themselves (3): jaws 

evolved from anterior gill arches (4), tetrapod limbs evolved from fish fins (5) and 

even things that seem completely novel have anatomical precursors, such as the 

evolution of feathers from scales (6).   

 

Novelty & Transformational Homology 

Each novelty defines a monophyletic taxonomic group containing all species with that 

character and their most recent common ancestor.  As such novelty and synapomorphy 

can usually be used interchangeably (7, 8), though the emphasis on novelty is what is 

different in descendent taxa, where the emphasis on synapomorphy is what is the 

same. The cases that are most interesting to biologists are generally those in which the 
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difference is emphasized, because the descendent structure is so profoundly changed 

from its antecedent as to be nearly unrecognizable, and these are generally the cases 

referred to as novel instead of simply modified or adapted.  These cases are known as 

transformational homologies (8, 9), and are recognized as a subclass of all other more 

easily identified taxic homologies (synapomorphies, or unique derived traits that 

characterize clades).  Transformational homologies are often so obscured by 

secondary modification that it is difficult to determine what the preceding structure 

was; such as the transformation of bones involved in jaw joint articulation of 

amphibians and reptiles to the inner ear bones of mammals (10).  In these cases, 

homology is often established by examination of taxonomically intervening taxa with 

intermediate morphological conditions, or by studying the ontogenetic development of 

the organ, as structures that appear very different in adults often arise from similar 

tissues and locations relative to other developing structures during early development.  

This similarity of developmental origin and relation to other structures was first 

proposed as the principle of connections in the mid 19th century (11) and remains one 

of the fundamental tests of structural (12, 13) and now molecular homology (14). 

 

Modern Genetics & Biological Homology 

Homology is an ancient concept first applied to biology by Richard Owen (15, 16).  

Owen did not have any concept of the mechanistic processes that produce different 

phenotypes or even attribute similarity to common ancestry.   Because the concept of 

homology was formulated without understanding its mechanistic basis, the findings of 

modern molecular genetics are not always in line with the predictions based on 
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comparative anatomical data and not genetics. 

 

Historically, a biological definition of homology has been invoked to address this 

apparent conflict.  Biological homology emphasizes the historical continuity of 

information underlying the development of a structure (14, 17, 18).  In modern 

language, this can imply the shared expression of genes or gene regulatory networks, 

shared developmental programs or shared tissue origins.  Though biological homology 

is theoretically appealing because it seems logical that homologous structures would 

be developed by homologous developmental programs, modern developmental 

biology has shown that homologous structures often employ different genes during 

their ontogeny (19, 20) and that homologous genes are often involved in the 

development of non-homologous structures (14, 21). Thus, biological homology, 

while intuitive, has encountered increasing resistance and restructuring in the post-

modern synthesis era of evolutionary biology.   

 

Molecular homology: co-option, convergence & conservation 

At its heart, any comparative study is an exercise in identifying similarities and 

differences, and similarities are always attributable to conservation, co-option or 

convergence.  When a conserved genetic program is expressed in clear structural 

homologs, both the network and the structure are synapomorphies for the group 

containing all taxa with both the structure and genetic program, and their last common 

ancestor.  These are the most straightforward cases, and either a biological or taxic 

definition of homology is easily applied as the similarity of structure is due to a 
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conserved genetic mechanism.  When a genetic or developmental characteristic is 

shared due to co-option, the mechanism generating a morphological character is a 

synapomorphy (and thus homologous) at some phylogenetic level but the developing 

structure may or may not be (as in the case of vertebrate and insect eyes both 

expressing Pax6, or limbs and butterfly wing spots both expressing Dlx (3).  Here 

traditional biological homology is problematic, because the genetic information is 

conserved, but the structures are clearly convergent, and the presence of conserved 

information is the biological criterion for structural homology.  

 

These problems with traditional biological homology have led to its transformation 

from simply the continuity of information, to continuity of a very specific type of 

information, and the reformulation of biological homology into the modern notions of 

Character identity networks or ChINs (14) and to some extent, deep homology (21).  

These ideas, while quite different, are designed to dispense with the problem of 

discontinuity between genetic developmental mechanisms and structural homology.  

Most will not consider deep homology to be a case of biological homology, as it 

simply uncouples the homology of structure and function rather than using one to 

support the other.  Deep homology states that a genetic or developmental mechanism 

may be homologous at a deeper level on the tree than a structure, and may be 

repeatedly involved in the evolution of non-homologous structures at more shallow 

points in the phylogeny (19, 20).  This allows the genetic mechanism to be its own 

taxic homology preceding the evolution of structures which may or may not be 

homologous themselves.  Those who cling to a more traditional definition of 
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biological homology, where the genetic and structural homologies remain perfectly 

linked, prefer the concept of Character Identity Networks (ChINs).  The concept of a 

ChIN is that some kernel of molecular developmental machinery is always involved in 

the development of homologous structures, that this kernel gives the structure its 

identity, and that both the kernel and the structure are homologous between ancestral 

and derived taxa.  The ChIN addresses the problems of convergence and co-option, 

but is sufficiently vague in its requirements that it is unclear how useful it is in the 

determination of structural homology.  To address convergence, the ChIN borrows the 

traditional wisdom of morphological systematics that complex characters are less 

likely to be due to convergence than simple characters, and the principle of 

connections which emphasizes the conserved connection between individual 

homologous elements (11) and thus requires that the ChIN be a gene regulatory 

network, and not simply a single identifying gene.  Co-option is addressed by not 

allowing the ChIN to be expressed anywhere but the structural homologs, which again 

is requires a gene regulatory network as nearly all genes are expressed in multiple 

places and times during development.  However, beyond that, the number of genes, 

their interactions and other features of a ChIN can vary making it an easily applied 

concept, but somewhat circular and of unclear usefulness. 

 

Regardless of the difficulties with biological homology, developmental mechanisms 

can often provide compelling evidence regarding structural homology and the 

mechanism of evolutionary transformation of homologous structures.  This is 

particularly true in the case of transformational homologies.  Transformational 
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homologies are (by definition) difficult to identify, and shared developmental 

mechanisms, provided those mechanisms are chosen carefully to avoid the problems 

of convergence and co-option, can be powerful evidence for or against structural 

homology. 

 

II. BACKGROUND: VERTEBRATE AIR-FILLED ORGANS 

Defining swimbladders & lungs 

The presence of an air-filled organ (AO) is a taxic homology (synapomorphy) 

characterizing the bony fishes including tetrapods (Osteichthyes sensu Rosen et al. 

1981).  Though counter-intuitive to some, the ancestral state of the Osteichthyan AO is 

the presence of lungs (22, 23); AOs that evaginate ventrally from the posterior 

pharynx during development.  This ancestral state is supported by the presence of 

lungs in the most basal extant lineage of ray-finned fishes (Actinopterygii sensu 

Nelson 2006) the Polypteriformes (25).  The swimbladder is a taxic homolog of the 

Acinopteri and transformational homolog of lungs.  

 

A structure is primarily described as a swimbladder if it is unpaired, occupies the 

dorsal portion of the body cavity and functions primarily in buoyancy control.  

However this is by far an over-simplification, as both lungs and swimbladders are very 

structurally and functionally diverse.  Structurally, both lungs and swimbladders can 

be paired (26) or unpaired (27), respiratory (28) or not respiratory (29).  In addition to 

buoyancy control, the swimbladder has repeatedly evolved functions in sound 

production (26, 30), sound amplification (31–33) and gas-exchange (28), and lungs 
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have been repeatedly co-opted for buoyancy control (29).  The structural diversity of 

the swimbladder is relatively poorly documented, but it is clear that great variation 

occurs there as well, with swimbladders having multiple compartments along their 

anterior-posterior and dorso-ventral axes, presence or absence of a connection with the 

gut, and often complex and unique internal structures (28).  The only descriptive 

morphological characteristic of swimbladders that is not subject to repeated 

convergence and modification is the point of evagination from the gut: all members of 

the Actinopteri have a air-filled organ (generally called a swimbladder) which 

evaginates dorsally from the posterior pharynx during development, while all other 

Osteichthyes have ventrally evaginating lungs. 

 

The Remaining Controversy 

Though the homology of swimbladders and lungs was first proposed by Owen (1846) 

and has been addressed by many great comparative anatomists since (23, 34–36), 

some have remained agnostic about the proposed homology, and some studies still 

propose that swimbladders and lungs are instead independent derivations of the 

posterior pharynx (37–40).  The point of contention for those who do not accept that 

swimbladders are modified lungs is often that lungs evaginate ventrally from the gut 

and swimbladders evolve dorsally, and to date there has been no data regarding a 

mechanism for this transposition.   Traditionally, it has been hypothesized that 

swimbladders evolved from lungs by the gradual migration of the point of evagination 

from ventral through several lateral intermediates (41–43), but this hypothesis is 

problematic.  To date, there have been no data generated to support this hypothesis, 
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and the taxa cited as potential examples of laterally budding morphological 

intermediates are not phylogenetic intermediates, but rather well nested within the 

Sarcopterygii (44) or Actinopteri (45).  Only recently have molecular developmental 

similarities between lungs and swimbladders begun to emerge (46–48) and add 

evidence to this historically controversial topic. 

 

III. CHAPTER 2: MOLECULAR HOMOLOGY & AIR-FILLED ORGANS 

The mouse lung is an important model for studies of human lung disease and 

development, and thus its morphology and developmental genetics have been 

extensively described and manipulated.  As such, dozens of genes have been 

implicated in its normal development (49–51).  This dissertation uses a candidate gene 

approach obtain a better understanding of swimbladder development in the zebrafish 

(Danio rerio) by applying our knowledge of tetrapod lung development.  Candidate 

genes were chosen specifically to address the question of structural homology, target 

similarities due to conservation and avoid detecting similarities due to co-option or 

convergence.  

 

Chapter two of this dissertation describes the expression of a lung-specific cassette of 

developmental regulatory genes (ChIN sensu Wagner (14)), including transcription 

factors (Nkx2.1 and FoxA2), secreted signaling molecules (Wnt7b) and proteins 

important in lung function (SP-A and SP-B).  The interactions between these gene 

products are well described in the tetrapod lung, and these genes are not co-expressed 

in any organ other than the lung (or any non-osteichthyan taxon) minimizing the 



 

 9 

possibility of similarity due to co-option or convergence.  I employed reverse-

transcriptase PCR, RNA in situ hybridization and whole mount immunohistochemistry 

to show that all candidate genes are expressed in the adult and developing zebrafish 

swimbladder, with some differences in the spatial and temporal expression relative to 

the mouse lung.  This conservation of gene expression is strong evidence that lungs 

and swimbladders are indeed homologous, and the differences in time and space 

provide promising insight into the mechanisms generating morphological differences 

between swimbladders and lungs.  Notable, is the relatively delayed expression of 

zebrafish Nkx2.1a and Nkx2.1b relative to AO developmental stage and the mouse 

homolog, Nkx2.1.  In mouse, Nkx2.1 is the first known marker of the lung primordium 

(52), where in zebrafish its homologs are not expressed until well after bud formation 

(53).  This result is particularly interesting given the phenotype of the mouse Nkx2.1 

null, which lacks tracheal septation and branching morphogenesis (54), both of which 

are reminiscent of normal swimbladder morphology.  It is tempting to hypothesize that 

the delay in Nkx2.1a and Nkx2.1b expression in zebrafish is at least partially 

responsible for this proposed phenocopy, and further functional studies of the role of 

Nkx2.1a and Nkx2.1b in swimbladder development will be needed to fully elucidate 

their roles. 

 

IV. CHAPTER 3:  FROM HOMOLOGY TO TRANSFORMATION 

After establishing that a core suite of developmental regulatory genes are shared 

between lungs and swimbladders, I again used a candidate gene approach to address a 

hypothesized developmental evolutionary mechanism of transformation from an 
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ancestral lung to a swimbladder.   Though lungs and swimbladders are structurally and 

functionally diverse, the one phenotypic characteristic that consistently defines the two 

morphologies is that lungs evaginate from the ventral endoderm during development 

while swimbladders evaginate dorsally.  The transformation from a ventral to dorsal 

evagination point has traditionally been difficult for comparative anatomists to 

reconcile with the traditional gradualist paradigm (37, 39, 41–43).  It has been 

hypothesized that either swimbladders and lungs were independent derivatives of the 

posterior pharynx (with lungs ancestrally budding ventrally and swimbladders 

ancestrally budding dorsally), or that a gradual change occurred through a series of 

morphological intermediates such as the condition seen in Neoceratodus and 

Erythrinus (42, 44, 45).  However, these morphological intermediates are not also 

phylogenetic intermediates, so to date no substantial evidence exists to support a 

mechanism of transformation from ventral to dorsal.   

 

The location of the mouse lung bud is specified by the mutually antagonistic 

expression of two transcription factors: Nkx2.1 and Sox2 (55).  As previously 

described, Nkx2.1 marks the point where the lung bud will emerge, and Sox2 is 

expressed in the dorsal region of the endoderm from the anterior endoderm through 

the mid-stomach region.  I asked whether the expression pattern of these two lung-bud 

specifying genes was inverted in the zebrafish relative to expression in mouse.  I found 

that Nkx2.1b was expressed dorsally at the point of evagination, and Sox2 was 

expressed throughout the ventral foregut in a reciprocal fashion.  My data are only the 

second known case of correlated genetic and morphological inversion, after the 
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inversion of the expression pattern of early patterning molecules to form the dorsal 

neurectoderm of chordates (56).  However, it was initially unclear whether this was a 

causal or connection between gene expression and structural position, or perhaps a 

correlation due to the inversion of another upstream patterning mechanism.  To 

address this question, I determined which of the two genes was most critical for organ 

specification. With the help of John Olthoff, we conducted functional experiments to 

determine the causal link between gene expression and structural position.   

 

Though it is clear that the actions of Sox2 and Nkx2.1 specify the lung bud location 

(55), it appears that it is actually Sox2 expression that antagonizes the formation of the 

bud, rather than Nkx2.1 expression allowing for its formation.  This theory is 

supported by the morphology of the mouse Nkx2.1 null. Even when Nkx2.1 is directly 

(54) or indirectly (55) knocked down, the lung bud still forms in the appropriate 

(ventral) location.  For this reason, it is likely that the absence of Sox2 not the presence 

of Nkx2.1 in the posterior pharynx specifies of the lung bud location.  To test this 

hypothesis, we injected single cell zebrafish embryos with a Sox2 morpholino (a 

modified oligonucleotide that binds to the Sox2 mRNA and represses its translation) to 

determine the effect of knocking down Sox2 expression on swimbladder development.  

What we found is that swimbladder development is profoundly effected by a reduction 

in Sox2 expression, and that the results are consistently abnormal and often results in a 

ventrally budding swimbladder; or rather, a lung.  Though the morphology (as 

illustrated by confocal microscopy and nano-CT) is compelling, morpholinos are 

notorious for causing abnormal development not directly correlated with the reduction 
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of a specific gene product.  We are currently conducting the necessary controls to 

support our hypothesis that in the absence of functional Sox2, the zebrafish 

swimbladder reverts to its ancestrally ventral state.   

 

IIV. FROM DANIO AND TO… 

The data collected for this dissertation add a long-overdue dimension to our 

understanding of the molecular development of fish swimbladders, the connection 

between structural and genetic homologies and non-homologies and the 

developmental-genetic changes required to generate a “novel” morphology.  I have 

shown that a unique and conserved suite of key lung developmental regulatory genes 

is also expressed in the proposed lung homolog, the swimbladder.  Though 

traditionally this would be a case of biological homology, because of my careful gene 

choice this suite of genes fits the criteria for the more modern and less problematic 

concepts of deep homology and character identity networks.  Though I did not 

describe the roles of these genes in swimbladder development, functional studies of 

their roles in mouse lung development suggest that these genes are excellent 

candidates for future studies elucidating the developmental mechanism for the 

morphological differences between lungs and swimbladders.  In particular, the delayed 

timing of Nkx2.1a and Nkx2.1b expression in in zebrafish and the morphology of the 

mouse Nkx2.1 null mutant suggests that these genes may have a role in determining 

the presence or absence of tracheal septation and branching morphogenesis.  The 

zebrafish expression pattern of Nkx2.1b also suggested that this gene could have a role 

in the transposition of an ancestrally ventral lung to a dorsal swimbladder via an 
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inversion of dorso-ventral patterning gene expression.  During my candidate gene 

study it was observed that a homolog of mouse Nkx2.1 (Danio Nkx2.1b) was 

expressed dorsally where its mouse homolog was expressed ventrally.  Given that 

Nkx2.1 and its antagonist Sox2 have been strongly implicated in the specification of 

the lung bud location in mouse, I examined the expression of Danio Sox2 was in the 

developing endoderm.  What I found was that not only was the expression of Nkx2.1b 

inverted relative to its mouse homolog, but also that Danio Sox2 was also inverted and 

expressed only in the ventral portion of the pharynx, thus providing us evidence not 

only of structural homology but of the mechanism of structural transposition.   

 

Taken as a whole, these data are strong evidence both of the structural homology of 

lungs and swimbladders, and provide a starting point for elucidating the 

developmental mechanisms that generated the morphological differences between 

lungs and swimbladders. 
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CHAPTER 2 
 

EXPRESSION OF A LUNG DEVELOPMENTAL CASSETTE IN THE ADULT 
AND DEVELOPING ZEBRAFISH SWIMBLADDER1 

Summary 
The presence of an air-filled organ (AO), either lungs or a swimbladder, is a defining 

character of the Osteichthyes (bony vertebrates, including tetrapods). Despite the 

functional and structural diversity of air-filled organs, it was not previously known 

whether the same group of developmental regulatory genes are involved in the early 

development of both lungs and swimbladders.  This study demonstrates that a suite of 

genes (Nkx2.1, FoxA2, Wnt7b, GATA6), previously reported to be co-expressed only 

in the tetrapod lung, is also co-expressed in the zebrafish swimbladder.  We document 

the expression pattern of these genes in the adult and developing zebrafish 

swimbladder and compare the expression patterns to those in the mouse lung. Early-

acting genes involved in endoderm specification are expressed in the same relative 

location and stage of AO development in both taxa (FoxA2 and GATA6), but the order 

of onset and location of expression are not completely conserved for the later acting 

genes (Nkx2.1 and Wnt7b). Co-expression of this suite of genes in both tetrapod lungs 

and swimbladders of ray-finned fishes is more likely due to common ancestry than 

independent co-option, because these genes are not known to be co-expressed 

anywhere except in the air-filled organs of Osteichthyes.  Any conserved gene product 

interactions may comprise a character identity network (ChIN) for the osteichthyan 

air-filled organ.  

                                                
1 Entire chapter previously published as: Cass AN, Servetnick MD & McCune AR (2013) 
Expression of a lung developmental cassette in the adult and developing zebrafish 
swimbladder. Evolution and Development 15(2): 119-132.  
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Introduction 
The study of gene expression patterns has given us new insight into the evolution and 

development of morphological novelty.  There has been great interest in the features 

that characterize large clades such as pentaradial symmetry of echinoderms  (57–59), 

limbs of tetrapods (5, 60, 61) or jaws of gnathostomes (62–64).  One important 

feature, or synapomorphy, of Osteichthyes (bony vertebrates, including tetrapods; 

sensu (22, 23, 65, 66) is the presence of an air-filled organ (AO) in the form of lungs 

or a swimbladder (22, 23).  The best-studied AO is the lung, but equally common 

among the nearly 55,000 living species (24) of Osteichthyes, particularly among the 

ray-finned fishes, is the swimbladder, which primarily functions in buoyancy 

regulation (67). 

 

Lungs and swimbladders have many functional, structural, and topographic 

similarities and have long been considered to be homologous (16, 34, 35).  An AO is 

clearly a lung if it evaginates from the ventral portion of the posterior pharynx, is 

bilaterally paired and serves a primarily respiratory function.  An AO is clearly a 

swimbladder if it evaginates from the dorsal portion of the posterior pharynx, is 

bilaterally unpaired and functions primarily in buoyancy regulation.  This is, however, 

a simplification, as both swimbladders and lungs are extremely diverse in both 

structure and function and there are many examples of AOs that fit neither of these 

descriptions perfectly. For example, snakes have only one lung (27) many ray-finned 

fishes have respiratory swimbladders  (28) and some ray-finned fishes even have 

paired swimbladders (26).  Given the diversity of form and function in the air-filled 
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organs, we suggest that the critical distinction between lungs and swimbladders is that 

lungs develop as a ventral evagination of the gut whereas swimbladders develop as a 

dorsal evagination.  Thus defined, all living fleshy-finned fishes (Sarcopterygii), 

including tetrapods, coelacanths (29), and lungfishes (Ceratodontidae: (44); 

Lepidosirenidae: (68)) have lungs or modified lungs and swimbladders are found only 

in a subgroup of ray-finned fishes, the Actinopteri (Figure 1). Because all 

sarcopterygians and the most basal lineage of actinopterygians (Polypteriformes) have 

paired ventral lungs (69), this is widely considered to be the ancestral condition for the 

Osteichthyes (22, 28, 70).  Though the extant sister group to the Osteichthyes, the 

Chondrichthyes (sharks, skates, rays and chimeras) shows no evidence of having or 

having had an AO, there is some fossil evidence that one member of an exinct basal 

lineage of jawed vertebrates (the placoderm fish, Bothreolepis canadensis) may have 

possessed diverticula of the pharynx with notable similarities to lungs (38, 71).   Due 

to the presence of these structures in only a single placoderm and their complete 

absence in the Chondrichthyes, the “lungs” of B. canadensis are likely due to 

convergence.  However, if these structures are in fact homologous to the osteichthian 

AO, it would have no impact on the proposed ancestral AO state or the homology of 

lungs and swimbladders, except to make the presence of an AO a synapomorphy for a 

more inclusive clade and suggest its loss in the Chondrichthyes.   
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Figure 1: Phylogeny of living groups of the Osteichthyes based on Stiassny et al. 
(2004) and Grande (2010).  Paired lungs have long been interpreted as a 
synapomorphy of the Osteichthyes (22, 23, 35, 112).  Swimbladders (SB) are a 
synapomorphy for the Actinopteri, the group of ray-finned fishes which includes 
teleosts but excludes Polypterus, the African bichir (as shown).  
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Despite the immense structural variation of AOs across taxa, most developmental 

genetic studies of AOs focus on the lungs of Mus musculus; the laboratory mouse, 

hereafter referred to as simply “mouse” (reviewed by (49, 51, 72)), with occasional 

forays into other tetrapod taxa (chicken: 73, 74). Relatively little is known about 

developmental genetics of swimbladders, even in the zebrafish, Danio rerio, except 

for cases in which gene expression in the swimbladder has been mentioned in passing 

by a study focused on another organ system (e.g. 75, 76). Several recent studies have 

directly examined the genetic basis of swimbladder development (46–48, 67).  

McCune and Carlson (67) found that wild zebrafish populations harbor dozens of 

different recessive alleles producing swimbladderless phenotypes, but did not identify 

the specific genes involved. Winata et al. (46) documented a critical role for hedgehog 

signaling in swimbladder development by examining the expression of several 

hedgehog signaling molecules and their receptors, as well as conducting functional 

studies to elucidate the mechanism of its involvement.  Teoh et al. (47) determined 

that Pbx1, a homeodomain transcription factor, is expressed in the developing 

zebrafish swimbladder mesoderm and is critical for swimbladder development, and 

Yin et al. (48) documented the importance of Wnt signaling in swimbladder 

development.  These studies serve as important contributions to understanding the 

roles of specific genes and signaling cascades in the developing Danio swimbladder. 

 

 Our study begins to address the degree of conservation of developmental regulatory 

mechanisms between swimbladders and lungs.  Though previously documented 

similarities in single, widely expressed genes (such as Shh and Pbx1) hint at the 
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possibility of common evolutionary origin of AOs, these individual similarities could 

alternatively be due to the common developmental origin of lungs and swimbladders 

as endodermal derivatives, to convergence, or even to repeated co-option of individual 

network components into their developmental program.  To distinguish similarity due 

to common ancestry from other possibilities (common developmental origin, 

convergence, and co-option), we investigated whether a suite of developmental 

regulatory genes, with known lung-specific network interactions, is expressed during 

swimbladder development.   Though functional studies are the only definitive test of 

conserved network relationships, the expression in the zebrafish swimbladder of a 

suite of gene products with known lung-specific network interactions is a necessary 

first step towards characterizing an AO-specific developmental cassette.  

 

Wagner (14) coined the term Character Identity Network (ChIN) to describe such 

organ-specific gene regulatory networks.  He proposed that underlying the 

development of homologous morphological characters is some subset of a gene 

regulatory network, with both conserved gene products and their interactions, which is 

also homologous and defines the “character identity” (e.g., lungness) of a particular 

morphology.  The presence of a conserved suite of interacting genes in the mouse lung 

and zebrafish swimbladder, but not in the endoderm from which they are 

developmentally derived, would be strong evidence that this suite constitutes a starting 

point for the identification of an AO-specific ChIN  

 

Dozens of genes have been implicated in early mouse lung development (reviewed in 



 

 25 

refs 49–51, 72).  We chose our candidate genes from this pool, based on two key 

criteria.  First, we sought genes with limited spatial expression outside of the lung 

endoderm.  Second, we chose genes involved in very early lung development (before 

mouse E9.5); at this stage, the developing swimbladder and lung appear most similar.  

Mouse Nkx2.1 (also known as TTF-1 or T/ebp), is a homeodomain transcription factor 

that fits both criteria.  Nkx2.1 is expressed in only two vertebrate organs in addition to 

the lung: the thyroid and telencephalon (52, 77, 78).   Since these three organs are 

regionally disjunct, it is easy to differentiate Nkx2.1 expression in the AO from its 

expression in either thyroid or brain.  Nkx2.1 is also the earliest known marker of the 

lung anlage in mouse (52).  Upstream signaling molecules that affect Nkx2.1 

transcription are expressed widely, and many are secreted from the surrounding 

mesoderm but not expressed in the lung primordium (46, 79, 80).  Though there is 

only one copy of Nkx2.1 in tetrapods, two paralogs have been identified in zebrafish 

(Nkx2.1a and Nkx2.1b), due to a whole-genome duplication in the lineage leading to 

teleost fishes (81, 82).  Because the sequence of both zebrafish paralogs has diverged 

(83), and the possibility of subfunctionalization, we examined the expression of both 

copies.   

 

We also include, in our comparison with mouse, new data regarding the expression of 

zebrafish Wnt7b, as well as data collected by previous studies on FoxA2 and GATA6, 

bringing the total to five zebrafish genes.  The mouse orthologs of these genes exhibit 

lung-specific interactions with Nkx2.1.  Nkx2.1 is known to upregulate Wnt7b 

expression (84), and is known to be upregulated by the mouse ortholog of FoxA2, also 
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known as HNF3β  and GATA6  (85) as well as to be subject to positive auto-regulation 

(85) and affected by the combinatorial or cooperative actions of these factors (86) 

(Figure 2).   

In mouse, this network is known to be upstream of surfactant proteins, A, B and C, 

coded by SP-A, SP-B and SP-C (87–89) (see Figure 2). Presence of surfactant proteins 

A and B has been demonstrated in the adult swimbladders of a taxonomically diverse 

array of fishes, including a close relative of zebrafish, the goldfish, Carassius auratus 

(39, 40, 90).  A BLAST search of the Danio rerio transcriptome returns no matches at 

either the RNA or protein level for surfactant protein C, so we have concluded that 

this gene is not present in the zebrafish genome and therefore have not attempted to 

include it here.  Other studies have found that surfactant proteins A and B are present 

FOXA2

GATA6

Nkx2.1 Wnt7b SP-A SP-B

Figure 2:  Simplified schematic of an early early lung-budding network in 
mouse based on results in the literature (84, 87–89, 113). Arrows indicate that 
there is positive regulation of one factor by another (not that factors are 
necessary for expression). No temporal information is implied by this figure 
(for order of expression, see Figure 7).  For a recent review of the expression 
and regulation of these genes see (51). 
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in the swimbladder during development, and are important for swimbladder inflation 

in some taxa (Anguilla rostrata (91) and Stizostedion vitreum (92)). Though initially it 

was unclear if this surfactant was expressed in swimbladder tissue or diffused from 

another structure. Prem et al. (93) showed that these surfactant proteins are in fact 

secreted from the gas gland cells of the adult swimbladder, in eels (Anguilla rostrata) 

and perch (Perca fluviatilis).  To date, there are no data regarding the expression of 

these proteins in the adult zebrafish or larval fishes of any kind.  We examined the 

expression of surfactant proteins A and B in developing zebrafish via 

immunohistochemical staining, and documented their expression patterns through our 

developmental window of interest.   This increases the size of our presumptive 

network to seven zebrafish genes (including both Nkx2.1a and Nkx2.1b, only one of 

which is present in mouse).  In mouse, the component genes of this network are co-

expressed only in the lung endoderm, and the network interactions are well 

documented in this tissue, making it a unique and lung-specific network.  

Materials and Methods 
Zebrafish culture   

Adult and larval wild-type zebrafish were maintained on a 14:10hr light:dark cycle at 

26°C in Aquatic Ecosystems re-circulating rack systems.  Adults were fed twice daily 

on cultured brine shrimp and bred according to standard conditions (94).  Eggs were 

collected at approximately one-hour post fertilization (hpf) and placed directly into 

mesh tubes in the re-circulating system.  Embryos and larvae were collected in 

subsequent 24-hour intervals and staged in days post fertilization (dpf). 
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Reverse transcriptase (RT)-PCR 

Gene specific PCR primers were designed based on published Danio rerio gene 

sequences (Table 1).  Primers specific for Nkx2.1a and Nkx2.1b were located in 

regions of divergent sequences between the two paralogs.  

TABLE 1:  PCR Primers 

Gene 

Name 

Accession 

Number 

Forward Primer Sequence (3’-5’) Reverse Primer Sequence (3’-5’) Product 

Size 

Nkx2.1a AF253054 CCGGGAATGGACGCCAG GTTCTGCCGTACAGCAGGTT 461bp 

Nkx2.1b AF321112 TTGGTAAAGGCATGGGTCC GGAACCATTGTCTTGTTGC 222bp 

FoxA2 BC086703 GCTACACTCATGCCAAGCCCCC CCCGGCTTATCCGGAGAGCGCGG 222bp 

Wnt7b XM_686786 ATCCCCGGCCTGGCCCCC GTCTCTGGCTCATGCACCAC 512bp 

 

Primers were tested and optimized on cDNA from whole 1dpf larvae, because all 

genes of interest are expressed in other organs at this stage (FoxA2 and Nkx2.1a: 

Wendl et al. 2007; Nkx2.1a and Nkx2.1b: Tessmar-Raible et al. 2007; Wnt7b: Viktorin 

et al. 2009).  cDNA was prepared using Superscript III Reverse Transcriptase 

(Invitrogen) according to the supplier’s protocol, from Trizol (Invitrogen)/Chloroform 

(Sigma-Aldrich) extracted total larval RNA.  Before reverse transcription, each RNA 

sample was treated with RQ1 DNAse (Promega) to eliminate genomic DNA 

contamination.  Controls lacking reverse-transcriptase verified that samples contained 

no genomic DNA (Figure 3B). Gel electrophoresis was used to verify that PCR 

products of the correct size were produced.  These products were extracted from the 

gel using the QIAquick Gel Extraction Kit (Qiagen) and sequenced by the Cornell 

University Core Life Sciences Center.  
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Preliminary RT-PCR was conducted on whole adult swimbladder samples.  We found 

that all candidate genes were expressed in this sample, as confirmed by gel extraction 

and sequencing.  To determine more precisely the distribution of gene transcripts in 

the adult Danio swimbladder, tissue samples were taken from three regions of the 

swimbladder: anterior lobe, posterior lobe and pneumatic duct (Figure 3).  RNA from 

whole brains was used as a positive control and tail epaxial muscle was sampled as a 

negative control.  Each sample was removed using a new, sterile surgical scalpel (to 

prevent cross-contamination of swimbladder regions) rinsed in deionized water (to 

remove any blood, peritoneal membrane or other contamination), flash frozen and 

stored at -80°C until Trizol extraction.  RNA concentration was standardized at 500ng 

per reverse-transcription reaction and PCR controls using previously developed 

zebrafish β-actin primers were conducted on templates to confirm that samples were 

of the same approximate cDNA concentration (Figure 3A). 

 

 

 

 

 

Figure 3: Three morphological regions of the adult zebrafish swimbladder.  The 
anterior lobe (aSB), posterior lobe (pSB) and pneumatic duct (PD) of the 
swimbladder were sampled and analyzed independently for gene expression by 
RT-PCR. 
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Whole-mount in situ hybridization 

RNA probes were synthesized by in vitro transcription (Ambion Maxiscript), 

containing digoxygenin-labelled UTP (Roche), from a plasmid template containing 

greater than 500 bases of each gene of interest via suppliers protocols. GATA6 

expression was not examined because its expression has previously been documented 

in zebrafish at 52 and 72hpf throughout the swimbladder (76).  In situ hybridization 

was conducted using the InSituProVS in situ hybridization robot (Intavis) using a 

standard mouse in situ hybridization protocol (95) with the following adaptations: 

Embryos were digested with Proteinase K (Invitrogen) at a concentration of 10mg/ml 

for 15 minutes at 37°C and additionally permeablized with a 20 minute incubation in 

RIPA (Radio-Immunoprecipitation Assay) buffer (Sigma-Aldrich).  Before the 

addition of probe, specimens were pre-hybridized with hybridization buffer containing 

100ug/ml yeast tRNA (Sigma-Aldrich) for 3 hours at 68°C.  Probe solution contained 

~10ug probe in 500ul hybridization buffer with 100ug/ml tRNA and an additional 

500ug/ml salmon sperm DNA.   Specimens were then treated with RNase cocktail 

(Invitrogen) and blocked in 5% Blocking Solution (Roche) in 1x maleic acid buffer 

(MAB).  Anti-digoxigenin-AP Fab fragments (Roche) were applied at a concentration 

of 1:5000 in 5% Roche Blocking Solution in MAB, washes were conducted in .2X 

SSC and stained at room temperature on a nutator using the BM Purple (Roche) 

alkaline phosphatase substrate for 24-96 hours, until expression domains were 

apparent but background remained low.  Negative controls with a sense-transcribed 

version of each probe template were also conducted to determine the level of 
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background staining in the absence of an anti-sense probe (results not shown).  Two 

rounds of in situ hybridization with ten replicates of each probe and stage combination 

were run with consistent results.   

 

Whole-mount in situ hybridizations were photographed, then two representatives of 

each probe and stage were embedded in low-melting point agar for sectioning.  

Sections were cut on a Micro-Cut H1200 vibrating microtome, one specimen at 50µm 

and one at 100µm.  Both section widths illustrated the same distribution of staining, 

but the 100µm were more easily interpretable and are therefore shown here (Figure 5).   

 

Immunohistochemistry 

Expression of surfactant proteins A and B was detected by immunohistochemistry 

instead of in situ hybridization, as previous studies have confirmed cross-reactivity of 

mammal derived polyclonal antibodies with surfactant proteins of fishes (Sullivan et 

al. 1997; Daniels et al. 2004).  Primary rabbit polyclonal antibodies to mature SP-A 

and SP-B were obtained from AbCam (ab40876 and ab87674).  Embryos were fixed 

as described for in situ hybridization, permeabilized with a .5% trypsin solution (in 

saturated sodium borate) followed by 20 minutes in acetone at -20°C then blocked and 

hybridized according to the Vector Labs ABC Elite Kit (PK-6100) and stained with 

Vectastain DAB peroxidase staining solution (SK-4100) with nickel enhancement 

until completely developed.  Two runs of ten individuals per primary antibody and 

stage combination were conducted to ensure reproducibility of results.   
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Interpretation of in situ hybridization results 

Comparing expression of genes in developing mouse lungs and the zebrafish 

swimbladder poses two challenges: the comparison of location in two morphologically 

very different structures, and the comparison of developmental timing in two 

organisms that develop at very different rates.  Though zebrafish swimbladder and 

tetrapod lung do not much resemble each other in adults, in their earliest stages of 

development they are more similar: a median tube connected to either a single lobed 

sac (in zebrafish) or two continuous lobes (in mouse).   In mouse, after the initial 

budding event, a septum forms between the trachea and esophagus.  Though there is 

no comparable event in swimbladder development (46), the overall structure of a 

simple tube and sac is the same in mouse and zebrafish.  

 

The second difficulty in comparing mouse and zebrafish morphology is in determining 

the posterior extent of expression of surfactant protein.  Though our other genes of 

interest are expressed only in the swimbladder bud and forward, both SP-A and SP-B 

were also expressed posterior to the location of the swimbladder bud.  Because the 

zebrafish lacks a stomach (96), it is difficult to define comparable locations along the 

endodermal axis between mouse and zebrafish.  Therefore, for the purposes of this 

study we have reported expression as either being anterior to the pneumatic duct, 

posterior to the pneumatic duct or in the swimbladder proper, without reference to the 

exact posterior extent of expression in the intestine.   

 

With regard to timing, we mapped the timing of gene expression onto a timeline of 
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AO developmental milestones that are common to all bony vertebrates: molecular 

specification of the AO endodermal domain (Mouse E9.0; Zebrafish >48hpf), 

formation of the AO bud (Mouse E9.5; Zebrafish 48-52hpf), AO elongation (Zebrafish 

3-4dpf, Mouse E9.5-10.5) and adult.  

Results 

 
RT-PCR of adult tissues  Reverse-transcriptase PCR analysis indicated that 

transcripts of Nkx2.1a, Nkx2.1b, Wnt7b and FoxA2 are present in whole adult 

zebrafish swimbladders (results not shown).  Examination of dissected regions of 

swimbladder – anterior lobe, posterior lobe, and pneumatic duct (Figure 3) – further 

indicated that these genes were expressed in all three morphological regions (Figure 

4).  

 

 

 

 

 

 

 

 

  

Figure 4: RT-PCR analysis of Nkx2.1a, Nkx2.1b, FoxA2 and Wnt7b expression 
in the three morphological regions of the adult zebrafish swimbladder. cDNA 
concentrations were standardized using a β-actin control (A), and absence of 
genomic DNA contamination was confirmed with a minus reverse-transcriptase 
control (B).  All four of these genes are expressed in varying intensities across 
the three swimbladder regions (aSB, anterior swimbladder lobe; pSB, posterior 
swimbladder lobe; PD, pneumatic duct). 
 

A. Postive control      B. Negative Control

C. Nkx2.1a                 D. Nkx2.1b

E. FoxA2                 F. Wnt7b

   PD    aSB   pSB   PD     aSB    pSB

     PD     aSB    pSB    PD   aSB   pSB

   PD    aSB     pSB   PD     aSB     pSB
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Whole-mount in situ hybridization of larval stages 

In situ hybridization of larvae at 3dpf and 4dpf was used to characterize the onset and 

location of expression throughout early swimbladder development (Figure 5).  We 

began our developmental series at 3dpf, the stage at which the swimbladder bud 

begins to evaginate and stopped at 4dpf because in situ hybridization of older embryos 

is problematic, due to difficulty permeablizing the tissue without loss of integrity.  

Additionally, in these larvae it is difficult to conclude whether lack of staining in these 

older embryos indicates lack of expression or inadequate digestion and reagent 

penetration.  

 

The earliest detected gene product was FoxA2, which was already strongly expressed 

in the brain and throughout the anterior pharynx at 3dpf (Figure 5).  This result was 

expected, based on the reports of Field et al. (75), that FoxA2 is expressed in the 

developing anterior pharynx spanning the region that forms the AO bud from as early 

as 24hpf, and Cheng et al. (97), who showed that it is expressed in the primitive 

endoderm from 8hpf.   In our experiments, FoxA2 expression did not change between 

3dpf and 4dpf except to expand into newly developed tissue, including the emerging 

swimbladder and liver as the endodermal organs matured (Figure 5).  
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 Figure 5:  In situ hybridization results for Nkx2.1a, Nkx2.1b, FoxA2 and Wnt7b at 3 
and 4dpf.    Gene names are indicated in rows, with developmental time points in 
columns.  The intersection of a given row and column shows expression of a single 
gene at a single time.  Results are shown both as whole mounts with anterior facing 
left (left two panes) and in transverse section (right two panes) through the 
evaginating swimbladder (100µm sections taken between 500 and 600 µm from the 
anterior of the specimen). Green arrows indicate expression in the swimbladder bud.  
Red arrows indicate expression in the posterior pharynx surrounding the 
swimbladder bud.  Yellow asterisks indicate expression in regions of the brain, 
which serves as a positive control for all genes of interest.  Blue asterisks indicate 
expression of Nkx2.1a and Nkx2.1b in the developing thyroid.  Note that there is no 
expression of Nkx2.1a or Nkx2.1b at 3dpf, but both are expressed by 4dpf.  Wnt7b 
and FoxA2 are already expressed at 3dpf, when the swimbladder first begins to 
develop.  
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In zebrafish, other studies have shown that Wnt7b expression in regions of the brain 

begins around 1dpf (98).  Other regions of Wnt7b expression in zebrafish have not 

been previously described.  We identified an additional Wnt7b expression domain in 

the developing swimbladder and the adjoining pharyngeal endoderm at 3dpf persisting 

through 4dpf (Figure 5), and spreading distally to the emerging swimbladder some 

time between 5dpf and adulthood  (Figure 4B).   

 

Nkx2.1a expression begins at 4dpf throughout the developing AO and the pharyngeal 

endoderm surrounding the region of evagination (Figure 5).  Nkx2.1b was also 

expressed at 4dpf but, like early Wnt7b expression, it was restricted to the evaginating 

swimbladder and was not expressed throughout the pharyngeal endoderm (Figure 5).  

 

Immunohistochemistry of larval stages 

Expression of surfactant proteins A and B was characterized in both the gut and 

swimbladder from 3 to 7dpf.  Though RNA in situ hybridization was not consistent 

after 4dpf, IHC staining remained reliable through 7dpf; for this reason and because of 

the anticipated late onset of swimbladder surfactant protein expression, we extended 

our window of interest for SP-A and SP-B expression.  Both proteins were expressed 

in the gut immediately posterior to the pharynx, and to variable extents in the foregut 

and midgut from prior to 3dpf.  SP-A was strongly expressed in the gut adjacent and 

posterior to the swimbladder bud from 3dpf (Figure 6), but only present transiently in 

the swimbladder itself.  SP-A was present at low-levels in the swimbladder before 

3dpf, absent at 4dpf and weakly present at 7dpf (Figure 6) raising the possibility that 
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its presence is due to diffusion from the gut, rather than expression in swimbladder 

tissue (see discussion).  SP-B was also expressed strongly in the gut starting 3dpf, with 

continued though restricted expression in the foregut through 7dpf, but not in the 

swimbladder at least as late as 7dpf.   Given that both SP-A and SP-B are universally 

present in the adults of a taxonomically comprehensive sampling of fishes (40, 90) it is 

assumed that both are present in the adult zebrafish swimbladder, but our data show 

that there is only light and/or transient expression before 7dpf.   

 

 

Discussion 

All early lung-budding genes studied were expressed throughout the adult 

swimbladder, but their times of expression initiation varied, and their spatial 

S
P

-A
S

P
-B

3 dpf 4 dpf 7 dpf

Figure 6: Immunohistochemistry results for SP-A and SP-B from 3 to 7dpf.  Results 
are shown as whole mounts, with anterior at left and posterior at right.  Location of 
the gut is indicated with red arrows, where the swimbladder is indicated with green 
arrows.  Note that SP-A is expressed in the gut surrounding the swimbladder bud at 
3dpf and expands posteriorly thereafter with light and transient presence in the 
swimbladder.  SP-B is also expressed in the gut surrounding the swimbladder at 
3dpf and extends posteriorly later in development, but is never detected in the 
swimbladder proper.   
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expression patterns changed through the course of ontogeny.  The expression patterns 

of early acting (and upstream, at least in mouse) gene products, FoxA2 and GATA6, 

were identical during the developmental window of interest for the lung in mouse and 

the swimbladder in zebrafish.  Later-acting (and downstream, at least in mouse) gene 

products, Nkx2.1a, Nkx2.1b and Wnt7b, showed marked differences in both the timing 

and location of expression between these two taxa.  Expression of SP-A and SP-B 

appears to be consistent with data from mouse, though further analysis of older larvae 

will be necessary to pinpoint the time of expression onset in the swimbladder.  We 

interpret all of these observations as being consistent with a common origin for lungs 

and swimbladders, in which early steps are conserved in time and space, while later 

steps – although still conserved – reflect divergence in the pattern and timing of gene 

expression.   

 

Comparison of zebrafish and mouse gene expression data 

Conservation of FoxA2 and GATA6 Expression 

Our FoxA2 expression data are consistent with both the literature on mouse lung 

development and a previous report of FoxA2 expression in the swimbladder (75).  

FoxA2 expression was observed from the earliest zebrafish stage we examined (3dpf) 

in the brain and pharynx and continued throughout the foregut endoderm and in the 

proximal and distal regions of the swimbladder as they developed.  It is also expressed 

throughout the adult swimbladder (Figure 4E), which is similar to its reported 

expression pattern during mouse lung development (79) (see Figure 7). 

Based on previously published literature, the pattern of GATA6 expression also 



 

 39 

appears to be conserved between mouse and zebrafish. GATA6 is expressed in the 

primitive endoderm of both mouse (99) and zebrafish (73) embryos, and expands into 

the growing AO shortly after budding; zebrafish at 52hpf (76) and mouse E12.5 (100).  

A low level of expression in the lung endoderm is also present in the adult. 

 

This conservation is not unexpected given the critical roles of these genes in early 

endoderm specification and their expression in many endodermal derivatives, but is 

also important given the lung-specific interactions of FoxA2 and GATA6 with our 

other candidate genes.  It is the expression of all candidate genes, taken together, in 

the developing swimbladder that suggests these lung-specific network interactions are 

conserved in zebrafish.   

 

Divergence of Wnt7b and Nkx2.1 Expression  

The spatial and temporal expression patterns of Wnt7b and Nkx2.1 in the developing 

AO are clearly different between mouse and zebrafish.  The onset of mouse lung 

Wnt7b expression has not been published, but its null phenotype is apparent at least by 

E10.5 (101).   At E11.5 Wnt7b is expressed throughout the lung endoderm, becoming 

more highly expressed in the distal tips and eventually becoming distally restricted to 

the points of highest cell proliferation in the post-natal lung (84).  Consistent with this 

restricted expression pattern, Wnt7b has been shown to function primarily in 

stimulating the proliferation of both lung epithelium and mesenchyme, with null 

mutants showing normally patterned but markedly hypomorphic lungs (102).  In 

zebrafish, Wnt7b expression begins by 3dpf, where it is expressed throughout the 
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pharyngeal endoderm at the point of swimbladder budding.  By 4dpf the expression 

becomes localized to the evaginating swimbladder bud (Figure 5) and it is expressed 

throughout the adult swimbladder, never becoming restricted (Figure 4).  It is worth 

noting that a similar expression pattern was noted in the homogeneous expression of 

Shha in the developing swimbladder relative to the distally restricted pattern of its 

mouse homolog, Shh(46).  As both genes are expressed in the lung epithelium and 

critical for mesenchymal proliferation in lung(103), their coordinated shift in 

expression in swimbladder relative to that in lung may indicate that the gene 

regulatory network containing both of these gene products and underlying lung 

mesenchymal proliferation is also conserved between mouse lung and the zebrafish 

swimbladder.   

 

In mouse, Nkx2.1 is the earliest known genetic marker of the region of the primitive 

endoderm that will form the lung. In the zebrafish swimbladder this is not the case.  

Neither Nkx2.1a nor Nkx2.1b is expressed before the initial swimbladder budding 

event.  Further, like Wnt7b, neither copy of Nkx2.1 becomes distally restricted like its 

mouse homolog.  Rather, all three genes remain expressed throughout the adult 

swimbladder.  

 

Expression of both Nkx2.1a and Nkx2.1b in the swimbladder is likely due to the 

expression of an Nkx2.1 homolog in the AO of the common ancestor of mouse and 

zebrafish and subsequent duplication of Nkx2.1 during the whole genome duplication 

that occurred in the ray-finned fish lineage leading to teleosts (including zebrafish).  
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Though Nkx2.1 is expressed very early in mouse lung development, its role in early 

development is poorly understood and it is apparently not required for the early events 

in lung bud specification.  Nkx2.1 null mice do develop lungs, but these lungs are 

rudimentary and suffer three primary defects(54).  First, they fail to develop a trachea 

separate from the esophagus (a condition termed tracheoesophageal fistula).  Second, 

lung branching morphogenesis is greatly reduced.  Third, the lungs of Nkx2.1 null 

mice do not express surfactant proteins.  The first two of these deficiencies are 

apparent relatively early in mouse lung development (between E10 and E11), and are 

reminiscent of the normal condition during zebrafish development—zebrafish neither 

develop a trachea nor do they undergo branching morphogenesis.  Nkx2.1a and 

Nkx2.1b are not expressed during the period of swimbladder development that 

corresponds to E10-E11 (approximately 3-4dpf), and this delayed expression may be 

at least partially responsible for the similarity between the mouse-null and the 

zebrafish wild-type phenotype.  The third deficiency seen in the mouse Nkx2.1 null is 

the lack of surfactant expression, but this does not become evident until E20.  

 

In addition to differences in the timing of Nkx2.1 expression in the AO of zebrafish 

and mouse, the spatial expression is also divergent between species and between 

paralogs. Nkx2.1a is expressed throughout the pharyngeal endoderm at the point of 

swimbladder evagination from its time of initiation. Nkx2.1b is expressed only in the 

evaginating bud and not in the surrounding pharyngeal endoderm.  Whether this is 

indicative of some sub- or neo-functionalization of these gene copies or simply change 

allowed by redundancy remains to be determined.   
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In mouse, Nkx2.1 is expressed before Wnt7b during lung budding, and Nkx2.1 has 

been shown to activate Wnt7b expression in vitro (84).  However, we detected 

expression of Wnt7b before we detected expression of either copy of Nkx2.1 in the 

developing zebrafish swimbladder.  It is possible that during early swimbladder 

development Nkx2.1 is expressed at a level that is undetectable by whole mount in situ 

hybridization but sufficient to activate Wnt7b transcription.  It is also possible that 

Wnt7b expression is initiated before Nkx2.1, and therefore activated by another 

upstream factor.   

 

Several other factors, including GATA6 and FoxA2, have been shown to bind 

independently to, and activate, the Wnt7b promoter in mouse (84).   Both FoxA2 and 

GATA6 are expressed in the zebrafish swimbladder before Nkx2.1 (see Figure 6) 

making them candidates for regulating the AO expression of GATA6 in this species 

(see Figure 3).   

 

Surfactant protein expression 

Expression of SP-A and SP-B were examined from 3 to 7dpf, and neither was strongly 

expressed in the developing zebrafish swimbladder at any time during this window.  

Some SP-A may be present in the swimbladder, but it was minimal and/or transient 

(Figure 6).  However, both SP-A and SP-B were detected to varying extents in the 

developing gut from 3 to 7dpf.  This is consistent with expression in the developing 

mouse lung, where surfactant proteins are not expressed until very late (E20) in 



 

 43 

development (104) and where surfactant-like particles in the gut contain both SP-A 

and SP-B (105, 106).  

 

From these results we suggest that SP-A and SP-B expression is not necessary for 

swimbladder inflation in zebrafish, as this occurs around 4-5dpf (94) when neither is 

actively expressed in the swimbladder. It has previously been shown that the presence 

of a surfactant layer is necessary for inflation in other fish species (91, 92), but it is 

unclear if the critical component is the surfactant proteins proper or their complex 

surrounding phospholipid matrix (90). Though we examined the presence of SP-A and 

SP-B, we did not look for the presence of other components of this mixture.  

Considering the late onset of surfactant expression in zebrafish, it may be that other 

components of this surfactant mixture are present earlier in development.   

 

Interestingly, the only swimbladder tissue known to actively secrete surfactant 

proteins is mature gas-gland tissue (93), the primary function of which is secreting 

oxygen to the swimbladder lumen for buoyancy regulation. For the fishes that lack a 

gas-gland, it has been suggested that surfactant proteins diffuse into the swimbladder 

from the adjoining gut tissue (92). It appears that zebrafish lack a gas-gland or that it is 

very poorly developed (107), so it may be that diffusion from the gut is the only 

source of surfactant proteins in the zebrafish swimbladder. Diffusion from the gut 

rather than expression in swimbladder tissue would explain the transient presence of 

SP-A and lack of SP-B in the swimbladder (Figure 6). 
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An interesting corollary of these results is that, despite the relatively delayed onset 

time of Nkx2.1a and Nkx2.1b in zebrafish (4dpf), SP-A and SP-B are still expressed 

considerably after (Figure 7).  Due to the absence of SP-A and SP-B expression in 

mouse Nkx2.1 null mutants (54), we expected that surfactant protein expression in 

zebrafish would be initiated after Nkx2.1 (if at all).  This further supports our 

hypothesis that the mouse Nkx2.1 -/- lung phenotype is a phenocopy of the 

swimbladder condition, with a lack of branching and tracheal septation. Our results 

suggest that Nkx2.1 in zebrafish does not in specify the AO domain in the primitive 

endoderm, but rather initiates downstream expression of SP-A and SP-B or serves no 

critical function in the swimbladder of this species.  

 

The lack of SP expression during inflation of the swimbladder raises the question of 

what function, if any, surfactant proteins serve in the zebrafish swimbladder. In 

mouse, surfactants are critical for proper gas exchange, inhibition of lung wall 

adhesion upon expiration of gas and have a role in innate immunity (108, 109).  In 

zebrafish, gas exchange for respiration does not occur through the swimbladder, and 

once inflated the swimbladder remains so; neither respiration nor collapse prevention 

seems likely.  However, it is possible that surfactant proteins are in fact important in 

inflation, but that they are simply supplied by diffusion from the adjoining gut and not 

from expression within the swimbladder.  This hypothesis is consistent with the 

apparent transient expression of SP-A in the zebrafish swimbladder at 3 and 7dpf 

(Figure 7).  As surfactant proteins have been strongly implicated in innate immunity, 

this would be another logical functional prediction.  It is also possible that surfactant 



 

 45 

proteins assist with the exchange of gases with the bloodstream for buoyancy 

regulation in adults.  Or it is even possible that SP expression in the AO is primitive 

(along with lungs) for Osteichthyes and it has been lost in fishes with non-respiratory 

AOs 
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Figure 7: Timing of expression of candidate genes in mouse (A) and zebrafish (B).  
FoxA2 and GATA6 expression times are both expressed from early specification of 
the AO domain through adult in both mouse and zebrafish but divergent during 
very early development; they are expressed from early endoderm specification.  
Nkx2.1 and Wnt7b expression differs during our period of interest.  Expression of 
both Nkx2.1a and Nkx2.1b in zebrafish is initiated much later in morphological 
development than its mouse homolog. Wnt7b expression is also initiated later in 
zebrafish than mouse, though the time of onset of mouse Wnt7b expression has not 
been documented (indicated by dashed line) so the relative order of Nkx2.1 and 
Wnt7b expression initiation may be the same in zebrafish and mouse (73, 75, 76, 
97, 99, 100, 114, 115).   Surfactant proteins A and B are not expressed in zebrafish 
swimbladder at least up to 7dpf and may only diffuse into the swimbladder from 
the gut (see text).  
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Implications for evolution 

Functional studies and documentation of the onset of Wnt7b expression in mouse and 

Nkx2.1 in both mouse and zebrafish will yield important insight into the extent to 

which gene expression and interactions are conserved between the AOs of these two 

taxa.  Demonstration that network interactions are conserved between mouse and 

zebrafish would strengthen the hypothesis that similarities in AO gene expression 

patterns are due to common ancestry, that is, the networks themselves are homologous 

(7).  However, differences in the network interactions do not necessarily weaken the 

hypothesis of common ancestry.  The lineages leading to mouse and zebrafish have 

been evolving independently since at least the late Silurian (Janvier 1996), 

approximately 400 million years ago.  Each has been on its own morphological and 

genetic trajectory, and considerable divergence is to be expected. Because our 

candidate genes are not co-expressed outside of the osteichthyan AO, and Nkx2.1 is 

involved in so few developmental processes, it is most likely that its expression in 

both the mouse lung and zebrafish swimbladder is due to their common origin as AOs. 

 

Without further comparative data, the ancestral condition of the AO network cannot be 

inferred.  Some might argue that the swimbladder must be primitive because it is 

found in a fish, and the swimbladder lacks the (presumably derived) tracheal septation 

and branching morphogenesis seen in modern mammalian lungs.  However intuitive 

this might seem, it is equally likely that the mouse expression pattern is primitive, 

because ventral paired lungs are primitive for the Osteichthyes (bony vertebrates 

including both tetrapods and ray-finned fishes) and most tetrapods retain this ancestral 
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morphology.  A third possibility, that both the lineage leading to mouse and the 

lineage leading to zebrafish have independently diverged from the ancestral state, is 

most likely.  There is no reason to expect that even homologous structures will have a 

completely conserved patterning mechanism or that one or another extant species will 

have retained all elements of the ancestral network.  Many studies of homologous 

structures in different taxa have borne this out, most famously, the case of insect 

segmentation.  Insect segments are unquestionably homologous, but they are 

underwritten by both conserved and very divergent gene regulatory mechanisms (Patel 

et al. 1992; Dawes et al. 1994).  Though we attempted to increase the possibility of 

identifying conserved elements by examining genes expressed during AO budding and 

not during the formation of teleost- or tetrapod-specific structures, there is no a priori 

reason to expect that this portion of the developmental pathway should be more 

conserved than any other.  

 

There is no test that can rule out co-option and convergence completely, but further 

studies can provide evidence for or against our hypothesis that the AO and its 

underlying developmental regulatory network are similar due to common ancestry.  

First, the network interactions of these gene products must be determined in zebrafish.  

When reconstructing phylogenies, complex characters are traditionally believed to be 

more reliable than simple ones because identical complexes are thought less likely to 

originate twice.  A gene regulatory network is a much more complex character than a 

collection of gene products, and the same network is not likely to have been assembled 

convergently multiple times (14). Co-option of the network as a whole from a 
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previous function is conceivable, but since this network has not been identified outside 

of the osteichthyan AO, it appears unlikely to have been co-opted as a unit from any 

other developmental process.  However, surveys of gene expression in non-

osteichthyan vertebrates are rare, and we would not know if the network was present 

in a non-osteichthyan fish and co-opted from a function subsequently lost in 

osteichthyans. This possibility can only be diminished by a broader phylogenetic 

survey of gene expression in basal osteichthyan and non-osteichthyan vertebrates.  If 

these genes are not co-expressed anywhere in a non-osteichthyan, then the network 

can be considered a molecular synapomorphy or homology sensu (7, 8, 110) of the 

Osteichthyes (bony vertebrates). 

 

If the same cassette of genes is conserved across (homologous for all) Osteichthyes 

and this cassette is only found in lungs and swimbladders, then the unique association 

of the network with osteichthyan AOs supports the idea that lungs and swimbladders 

are the same organ; that is, lungs and swimbladders have the same character 

identity(14).  This is further evidence, in addition to classical morphology, that the 

swimbladder is a modified lung, that is, they are transformational homologues(7).   

We suggest that that the presence of mouse lung network genes in the zebrafish 

swimbladder makes this network a candidate ChIN for the osteichthyan AO.   

 

Conclusions 

A suite of genes, previously known to be co-expressed only in the tetrapod lung, is 

also co-expressed in the zebrafish swimbladder.  For two genes, both involved in the 
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development of the primitive foregut, the timing and location of expression are 

conserved (FoxA2 and GATA6).  Three other genes (Nkx2.1a, Nkx2.1b and Wnt7b) are 

expressed at different times in development and in different sub-regions of the AO. 

However, the order of activation of these five genes may be the same and we have 

speculated on how the functions of these gene products may also be conserved.   
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CHAPTER 3 

THE EVOLUTION OF A DORSAL SWIMBLADDER FROM VENTRAL LUNGS 
INVOLVED DORSO-VENTRAL INVERSION OF REGULATORY GENE 

EXPRESSION2 

 
Abstract 

A central problem of evolutionary biology is to decipher the genetic 

mechanisms that create novel adaptive features characterizing major groups of 

organisms.  New features are always modifications of existing features and thus it is 

important to identify the antecedents of novelties as well as expose the genetic 

underpinnings of their transformation. One poorly understood transformation is how 

the developing lungs of bony vertebrates were modified to develop as a swimbladder.  

While lungs and swimbladders have been considered homologous by most 

comparative morphologists since the mid 1800s, a major challenge to that view has 

been that lungs evaginate ventrally from the developing gut tube, while swimbladders 

evaginate dorsally. We asked whether the expression pattern of two lung genes, the 

dorsal-ventral patterning transcription factors Sox2 and Nkx2.1, is conserved in the 

developing zebrafish swimbladder.  We show that the dorsal-ventral expression 

pattern of these two mutually regulating genes is inverted in zebrafish swimbladder 

relative to mouse lung.  Our data support the hypothesis that swimbladders are 

modified lungs, and that modification is linked to the inverted expression of Sox2 and 

Nkx2.1.  Our study addresses a fundamental question in vertebrate evolution, and 

begins to illuminate the mechanism underlying this critical innovation of nearly half 

                                                
2 In revision for the Proceedings of the National Academy of Sciences under the chapter title 
(authors: Cass, AN, JC Olthoff, & AR McCune). 



 

 61 

the vertebrates.  This is the second known case of dorsal-ventral inversion of gene 

expression associated with a major evolutionary novelty, the other being the inversion 

from a ventral to dorsal neurectoderm in the chordate ancestor and the underlying 

inversion of body-axis patterning genes. 

 

Introduction 

A fundamental goal of evolutionary biology is to understand how novel traits 

originate. To fully address this question, biologists must identify both the 

morphological antecedent of the novel structure and the developmental genetic 

differences that produce a new phenotype.  An important morphological innovation 

that defines most of the 24,000 species of ray-finned fishes  (1) is the swimbladder.  

Swimbladders are surprisingly diverse in structure and function, having been 

repeatedly co-opted and reshaped for an impressive array of roles in respiration, 

hearing, sound production, and buoyancy, making them critical to the ecology, 

physiology and daily life of the majority fishes  (2-5).  

 Swimbladders have many developmental, morphological and functional 

similarities to tetrapod lungs.  These similarities led early comparative anatomists to 

propose that the respiratory swimbladder was a transitional form between gill-

breathing fishes and air-breathing tetrapods  (6, 7).  Intuitive as this progression may 

seem, most modern comparative anatomists accept that swimbladders are actually 

derived from lungs, not the reverse (2, 8-10) (Figure 1). While swimbladders and 

lungs have convergently evolved a number of anatomical and functional 

characteristics (i.e. bilateral pairing  (3) and gas-exchange  (2)), the dorsal shift of the 
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pneumatic duct connecting the swimbladder to the gut has occurred only once (Figure 

1).  Swimbladders always bud from the dorsal endoderm while lungs always bud from 

the ventral endoderm. This difference has led some to question whether swimbladders 

and lungs are the same organ, or rather independent derivations of the posterior 

pharynx  (11-13).  

  

Figure 1: Phylogeny of living groups of Osteichthyes (bony vertebrates) showing 
distribution of lungs and swimbladders and the position of their gut connection. Phylogeny 
after Stiassny et al. (36) and Grande (37). Ventral lungs have long been interpreted as a 
character defining the Osteichthyes (3, 38); the origin of ventral budding lungs is marked 
by the blue bar. Nested within the Osteichthyes, the origin of the dorsal swimbladder 
phenotype is marked by a red bar. The Actinopteri, the sub-group of ray-finned fishes that 
have swimbladders, are bracketed in red. Historically, it has been hypothesized that the 
transformation from ventral to dorsal occurred through a series of laterally budding 
intermediates, such as seen in Neoceratodus (20), the Australian lungfish and Hoplias (20), 
a South American characiform fish, indicated in green. However, the phylogenetic position 
of these two taxa makes it clear that they are not intermediates, but rather have secondary 
modifications of either the lung or swimbladder condition. Figure modified from (16). 
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Recent molecular genetic data from tetrapod and fish model organisms (mouse and 

zebrafish) have shown that the development of lungs and swimbladders are regulated by 

shared signaling cascades  (14, 15), and a core set of developmental regulatory genes that are 

co-expressed in no other organ  (16), supporting the hypothesis that swimbladders are the 

same organ.  However, to date there have been no insights into the mechanism that might 

transform a ventral lung into a dorsal swimbladder.  Here we present gene expression data 

suggesting that an inversion of dorso-ventral patterning gene expression underlies the 

structural inversion of ventral lungs to a dorsal swimbladder.   

 
Genetics of foregut patterning 

The vertebrate foregut is patterned along both anterior-posterior and dorsal-

ventral axes (17, 18). During early organogenesis in tetrapods, as exemplified by the 

mouse, the lung evaginates ventrally from the anterior primitive gut tube, whereas the 

dorsal portion takes on an esophageal fate.  Throughout the anterior foregut, the SRY-

related HMG box transcription factor Sox2 is expressed.  Within this Sox2 expression 

domain, additional regionalizing transcription factors mark foregut organ domains.  

The first molecular marker of the lung bud location is Nkx2.1 (also known as TTF-1 or 

T/EBP), a homeodomain transcription factor expressed only in the lung, thyroid and 

regions of the forebrain (19). Nkx2.1 expression is restricted to the ventral foregut, and 

Sox2 is expressed most highly in the dorsal foregut (20, 21).  The upstream 

mechanisms responsible for establishing this pattern are not fully understood, but are 

known to include regulation by signaling molecules secreted from the surrounding 

mesenchyme (17).  Specifically, BMP4 is expressed in the region surrounding the 

ventral foregut, and represses Sox2 expression in this area, where noggin represses 
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BMP4 dorsally and allows Sox2 expression to persist (17, 21).  Mouse conditional 

knockdowns of BMP type 1 receptor genes lead to an expanded Sox2 domain, a lack 

of Nkx2.1 expression, tracheal agenesis and a ventral re-specification of the 

presumptive lung bud tissue to a dorsal esophageal fate  (20).  Once expressed, Sox2 

and Nkx2.1 mutually antagonize each other and maintain regional polarity  (22).  Sox2 

is expressed throughout the pharynx to the mid-stomach where its expression is 

antagonized by Cdx2 (18) and surrounding mesenchyme (23). 

In zebrafish (Danio rerio) pattern formation in the foregut and specification of 

several major endodermal derivatives, liver, pancreas and thyroid has been studied 

(24) and expression of genes marking the organ domains is largely conserved with 

mouse.  For example, Sox2 expression in zebrafish is posteriorly restricted by 

expression of another Cdx transcription factor, Cdx1b (25).  However, as in tetrapods, 

the upstream signaling molecules initiating these processes remain poorly understood, 

as are the genetic mechanisms specifying the location and identity of the swimbladder.  

Given the role of Nkx2.1 and Sox2 interaction in D-V patterning of the mouse 

foregut, and the dorsal expression pattern of zebrafish Nkx2.1b, inverted relative to 

mouse Nkx2.1 (16), we hypothesized that expression of Sox2 in the zebrafish foregut 

might also be inverted at the point of swimbladder budding, demonstrating 

conservation of the site of evagination relative to the expression of these two 

important D-V patterning genes.  

 

Results 

Two copies of Nkx2.1 exist in zebrafish, Nkx2.1a and Nkx2.1b.  We examined 
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the expression pattern of both in a previous study (16). We showed that endodermal 

expression of Nkx2.1b posterior to the gill arches is restricted to the developing 

swimbladder bud starting at 4dpf (Figure 2) and that Nkx2.1a is expressed at the point 

of swimbladder evagination, but its distribution differed from Nkx2.1b. Whereas 

Nkx2.1b expression was restricted to the swimbladder bud, Nkx2.1a was expressed 

dorsally in the developing swimbladder, as well as in the ventral and lateral regions of 

the gut tube around the point of evagination (Figure 2). Endodermal expression of 

Nkx2.1a also does not begin until 4dpf (16).  

Here, we examined the expression of Sox2 in zebrafish because in mouse, Sox2 

antagonizes Nkx2.1.  Sox2 was detected in the pharyngeal endoderm from the posterior 

buccal cavity extending posteriorly to the point of swimbladder evagination.  

Expression throughout the dorsal and ventral endoderm was evident at 2dpf when we 

began sampling.  As development progressed, Sox2 expression became restricted 

ventrally approaching the position of the swimbladder bud; this restriction was most 

noticeable between 2.5 and 3dpf (Figure 2).  Sox2 expression is reciprocal to that of 

Nkx2.1b, grading from greatest expression directly opposite Nkx2.1b expression to 

least expression overlapping with Nkx2.1b and swimbladder bud (Figure 2).  
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Discussion  

Our results show conservation of the spatial relationship between the site of 

evagination, the expression pattern of an Nkx2.1, and its antagonist Sox2 (Figure 3).  

In tetrapods, Nkx2.1 is the earliest known marker of the lung primordium, and its 

expression is restricted to the ventral portion of the gut tube where the bud will form.   

In zebrafish, Nkx2.1b is expressed at the dorsal site of swimbladder evagination, 

though its expression is not initiated until after budding (16). The tetrapod lung and 

Nkx2.1 expression domain are positioned ventrally on the gut tube.  In zebrafish, both 

Figure 2: Whole mount in situ hybridization of zebrafish embryos show dorsal 
expression of Nkx2.1b and ventral expression of Sox2. Panels at left show samples in 
whole-mount lateral view. Panels at right show the same specimens in 100um 
transverse sections from the posterior pharynx of the larva.  Solid arrows indicate 
expression; dashed arrows indicate lack of expression. Nkx2.1a patterns are indicated 
in black, Nkx2.1b patterns are indicated in pink and Sox2 patterns are indicated in 
yellow (color coding continued in Figure 3). At 4dpf, Nkx2.1a is expressed in the 
dorsally developing swimbladder as well as the ventral and lateral regions of the gut 
tube around the point of evagination.  At this same time, Nkx2.1b expression is 
localized dorsally to the point of evagination.  Expression data for Nkx2.1a and 
Nkx2.1b reprinted from (16). 
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Figure 2: Whole mount in situ hybridization of zebrafish embryos show dorsal expression of Nkx2.1b 
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the expression domain of Nkx2.1b and the swimbladder bud are inverted relative to the 

A-P axis of the fish, and appear in the dorsal portion of the gut tube.  In mouse, Sox2 

is an important regulator of the lung Nkx2.1 expression domain (20, 22), and is 

expressed in a reciprocal fashion with highest levels directly opposite of the lung bud 

(20).  We have shown that zebrafish Sox2 also shows this pattern, with an inversion 

that coincides with the inversion of the evagination site, making the Sox2 expression 

highest ventrally instead of dorsally as in tetrapods (Figure 3).   

Previous studies of Sox2 expression in zebrafish endoderm have reported 

contradictory results.  Some studies observe Sox2 expression in the developing 

Figure 3: Schematic of known transcription factor expression domains surrounding 
the tetrapod lung and zebrafish swimbladder bud. In mouse, the lung bud is marked 
by ventrally restricted expression of Nkx2.1 (pink), which is bordered dorsally and 
mutually antagonized by Sox2 (yellow). In zebrafish, the swimbladder bud is 
inverted relative to its tetrapod counterpart, and it buds from the dorsal pharynx. As 
in mouse lung, the swimbladder bud is marked by expression of Nkx2.1. Zebrafish 
Nkx2.1a (black stippling) is expressed dorsally in the swimbladder bud as well as 
laterally and ventrally at the point of evagination, but both Nkx2.1b (pink) 
expression and the swimbladder bud are inverted to a dorsal position. Further, 
expression of Sox2 (yellow) is inverted relative to the mouse homolog, and its 
expression is concentrated ventrally instead of dorsally as in mouse. In both taxa 
the posterior boundary of Sox2 expression (blue) is defined by a Cdx gene (39). 
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esophagus and swimbladder, while others have shown expression restricted to the gut.  

Most recently, Yin et al. (15) proposed that Sox2 is the earliest known marker of 

swimbladder development, starting at 24 hours post fertilization (hpf), though there is 

no morphological evidence of a swimbladder at this time.  They defined a Sox2 

expression domain posterior to and separate from expression in the branchial arches 

that becomes continuous by 36hpf.  Previously, Thisse et al. (26) and Rausch et al. 

(27) described Sox2 expression through 60hpf and 96hpf respectively, and though they 

examined the whole larva, neither observed expression in the swimbladder.  Muncan 

(28) reported expression in the swimbladder at 96hpf as being continuous with the 

expression in the pharynx, but did not address relative intensity or other stages of 

development. It is unclear if the variability in these results stems from technical or 

biological causes.  

Technically, it is possible that variable results were obtained due to differences 

in wash stringency, probe concentration or stain development time, which would lead 

all studies to document the high levels of expression in the ventral endoderm, but only 

some to document the relatively lower levels of expression dorsally and in the 

swimbladder.  A second technical source of variability could result from probe length 

and specificity.  Primer and probe sequences were not supplied by all studies, so the 

length and region of the gene detected are unknown.  Though there are no splice 

variants of Sox2, the zebrafish genome has 20 SRY-related HMG box transcription 

factors, and probes that bound only this conserved region could cross-hybridize with 

other Sox transcripts.  Finally, the Danio Sox2 gene is embedded in a region of non-

coding DNA that is transcribed in the same direction and termed Sox2ot (overlapping 
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transcript) (29), and which could have been detected along with true Sox2 transcripts.   

Biologically, it is possible that all results are accurate representations of Sox2 

expression, but that temporal and spatial expression of this gene varies. In the mouse 

lung, Sox2 expression is known to be cyclic and transient (30), and expression may 

vary temporally in zebrafish too.  

Importantly, and regardless of the cause of reported variation in Sox2 

expression, all data are consistent with an inversion of regulatory gene expression in 

zebrafish relative to mouse.  It is likely that the disputed regions, the dorsal pharynx 

and swimbladder bud, express Sox2 at a significantly lower level than regions that are 

consistently observed in all studies. There is agreement that Sox2 is expressed in the 

ventral portion of the pharynx up to the point of evagination, which supports our 

observation that Sox2 is most highly expressed here. Similarly, in mouse, Sox2 is 

partially antagonized by the expression of Nkx2.1 and Cdx2, and low levels are 

expressed intermittently in the developing lung and stomach (20, 22).  For this reason, 

some expression within the swimbladder, or a posteriorly overlapping expression 

domain with Cdx1b is consistent with inversion.  

Though Nkx2.1 has been implicated in the ventral restriction of Sox2 

expression in mouse, in zebrafish Nkx2.1b expression in the endoderm is not initiated 

until 4dpf, after the swimbladder has budded (36-48hpf (14)), and Sox2 ventralization 

has occurred (Figure 2).  For this reason it is clear that another factor is controlling the 

initial ventral concentration of Sox2 expression.   The upstream initiators of 

endodermal D-V patterning are not fully understood in any taxon, making it is difficult 

to propose mechanisms generating ventral restriction independent of Nkx2.1 
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antagonism.  Because expression of Nkx2.1a and Nkx2.1b is not initiated until after the 

swimbladder buds, and because the mouse Nkx2.1 null still forms a properly located 

lung, we propose that it is not the presence of Nkx2.1 expression that specifies the 

location of evagination, but rather a relatively reduced level of Sox2 expression, or the 

upstream mechanisms for which Sox2 expression is a proximate marker.   

 The presence of an air-filled organ, whether lungs or swimbladder, 

characterizes the bony vertebrates (Osteichthyes), and most evolutionary 

morphologists accept that the swimbladder is derived from ancestral lungs.  The most 

critical sticking point for those who have not accepted this hypothesis is that lungs 

evaginate ventrally from the gut and swimbladders evaginate dorsally, and that there is 

no ontogenetic or phylogenetic evidence of migration of the air-filled organ from a 

ventral to dorsal position; it is either dorsal or ventral, never lateral in any transitional 

taxon. The several cases of slightly lateral swimbladder evagination occur in relatively 

derived taxa (Figure 1). Due to the conserved and inverted pattern of expression of 

two critical D-V patterning genes in the pharynx of the zebrafish swimbladder relative 

to their expression in the developing tetrapod pharynx, we propose that an inversion of 

the ancestral genetic patterning mechanism is responsible for the transition of the 

ancestrally ventral lung to a dorsal swimbladder in the subgroup of the ray-finned 

fishes, the Actinopteri (Figure 1).  Further functional studies demonstrating the 

interactions of these gene products and a better understanding of the upstream 

patterning mechanisms in both fishes and tetrapods will help to clarify the mechanism 

of this transition.   

Only one other case of dorso-ventral inversion of morphology and patterning 
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gene expression is known: the transformation from a ventrally located neurectoderm in 

non-chordate bilaterians to a dorsal position in chordates (31, 32).  The inversion 

reported here, that underlies the lung-to-swimbladder transformation differs from the 

prior case in two ways.  First, only a single structure is inverted, rather than the whole 

body plan.  Second, inversion of these patterning genes (Sox2 and Nkx2.1b) occurs 

much later in development.  These fundamental differences show that inversion can be 

a mechanistically simple, but powerful, generator of novelty dramatic across a 

spectrum of tissue types and developmental stages. 

 

Methods 

Zebrafish culture   

Zebrafish were kept in Aquatic Ecosystems re-circulating racks, fed twice 

daily on brine shrimp and bred according to protocols outlined by Nüsslein-Volhard 

and Dahm (2002).  After fertilization, eggs were collected and reared in mesh tubes in 

the recirculating rack system.  Beginning at 24 hours, embryos were collected in 6 

hour intervals, fixed in 4% Paraformaldehyde in 1X PBS overnight, then transferred to 

100% MeOH and stored at -20°C until hybridization. 

Whole-mount in situ hybridization 

RNA probes for in situ hybridization were synthesized using the Ambion 

Maxiscript in vitro transcription kit and Roche digoxygenin-labelled UTP nucleotide 

mix via supplier protocols. In situ hybridization was conducted on the InSituProVS 

fluid-handling robot (Intavis) using a protocol modified from Wilkinson (1992).  

Embryo digestion was conducted at concentration of 10mg/ml Protenase K for 15 
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minutes at 37°C.  A 20-minute incubation in RIPA (Radio-Immunoprecipitation 

Assay) buffer (Sigma-Aldrich) was added for additional permiablization.  Specimens 

were pre-hybridized in hybridization buffer with 100ug/ml yeast tRNA (Sigma-

Aldrich) for 3 hours at 68°C.  Probe solution contained ~10ug probe in 500ul 

hybridization buffer with 100ug/ml tRNA and an additional 500ug/ml salmon sperm 

DNA per robot well.   Specimens were then treated with RNase cocktail (Invitrogen) 

and blocked in 5% Blocking Solution (Roche) in 1x maleic acid buffer (MAB).  Anti-

digoxigenin-AP Fab fragments (Roche) were diluted 1:5000 in 5% Roche Blocking 

Solution, and washes were conducted in .2X SSC and stained at room temperature in 

BM Purple (Roche) alkaline phosphatase, until developed.  Multiple rounds of in situ 

hybridization with replicates of each probe and stage combination were run to ensure 

consistent results.   

To determine the dorsal-ventral pattern of gene expression, whole-mounts 

were photographed, and well-stained representatives of each stage and probe were 

embedded in 4% low-melting point agar for sectioning. 100µm sections were cut on a 

Micro-Cut H1200 vibrating microtome, slide-mounted in glycerol and immediately 

photographed. 

Whole mounts were imaged using an Olympus XZX16 dissecting microscope 

with an Olympus DP25 camera.  Images were acquired in 8-bit RGB and managed in 

cellSens Entry software.  Sections were photographed on a Leitz Diaplan compound 

scope at 25x magnification with an Optronix Magnafire SP camera with 10-bit RGB 

acquisition. 
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