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Abstract
Data center infrastructures frequently replicate objects to
create backups or to copy executables and input files to
compute nodes. This task occurs under time pressure:
data is at risk of loss until replicated for fault-tolerance,
and in the case of parallel processing systems like Spark
[33], useful computation can’t start until the nodes all
have a copy of the executable images. Cloud elastic-
ity creates a similar need to rapidly copy executables
and their inputs. To address these needs, we introduce
RDMC: a fast reliable data replication protocol that im-
plements multicast as a pattern of RDMA unicast oper-
ations, which maximizes concurrency while minimizing
unnecessary transfers. RDMC can be used in any setting
that has RDMA or a software RDMA emulation. Our fo-
cus is on use of replication as an element of the data center
infrastructure. We evaluate overheads for the hardware-
supported case using microbenchmarks and heavy-load
experiments, and also describe preliminary experiments
using a technique that offloads the entire data transfer pat-
tern into the NICs, further reducing latency while freeing
server resources for other tasks.

1 Introduction
Data center loads are heavily dominated by data copying
delays, often from a source node to two or more desti-
nations. By 2011, distributed file systems like Cosmos
(Microsoft), GFS (Google), and HDFS (Hadoop) handled
many petabytes of writes per day (hundreds of Gb/s) [15],
and the throughput is far higher today. All of these writes
must be split into chunks, and replicated to several stor-
age servers [17]. The latency of this process determines
overall write performance for end-user applications. At
Facebook, Hadoop traces show that for jobs with reduce
phases, the transfer of data between successive phases
represents 33% of total run time [12]. Similarly, copy-
ing executables accounts for a significant portion of the
startup time of large compute tasks, and speeding up this
process would directly reduce overall task completion
times. Google’s Borg has a median task startup latency of
around 25 seconds (about 80% devoted to package instal-
lation) with upwards of 10,000 tasks starting per minute
in some cells [31]. In some cases, image copying takes far

more time than computation [28].
Despite the importance of fast replication, effective

general-purpose solutions do not exist. Today, cloud mid-
dleware systems typically push new data in ways that
make one copy at a time, for example when copying VM
images prior to launching a parallel task on a large num-
ber of nodes. Content sharing is often handled through
an intermediary caching or a key-value layer which scales
well but introduces extra delay and copying. In parallel
platforms like Hadoop, even if the scheduler can antici-
pate that a collection of tasks will read the same file, data
movement still occurs only on demand.

Cloud systems could substantially improve efficiency
by recognizing such interactions as instances of a com-
mon pattern. Doing so makes it possible to recover net-
work bandwidth and CPU time currently lost to extra-
neous transfers and unneeded copying. For time-critical
uses, lower delays can improve end-user experience and
will be of growing importance as the cloud increasingly
performs real-time control of large data-dependent physi-
cal systems, such as smart power grids and roadways.

Our new reliable RDMA multicast protocol, RDMC,
solves this basic replication problem, emphasizing raw
speed. This does not preclude layering stronger semantics
over the solution: in work still underway, we are explor-
ing the integration of RDMC into a library that supports
reliable multicast with strong group membership seman-
tics (as in [8]). When the library is configured for data
persistence, we obtain a version of Paxos [21] that moves
all data through RDMC. Other opportunities include use
of RDMC for replication in systems that manage ordered
append-only logs such as Corfu [4], key-value stores
[14, 20, 25], or transactions [5]. However, the present
paper limits itself to stand-alone scenarios.

RDMC makes the following contributions:

• It provides insights on how to efficiently use RDMA
to conduct multicast transfers.

• It demonstrates multicast protocols that achieve sta-
ble and exceptionally high performance, outperform-
ing even the heavily optimized broadcast primitive
included in the MVAPICH library for HPC.

• It evaluates options for eliminating polling and copy-
ing, which free compute resources for other tasks.
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• It explores the potential for offloading extended
asynchronous transfer sequences into the NIC:
“compiling” protocols directly into a form that can
be executed by hardware.

2 Background on RDMA

RDMA (remote direct-memory access) is a zero-copy
communication standard supported on a wide range of
hardware (as well as by the Soft RoCE software imple-
mentation). RDMA is a user-space networking solution,
accessed by creating what are called queue pairs: lock-
free data structures shared between user code and the net-
work controller (NIC), each consisting of a send queue
and a receive queue. A send is issued by posting a mem-
ory region to the send queue, and a process indicates its
readiness to receive by posting a memory region to the
receive queue. If the receiver’s queue is empty when a
send is attempted, the sender either retries later or issues
a failure. A queue pair also has an associated completion
queue which is used by the NIC to report the successful
completion of transfers, as well as any detected faults.

RDMA supports several modes of operation. RDMC
uses two-sided RDMA operations, which behave simi-
larly to TCP: the sender and receiver bind their respec-
tive queue pairs together, creating a session fully imple-
mented by the NIC endpoints. In this mode, once a send
and the matching receive are posted, the data is copied
directly from the sender’s memory to the receiver’s des-
ignated location, reliably and at the full rate the hardware
can support. This can be remarkably fast. For example,
in our lab, two-sided RDMA rates frequently approach
the full 100Gb/s of the optical layer, a rate very diffi-
cult for IP protocols to match, and indeed more than 3x
what single threaded memcpy can achieve for memory-
to-memory copying internal to the nodes of our compute
cluster (the memory module on our servers has 256Gbps
total bandwidth but that bandwidth is divided among 16
cores). The gap may grow: RDMA speedup to 1Tb/s
networking is expected within a decade, whereas per-core
memory speeds are not expected to grow nearly as fast.

With today’s devices, two-sided RDMA is as reliable
as a memory bus: data will never be corrupted during
transfer, and the send-order is preserved. Thus there is no
need for end-to-end acknowledgments or retransmissions,
or even for checking the received data. If a hardware fault
or an endpoint crash occurs, the hardware reports the fail-
ure and breaks the two-sided session.

RDMA emerged as an Infiniband technology, but is no
longer limited to Inifiniband fabrics: RDMA over Con-
verged Ethernet (RoCE) has become widely available on
fast Ethernet NICs and routers. RoCE is not yet fully
mature: early versions have suffered from limited scal-

ability due to instability of the priority pause-frame fea-
ture (PPF) used for link-layer congestion management
leading to data losses. Fortunately, recent advances have
yielded two promising alternatives to PPF: DCQXN [34]
and TIMELY [26]. Both are stable even at very large
scale, and their performance is similar to that of Infini-
band. A pure software implementation (Soft RoCE) en-
ables RDMA software to be used on platforms that lack
hardware support.

RDMA operations are asynchronous, hence the ques-
tion arises of how to detect completions. One option is to
dedicate a polling thread to monitor the completion queue.
This minimizes latency but pins a core. A second option
uses interrupts that fire when a completion occurs, but this
can be slow. A third approach is to combine the two, using
the interrupt mechanism most of the time, but switching
to polling while a high rate of transfers is underway.

Although not used in RDMC, RDMA also supports re-
liable one-sided reads and writes, where one endpoint
grants the other permission to perform RDMA reads or
writes into a pre-prepared memory region. The initiator
of a read or write will see a completion event, but the
target isn’t notified at all. Finally, RDMA offers unre-
liable datagrams, including a feature that resembles IP
multicast. However these leave it to the user to deal with
message loss or reordering, and would require occasional
retransmissions. Worse, they limit transfer size to the net-
work MTU – at most a few kilobytes – so large messages
would be split into thousands of chunks that could arrive
out of order, requiring the receiver to reassemble again at
the end.

RDMA resource management considerations introduce
additional issues. Once an RDMA NIC starts doing a re-
mote DMA operation, it must dedicate resources to the
operation until the transfer finishes, and for very large op-
erations this could potentially take a long time (the wire-
level MTU does not limit the size of a DMA transfer, so
even with a small MTU very large DMA transfers can oc-
cur). Operators of large multi-tenant cloud platforms have
expressed concern that such data patterns could cause star-
vation if the NIC lacks a sufficient capacity for concur-
rent transfers. Accordling, very large transfers are typi-
cally broken into smaller ones (blocks) of a few hundred
KB each, guaranteeing that the NIC will treat requests by
other users fairly.

An additional concern is that RDMA NICs have limited
memory capacity. Each connected queue pair consumes
resources when actively sending or receiving. Some ap-
plications (notably, key-value systems [14]) struggle with
these limits because over time, any node in an RDMA
key-value system interacts with every other node. NIC
memory is also consumed to cache DMA mappings, and
non-contiguous IO operations can exhaust this limit.

In these respects, data replication is a relatively eas-
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ier task, because replication patterns correspond to trees.
A node will typically interact with just a few neighbors,
and once a replication activity ends, the connections can
be closed. Even with extensive concurrent use by over-
lapping multicast groups, the number of active connec-
tions never approaches the NIC limits, which are in the
low thousands. The memory mapping issue is easily ad-
dressed by mapping a large amount of contiguous node
memory, then allocating memory for messages within this
pool. In future multi-tenant systems, one could go even
further, by setting aside a shared RDMA memory region,
then exposing it through a secure mapping as needed. One
could also use large pages, as recommended by the devel-
opers of the FaRM key-value system.

Experimental Features RDMA guarantees two forms
of request ordering: (1) requests enqueued on a single
send or receive queue will be performed in FIFO order (2)
a receive completion occurs only after the incoming trans-
fer is finished. Mellanox’s CORE-Direct [24] feature lets
the application specify a third form of request ordering:
RDMA send operations that first wait for completion of
an RDMA receive, which could occur on a different queue
pair. For example, suppose that node N issues a send on
a queue pair bound to node M. M can post the receive re-
quest to accept the data from N together with a send that
relays the same data to node O, specifying that the send
should occur only after the receive completes. By doing
so, the M avoids the need to wait for the receive complete
before posting the relaying operation.

CORE-Direct is not widely used, but it intrigued us be-
cause in some situations it is actually possible to precom-
pute data-flow graphs describing the full pattern of data
movement for each multicast send. For example, mem-
bers of a replication group could potentially post data-
flow graphs at the start of a transfer, linked by cross-
node write/receive dependencies. The hardware would
then carry out the whole transfer without further help. In
contrast, were the same task performed using the standard
RDMA API, scheduling delays (i.e. between receives and
subsequent sends) could easily accumulate to have a sig-
nificant downstream impact.

3 High level RDMC summary
We implemented RDMC using the two-sided RDMA op-
erations described above, with a compile-time switch to
determine whether or not CORE-Direct features should
be used (eventually, we hope to automate selection of the
best setup at runtime). The basic requirement is to create
a pattern of RDMA unicasts that would efficiently per-
form the desired multicast. In the discussion that fol-
lows, the term message refers to the entire end-user ob-

ject being transmitted: it could be hundreds of megabytes
or even gigabytes in size. Small messages are sent as a
single block, while large messages are sent as a series of
blocks: this permits relaying patterns in which receivers
simultaneously function as senders (similar to BitTorrent
except that for RDMC, the pattern of transfers is deter-
ministic). The benefit of relaying is that it permits full use
of both the incoming and outgoing bandwidth of the re-
ceiver NICs. In contrast, protocols that send objects using
a single large unicast transfer are limited: any given node
can use its NIC in just one direction at a time.

This yields a framework that operates as follows:

1. The sender and receivers first create a multi-way
binding: an RDMC group. This occurs out of band,
using TCP as a bootstrapping protocol. To minimize
delay on the critical path, applications that expect to
do repeated transfers can set up groups ahead of time
and then reuse them.

2. Each transfer occurs as a series of reliable unicast
RDMA transfers, with no retransmission. RDMC
computes sequences of sends and receives at the out-
set and queues them up to run as asynchronously as
possible. When CORE-Direct is available, we en-
queue the entire sequence at once.

3. On the receive side, RDMC will notify the user ap-
plication of an incoming message, at which point it
must post a buffer of the correct size to receive it into.

4. Sends complete in the order they were initiated. In-
coming messages are guaranteed to not be be cor-
rupted, arrive out of order, or get duplicated.

5. Multicast groups are isolated from each other such
that any group is unaffected by the failure of nodes
not in that group.

6. Any failures sensed by RDMA are reported to the
application via a single event, after which no further
operations occur in that group. (Of course, the non-
faulty members can always create a new group and
resume communications in it.)

4 System Design

4.1 External API
Figure 1 shows the RDMC interface, omitting con-
figuration parameters like block size. The send and
destroy group functions are self explanatory, but
group creation requires some elaboration.

Our design is such that the create group function
should be called concurrently (and with identical mem-
bership information) by all group members, initiated by
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// Create a new group with the designated members (first member is the root).
bool create_group(int group_number,

vector<int> members,
function<memory_region(int size)> incoming_message_callback,
function<void(char* data, int size)> message_completion_callback);

// Destroy the group, and deallocate associated resources.
void destroy_group(int group_number);

// Attempt to send a message to the group. Will fail if not the root.
bool send(int group_number, char* data, int size);

Figure 1: RDMC library interface

some out-of-band method. It takes two callback func-
tions which are used to notify the application of events.
The incoming message callback is triggered by
receivers when a new transfer is started, and is used to ob-
tain a memory region to write the message into. Because
memory registration is an expensive operation, it should
ideally take place in advance.

The message completion callback triggers once a mes-
sage send/receive is locally complete and the associated
memory region can be reused. Notice that this might hap-
pen before other receivers have finished getting the mes-
sage, or even after other receivers have failed.

Within a group, only one node (the “root”) is allowed
to send data. However, an application is free to create
multiple groups with identical membership but different
senders. Note that group membership is static once cre-
ated: to change a group’s membership or root the applica-
tion should destroy the group and create a new one.

4.2 Architectural Details
RDMC runs as a user-space library. Figure 2 shows an
overview of its architecture.

Application 

RDMC 

NIC 

Application 

RDMC 

NIC 

se
n

d
()

 

Memory 
region 

Application 

RDMC 

NIC 

C
allb

ack 

register 

Sender 

Memory 
region 

Receiver 

register 

Memory 
region  

Receiver 

Figure 2: RDMC with a sender and 2 receivers.

Initialization Before an application can participate in
RDMC transfers, it must go through a setup process

to create an RDMC group. During this stage, RDMC
exchanges connection information with all other nodes
that may participate (using an existing channel, such
as TCP/IP), creates queue pairs, and prepares internal
data structures. Finally, it starts a thread that monitors
RDMA completion queues for notifications about incom-
ing and outgoing messages. If several RDMC trans-
fers are underway concurrently, each determines its own
block-transmission sequence, but separate transfers can
share the same completion thread, reducing overheads.
This thread seeks a balance between responsiveness and
low overhead: it polls for 50 ms after each completion
event, but switches to waiting for completion-triggered in-
terrupts if there has been no activity.

Data Transfer Although we will turn out to be pri-
marily focused on the binomial pipeline algorithm (de-
scribed later), RDMC actually implements several data
transfer algorithms, which makes possible direct side-by-
side comparisons. To be used within RDMC, a sending
algorithm must be deterministic, and if a sender sends
multiple messages, must deliver them in sequential order.
When a sender initiates a transfer, our first step is to tell
the receivers how big the incoming message will be, since
any single RDMC group can transport messages of vari-
ous sizes. Here, we take advantage of an RDMA feature
that allows a data packet to carry an integer “immediate”
value. Every block in a message will be sent with an im-
mediate value indicating the total size of the message it
is part of. Accordingly, when an RDMC group is set up,
the receiver posts a receive for an initial block of known
size. When this block arrives, the immediate value allows
us to determine the full transfer size and, if more blocks
will be sent, the receiver can post additional asynchronous
receives as needed.

The sender and each receiver can now treat the sched-
ule as a series of asynchronous steps. In each step every
participant either sits idle or does some combination of
sending a block and receiving a block. The most efficient

4



0 

3 

6 

5 1 

2 

3 

2 

1 

3 

2 

Data Object 

4 

3 

7 
3 

0 1 

3 2 

5 

7 6 

4 

1 

2 2 
3 3 

3 3 
Data Object 

0 1 

3 2 

5 

7 6 

4 

4 

5 
5 

4 

5 
4 

4 

5 

5 

Figure 3: (Left) A standard binomial tree multicast, with the entire data object sent in each transfer. (Center) A
binomial pipeline multicast, with the data object broken into three blocks, showing the first three rounds of the protocol.
In this phase, the sender sends a different block in each round, and receivers forward the blocks they have to their
neighbors. (Right) The final two rounds of the binomial pipeline multicast, with the earlier sends drawn as dotted
lines. In this phase, the sender keeps sending the last block, while receivers exchange their highest-numbered block
with their neighbors.

schedules are those that make sure all the nodes spend as
much time concurrently sending and receiving as possi-
ble. Given the asynchronous step number, it is possible to
determine precisely which blocks these will be. Accord-
ingly, as each receiver posts memory for the next blocks, it
can determine precisely which block will be arriving and
select the correct offset into the receive memory region.
Similarly, at each step the sender knows which block to
send next, and to whom.

Our design generally avoids any form of out-of-band
signaling or other protocol messages, with one exception:
to prevent blocks from being sent prematurely, each node
will wait to receive a ready for block message from
its target so that it knows the target is ready. By ensur-
ing that the sender only starts when the receiver is ready,
we avoid costly backoff/retransmission delays, and elim-
inate the risk that a connection might break simply be-
cause some receiver had a scheduling delay and didn’t
post memory in time. We also sharply reduce the amount
of NIC resources used by any one multicast: today’s NICs
exhibit degraded performance if the number of concur-
rently active receive buffers exceeds NIC caching capac-
ity. RDMC posts only a few receives per group, and since
we do not anticipate having huge numbers of concurrently
active groups, this form of resource exhaustion is avoided.

4.3 Protocol

Given this high-level design, the most obvious and impor-
tant question is what algorithm to use for constructing a
multicast out of a series of point-to-point unicasts. RDMC
implements multiple algorithms; we’ll describe them in
order of increasing effectiveness.

Sequential Send The sequential pattern is common in
today’s datacenters. It implements the naive solution of
transmitting the entire message from the sender one by
one to each recipient in turn. Since the bandwidth of a
single RDMA transfer will be nearly line rate, this pattern
is effectively the same as running N independent point-to-
point transfers concurrently.

Notice that with a sequential send, when creating N
replicas of a B-bit message, the sender’s NIC will incur
an IO load of N ∗ B bits. Replicas will receive B bits,
but do no sending. Modern RDMA NICs have a full bidi-
rectional capability: a 100Gbps NIC can potentially send
and receive 100Gbps concurrently. Thus sequential cre-
ates a hot spot at the sender, and leaves a great deal of
potentially unused inner bandwidth between the replicas.

Binomial Tree Better performance is possible if re-
ceivers relay the message once they get it. This pattern,
a binomial tree can be seen in Figure 3 (left); the labels
on the arrows represent the asynchronous time step. Here,
sender 0 starts by sending the entire message to receiver
1. Then in parallel, 0 sends to 2 while 1 sends to 3, and
then in the final step 0 sends to 4, 1 sends to 5, 2 sends to
6 and 3 sends to 7. The resulting pattern of sends traces
out a binomial tree, hence latency will be better than that
for the sequential send, but notice that the inner transfers
can’t start until the higher level ones finish. Thus many
nodes are idle for the majority of the time, wasting the
bandwidth of their incoming and outgoing links.

Chain Send This algorithm implements a bucket-
brigade, similar to the chain replication scheme described
in [30]. After breaking a message into blocks, each inner
receiver in the brigade relays blocks as it receives them.
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Relayers use their full bidirectional bandwidth, but the
further they are down the chain, the longer they sit idle un-
til they get their first block so worst-case latency is high.

Binomial Pipeline One might expect that the lowest
possible latency would be that of a binomial tree used
to transmit blocks instead of entire messages, but in fact
one can do even better. This observation was first made
by Ganesan and Seshadri [16], who proposed a binomial
pipeline algorithm that combines bucket brigade and bino-
mial trees. The algorithm works by creating a hypercube
overlay of dimension d, within which d distinct blocks
will be concurrently relayed (Figure 3, middle, where the
blocks are represented by the colors red, green and blue).
Each node repeatedly performs one send operation and
one receive operation until, on the last step, they all si-
multaneously receive their last block (if the number of
nodes isn’t a power of 2, the final receipt spreads over two
asynchronous steps). This algorithm is exceptionally effi-
cient because it ensures that all nodes spend as much time
as possible simultaneously sending and receiving blocks.
The details are described in Appendix A, along with the
changes we made to turn Ganesan and Seshadri’s syn-
chronous solution into an asynchronous protocol, and to
tune it to better match our setting.

The binomial pipeline makes balanced use of band-
width: except for the initial and final steps, every node
other than the sender maintains a steady load, sending and
receiving one block on each logical step. Latency skew is
l: all replicas receive their final blocks simultaneously (if
the number of replicas is a power of two), or on consecu-
tive logical timesteps (if not).

4.3.1 Hybrid Algorithms

Lacking detailed data-center topology information, the bi-
nomial pipeline normally offers the best mix of latency
and performance. Nonetheless, there may be situations in
which other options are preferable.

Many data centers have full bisection bandwidth on
a rack-by-rack basis, but use some form of an oversub-
scribed top of rack (TOR) switch to connect different
racks. When a binomial pipeline multicast runs in such a
setting, a large fraction of the transfer operations traverse
the TOR switch (this is because if we build the overlay
using random pairs of nodes, many links would connect
nodes that reside in different racks). While this works
well until we reach a genuinely large scale, it isn’t the
best possible data relaying pattern.

In contrast, suppose that we were to use chain send in
the top of rack layer, designating one node per rack as the
leader for its rack. This would require some care: in our
experiments chain send was highly sensitive to network
topology and data pattern. However, a properly config-

ured TOR chain would minimize load on the top of rack
switching network: any given block would traverse each
TOR switch exactly once. Then we could use the bino-
mial pipeline within each rack.

Equally interesting would be to use two separate in-
stances of the binomial pipeline, one in the TOR layer, and
a second one within the rack. By doing so we could seed
each rack leader with a copy of the message in a way that
creates a burst of higher load, but is highly efficient and
achieves the lowest possible latency and skew. Then we
repeat the dissemination within the rack, and again maxi-
mize bandwidth while minimizing delay and skew.

4.4 Leveraging CORE-Direct
In Section 2, we discussed the experimental Mellanox
CORE-Direct feature. Because the transfer schedule is
deterministic, RDMC can precompute the full set of op-
erations required for each multicast, enqueuing an entire
graph of partially ordered operations at each participating
node. We implemented this idea and evaluate it below.

5 Experiments
Our goal is to show that not only does RDMC have high
performance and low overhead, but also that it scales well
and can handle real world workloads.

5.1 Experimental Setup
Fractus We conducted experiments on several clusters,
beginning with our own internal Fractus cluster. Fractus
contains 16 RDMA-enabled nodes running Ubuntu 16.04,
each equipped with a 4x QDR Mellanox NIC and 94 GB
of DDR3 memory. All nodes are connected to both a
100Gbps Mellanox IB switch and a 100Gbps Mellanox
RoCE switch, and have one-hop paths to one-another.

Sierra The Sierra cluster at Lawrence Livermore Na-
tional Laboratory consists of 1,944 nodes of which 1,856
are designated as batch compute nodes. Each is equipped
with two 6-core Intel Xeon EP X5660 processors and
24GB memory. They are connected by an Infiniband fab-
ric which is structured as a two-stage, federated, bidirec-
tional, fat-tree. The NICs are 4x QDR QLogic adapters
each operating at a 40 Gb/s line rate. The Sierra cluster
runs TOSS 2.2, a modified version of Red Hat Linux.

Stampede The U. Texas Stampede cluster contains
6400 C8220 compute nodes with 56 Gb/s FDR Mellanox
NICs. Like Sierra, it is batch scheduled with little control
over node placement. We measured unicast speeds of up
to 40 Gb/s.
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(a) 256 MB multicasts (b) 8 MB multicasts

Figure 4: Latency of MPI and several RDMC algorithms on Fractus. Group sizes include the sender, so a size of three
means one sender and two receivers.

Figure 5: Breakdown of transfer time and wait time of two nodes taking part in the 256 MB transfer from the experi-
ment used to create Table 1. Notice that the relaying node spends hardly any time waiting, while the sender transmits
each block slightly faster (since it isn’t receiving at the same time) and then must wait for the other nodes to catch up.

Apt Cluster The EmuLab Apt cluster contains a total
of 192 nodes divided into two classes: 128 nodes have
a single Xeon E5-2450 processor with 16 GB of RAM,
while 64 nodes have two Xeon E5-2650v2 processors and
64 GB of RAM. All have one FDR Mellanox CX3 NIC
which is capable of 56 Gb/s.

Interestingly, Apt has a significantly oversubscribed
TOR network that degrades to about 16 Gb/s per link
when heavily loaded. This enabled us to look at the be-
havior of RDMC under conditions where some network
links are much slower than others. Although the situation
is seemingly ideal for taking the next step and experiment-
ing on hybrid protocols, this proved to be impractical: Apt
is batch-scheduled like Sierra, with no control over node
placement, and we were unable to dynamically discover
network topology.

Our experiments include cases that closely replicate the
RDMA deployments seen in today’s cloud platforms. For
example, Microsoft Azure offers RDMA over Infiniband
as part of its Azure Compute HPC framework, and many
vendors make use of RDMA in their own infrastructure
tools, both on Infiniband and on RoCE. However, large-
scale end-user testbeds exposing RoCE are not yet avail-
able: operators are apparently concerned that heavy use
of RoCE could trigger data-center-wide instability. Our
hope is that rollout of DCQCN will reassure operators,
who would then see an obvious benefit to allowing their
users to access RoCE.

In all of our experiments, the sender(s) generates a mes-
sage containing random data, and we measure the time
from when the send is submitted to the library to when all
clients have gotten an upcall indicating that the multicast
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has completed. Bandwidth is computed as the number of
messages sent, multiplied by the size of each message, di-
vided by the total time spent (regardless of the number of
receivers). RDMC does not pipeline messages, so the la-
tency of a multicast is simply the message size divided by
its bandwidth.

5.2 Results
Figure 4 compares the relative performance of the differ-
ent algorithms considered. For comparison, it also shows
the throughput of the heavily optimized MPI Bcast()
method from MVAPICH, a high-performance computing
library that implements the MPI standard on Infiniband
networks (we measured this using a seperate benchmark
suite). As anticipated, both sequential send and binomial
tree do poorly as the number of nodes grows. Meanwhile
chain send is competitive with binomial pipeline, except
for small transfers to large numbers of nodes where bino-
mial pulls ahead. MVAPICH falls in between, taking from
1.03× to 3× as long as binomial pipeline. Throughout the
remainder of this paper we primarily focus on binomial
pipeline because of its robust performance across a range
of settings, however we note that chain send can often be
useful due to its simplicity.

5.2.1 Microbenchmarks

In Table 1 we break down the time for a single 256 MB
transfer with 1 MB blocks and a group size of 4 (mean-
ing 1 sender and 3 receivers) conducted on Stampede. All
values are in microseconds, and measurements were taken
on the node farthest from the root. Accordingly, the Re-
mote Setup and Remote Block Transfers reflect the sum
of the times taken by the root to send and by the first re-
ceiver to relay. Roughly 99% of the total time is spent
in the Remote Block Transfers or Block Transfers states
(in which the network is being fully utilized) meaning that
overheads from RDMC account for only around 1% of the
time taken by the transfer.

Figure 5 examines the same send but shows the time
usage for each step of the transfer for both the relayer
(whose times are reported in the table) and for the root

Remote Setup 11
Remote Block Transfers 461
Local Setup 4
Block Transfers 60944
Waiting 449
Copy Time 215
Total 62084

Table 1: Time (microseconds) for key steps in a transfer.

Figure 6: Multicast bandwidth (computed as the message
size divided by the latency) on Fractus across a range of
block sizes for messages of size between 16 KB and 128
MB, all for groups of size 4.

Figure 7: 1 byte messages/sec. (Fractus)

sender. Towards the end of the message transfer we see an
anomalously long wait time on both instrumented nodes.
As it turns out, this demonstrates how RDMC can be vul-
nerable to delays on individual nodes. In this instance, a
roughly 100 µs delay on the relayer (likely caused by the
OS picking an inopportune time to preempt our process)
forced the sender to delay on the following step when it
discovered that the target for its next block wasn’t ready
yet. The CORE-Direct functionality would mitigate this.

In Figure 6, we examine the impact of block size on
bandwidth for a range of message sizes. Notice that in-
creasing the block size initially improves performance,
but then a peak is reached. This result is actually to be
expected as there are two competing factors. Each block
transfer involves a certain amount of latency, so increas-
ing the block size actually increases the rate at which in-
formation moves across links (with diminishing returns
as the block size grows larger). However, the overhead
associated with the binomial pipeline algorithm is propor-
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Figure 8: Total time for replicating a 256MB object to a
large number of nodes on Sierra.

 

La
te

nc
y 

(m
s)

0

50

100

150

200

250

300
 

Fraction of Transfers
0 0.2 0.4 0.6 0.8 1

Sequential Send
Binomial Tree
Binomial Pipeline

Figure 9: Distribution of latencies when simulating the
Cosmos storage system replication layer.

tional to the amount of time spent transferring an indi-
vidual block. There is also additional overhead incurred
when there are not enough blocks in the message for all
nodes to get to contribute meaningfully to the transfer.

Finally, Figure 7 measures the number of 1 byte mes-
sages delivered per second using the binomial pipeline,
again on Fractus. Note, however, that the binomial
pipeline (and indeed RDMC as a whole) is not really in-
tended as a high-speed event notification solution: were
we focused primarily on delivery of very small messages
at the highest possible speed and with the lowest possible
latency, there are other algorithms we could have explored
that would outperform this configuration of RDMC under
most conditions. Thus the 1-byte behavior of RDMC is of
greater interest as a way to understand overheads than for
its actual performance.

5.2.2 Scalability

Figure 8 compares scalability of the binomial pipeline on
Sierra with that of sequential send (the trend was clear and
Sierra was an expensive system to run on, so we extrap-
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Figure 10: Aggregate bandwidth of concurrent multicasts
on Fractus and the Apt cluster for cases in which we var-
ied the percentage of active senders in each node-group
(in a group with k senders, we used k overlapped RDMC
groups with identical membership).

olated the 512-node sequential send data point). While
sequential send scales linearly in the number of receivers,
binomial pipeline scales sub-linearly, which makes an or-
ders of magnitude difference when creating large numbers
of copies of large objects. This graph leads to a surpris-
ing insight: with RDMC, replication can be almost free:
whether making 127, 255 or 511 copies, the total time re-
quired is almost the same.

Although we did not separately graph end-of-transfer
time, binomial pipeline transfers also complete nearly si-
multaneously: this minimizes temporal skew, which is im-
portant in parallel computing settings because many such
systems run as a series of loosely synchronized steps that
end with some form of shuffle or all-to-all data exchange.
Skew can leave the whole system idle waiting for one
node to finish. In contrast, the linear degradation of se-
quential send is also associated with high skew. This high-
lights the very poor performance of the technology used
in most of today’s cloud computing frameworks: not only
is copy-by-copy replication slow, but it also disrupts com-
putations that need to wait for the transfers to all finish, or
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(c) 10 KB Transfers

Figure 11: Comparison of RDMC’s normal hybrid scheme of polling and interrupts (solid), with pure interrupts
(dashed). There is no noticeable difference between pure polling and the hybrid scheme. All ran on Fractus.
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Figure 12: CORE-Direct experiment using a chain multicast protocol to send a 100 MB message. The left is a run
using hybrid polling/interrupts; on the right is a run with purely interrupts. Both experiments were on Fractus.

that should run in loosely synchronized stages.

Next, we set out to examine the behavior of RDMC in
applications that issue large numbers of concurrent mul-
ticasts to overlapping groups. For a first experiment we
obtained a trace sampled from the data replication layer
of Microsoft’s Cosmos system, a production data ware-
house used by the Bing platform. Cosmos as currently
deployed runs on a TCP/IP network and makes no use of
RDMA or multicast. The trace has several million 3-node
writes, with varying object sizes and random target nodes.

To simulate use of multicast for the Cosmos workload,
we designated one Fractus node to generate traffic, and 15
nodes to host the replicas. The system operated by gener-
ating objects filled with random content, of the same sizes
as seen in the trace, then replicating them by randomly
selecting one of the possible 3-node groupings as a target
(the required 455 RDMC groups were created beforehand
so that this would be off the critical path). Figure 9 shows
the latency distribution for 3 different send algorithms.
Notice that binomial pipeline is almost twice as fast as
binomial tree and around three times as fast as sequential
send. Average throughput when running with binomial
pipeline is around 93 Gb/s of data replicated, which trans-
lates to about a petabyte per day. The key take-away is
that we are running at nearly the full bisection capacity

of Fractus, and with absolutely no duplicative data tran-
siting any network link: the RDMC data pattern is highly
efficient for this sort of production workload.

A second experiment looked at group overlap in a more
regular manner, using a single multicast message size. In
Figure 10 we construct sets of groups of the size given
by the X-axis label. The sets have identical members (for
example, the 8-node case would always have the identical
8 members), but different senders. At each size we run
three experiments, varying the number of senders to that
set of group members. (1) In the experiment correspond-
ing to the solid line, all members are senders (hence we
would have, for example, 8 perfectly overlapped groups,
each with the same members, but each having a different
sender). (2) With the dashed line, the number of overlap-
ping groups is half the size: half the members are senders.
(3) Finally, the dotted line shows performance for a single
group with just one sender. To carry out the experiment,
all senders run at the maximum rate, sending messages of
the size indicated. Then we compute bandwidth by mea-
suring the time to transfer a given sized message to all of
the overlapping groups, and dividing by the message size
times the number of groups (i.e. the total bytes sent).

Again, we see that full resources of the test systems
were efficiently used. On Fractus, with a full bisection ca-
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pacity of 100Gbps, our peak rates (seen in patterns with
concurrent senders) was quite close to the limits, at least
for larger message sizes. On Apt, which has an over-
subscribed TOR, the bisection bandwidth asymptotes to
16Gbps for this pattern of communication, and our graphs
do so as well, at least for the larger groups (which gener-
ated enough load to saturate the TOR switch).

5.2.3 Resource Considerations

RDMA forces applications to either poll for completions
(which consumes a full core), or to detect completions
via interrupts (which incurs high overheads and delay).
RDMC uses a hybrid solution, but we wanted to under-
stand whether this has any negative impacts on perfor-
mance. Our first test isn’t shown: we tested the system
with pure polling, but found that this was not measurably
faster than the hybrid.

Next, as shown in Figure 11 we compared RDMC in its
standard hybrid mode with a version running using pure
interrupts, so that no no polling occurs. For the latter case,
CPU loads (not graphed) are definitely lower: they drop
from almost exactly 100% for all runs with polling en-
abled, to around 10% for 100 MB transfers and 50% for
1 MB transfers. With 10 KB transfers, there was only
a minimal difference since so much time was spent pro-
cessing blocks. Despite the considerable improvement in
CPU usage, the bandwidth impact is quite minimal, par-
ticularly for large transfers. A pure-interrupt mode may be
worthwhile for computationally intensive workloads that
send large messages, provided that the slightly increased
transfer delay isn’t a concern.

On hardware that supports CORE-Direct we can of-
fload an entire transfer sequence as a partially-ordered
graph of asynchronous requests. Here, our preliminary
experiments were only partially successful: a driver bug
(not in our code) prevented us from testing our full range
of protocols. Figure 12 shows results for chain send,
where the request pattern is simple and the bug did not
occur. The left graph uses a hybrid of polling and inter-
rupts, while the right graph uses pure interrupts.

5.3 Discussion

When Ganesan and Seshadri considered tree and chain
topologies for performing multicast in [16] they thought
them to be unfeasibly slow over TCP/IP. This is an inter-
esting question for us, because RDMA can be understood
as a hardware implementation of a TCP-like protocol. In
their discussion, Ganesan and Seshadri predicted subopti-
mal performance, attributing this to a concern that highly
structured topologies can allow a single lagging node to
slow down the entire send for everyone. The binomial
pipeline algorithm (which they recognized as theoretically

optimal) is more susceptible to this phenomenon because
each node is responsible for the transfer to all of its neigh-
bors in the hypercube.

As we have seen, in our asynchronous implementa-
tion of their scheme, slowdown proves to be much less
of an issue for RDMA than for TCP/IP over lossy Ether-
net. With true hardware-supported RDMA we are able to
achieve low latency, reliable transfers directly into user-
space memory on the receiver, with no copying, which
is important because memcpy peaks at 30 Gb/s per core
and is not likely to scale up as quickly as optical network
speeds will. By contrast, thanks to hardware support for
reliable sends we are able to consistently get nearly line
rates across a range of systems using reliable point-to-
point sends, and this should track the evolution of opti-
cal network speeds. Thus the opportunity for application-
induced scheduling delays is much reduced, and the size
of such delays is also much smaller than in their analysis.

6 Related Work

Replication is an area rich in software libraries and sys-
tems. We’ve mentioned reliable multicast, primarily to
emphasize that RDMC is designed to replicate data, but is
not intended to offer the associated strong group seman-
tics and multicast atomicity. Good examples of systems
in this space include Isis2/Vsync, Spread, Totem, Horus,
Transis and the Isis Toolkit [2, 3, 7, 9, 13, 29].

Paxos is the most famous of the persistent replica-
tion solutions, and again, RDMC is not intended as a
competitor. But examples of systems in this category
include Paxos, Chubby, Rambo, Zookeeper and Corfu
[1, 4, 10, 18, 21–23].

We are not the first to ask how RDMA should be ex-
ploited in the operating system. The early RDMA concept
itself dates to a classic paper by Von Eicken and Vogels
[32], which introduced the zero-copy option and repro-
grammed a network interface to demonstrate its benefits.
VIA, the virtual interface architecture then emerged; its
“Verbs” API extended the UNet idea to support hardware
from Infiniband, Myranet, QLogic and other vendors. The
Verbs API used by RDMC is widely standard, but other
options include the QLogic PSM subset of RDMA, Intel’s
Omni-Path Fabric solution, socket-level offerings such as
the Chelsio WD-UDP [11] embedding, etc.

Despite the huge number of products, it seems reason-
able to assert that the biggest success to date has been the
MPI platform integration with Infiniband RDMA, which
has become the mainstay of HPC communications. MPI
itself actually provides a multicast primitive similar to the
one described in this paper, but the programming model
imposed by MPI has a number of limitations that make
it unsuitable for the applications that RDMC targets: (1)
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send patterns are known in advance so receivers can an-
ticipate the exact size and root of any multicast prior to
it being initiated, (2) fault tolerance is handled by check-
pointing, and (3) the set of processes in a job must remain
fixed for the duration of that job. Even so, RDMC still out-
performs the popular MVAPICH implementation of MPI
by a significant margin.

Broadcast is also important between CPU cores, and
the Smelt library [19] provides a novel approach to ad-
dress this challenge. Their solution is not directly appli-
cable to our setting because they deal with tiny messages
that don’t require the added complexity of being broken
into blocks, but the idea of automatically inferring rea-
sonable send patterns is intriguing.

Although our focus is on bulk data movement, the core
argument here is perhaps closest to the ones made in re-
cent operating systems papers, such as FaRM [14], Ar-
rakis [27] and IX [6]. In these works, the operating system
is increasingly viewed as a control plane, with the RDMA
network treated as an out of band technology for the data
plane that works best when minimally disrupted. Adopt-
ing this perspective, one can view RDMC as a generic data
plane solution well suited to out-of-band deployments.

7 Conclusion
Our paper introduces RDMC: a new reliable memory-to-
memory replication tool implemented over RDMA uni-
cast. Performance is very high when compared with the
most widely used general-purpose options, and the proto-
col scales to large numbers of replicas. When replicating
data to create backups, RDMC already yields a benefit
even if just 3 replicas are desired. In fact replication turns
out to be remarkably inexpensive, relative to just creating
one copy: one can have 4 or 8 replicas for nearly the same
price as for 1, and it takes just a few times as long to make
hundreds of replicas as it takes to make 1. We believe this
to be a striking finding, and of potentially broad appli-
cability. Furthermore, because RDMC delivery is nearly
simultaneous even within large groups of receivers, ap-
plications that need to initiate parallel computation will
experience minimal skew in their task start times. RDMC
has the potential to dramatically accelerate and simplify
a wide range of important applications, while improving
utilization of data center computing infrastructures.

Appendix A: Binomial Pipeline
The binomial pipeline was first described by [16]. The
algorithm assigns each node to a single vertex on a hyper-
cube. When the group size is a power of two, each node
is assigned to its own vertex. Otherwise, some pairs of
nodes must share a vertex. A vertex behaves externally as

a single node: at any point it is sending and receiving at
most one block from another vertex. However, as we will
discuss later, nodes occupying the same vertex exchange
blocks among themselves to ensure that they all receive
the full message.

The binomial pipeline proceeds in three stages, each of
which are further divided into steps. During every step,
all vertices with at least one block have one of their mem-
bers send across parallel edges of the hypercube. At the
start of the first stage the sender transfers one block of the
segment to a receiver. In the next step of the first stage,
the sender transfers a different block to receiver in another
vertex, while the first receiver simultaneously sends its
block on to a third vertex. This pattern continues until
all vertices have a single block.

Now that all nodes have a block, the second stage can
be much more efficient. Previously we were wasting most
of the network capacity because at each step every node
was either a sender or a receiver but not both. In this stage,
the sender continues to send successive blocks while all
other vertices trade their highest numbered blocks. Once
the sender runs out of blocks, the algorithm enters the final
stage. The sender repeatedly sends the last block, while
the rest of the vertices continue to trade blocks.

The progression of the binomial pipeline for a group of
8 nodes is illustrated in Figure 3, and contrasted with a
more traditional binomial tree broadcast. It is worth not-
ing that if the binomial pipeline is run with only a single
block, it will produce a binomial tree.

All that remains is to discuss the interactions within
vertices containing two nodes. Whenever a vertex is re-
sponsible for sending a block, exactly one of the nodes
within it will have that block. During that step, the other
node will send a block that only it has to its partner and re-
ceive the incoming block (if any) for the vertex. When all
vertices have all blocks, the nodes within them exchange
the final block they are missing, completing the send.

Our implementation of the binomial pipeline in RDMC
is the first adaptation of this technique to an RDMA envi-
ronment (the work described in [16] was evaluated purely
with a simulation). This entailed several extensions: (1)
Our implementation doesn’t need to know global state
or to compute the whole schedule. Instead it just com-
putes the parts relevant to each individual node. Further,
whereas the original version has a stage at which nodes
gossip about which nodes have what blocks, we were able
to eliminate that step entirely. (2) RDMC adjusts the algo-
rithm to allow some nodes to run slightly ahead of others.
The resulting small degree of asynchronicity eliminated
stalls that otherwise were seen in the originally, fully syn-
chronized protocol. (3) To minimize RDMA connection
setup overhead, we adjusted the schedule to ensure that
the first block each node receives always comes from the
same relayer.
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