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High frequency watertable fluctuations

* Tide- and wave-induced groundwater table
fluctuations

groundwater table
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Starting point and early work

« Parlange and Brutsaert 1987 — modified
Boussinesq equation

Angular frequency (Rad Hz)




Starting point and early work

* Lietal 1997 — high frequency groundwater wave
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» Capillarity and capping effects (Z,)
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(1) Hydrostatic case

* Integration from 0 to Z, = governing equation

* Recovery of the Boussinesq equation (with o -
infinity)
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(2) Non-hydrostatic case

* Integration from 0 to Z, = governing equation
— Determination of P
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(2) Non-hydrostatic case

* Integration from 0 to Z, = governing equation

— Correction due to P
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(2) Non-hydrostatic case

* Integration from 0 to Z, = governing equation
— Correction due to P
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(2) Non-hydrostatic case

* With a = infinity (absence of the unsaturated
zone), the governing equation also - BE

 With vertical flow also considered for the
saturated zone
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Validation: damping
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Analytical approximation

 Perturbation solution (18t order) based on ¢ = A/D

h=D + exp(—kaS F )cos(a)t - xkq F2)




Validation: comparison with numerical solution

« Damping and phase shift (capping effect)

kgF, damping rate

k,sF, wave number
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Wave characteristics

« Damping and phase shift.: comparison with measurement

Circle calculated
Barry et al. [1996] based on the
T Melen el al L1 _ wave dispersion
=== Cartwright et al. [2003] relationships of
— Present various models
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soil properties
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Thank you!
Questions?




